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The behavior of solution polygons to generalized crystalline curvature flow is discussed.
The conditions to guarantee that the solution polygon keeps its admissibility as long as
enclosed area of solution polygon is positive are clarified. We also show that the solution
polygon becomes “almost convex” before the extinction time.
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1. Introduction

Recently curvature-dependent interface motions under several kinds of inter-
facial energies are studied by many authors. Mean curvature flow is a typical
motion for smooth energies. This flow is obtained as the gradient flow for the
total interfacial energy when the interfacial energy is a constant. For non-smooth
energies, there is a spacial class of interfacial energies which are called crystalline
energies. For these energies, S. Angenent and M.E. Gurtin [2] and J.E. Taylor [12]
independently investigated the motion of polygonal plane curves by its crystalline
curvature. They also introduce admissibility of polygonal curves. After these
pioneer works, many authors discuss more general motions and higher dimensional
problems.

In this paper we consider motion of admissible polygons in the plane by crys-
talline curvature. Let σ = σ(n) > 0 be an interfacial energy function defined on
S1. Here S1 denotes the set of all unit vectors in R

2. When the Wulff shape
Wσ = {z ∈ R

2 | z ·n ≤ σ(n) for all n ∈ S1} is a polygon, σ is called crystalline. By
definition, Wσ is always convex. This shape originally comes from crystal physics
and describes the equilibrium shape of crystal. The concept of admissibility of
polygons is based on the Wulff shape. Roughly speaking, admissible polygons have
the same normal vectors as that of the Wulff shape and the change of normal angle
at each corner between two edges is the similar to that of the Wulff shape. We
denote by Hj crystalline curvature of j-th edge of an admissible polygon. The
detailed definitions are mentioned in Section 2. The motion equation Vj = Hj is
called crystalline curvature flow. Here Vj denotes the inward normal velocity of
j-th edge. An example motion by this flow is shown in Fig. 1. We see that each
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Fig. 1. Numerical simulation for crystalline curvature flow Vj = Hj (left: initial polygon,

right: time evolution of Ω(t)).

edge of solution polygon keeps its orientation and the solution polygon eventually
shrinks to a point.

In this paper we consider generalized crystalline curvature flow:

Vj = g(N j ,Hj), (1)

with an initial admissible polygon Ω0 and discuss the behavior of the solution
polygon Ω(t). Here the function g is a continuous function from S1 × R to R and
N j denotes the outward unit normal vector of j-th edge. The detailed conditions
on g are shown in Section 3.

When the initial polygon is convex, solution polygon keeps their convexity
and any edges never disappear as long as an enclosed area of solution polygon is
positive. For this case, asymptotic behavior of solution polygons are studied by
several authors (see [1, 9, 10, 11] and their references).

On the other hand, there are few results for non-convex case. K. Ishii and
H.M. Soner [7] consider Vj = Hj when the Wulff shape is a regular polygon and
discuss the motion of solution polygon. M.-H. Giga and Y. Giga [4] extend Ishii–
Soner’s results for more general motions (1). (Unfortunately, there are not precise
proofs.) They show that the solution polygon from non-convex initial polygon
keeps its admissibility till the extinction time and becomes convex strictly before
the extinction time. The later property is called “convexity phenomena” and well
known for smooth plane curves moving by the curvature flow [5] and its anisotropic
version [3]. However, this assertion is not valid for crystalline flow (1). Because
examples of non-convex self-similar solutions are shown in [8]. Namely, it is needed
to discuss the motion of non-convex polygons again.

In this paper, we clarify the assumptions on g and the Wulff shape to guarantee
that the solution polygon belongs to the admissible class as long as enclosed area
of solution polygon is positive. We also show that a crystalline curvature of each
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edges becomes non-negative and the solution polygon becomes star-shaped strictly
before the extinction time.

The paper is organized as follows: In next section, we introduce some defini-
tions and notation. In Section 3, the conditions on g and the interfacial energy are
given and show our results. In Section 4, we prove theorems.

We finally mention that the first result in this paper has an important mean-
ing from viewpoint of numerical studies. Recently, many authors use crystalline
motions as the approximating method for motion of smooth curves. From our re-
sult, we can guarantee that such numerical procedures do not break down till the
extinction time even if some edges disappear during time evolution.

2. Notation and definitions

Let σ be crystalline and Wσ Nσ-sided convex polygon.
We first define admissibility of polygons. Let Ω and pj = (xj , yj) (j = 0, 1, . . . ,

N − 1) be a N -sided polygon and the j-th vertex of Ω , respectively. Here and
hereafter the subscripts are in anticlockwise and mod N . We denote by Sj the j-th
edge which is line segment from pj to pj+1 and also denote by P the boundary
of Ω , that is, P = ∂Ω =

⋃N−1
j=0 Sj . We denote by NWσ

(resp. NΩ ) the set of all
outward unit normal vectors of Wσ (resp. Ω), respectively.

The polygon Ω is said to be admissible if Ω satisfies the following two condi-
tions: (1) NWσ

= NΩ and (2) (sN j + (1 − s)N j+1)/|sN j + (1 − s)N j+1| /∈ NWσ

for any 0 < s < 1 and j = 0, 1, . . . , N − 1. This is an analogical concept of smooth
curves. Namely, Ω has all normal angles of the Wulff shape and if N j = nk ∈ NWσ

,
then N j±1 ∈ {nk−1,nk+1}, where nk is the outward unit normal vector of k-th
edge of the Wulff shape.

The quantity Hj := χj lσ(N j)/dj defined for an admissible polygon is called
crystalline curvature of the j-th edge. Here dj and lσ(n) are the length of the j-th
edge of the solution polygon and the length of the edge of the Wulff shape with
normal n ∈ NWσ

, respectively. The quantity χj is called transition number and
given by χj := (sgn(θj − θj−1) + sgn(θj+1 − θj))/2. Here θj denotes the outward
normal angle of Sj . This takes +1 (resp. −1) if P is convex (resp. concave) at Sj

in the outward normal direction; otherwise it takes zero. In this paper we call a
edge with zero transition number “inflection edge.” Note that if Ω is convex, then
χj = +1 for all j and a crystalline curvature of each edge of the Wulff shape is
always one. The later means that the Wulff shape plays a role like as the unit circle
in the usual sense.

3. Edge-disappearing and almost convexity phenomena

3.1. Finite time edge-disappearing
We first assume the following:

Assumption (G1). λ �→ g(N j , λ) is locally Lipschitz continuous on R \ {0}
for all N j ∈ NWσ

.
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Assumption (G2). For all N j ∈NWσ
, g(N j ,λ) is monotone non-decreasing

on λ and satisfies g(N j , 0) = 0, g(N j , λ) > 0 (λ > 0), g(N j ,−λ) = −g(N j , λ)
and limλ→∞ g(N j , λ) = +∞.

