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This paper is concerned with theoretical error estimates for a sampling formula with the
sinc-Gaussian kernel. Qian et al. have recently given an error estimate for the class of
band-limited functions by Fourier-analytic approach. In contrast, we adopt in this paper
a complex-analytic approach to derive an error estimate for a wider class of functions
including unbounded functions on R. Part of the result of Qian et al. can be derived from
ours as an immediate corollary. Computational results show a fairly good agreement with
our theoretical analysis.
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1. Introduction

Numerical methods based on sinc approximation, i.e., “sinc numerical meth-
ods,” have recently been enjoying increasing popularity [6], [7], [8]. The basic idea
underlying this approach is to employ the sinc function,

sinc(x) =

⎧⎨
⎩

sin(πx)
πx

(x �= 0),

1 (x = 0),
(1.1)

as the basis for function approximation of the form

f(x) ≈
�x/h�+N∑

k=�x/h�−N

f(kh) sinc(x/h − k). (1.2)

This expansion is motivated, of course, by Shannon’s sampling theorem [1], which
states that the identity

f(x) =
∞∑

k=−∞
f(kh) sinc(x/h − k) (x ∈ R) (1.3)

holds if f is band-limited in the sense that the Fourier transform f̂(ω) of f vanishes
for every ω ∈ R with |ω| > π/h.
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It is customary in “sinc numerical methods” that the basic formula (1.2) is not
used as it is, but some preliminary transformation is applied to the variable x. The
transformation, say, x = ϕ(t) is chosen so that the transformed function f(ϕ(t))
may decrease rapidly at infinity. Then the following formula results:

f(x) ≈
N∑

k=−N

f(ϕ(kh)) sinc(t/h − k) (t = ϕ−1(x)). (1.4)

The truncation error1 incurred in this finite approximation is bounded by∑
|k|>N |f(ϕ(kh))|. If f(ϕ(t)) decreases rapidly at infinity, say, exponentially, the

truncation error decreases exponentially with respect to the number of sampled
points 2N + 1.

As a variant of the above idea we could introduce rapidly decreasing kernel
functions to diminish the truncation error. A typical formula under this category is

f(x) ≈ (TN,hf)(x) :=
�x/h�+N∑

k=�x/h�−N

f(kh) sinc(x/h − k) exp
[
− (x − kh)2

2r2h2

]
, (1.5)

where r is a positive constant, and �x� denotes the least integer greater than or
equal to x, and �x� denotes the greatest integer less than or equal to x. Seeing that
no standard name of this formula is found in the literature, we call this formula the
sinc-Gauss sampling formula. This formula is used by Wei et al. in numerical solu-
tion of partial differential equations [11], [12], [13], [14], [15]. Qian et al. show that
the error ‖f −TN,hf‖∞ of the sinc-Gauss sampling formula decreases exponential-
ly with respect to N for a band-limited function f and also demonstrate similar
results about the approximation of the derivatives of f [2], [3], [4], [5]. In esti-
mating the discretization error, they make use of the Fourier transform and the
Parseval identity to exploit the band-limited condition. In Japan, as early as in
1975, H. Takahasi [9] proposed the sinc-Gauss sampling formula above and made
an error analysis for holomorphic functions by using complex analysis. His analysis
lacks, however, in mathematical rigor, although it captures the essential feature.

The objective of this paper is to provide a mathematically rigorous version
of Takahasi’s error analysis for the sinc-Gauss sampling formula. Furthermore, we
point out that the formula is applicable to a wider class of functions including un-
bounded functions on R. Specifically, we give an error estimate for those functions
which are holomorphic on a band-shaped region on the complex plane

Dd := {z ∈ C | |Im z| ≤ d} (1.6)

and satisfy

|f(z)| ≤ A + B|z|α (∀z ∈ Dd),

1In general, the truncation error means the discrepancy between a finite sum
PN

−N (as in (1.4))

and its limit
P∞

−∞. In contrast, the discretization error means the discrepancy between f(x) and

the approximation by the infinite sum
P∞

−∞.
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where d > 0, A ≥ 0, B ≥ 0, and α ≥ 0. Furthermore, we show that part of
Qian et al.’s result for band-limited functions can be derived from ours as an im-
mediate corollary. It is mentioned that the error estimate for bounded functions
(i.e., for the special case with B = 0) has been discussed in [10].

The organization of this paper is as follows. In Section 2, we present our main
results. In Section 3, we specialize our results to bounded functions, and explain the
relationship to some results of Qian–Ogawa [5]. In Section 4 we show computational
results. Proofs of theorems and lemmas are given in Section 5.

2. Main results

For nonnegative integer m and positive numbers r, h > 0, we define operators
G(m)

h , T (m)
N,h approximating the m-th order derivative f (m) of a function f as

(
G(m)

h f
)
(x) :=

∞∑
k=−∞

f(kh)
dm

dxm

[
sinc(x/h − k) exp

[
− (x − kh)2

2r2h2

]]
, (2.1)

(
T (m)

N,h f
)
(x) :=

�x/h�+N∑
k=�x/h�−N

f(kh)
dm

dxm

[
sinc(x/h − k) exp

[
− (x − kh)2

2r2h2

]]
, (2.2)

where sinc is the function defined in (1.1). Note that (2.2) with m = 0 coincides
with (1.5). We call the formula given by T (m)

N,h f the sinc-Gauss sampling formula.
Let Dd be the band-shaped region defined in (1.6). In this section, we assume

that f : Dd → C is a holomorphic function on Dd with |f(z)| ≤ A+B|z|α (∀z ∈ Dd)
for constants A ≥ 0, B ≥ 0 and α ≥ 0. The error of the formula will be measured
by the supremum of the absolute value of f(x) −

(
T (m)

N,h f
)
(x) over a finite interval

[−L,L] for L > 0. The proofs of Lemma 2.1 and Lemma 2.2 below are given in
Section 5.1 and Section 5.2, respectively.

First, the discretization error of the sinc-Gauss sampling formula is estimated
as follows. In what follows Z+ denotes the set of nonnegative integers.

Lemma 2.1 (Discretization error). Let d > 0. Let f : Dd → C be a holo-
morphic function on Dd with |f(z)| ≤ A + B|z|α (∀z ∈ Dd) for constants A ≥ 0,
B ≥ 0 and α≥ 0. Let m∈Z+, L > 0, r > 0, and h > 0 with h≤min{2πd/log 2, π}.
Then we have

sup
−L≤x≤L

∣∣f (m)(x) −
(
G(m)

h f
)
(x)

∣∣
≤ C0 exp

(
−πd

h
+

d2

2r2h2

)[
C1C3

√
2π + C2C32

α+1
2 Γ

(
α + 1

2

)

+ C12
2m+1

2 Γ
(

m + 1
2

)
+ C22

α+2m+1
2 Γ

(
α + m + 1

2

)]
,

where

C0 =
2πm−1(m + 3)! r

hm−1

(
1 +

(√
2

rh

)m)(
1
d

+
1

dm+1

)
, (2.3)
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C1 = A + 2αB(L + d)α, (2.4)

C2 = 2αB(rh)α, (2.5)

C3 = 2 +
(√

2d

rh

)m

. (2.6)

Second, the truncation error of the sinc-Gauss sampling formula is estimated
as follows.

Lemma 2.2 (Truncation error). Let d > 0. Let f : Dd → C be a holomorphic
function on Dd with |f(z)| ≤ A+B|z|α (∀z ∈ Dd) for constants A ≥ 0, B ≥ 0 and
α ≥ 0. Let m ∈ Z+, L > 0, r > 0, and h > 0. If N ≥ max

{
2,mr/

√
2,

√
�α�r+1

}
,

we have

sup
−L≤x≤L

∣∣(G(m)
h f

)
(x) −

(
T (m)

N,h f
)
(x)

∣∣ ≤ C ′
0(C

′
1 + C ′

2) exp
[
− (N − 1)2

2r2

]
,

where

C ′
0 =

2m! eπe
3

2r2 r2

N(N − 1)hmπ
, (2.7)

C ′
1 = A + 2αB[(L + h)α + 2αhα], (2.8)

C ′
2 = 22αBhα(�α� + 1)!!max

{
(N − 1)�α�, r�α�}. (2.9)

From the lemmas above, we can derive the following error estimate by setting
h and r appropriately for a given N .