Notice that (1) can be written as the following:

ḋj(t) = (cot(θj+1 − θj) + cot(θj − θj−1))Vj

− 1
sin(θj − θj−1)

Vj−1 − 1
sin(θj+1 − θj)

Vj+1 (2)

for all j (see [2]). From the standard theory of a system of ordinary differential
equations, we have short time existence and uniqueness of the solution polygon
under (G1) (see [4] and its references). We also have that the solution of (2) exists
as long as all dj ’s are positive. The assumption (G2) means that equation (1)
includes crystalline curvature flow Vj = Hj . We later show that at least one edge
disappears in finite time. On the other hand, there is a possibility that two parts
of the boundary P(t) contact each other before the edge-disappearing. We call
this phenomenon “self-contacting of the boundary” or “self-contacting” in short. If
the self-contacting happens, the admissibility and simply-connectedness of solution
polygon may break down even if all dj ’s are positive. We will show that such a
phenomena never occur as long as all dj ’s are positive under some assumptions
mentioned later. Namely, the admissibility of solution polygon is preserved until
just before the edge-disappearing time. Let T1 be the edge-disappearing time.
Then, we have two possibility: The first is that all edges disappear at the same
time. This means that the solution polygon shrinks to a single point and the
solution polygon vanishes at t = T1. The second is that at least one edge remains
at t = T1. In this case, if the limit Ω(T1) = limt→T1 Ω(t) exists and is admissible,
then we can continue a time evolution of solution polygon in the class of admissible
polygons beyond t = T1. For this procedure, we add the following three conditions:

Assumption (W1). The Wulff shape Wσ is point symmetric with respect to
the origin.

Assumption (G3). g(−N j , λ) = g(N j , λ) for any N j ∈ NWσ
and λ ∈ R.

Assumption (G4). For any N j ∈ NWσ
, the function g(N j , λ) satisfies

∫ ∞

1

g(N j , λ)λ−2 dλ =
∫ −∞

−1

g(N j , λ)λ−2 dλ = ∞.

From the assumption (W1), if N ∈ NWσ
, then −N ∈ NWσ

and lσ(N) =
lσ(−N). For example, regular even-sided polygons satisfy (W1). The condition
(G3) means a symmetry of mobility. The assumption (G4) describes a growth
rate of g( · , λ) as λ → ±∞. It is shown in [4] that if g is linear or superlinear,
then the degenerate pinching singularity never occur. If (G4) fails, the degenerate
pinching may occur. For the convex case, Andrews [1] show the existence of the
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degenerate pinching singularities. In [6], some examples of the degenerate pinching
for non-convex case are shown.

Under all assumptions, we can guarantee to solve the problem in the class of
admissible polygons till enclosed area of solution polygon becomes zero.

Theorem 1. Let Ω(0) be a N0-sided admissible polygon. Assume (G1)–(G4)
and (W1). Then, there exists a finite time T1 > 0 such that Ω(t) is N0-sided
admissible polygon for 0 ≤ t < T1 and at least one edge disappears at t = T1.

Moreover, one of the following two phenomena occurs exclusively at t = T1:
1. Ω(t) shrinks to a single point, that is, limt→T1 dj(t) = 0 for all j.
2. If at least one edge remains, then only inflection edges may disappear and the

limit Ω(T1) = limt→T1 Ω(t) exists and is admissible. In addition, locally at
most two consecutive edges disappear at t = T1.

Remark 1. These three assumptions (G3), (G4) and (W1) are essential for
the assertion. If one of them fails, then we can find counter examples. Schematic ex-
amples are shown in Figs. 2, 3 and 4. Fig. 2 shows that example motion of splitting
phenomena when (W1) does not hold. In this case, the Wulff shape is a pentagon.
The two center above edges have zero crystalline curvature and thus never move
in each normal direction. The bottom edge moves upward and eventually vertex-
edge type self-contacting happens. We see that the solution polygon splits into two
particles and each polygon is not admissible. Fig. 3 shows that example motion of
splitting phenomena via edge-edge type self-contacting when (G3) does not hold.
In this case, the Wulff shape is a octagon. If g((0, 1), · ) � g((0,−1), · ), the bot-
tom edge moves upward faster than the above edge and eventually the both edges
touch each other. We see that the solution polygon splits into two particles and
each polygon is not admissible. Fig. 4 shows that example motion of degenerate
pinching singularity when (G4) does not hold. In this case, the Wulff shape is a
octagon. Because of the lack of (G4), two parts of the boundary collapse to line
segments. The limit Ω(T1) has line segments and is not admissible.

3.2. Almost convexity phenomena
We here characterize properties of solution polygon near the extinction time.

Since N0 is finite and new edges never be generated, the number of edges is mono-
tone non-increasing in time. By Theorem 1, the edge-disappearing happens in a
finite time. Thus, we have a finite sequence of edge-disappearing times:

0 < T1 < T2 < · · · < Tm < ∞.

We also put T0 = 0. From the previous theorem, the solution polygon shrinks to a
single point at the extinction time t = Tm. We have the following:

Theorem 2. Suppose the same assumptions as in the previous theorem.
Then, the number of edges with negative curvature is zero and the number of inflec-
tion edges is zero or two at t = Tm−1. Moreover, if there are two inflection edges
at t = Tm−1, then each inflection edges are adjacent each other.
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Fig. 2. Example motion when (W1) does not hold.

Fig. 3. Example motion when (G3) does not hold.

Fig. 4. Example motion when (G4) does not hold.

Remark 2. If there are no inflection edges at t = Tm−1, Ω(t) is convex and
all Hj(t)’s are positive for t ≥ Tm−1. Non-convex self-similar solutions are typical
examples for the case where there are two inflection edges at t = Tm−1 with m = 1.

From this theorem, we easily obtain that there exists the first time T∗ ≤ Tm−1

such that all curvature become non-negative for t ≥ T∗. We can also characterize a
shape of solution polygon near the extinction time in the case where there remain
two inflection edges. Let Sk and Sk+1 be inflection edges at t = Tm−1. Put D1(t) :=
{z ∈ Ω(t) | (pk(t)− z) ·Nk > 0} and D2(t) := {z ∈ Ω(t) | (pk(t)− z) ·Nk+1 > 0}.
Noting that since 0 < |θk − θk+1| < π and the set D(t) := D1(t) ∩ D2(t) is not
empty for t ≥ Tm−1, we can choose a point r(t) ∈ D(t) for t ≥ Tm−1. Then, the line
segment from r(t) to any boundary point p ∈ P(t) is contained in Ω(t). Because
Ω(t) ∩ D1(t) (resp. D2(t)) is convex. Thus, the solution polygon is star-shaped for
t ≥ Tm−1.

We summarize the above assertions as follows:

Corollary 1 (Almost convexity phenomena). For any t ≥ Tm−1, the solu-
tion polygon Ω(t) is star-shaped and Hj(t) ≥ 0 for all j.
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Remark 3. There exists the minimum time T ∗ ≤ Tm−1 such that the solu-
tion polygon Ω(t) is star-shaped for any t > T ∗. The order of T∗ and T ∗ depends
on the initial shape.

We finally mention the sufficient condition for the convexity phenomena. By
Theorem 2, there is only one pair of adjacent inflection edges t ≥ Tm−1 even if
inflection edges exist. If Ω0 is symmetric for some point r∗ ∈ R

2, the solution
polygon is also symmetric for r∗ since the flow is symmetric. Thus, the number of
pairs of adjacent inflection edges are even and this leads that there are no inflection
edges at t = Tm−1. Thus, we have the following:

Corollary 2 (Sufficient condition for convexity phenomenon). If the ini-
tial polygon Ω(0) is point symmetric, then the solution polygon becomes convex at
t = Tm−1.

Remark 4. In Proposition 6 in [4], it is shown that the convexity phenom-
ena always appears for any initial polygons under the same assumptions as in our
theorems. However, this result is based on Lemma 2 in [4] and the convexity state-
ment in this lemma is overstated because there are some examples of non-convex
self-similar solutions [8]. Thus, the sufficient condition on g and Wσ under which
the convexity phenomena always appears for any initial polygons is still open.

4. Proofs of theorems

Let T1 := sup{t | infj dj(t) > 0} (≤ ∞). We first show that dj(t) as the solution
of (2) has the limit as t → T1 when T1 is finite.

Lemma 1. Assume that T1 < ∞. Under the assumptions (G1) and (G2),
there exist limt→T1 dj(t) for all j.

Proof. Let A := lim inft→T1 dj(t) and B := lim supt→T1
dj(t). We will show

A = B.

Case 1: χj = 0.

By θj+1 − θj = −(θj − θj−1), we have

ḋj(t) =
1

sin(θj − θj−1)
Vj+1 − 1

sin(θj − θj−1)
Vj−1.

If θj − θj−1 > 0 (resp. < 0), we have χj−1 ≥ 0 (resp. ≤) and χj+1 ≤ 0 (resp. ≥).
Thus, we have ḋj(t) ≤ 0 and we have A = B.

Case 2: χj = 1.

Since χj±1 ≥ 0 and 0 < θj+1 − θj , θj − θj−1 < π, we have

ḋj(t) ≤ (cot(θj+1 − θj) + cot(θj − θj−1))Vj . (3)

If cot(θj+1 − θj) + cot(θj − θj−1) ≤ 0, then we have ḋj(t) ≤ 0 since Vj > 0. Thus,
A = B.
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Let cot(θj+1−θj)+cot(θj −θj−1) > 0. Suppose that A < B. Then, since dj(t)
is continuous in [0, T1), there exist time sequences {sn} and {tn} conversing to T1

as n → ∞ such that dj(sn) = (2A+B)/3, dj(tn) = (A+2B)/3 and sn < tn < sn+1.
By mean value theorem, there is a time sequence {τn} such that τn ∈ (sn, tn),

dj(τn) ≥ 2A + B

3
(4)

and

ḋj(τn) ≥ B − A

3(tn − sn)
. (5)

By (3) and (4), we have

ḋj(τn) ≤ (cot(θj+1 − θj) + cot(θj − θj−1))g
(

N j ,
3lσ(N j)
2A + B

)
< +∞. (6)

However, from (5), we have limn→∞ ḋj(τn) = +∞. This leads a contradiction to
(6). We can also prove the case where χj = −1 in the same way. �

From the above lemma, we can define dj(T1) := limt→T1 dj(t) for all j, if T1

is finite. Then, dj(t)’s are continuous on [0, T1]. Therefore, the limit Ω(T1) =
limt→T1 Ω(t) exists in the Hausdorff topology. We next show that self-contacting
never occur for 0 < t < T1. Note that the strategy of the proof is similar to that
in [7]. We extend their argument. For the later arguments, we introduce some
notation. Let Lk(t) and Mk(t) be a line which contains Sk(t) and a region where
Sk(t) can move into, respectively. Namely,

Lk(t) := {z ∈ R
2 | (pk(t) − z) · Nk = 0},

Mk(t) := {z ∈ R
2 | χk(pk(t) − z) · Nk > 0} ∪ Lk(t).

We denote by N(t) and J(t) a number of edges of Ω(t) and a set of integers given by
J(t) := {0, 1, . . . , N(t) − 1}, respectively. Notice that N(t) = N0 and J(t) = J(0)
for 0 ≤ t < T1. On transition number, we introduce the following new notation:
Let D ⊂ {0, 1, . . . , N − 1} and m ∈ {1, 0,−1}. If χj = m for all j ∈ D, we denote
χD = m.

Lemma 2. Assume that (G1)–(G3) and (W1). Then, the self-contacting
never occur before t = T1.

Proof. Let T < T1 be the first self-contacting time. Note that dj(T ) > 0 for
all j. Then, There are three possible patterns of the self-contacting: (1) vertex-edge
contact, (2) edge-edge contact and (3) vertex-vertex contact.

Case (1): vertex-edge contact.

Suppose that pi contacts Sj and Si−1 and Si do not contact Sj (see Fig. 5).
From admissibility of Ω(t), we have (sN i + (1 − s)N i−1)/|sN i + (1 − s)N i−1| /∈
NWσ

for any s ∈ (0, 1). By the assumption (W1), we have −N j ∈ NWσ
.
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However, by geometry, it is obvious that there exists s∗ ∈ (0, 1) such that
(s∗N i +(1− s∗)N i−1)/|s∗N i +(1− s∗)N i−1| = −N j , which leads a contradiction
(see Fig. 5).

Fig. 5. Vertex-edge self contacting: pi(T ) ∈ Sj(T ).

Case (2): edge-edge contact.