Theorem 2.3 (Error of the sinc-Gauss sampling formula). Let d > 0. Let
f : Dd → C be a holomorphic function on Dd with |f(z)| ≤ A + B|z|α (∀z ∈ Dd)
for constants A ≥ 0, B ≥ 0 and α ≥ 0. Let m ∈ Z+ and L > 0. For a positive
integer N , define h and r as

h =
d′

N
, r =

√
N

π
(2.10)

with an arbitrary constant d′ satisfying 0 < d′ ≤ d. Then we have

sup
−L≤x≤L

∣∣f (m)(x) −
(
T (m)

N,h f
)
(x)

∣∣
= O

(
N2m−min{1/2,1−�α�+α} exp

(
−πN

2

))
(N → ∞).

Proof. If N is sufficiently large, the assumptions in Lemmas 2.1 and 2.2,

h ≤ min{2πd/log 2, π}, N ≥ max
{
2,mr/

√
2,

√
�α�r + 1

}
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are satisfied under (2.10). We apply the lemmas to the right hand side of the
inequality

sup
−L≤x≤L

∣∣f (m)(x) −
(
T (m)

N,h f
)
(x)

∣∣
≤ sup

−L≤x≤L

∣∣f (m)(x) −
(
G(m)

h f
)
(x)

∣∣ + sup
−L≤x≤L

∣∣(G(m)
h f

)
(x) −

(
T (m)

N,h f
)
(x)

∣∣.
The estimate in Lemma 2.1 remains valid when d is replaced by d′. With h and r

in (2.10) we have

exp
(
−πd′

h
+

d′2

2r2h2

)
= exp

(
−πN

2

)
,

exp
[
− (N − 1)2

2r2

]
= O

(
exp

(
−πN

2

))
(N → ∞).

Furthermore, the orders of C0, . . . , C3 in Lemma 2.1 and C ′
0, C ′

1, C ′
2 in Lemma 2.2

as N → ∞ are estimated as follows:

C0 = O
(
N

3m−1
2

)
, C1 = O(1), C2 = O

(
N−α

2
)
, C3 = O

(
N

m
2
)
,

C ′
0 = O(Nm−1), C ′

1 = O(1), C ′
2 = O

(
N�α�−α

)
.

Thus we obtain the claim of the theorem. �

The error estimate in Theorem 2.3 presupposes approximation of f(x) at a
single point x and, accordingly, expresses the error bound in terms of the number
2N + 1 of the sampling points required for a single point. In some situations,
however, it is more natural to consider approximation over a finite interval [−L,L]
with L > 0. This is the case, for instance, in applications to differential equations.
In such a case it is more appropriate to express the error bound in terms of the
number

M = 2
(

L

d′
+ 1

)
N (2.11)

of the sampling points needed for the approximation over the entire interval, rather
than at a single point, where d′ is in (2.10). In accordance with this, Theorem 2.3
can be recast into the following form.

Corollary 2.4. Let d > 0. Let f : Dd → C be a holomorphic function on
Dd with |f(z)| ≤ A + B|z|α (∀z ∈ Dd) for constants A ≥ 0, B ≥ 0 and α ≥ 0. Let
m ∈ Z+ and L > 0. For a positive integer N , define h and r as (2.10), and M

as (2.11). Then we have

sup
−L≤x≤L

∣∣f (m)(x) −
(
T (m)

N,h f
)
(x)

∣∣
= O

(
M2m−min{1/2,1−�α�+α} exp

(
− πd′

4(d′ + L)
M

))
(M → ∞).
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3. Error estimates for bounded functions

In this section, we present the error estimate for holomorphic functions
f : Dd → C on Dd with |f(z)| ≤ A (∀z ∈ Dd) for a constant A ≥ 0, and discuss
its relationship to the estimate of Qian–Ogawa [5]. For bounded functions it is
possible to consider supremum error bounds over the entire real number R. The
error estimates over R can be obtained easily from our results in Section 2 by set-
ting B = 0, α = 0 and letting L → ∞. We set ‖g‖∞ := sup−∞<x<∞|g(x)| for a
function g on R.