Si and Sj are parallel and contact each other at t = T (see Fig. 6). The
cases where (χi, χj) = (0, 0), (1, 1), (−1,−1), (1, 0), (0, 1), (−1, 0) and (0,−1) are
impossible because the distance between Si and Sj does not decrease or a self-
intersection of P(t) occurs before t = T in these cases. Thus, there remain two cases:
(χi, χj) = (1,−1), (−1, 1). We only consider the case where (χi, χj) = (1,−1) since
the argument is symmetric.

Fig. 6. Edge-edge self contacting: Sj(T ) ⊆ Si(T ).

Let w(t) be a distance between Si and Sj . Then w(t) > 0 for 0 ≤ t < T
and w(T ) = 0. If di(T ) < dj(T ), then self-intersect must occur before t = T and
this contradicts the definition of T . Thus, we have di(T ) ≥ dj(T ). There are two
subcases (2-i): di(T ) > dj(T ) and (2-ii): di(T ) = dj(T ).

Subcase (2-i): di(T ) > dj(T ).

There exists δ > 0 such that di(t) > dj(t) for all t ∈ (T − δ, T ). By (W1), we
have lσ(N i) = lσ(N j) since N j = −N i. We then have

ẇ(t) = −Vi − Vj

= −g

(
N i,

lσ(N i)
di

)
− g

(
N j ,− lσ(N j)

dj

)

= −g

(
N i,

lσ(N i)
di

)
+ g

(
N i,

lσ(N i)
dj

)
> 0.
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Here we have used the monotonicity and symmetry of g from (G2) and (G3). This
contradicts w(T ) = 0. Therefore, the subcase (2-i) does not arise.

Subcase (2-ii): di(T ) = dj(T ).

In this case, the both edges completely overlap each other at t = T and thus the
adjacent edges are also contact each other. If one of the adjacent edge-edge contacts
is in subcase (2-i), we can apply the previous argument. If both of the adjacent
edge-edge contacts are in subcase (2-ii), we again consider the next adjacent edge-
edge contacts and finally, we can find the edge-edge contact in subcase (2-i) because
if we can not find it, the solution polygon must collapse to a polygonal line, that
is, some edges disappear at t = T and thus this contradicts the fact that all dj(T )
are positive. Therefore, the subcase (2-ii) also does not arise and the case (2) does
not occur.

Case (3): vertex-vertex contact.

pi and pj contact each other. In this case, we have Si ‖ Sj , Si−1 ‖ Sj−1 or
Si ‖ Sj−1, Si−1 ‖ Sj because if these relations do not hold, a self-intersection of these
edges occurs before t = T . Let ηj := sgn(θj − θj−1) ∈ {1,−1}. If (ηi, ηj) = (1,−1)
or (−1, 1), then edge-edge contacts also occur and this cases reduces to the case (2)
(see Fig. 7). Then, there remain two cases: (ηi, ηj) = (1, 1) and (−1,−1). We only
consider the case (ηi, ηj) = (1, 1) since we can discuss the other case in the same
manner.

Fig. 7. Two possible positions of edges in the case where (ηi, ηj) = (1,−1) or (−1, 1) in

vertex-vertex self contacting.

In Case (a) in Fig. 8, since all dj(T )’s are positive, two intersections between
Si and Sj−1 and between Si−1 and Sj must occur before t = T . Thus, Case (a)
never appear. We next consider Case (b). Notice that pi(t) ∈ Mi−1(0) ∩ Mi(0)
and pj(t) ∈ Mj−1(0) ∩ Mj(0) for t > 0. However, by the fact that χk ≥ 0 for
k = i, i−1, j, j−1 and geometry, we have (Mj−1(0)∩Mj(0))∩(Mi−1(0)∩Mi(0)) = ∅.
Thus, pi and pi never contact each other. Therefore, Case (b) does not occur and
the case (3) also does not occur.

Hence, we have the assertion. �

Remark 5. In [7], they do not assume (W1) explicitly. If (W1) does not
hold, the vertex-edge contacting may happen (see Fig. 2).

From this lemma, the solution polygon is admissible for 0 ≤ t < T1. We next
show T1 < ∞.
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Fig. 8. Two possible positions of edges in the case where (ηi, ηj) = (1, 1) in vertex-vertex

self contacting.

Lemma 3. Suppose the same assumptions as in the previous lemmas. Then,
at least one edge of solution polygon of (1) disappears in a finite time.

Proof. By the previous lemma, Ω(t) is admissible for 0 ≤ t < T1. Then, for
each t ∈ [0, T1), we can define a minimal convex admissible polygon Ω̃(t) which
contains Ω(t) (see Fig. 9). By definition, Ω(t) ⊆ Ω̃(t) for 0 ≤ t < T1. By geometry,
each edge of Ω(t) which touches ∂Ω̃(t) has a positive curvature and moves in
its inward normal direction. Thus, each edge of Ω̃(t) also moves in its inward
normal direction. Therefore, Ω̃(t2) ⊂ Ω̃(t1) for t1 < t2. From this monotonicity,
we have dj(t) ≤ d∗ for all j and t > 0, where d∗ = supx,y∈Ω̃(0) dist(x, y). By the

monotonicity of g in (G2), any edge of Ω̃(t) has a positive inward normal velocity
which is larger than v∗ := minj g(N j , lσ(N j)/d∗) > 0. Thus Ω̃(t) must collapse
before or just at t∗ = d∗/v∗. Since Ω(t) ⊆ Ω̃(t), there exist k and T1 > 0 such that
T1 ≤ t∗ and lim inft→T1 dk(t) = 0. By Lemma 1, we have limt→T1 dk(t) = 0. �

Fig. 9. Ω(t) (left) and Ω̃(t) (right). The dotted line in right figure shows Ω(t).

Here and hereafter, we always assume all conditions in Theorem 1. By Lem-
mas 3 and 2, at least one edge disappears at t = T1 and Ω(t) is N0-sided admissible
polygon for 0 ≤ t < T1. If all edges disappear at the same time, T1 is the extinction
time and the solution polygon shrink to a single point (the case 1 of Theorem 1).
The next lemma characterizes the disappearing edges when some edges remain at
t = T1 (the case 2 of Theorem 1).
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Proposition 1. Suppose that there exists at least one edge whose length is
positive at t = T1. Then, only inflection edge may disappear at t = T1. Namely, if
limt→T1 dk(t) = 0, then χk = 0.

The following result is due to M.-H. Giga and Y. Giga [4].

Lemma 4. Suppose that |θj0 − θj1 | = π ( j0 < j1) and χj �= 0 for j ∈ Q :=
{j0 + 1, j0 + 2, . . . , j1 − 1}. If Sk ( k = j0, j1) satisfies dk(T1) > 0 unless χk = 0,
then the phenomena that dj(T1) = 0 for all j ∈ Q does not happen.

Remark 6. When χj = 0 (j = j0 or j1), dj(T1) > 0 is not necessary.

For reader’s convenience, we give a proof.

Proof. Here and in the sequel we denote by C the various positive constants
and A ∼ B means that c1A ≤ B ≤ c2A for some positive constants c1 and c2.

Suppose on contrary that dj(T1) = 0 for all j ∈ Q. Let w(t) be the distance be-
tween Lj0(t) and Lj1(t). By geometry, w(t) > 0 for 0 ≤ t < T1 and limt→T1 w(t) =
0. If (χj0 , χj1) = (0, 0), then w(t) = w(0) since ẇ(t) = −(Vj0 + Vj1) = 0. Thus,
(χj0 , χj1) �= (0, 0). We only consider the case where χQ, χj0 = 1 since the argument
is symmetric.

Since χj0 = 1, we have Vj0−1 ≥ 0. Noting that Vj0 is bounded, m := sin(θj0+1−
θj0) and sin(θj0−θj0−1) are positive constants and cot(θj0+1−θj0)+cot(θj0−θj0−1)
is bounded, by virtue of (2), we have

ḋj0 ≤ C − 1
m

Vj0+1. (7)

Since χj0+1 = 1 and dj0+1(T1) = 0, we have limt→T1 Vj0+1(t) = ∞. Thus, ḋj0(t) →
−∞ as t → T1 and there exists δ > 0 such that ḋj0(t) < 0 for t ∈ [T1 − δ, T1).

Noting that dj0(t) ∼ 1 and dj1(t) ∼ 1 if χj1 = 1, we have ẇ(t) ∼ −1 in [0, T1).
Thus,

I :=
∫ T1

T1−δ

ḋj0ẇ dt ≤ C

∫ T1

T1−δ

(−ḋj0) dt = C[dj0(T1 − δ) − dj0(T1)] < ∞.

On the other hand, by geometry, we have mdj0+1(t) ≤ w(t). By monotonicity of g,
we have Vj0+1 ≥ g(N j0+1,mlσ(N j0+1)/w). Thus, by virtue of (7), we have

I ≥
∫ T1

T1−δ

(
C − 1

m
Vj0+1

)
ẇ dt ≥ C − 1

m

∫ T1

T1−δ

g(N j0+1,mlσ(N j0+1)/w)ẇ dt.

By assumption (G4), we have I ≥ ∞ which leads a contradiction. Thus, we have
the assertion. �

Proof of Proposition 1. By Lemma 2, there exist at least one edge disappear-
ing at t = T1 and Ω(t) is N0-sided admissible polygon in [0, T1). Because P(t) is
a closed polygonal curve, there are at least two edges whose lengths are positive
at t = T1. Hence, for any i such that limt→T1 di(t) = 0, we can find Sj0 and
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Sj1 (j0 < j1) such that dj0(T1), dj1(T1) > 0, limt→T1 dj(t) = 0 for any j ∈ Q :=
{j0 + 1, . . . , j1 − 1} and i ∈ Q. Let p∗ = (x∗, y∗) be the meeting point of pj(t)’s
(j ∈ Q ∪ {j1}) at t = T1, that is, limt→T1 pj(t) = p∗ for all j ∈ Q ∪ {j1}.

We will show that only inflection edges may disappear, that is, Q = Q0 :=
{j ∈ Q | χj = 0}. Suppose on contrary, we assume that there exists i∗ ∈ Q such
that χi∗ �= 0. Since the argument is symmetric, we only consider the case where
χi∗ = 1 and without loss of generality, we may assume θj0 = 0.

We divide the argument into the following three cases: the case where Q0 is
empty, the case where #Q0 = 1 and the case where #Q0 ≥ 2. Here #Q0 denotes
the number of elements in Q0.

Case 1: Q0 is empty.

Note that χQ = 1 since i∗ ∈ Q. By geometry, there are four possibilities:
0 < θj1 < π, θj1 = π, π < θj1 < 2π and θj1 ≥ 2π.

Subcase 1-1: 0 < θj1 < π.

Let L∗ be a line which is parallel to Lj0 and passing through p∗ and q(t) =
(xq(t), yq(t)) := Lj0(t) ∩ Lj1(t). Choose any i ∈ Q. We introduce two new points:
zi(t) = (xzi

(t), yzi
(t)) := L∗ ∩ Li(t) and zq(t) = (xzq

(t), yzq
(t)) := L∗ ∩ {z ∈ R

2 |
(z − q) ·N i = 0} and define w(t) = yzq

(t)− yzi
(t). Then we have xzi

(t) = xzq
(t) =

x∗, yq(t) > yzi
(t) > y∗ for 0 ≤ t < T1 and limt→T1 yzq

(t) = limt→T1 yzi
(t) = y∗,

from which it follows that w(t) > 0 for t ∈ [0, T1) and limt→T1 w(t) = 0. On the
other hand,

ẇ = ẏzq
(t) − ẏzi

(t)

= − Vj1

sin θj1

+
Vi

sin θi
→ ∞ as t → T1.

This is a contradiction. Therefore, Subcase 1-1 does not happen.

Subcase 1-2: θj1 = π.

By Lemma 4, this subcase does not happen.

Subcase 1-3: π < θj1 < 2π.

By geometry, xj0(t) = xj0+1(t) and xj1(t) < xj1+1(t). From pj0+1(T1) =
pj1(T1) = p∗ and dj1(T1) > 0, we have xj0(t) < xj1+1(t) near t = T1. Since
dj0(T1), dj1(T1) > 0, χQ = 1 and

∑j1−1
j=j0+1 dj(t) → 0 as t → T1, a self-intersection

of
∑j1

j=j0
Sj may occur strictly before t = T1 and this leads the contradiction.

Subcase 1-4: θj1 ≥ 2π.

By geometry,
∑j1−1

j=j0+1 dj(t) > min(dj0(t), dj1(t)) is necessary to prevent a self-
contacting before t =T1. However, min(dj0(t),dj1(t))≥ inf0≤t≤T1 min(dj0(t),dj1(t))>

0 and
∑j1−1

j=j0+1 dj(t) → 0 as t → T1. Thus, this leads a contradiction.



246 T. Ishiwata

Fig. 10. Subcase 1-1.

Therefore, Case 1 does not happen.

Case 2: Q0 = {k}.
There are two possibilities: the case where k �= j0 +1, j1−1 and the case where

k ∈ {j0 + 1, j1 − 1}.
Subcase 2-1: k �= j0 + 1, j1 − 1.