3.1. Error estimates
Letting B = 0, α = 0, L → ∞ in Section 2, we obtain the following lemmas

and theorem shown in [10].

Lemma 3.1 ([10]). Let d > 0. Let f : Dd → C be a holomorphic function on
Dd with |f(z)| ≤ A (∀z ∈ Dd) for a constant A ≥ 0. Let m ∈ Z+, r > 0, and
h > 0 with h ≤ min{2πd/log 2, π}. Then we have

∥∥f (m) − G(m)
h f

∥∥
∞ ≤ exp

(
−πd

h
+

d2

2r2h2

)

· A
[
2πm−1(m + 3)! r

hm−1

(
1 +

(√
2

rh

)m)(
1
d

+
1

dm+1

)]

·
[√

2π

(
2 +

(√
2d

rh

)m)
+ 2

2m+1
2 Γ

(
m + 1

2

)]
.

Lemma 3.2 ([10]). Let d > 0. Let f : Dd → C be a holomorphic function on
Dd with |f(z)| ≤ A (∀z ∈ Dd) for a constant A ≥ 0. Let m ∈ Z+, r > 0, and
h > 0. If N ≥ max{2,mr/

√
2 }, we have

∥∥G(m)
h f − T (m)

N,h f
∥∥
∞ ≤ 2Am! eπe

3
2r2 r2

N(N − 1)hmπ
exp

[
− (N − 1)2

2r2

]
.

Theorem 3.3 ([10]). Let d > 0. Let f : Dd → C be a holomorphic function
on Dd with |f(z)| ≤ A (∀z ∈ Dd) for a constant A ≥ 0. Let m ∈ Z+. For a
positive integer N , define h and r as

h =
d′

N
, r =

√
N

π
(3.1)

with an arbitrary constant d′ satisfying 0 < d′ ≤ d. Then we have

∥∥f (m) − T (m)
N,h f

∥∥
∞ = O

(
N2m−1/2 exp

(
−πN

2

))
(N → ∞).
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3.2. Relationship to Qian–Ogawa’s result
We investigate the relationship between the result of Qian–Ogawa [5] for band-

limited functions and our Theorem 3.3 in Section 3.1. For σ > 0 let Bσ be the set
of band-limited functions defined as

Bσ = {f ∈ L2(R) | |ω| > σ ⇒ f̂(ω) = 0}, (3.2)

where f̂ denotes the Fourier transform of f .
The following theorem is immediate from Corollary 3.1 of [5].

Theorem 3.4 ([5]). Let f ∈ Bσ and 0 < h < π/σ. For N > 2, define r =√
(N − 2)/(π − hσ). Then we have

∥∥f (m) − T (m)
N,h f

∥∥
∞ = O

(
1√

N − 2
exp

[
− (π − hσ)(N − 2)

2

])
(N → ∞). (3.3)

The objective of this section is to demonstrate how (3.3) with m = 0 can be
derived from our result of Section 3.1. In the case of m ≥ 1 we also derive a weaker
result2∥∥f (m)−T (m)

N,h f
∥∥
∞ = O

(
(N−2)(m−1)/2exp

[
− (π−hσ)(N−2)

2

])
(N →∞). (3.4)

First we note the following fact, which may be regarded as a part of the Paley–
Wiener theorem.

Lemma 3.5. If f ∈ Bσ, then f is holomorphic on C and there exists a con-
stant A′ ≥ 0 such that

|f(z)| ≤ A′ exp(σ|Im z|) (z ∈ C). (3.5)

Proof. Denote the Fourier transform of f by f̂ . By f ∈ Bσ, we have f̂ ∈
L2([−σ, σ]) and

f(z) =
1√
2π

∫ σ

−σ

f̂(ω) exp(izω) dω. (3.6)

Since the interval of integration is finite, we can exchange the differentiation and
integration. Therefore f is holomorphic on C.