Let Q1 := {j0 + 1, . . . , k − 1} and Q2 := {k + 1, . . . , j1 − 1}. We consider only
the case i∗ ∈ Q1. Then, χQ1 = 1 and χQ2 = −1. Since χk−1 = 1, χk+1 = −1 and
χk = 0, we have Sk(t2) ⊂ Sk(t1) for t1 < t2. Thus, p∗ ∈ ⋂

t∈[0,T1)
Sk(t) ⊂ Sk(0).

We also have χj0 = 1 and χj1 = −1 since Q1 and Q2 are not empty and pj0+1(T1) =
pj1(T1) = p∗ ∈ Sk(0).

If θk < π, by the argument similar to that in Subcase 1-1 (we consider Lk(t)
instead of Lj1(t)), we can show that this case does not happen. If θk = π, we can
also apply Lemma 4 and show that this subcase also does not happen.

Thus, θk > π. We also have θk − θj1 > π in the same way.
We first consider the case where (2m−1)π < θk < 2mπ for some integer m≥ 1.

We introduce a new time variable τ = T1 − t and define f̃(τ) = f(t) for some
function f . Note that L̃k(τ) = L̃k(0) because of χk = 0. Since p̃j0+1(0) = p∗ and
d̃j0(0) > 0, p̃j0(τ) remains in the half space below L̃k(0) in τ ∈ [0, τ0] for some
τ0 > 0. Thus, if the condition that x̃j0(τ) > x̃k+1(τ) for 0 < τ ≤ τ0 fails, the self-
intersection of the curve

∑k
j=j0

S̃j(τ) must happen for small τ > 0 (see Fig. 11).
We show below that this condition never be satisfied.
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Fig. 11. Subcase 2-1.

Since Sj0(t) does not disappear, we have Vj0(t) ∼ +1 and thus

dx̃j0(τ)
dτ

∼ +1.

On the other hand, since limt→T1 Vk+1 = −∞ and (2m− 1)π < θk < 2mπ, we have

dx̃k+1(τ)
dτ

∣∣∣∣
τ=0

= +∞.

Thus, put w̃(τ) = x̃k+1(τ) − x̃j0(τ), then we have w̃(0) = 0 and

dw̃(τ)
dτ

∣∣∣∣
τ=0

= +∞.

Hence, w̃(τ) > 0 in (0, τ0) for some τ0 > 0. Thus, this case does not happen.
For the case 2mπ < θk < (2m + 1)π, we consider x̃k(τ) instead of x̃k+1(τ).

Then, we can prove in the same way.
For the cases θk = 2mπ and θk = (2m + 1)π, the arguments are similar to

the above but slight different. We only mention the first case. By (W1) and
θk − θj1 > π, there exists j2 ∈ Q2 such that N j2 = −N j0 . Since p̃j0+1(0) = p∗,
d̃j0(0) > 0 and p̃j(0) = p∗ for j = k +1, k +2, . . . , j2, we have ỹj0(τ) < y∗− d̃j0(0)/2
and ỹj(τ) > y∗ − d̃j0(0)/2 for j = k + 1, k + 2, . . . , j2 in τ ∈ [0, τ ′

0] for some τ ′
0 > 0.

Thus, p̃j0(τ) is below the curve
∑j2−1

j=k+1 S̃j(τ) in τ ∈ [0, τ ′
0]. On the other hand,

noting that dx̃j0 (τ)

dτ ∼ +1 and dx̃j2 (τ)

dτ

∣∣
τ=0

= +∞ since χj2 = −1 and d̃j2(0) = 0,

we have x∗ < x̃j0(τ) < x̃j2(τ) near τ = 0. Therefore, the curve
∑j2

j=k S̃j(τ) must

intersect the curve
∑k−1

j=j0
S̃j(τ). Thus, this case does not happen.

Hence, Subcase 2-1 never occur.

Subcase 2-2: k ∈ {j0 + 1, j1 − 1}.
We only consider the case k = j1 − 1. Let Q1 := {j0 + 1, . . . , k − 1}. Since

χQ1 = 1 and χk = 0, we have χj0 ≥ 0 and χj1 ≤ 0 and we also have Sk(t2) ⊆ Sk(t1)
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for t1 < t2. Thus, p∗ ∈ Sk(0). Since Q1 are not empty and pj0+1(T1) = p∗ ∈ Sk(0),
we have χj0 = 1.

By the same argument as in the previous subcase, we have θk > π. Then, by
(W1), there exists i0 ∈ Q1 such that θi0 = π. Since χk = 0 and χQ1 = 1, we have
θj1 = θk−1 ≥ θi0 and thus θj1 ≥ π.

When θj1 > π, by the same arguments as in Subcase 1-3 and 1-4, Sj1 intersects
Sj0 or the subarc

∑j1−1
j=j0+1 Sj before t = T1. Thus, only one possibility is the case

where θj1 = π, that is, Sj1 is parallel to Sj0 . Let Q′ = {0, 1, . . . , N − 1} \ {j0,
j0 + 1, . . . , j1}. From χk−1 = 1 and χk = 0, we have χj1 ≤ 0.

Subcase 2-2-1: χj1 = 0.

Note that p∗ = pj1(0) and χj1+1 ≥ 0. If χQ′ = 1, then Sj(t) is located between
Lj0(t) and Lj1(t) and is not parallel to Sj0 and Sj1 for any j ∈ Q′. Noting that
dist(Lj0(t),Lj1(t)) → 0 as t → T1, we have dj(T1) = 0 for all j ∈ Q′. By Lemma 4,
we deduce that this motion is impossible since dj0(T1), dj1(T1) > 0. Thus, there is
at least one inflection edge on the curve C1(t) :=

∑
j∈Q′ Sj(t). Note that χj0 = 1

and χj1+1 ≥ 0.

Step 1. Let R1(t) be the region enclosed by the curve
∑j1

j=j0
Sj(t), Lj0−1(t)

and Lj1+1(t). We will show that there exists μ1 > 0 such that for any j∗ ∈
Q′ \ {j1 + 1}, ⋃

t∈(T1−μ1,T1)
(R1(t) ∩ Sj∗(t)) = ∅ if χj∗ = 0.

Suppose on contrary that there exist a time sequence {tk} and j∗ ∈ Q′\{j1+1}
such that tk ↑ T1 (k → ∞), χj∗ = 0 and R1(tk)∩Sj∗(tk) �= ∅ (see Fig. 12, (1)). Since
pj(t)’s (j ∈ Q) converge to p∗ = pj1(0) and dist(Lj0(t),Lj1(0)) → 0, R1(t) collapses
to a line segment Γ1 ⊂ Lj1(0) at t = T1. Note that the area of R1(t) tends to
zero as t → T1. Thus, dist(Γ1,Sj∗(tk)) → 0 as k → ∞. On the other hand, noting
that dist(Sj∗(t1),Sj1(t1)) > 0 and Γ1 = Sj0(T1)∩Sj1(T1) ⊆ Sj1(T1) ⊆ Sj1(t1) since
χj1 = 0, we have dist(Γ1,Sj∗(t1)) > 0. From χj∗ = 0, we have Sj∗(tk) ⊆ Sj∗(t1)
for any k. Thus, dist(Γ1,Sj∗(tk)) ≥ dist(Γ1,Sj∗(t1)) > 0 for any k. This leads a
contradiction.

Step 2. The assertion in the previous step leads that χj0−1 = 0 or χj1+1 = 0
since the transition number of every edge never change till t = T1. We will show
that if χj0−1 = 0, then x∗ ≥ xj0−1(t) for any t ∈ [0, T1).

Suppose on contrary that χj0−1 = 0 and there exists t′ ∈ [0, T1) such that
x∗ < xj0−1(t′) (see Fig. 12, (2)). From θj0−2 = θj0 = 0 and χj0−2 ≤ 0, we have
ẋj0−1 ≥ 0. Since dj0−1(t) > 0 in [0, T1), we get x∗ < xj0−1(t′) ≤ xj0−1(t) < xj0(t)
for any t ∈ [t′, T1). This contradicts the fact that limt→T1 xj0(t) = x∗.

Step 3. If p∗ is below Lj0−1(t′′) for some t′′ ∈ [0, T1), then p∗ is below Lj0−1(t)
for any t ∈ [t′′, T1) since χj0−1 ≥ 0. However, this leads a contradiction because
pj0+1(t) is above Lj0−1(t) for t ∈ [0, T1) and limt→T1 pj0+1(t) = p∗. Thus, p∗ is
above or on Lj0−1(t) for any t ∈ [0, T1).
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Fig. 12. Three situations in Subcase 2-2-1: (1) the situation in Step 1, (2) the situation

in Step 2 and (3) the situation in Step 3.

Step 4. First, we will show χj1+1 = 0. Suppose χj1+1 �= 0. Then, χj0−1 = 0
by Step 1. By geometry, Step 2 and Step 3 lead that pj1+1(t) is above Lj0−1(t).
This is a contradiction with Step 1 and χj1+1 �= 0. Hence, χj1+1 = 0.

Note that χj1+2 ≤ 0. Let χj1+2 = 0. Then Sj1+2 ‖ Sj0 and x∗ < xj1+2(t) =
xj1+2(0) for any t ∈ [0, T1). Since ẋj0(t) < 0 and xj0(t) → x∗ as t → T1, there
exists t∗ ∈ [0, T1) such that xj0(t) < xj1+2(0) = xj1+2(t) for any t ∈ [t∗, T1). By
geometry, it is needed to prevent a self-intersection of the boundary that pj0(t) is
above Lj1+1(t) = Lj1+1(0) for any t ∈ [t∗, T1). This is a contradiction with Step 1.
Thus, χj1+2 = −1.

Next we will show that pj0(t) is below Lj1+3(t) for any t near T1. Suppose
on contrary that there exists a time sequence {sk} such that sk ↑ T1 (k → ∞)
and pj0(sk) is above or on Lj1+3(sk). Note that p∗ is above or on Lj0−1(t) for
any t ∈ [0, T1). Then we have xj0−1(sk) > x∗ for any sk and thus χj0−1 = 1 by
Step 2. Hence, C1(sk) has at least one inflection edge in R2(sk) defined as the region
enclosed by the curve

∑j1+2
j=j0

Sj(sk) and Lj0−1(sk). Then, there exist a subsequence
{s′k} and an inflection edge Sj∗ such that s′k → T1 (k → ∞) and Sj∗(s

′
k) is in R2(s′k).

Since xj0(s
′
k) → x∗ as k → ∞ and pj(t)’s (j ∈ Q) converge to p∗, R2(s′k) collapses

to a line segment on Lj1(0) as k → ∞. Thus, by the similar argument to that in
Step 1, we have a contradiction. Therefore, Sj0−1(t) is below Lj1+3(t) for any t
near T1 (see Fig. 12, (3)). Hence we have x∗ (= xj1(t)) < xj1+2(t) < xj0(t) and
xj0(T1) = xj1+2(T1) = x∗. We have dj1(T1) + dj1+2(T1) = yj1(T1) − yj1+3(T1) ≤
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yj0+1(T1) − yj0(T1) = dj0(T1). Thus, dj0(t) > dj1+2(t) for any t near T1, from
which it follows that xj0(t) − xj1+2(t) increases for any t near T1. Thus, we get a
contradiction. Consequently, Subcase 2-2-1 does not occur.

Subcase 2-2-2: χj1 = −1.

We first show that dj0(T1) = dj1(T1). Assume that dj0(T1) < dj1(T1). Since
pj0+1(T1) = pj1(T1) = p∗, we have that dj0(t) < dj1(t) and pj0(t) is above Lj1+1(t)
near t = T1. Thus, by geometry, Sj0−1 is an inflection edge or the curve C1(t)
has at least one inflection edge Sj∗(t) in the interior region enclosed by the curve∑j1

j=j0
Sj(t) and Lj0−1(t). However, by the same argument as in the previous

subcase 2-2-1, we see that the self-intersection of P(t) or the edge-disappearing
occurs before t = T1 and this leads a contradiction to the definition of T1. Thus,
dj0(T1) ≥ dj1(T1). If dj0(T1) > dj1(T1), then Vj0(t) < −Vj1(t) near t = T1, from
which it follows that dist(Lj0(t),Lj1(t)) increases near t = T1. This leads to a
contradiction. Therefore, we have dj0(T1) = dj1(T1), that is, pj0(T1) = pj1+1(T1).

We next show that dj0(t) > dj1(t) in [T1 − δ, T1) for some δ > 0. Note that
by convexity of the Wulff shape and (W1), θj0+1 − θj0−1 ≤ π. In the case where
θj0+1 − θj0−1 = π, it is obvious that dj0(t) > dj1(t) for t < T1 since pj0(t) is below
Lj1+1(t) and pj0+1(t) is above Lk(0). Thus, θj0+1 − θj0−1 < π. By using the new
time variable τ , we have

d

dτ
d̃j0(τ) = −c1Ṽj0 + c2Ṽj0+1 + c3Ṽj0−1,

d

dτ
d̃j1(τ) = c1Ṽj1 − c2Ṽk − c3Ṽj1+1.