Next, again by (3.6), noting that f̂ ∈ L2([−σ, σ]) ⊂ L1([−σ, σ]), we have

|f(ξ + iη)| ≤ 1√
2π

∫ σ

−σ

|f̂(ω)| |exp(i(ξ + iη)ω)|dω

=
1√
2π

∫ σ

−σ

|f̂(ω)| exp(−ηω) dω

≤ exp(|η|σ) · 1√
2π

∫ σ

−σ

|f̂(ω)|dω

for ξ, η ∈ R. �
2The estimate (3.3) with m ≥ 1 does not seem to be derivable from our results. This is because

our estimate of the discretization error is considered under a more general condition, and is
necessarily weaker.
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This lemma implies that our function class contains band-limited functions,
stated in the following lemma.

Lemma 3.6. Let f ∈ Bσ. For any d > 0, f : Dd → C is a holomorphic func-
tion on Dd with |f(z)| ≤ A (∀z ∈ Dd), where

A = A′ exp(σd) (3.7)

with A′ in (3.5).

This lemma enables us to apply Lemmas 3.1 and 3.2 to f ∈ Bσ. We take r as
in Theorem 3.4 and assume that N is sufficiently large.

To estimate the discretization error, we set

d = h(N − 2)

and take A as (3.7). Then, by Lemma 3.1, we have

∥∥f (m) − G(m)
h f

∥∥
∞ ≤ A′ exp

(
σd − πd

h
+

d2

2r2h2

)

·
[
2πm−1(m + 3)! r

hm−1

(
1 +

(√
2

rh

)m)(
1
d

+
1

dm+1

)]

·
[√

2π

(
2 +

(√
2d

rh

)m)
+ 2

2m+1
2 Γ

(
m + 1

2

)]
.

The degree of the underlined part with respect to N −2 is (m−1)/2. The exponent
of the remaining part is

σd − πd

h
+

d2

2r2h2
= − (π − hσ)d

h
+

d2

2r2h2

= −(π − hσ)(N − 2) +
(π − hσ)h2(N − 2)2

2(N − 2)h2

= − (π − hσ)(N − 2)
2

.

Thus we obtain the following estimate:

∥∥f (m) − G(m)
h f

∥∥
∞ = O

(
(N − 2)(m−1)/2 exp

[
− (π − hσ)(N − 2)

2

])
(N → ∞).

(3.8)
To estimate the truncation error, we set d = 1 and A = A′eσ according to

(3.7). Then, by Lemma 3.2, we have

∥∥G(m)
h f − T (m)

N,h f
∥∥
∞ ≤ 2A′eσm! eπe

3
2r2 r2

N(N − 1)hmπ
exp

[
− (N − 1)2

2r2

]

≤ 2A′eσm! eπe
3

2r2

hmπ

r2

(N − 2)2
exp

[
− (N − 2)2

2r2

]
.
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The degree of r2/(N − 2)2 with respect to N − 2 is −1. Furthermore, e
3

2r2 → 1 as
N → ∞. The exponent of the remaining part is

− (N − 2)2

2r2
= − (π − hσ)(N − 2)

2
.

Thus we obtain the following estimate:

∥∥G(m)
h f − T (m)

N,h f
∥∥
∞ = O

(
1

N − 2
exp

[
− (π − hσ)(N − 2)

2

])
(N → ∞). (3.9)

By (3.8) and (3.9), we have (3.4) in the case of m ≥ 0 and (3.3) in the case
of m = 0.

4. Numerical experiments

In this section, we present computational results on sinc-Gauss sampling for-
mula for two types of functions: (i) rational functions

fβ,d(z) =
zβ+2

z2 + d2

with β ∈ {−2,−1, 0, 1, 2} and d > 0, and (ii) band-limited functions

fl(z) = (sinc(z))l

with a positive integer l. The former is not band-limited, and the latter is included
to confirm that the performance of the sinc-Gauss sampling formula is essentially
independent of the band-limited property of the functions to be approximated.