Here c1 = cot(θj0+1 − θj0) + cot(θj0 − θj0−1) > 0, c2 = 1/sin(θj0+1 − θj0) > 0
and c3 = 1/sin(θj0 − θj0−1) > 0. Note that Sj0−1 ‖ Sj1+1. By geometry, it is needed
that p̃j0(τ) is below L̃j1+1(τ) for τ > 0 to prevent the self-intersection for τ > 0,
Thus, we have

dist(L̃j1+1(0), L̃j0−1(τ)) − dist(L̃j1+1(0), L̃j1+1(τ))

=
∫ τ

0

(Ṽj0−1(τ ′) − (−Ṽj1+1(τ ′))) dτ ′ > 0

since χj0−1 ≥ 0 and χj1+1 ≤ 0. Integrating d
dτ (d̃j0 − d̃j1) from 0 to τ , we have

d̃j0(τ) − d̃j1(τ) =
∫ τ

0

(−c1(Ṽj0 + Ṽj1) + c2(Ṽj0+1 + Ṽk) + c3(Ṽj0−1 + Ṽj1+1)) dτ ′

>

∫ τ

0

(−c1(Ṽj0 + Ṽj1) + c2Ṽj0+1) dτ ′

> 0.

for small τ > 0. Here we use the facts that Ṽk(τ) = 0, limτ→0 Ṽj0+1(τ) = +∞ and
Ṽj1(τ) + Ṽj0(τ) is bounded. Therefore, for small τ > 0, we have −H̃j1(τ) > H̃j0(τ)
and thus d

dτ x̃j1(τ) = −Ṽj1(τ) > Ṽj0(τ) = d
dτ x̃j0(τ). Note that −Ṽj1(0) = Ṽj0(0)
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and x̃j1(0) = x̃j0(0). Then, we have x̃j0(τ) < x̃j1(τ) for small τ > 0. Obviously,
this leads the self-intersection. Hence, Subcase 2-2 never appear.

Case 3: Q0 = {k1, k2, . . . , km}, m ≥ 2.

By the argument similar to that in Subcase 2-1, we have Sk(t2) ⊆ Sk(t1) for
any k ∈ Q0 and t1 < t2 since χk = 0 and χk−1χk+1 ≤ 0. Thus, we have p∗ ∈⋂

k∈Q0
Sk(0) and this is impossible when m ≥ 3. Then, we have m = 2 and k2 =

k1 + 1. Let Q1 := {j0 + 1, . . . , k1 − 1}, Q2 := {k2 + 1, . . . , j1 − 1}.
Subcase 3-1: Q1, Q2 �= ∅.
If i∗ ∈ Q1, then χQ1 = 1. Noting that χk1−1 = 1, χk1 = χk2 = 0 and χk2+1 �= 0,

we get χk2+1 = 1. For the case i ∈ Q2, we can show χQ1 = 1 in the same way. Thus,
χQ1 = χQ2 = 1.

By the same argument as in Case 2, we have θk1−θj0 > π and θj1−θk2 > π. By
the same argument as in the second paragraph of Subcase 2-2, we have θk2−θj0 ≥ π.
Thus, we obtain θj1 − θj0 > 2π. Since

∑j1−1
j=j0+1 dj(t) → 0 as t → T1, we can show

that the self-intersection must occur before t = T1 by the same argument as in
Subcase 1-4. Thus, this case does not happen.

Subcase 3-2: One of Q1 and Q2 is empty.

Let Q2 = ∅. Then, j1 = k1 + 2 and θj1 = θk1 since χk2 = 0. By the same
argument as in the previous subcase, we have θj1 > π. By the same argument as
in Subcase 1-3 and 1-4, we can show that this case does not happen.

Therefore, we have the assertion. �

Proof of Theorem 1. Here we use the same notation in the proof of Proposi-
tion 1. By the same argument as in Case 3 of the previous proof, we have #Q ≤ 2,
that is, j1 = j0 + 2 or j0 + 3 (see Fig. 13).

Fig. 13. Two patterns of edge-disappearing.
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Case I: #Q = 1.

Only Sj0+1 disappears at t = T1. Since N j0 = N j1 , Sj0 and Sj1 merge to-
gether and Ω(T1) is still admissible.

Case II: #Q = 2.

At t = T1, Sj0+1 and Sj0+2 disappear. Since N j0 = N j0+2 and N j1 = N j0+1,
we have

sN j0 + (1 − s)N j1

|sN j0 + (1 − s)N j1 |
=

sN j0+2 + (1 − s)N j0+1

|sN j0+2 + (1 − s)N j0+1| /∈ NWσ

for any 0 < s < 1. Thus, Ω(T1) is still admissible.
The proof is complete. �

Remark 7. For both edge-disappearing patterns, the extinction rate of the
length of disappearing edge is exactly (T1−t). Because Vj0 , Vj1 ∼ ±1, thus ḋj ∼ −1
for j = j0 + 1, j1 − 1.

Proof of Theorem 2. By Theorem 1, Ω(t) shrinks to a single point q ∈ R
2 at

t = Tm, that is, limt→Tm
pj(t) = q for all j. Suppose on contrary that there exists

at least one edge with negative curvature. By closedness of P(t) and the fact that
there exist at least one inflection edge on the subarc between an edge with positive
curvature and an edge with negative curvature, there exist at least two inflection
edges on P(t). Then, we can find j0 and j1 (j0 < j1) which satisfy χj0 = χj1 = 0
and χQ = −1, where Q := {j0 + 1, . . . , j1 − 1}. Note that Q is not empty.

By the same arguments as in Proposition 1, Case 2 and 3, we have Sk(t) ⊆
Sk(0) for k = j0 and j1. Thus, we have q ∈ Sj0(0) ∩ Sj1(0) which leads a contra-
diction to Q �= ∅. Thus, all Hj(t)’s are non-negative for t ≥ Tm−1.

Let N0 be the number of inflection edges at t = Tm−1. Again by the same
arguments as in Proposition 1, Case 3, we have N0 ≤ 2. However, the case where
N0 = 1 is impossible. Because, if N0 = 1 holds, there exists k such that χk = 0
and χk±1 = 1. From χk±1 = 1, we have sgn(θk+1−θk) = 1 and sgn(θk −θk−1) = 1,
from which we obtain χk = (sgn(θk+1−θk)+sgn(θk−θk−1)/2 = 1. This contradicts
χk = 0. Therefore, we have the assertion. �
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