We consider errors on a finite interval [−3, 3] (i.e., L = 3), which we evaluate
numerically as the maximum of the errors at 6000 equally-spaced points in the
interval. The relationship of the error against the number of sampling points will
be presented in graphs. Specifically, the ordinates are the errors in logarithm,

log10

(
sup

−3≤x≤3

∣∣f(x) −
(
T (m)

N,h f
)
(x)

∣∣), (4.1)

and the abscissae are N as well as M = 2(3/d′ +1)N (with L = 3 in (2.11)), where
M is indicated at the top.

According to our theoretical analysis summarized in Theorem 2.3, the error
curves are expected to be almost linear, with the slope against N being

−π

2
log10 e = −0.682 · · · . (4.2)

This theoretical slope will be compared with the observed values, which we obtain
from the computational results by the least square method.

The program for the computation is written in C. Our computer is SUN
Blade 2000 with the following environment: the operating system is Solaris 9, the
CPU is UltraSPARC-III+ (900 MHz, 64 bit) with 3 GB memory, the compiler is
Sun Studio 11, in which “long double” is 128 bits wide.
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4.1. Rational functions
For β ∈ {−2,−1, 0, 1, 2} and d > 0, define fβ,d as

fβ,d(z) =
zβ+2

z2 + d2
(z ∈ C). (4.3)

Then fβ,d is holomorphic on Dd−ε for ε with 0 < ε � d, and satisfies

|fβ,d(z)| ≤ max{d, d−1}
ε

|z|α (∀z ∈ Dd−ε),

where α = max{β, 0}. The sinc-Gauss sampling formula T (m)
N,h is applied to fβ,d

for β = −2,−1, 0, 1, 2, d = 10−i (i = 0, 1, 2), and m = 0, 1, 2. We set ε = d/100
and h = (d− ε)/N . Furthermore, in computing the slopes, we exclude the data for
N = 45 and 50 to avoid the effect of rounding errors.

Table 1. log10(max error) for fβ,d of (4.3) with β = −2

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.77 −27.28 −5.29 −25.19 −3.52 −22.80
d = 0.10 −4.77 −25.32 −2.29 −22.20 0.48 −18.84
d = 0.01 −4.09 −24.29 0.45 −19.55 4.43 −14.96

Table 2. log10(max error) for fβ,d of (4.3) with β = −1

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.94 −27.45 −5.31 −25.21 −3.58 −22.84
d = 0.10 −5.96 −26.47 −3.31 −23.21 −0.59 −19.84
d = 0.01 −6.09 −26.42 −1.31 −21.21 2.18 −17.18

Table 3. log10(max error) for fβ,d of (4.3) with β = 0

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.89 −27.35 −5.40 −25.26 −3.65 −22.87
d = 0.10 −6.90 −27.39 −4.41 −24.26 −1.66 −20.87
d = 0.01 −7.38 −28.14 −3.53 −23.52 0.34 −18.87

Table 4. log10(max error) for fβ,d of (4.3) with β = 1

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.94 −27.49 −5.41 −25.28 −3.61 −22.91
d = 0.10 −6.91 −27.66 −4.41 −24.56 −1.60 −21.15
d = 0.01 −6.92 −27.66 −3.40 −23.56 0.40 −19.15
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Fig. 1. Errors for fβ,d of (4.3) with β = −2 and for m = 0
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Table 5. log10(max error) for fβ,d of (4.3) with β = 2

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

d = 1.00 −6.50 −27.23 −4.91 −25.07 −3.12 −22.67
d = 0.10 −6.43 −27.19 −3.93 −24.08 −1.13 −20.68
d = 0.01 −6.45 −27.19 −2.93 −23.09 0.87 −18.68

From Table 6–Table 10, we see that the experimental values of the slopes are
close to the theoretical ones in (4.2). As m (the order of differentiation) becomes
larger, the slope tends to be larger than the theoretical value. This may be because
we only use exp(−(π/2)N) in Theorem 3.3 in computing the theoretical value, with
the secondary factor N2m−min{1/2,1−�α�+α} disregarded.

Table 6. log10(max error)/N for fβ,d of (4.3) with β = −2

m = 0 m = 1 m = 2
d = 1.00 −0.684 −0.660 −0.635
d = 0.10 −0.686 −0.660 −0.636
d = 0.01 −0.692 −0.664 −0.639

Table 7. log10(max error)/N for fβ,d of (4.3) with β = −1

m = 0 m = 1 m = 2
d = 1.00 −0.684 −0.660 −0.634
d = 0.10 −0.685 −0.660 −0.634
d = 0.01 −0.691 −0.660 −0.638

Table 8. log10(max error)/N for fβ,d of (4.3) with β = 0

m = 0 m = 1 m = 2
d = 1.00 −0.681 −0.658 −0.632
d = 0.10 −0.683 −0.658 −0.632
d = 0.01 −0.694 −0.663 −0.632

Table 9. log10(max error)/N for fβ,d of (4.3) with β = 1

m = 0 m = 1 m = 2
d = 1.00 −0.687 −0.660 −0.637
d = 0.10 −0.694 −0.670 −0.646
d = 0.01 −0.694 −0.670 −0.646

Table 10. log10(max error)/N for fβ,d of (4.3) with β = 2

m = 0 m = 1 m = 2
d = 1.00 −0.693 −0.670 −0.646
d = 0.10 −0.694 −0.670 −0.646
d = 0.01 −0.693 −0.669 −0.646
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Next, we consider the effect of m, the order of differentiation. By Theorem 3.3,
we expect that log10(max error) will increase approximately by 2 log10 N if m in-
creases by one. The results of Table 6–Table 10 agree with this expectation, whereas
m is also included in the constant part independent of N in the estimate.

Next, we consider the effect of d, representing the location of the singular
points. Noting the order with respect to N , we conclude that d does not affect the
error. It is expected, however, that log10(max error) will increase approximately
by m + 1 if d is multiplied by 1/10, due to the term 1/dm+1 in the estimate of
Lemma 3.1. Computational results appear to support this observation.

Finally, we consider the effect of β. From the results, we see that β does not
affect the errors substantially, which is theoretically appropriate.

4.2. Band-limited functions
For a positive integer l, we define fl as

fl(z) = (sinc(z))l (z ∈ C). (4.4)

Then we have fl ∈ Bπl. The function fl is holomorphic on C and satisfies

|fl(z)| ≤ max

{(
eπd

π

)l

, eπl

}
(z ∈ Dd) (4.5)

for arbitrary d > 0. Setting h = 1/N , we apply the sinc-Gauss sampling formula
to fl for l = 5, 10, 15, 20 and m = 0, 1, 2. In computing the slopes, we exclude the
data for N = 5, 10, 45, 50.

As to the effect of m (the order of differentiation) on the errors, we see the
same as in Section 4.1.

Fig. 2. Errors for f = sinc20 with m = 0 and d = 1
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Table 11. log10(max error) for f = sincl with d = 1

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

l = 5 −5.18 −25.48 −3.67 −23.39 −1.98 −21.01
l = 10 −3.99 −23.18 −2.39 −21.09 −0.81 −18.74
l = 15 −3.18 −21.20 −1.66 −19.09 −0.11 −16.78
l = 20 −2.70 −19.49 −1.23 −17.38 0.34 −15.09

Table 12. log10(max error)/N for f = sincl with d = 1

m = 0 m = 1 m = 2
l = 5 −0.680 −0.664 −0.645
l = 10 −0.653 −0.638 −0.618
l = 15 −0.618 −0.605 −0.583
l = 20 −0.583 −0.568 −0.546

Next, we consider the slopes of the error curves in the graphs. The experi-
mental values of the slopes are close to the theoretical ones in (4.2) when l is small
(Table 12). In the case where l is large, however, this is not the case. This may be
because the constant on the right hand side of (4.5) is large when l is large (note
that d = 1), and the effect of the constant cannot be ignored.

Taking this fact into consideration, we apply the formula in the case of d =
π−1 log π, i.e., h = (πN)−1 log π. The results of the experiments are presented in
Fig. 3 and Table 14, which justify the above observation. The numerical results
support our expectation that smaller width between neighboring sampling points
yields better approximation for functions with strong vibration.

Fig. 3. Errors for f = sinc20 with m = 0 and d = π−1 log π
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Table 13. log10(max error) for f = sincl with d = π−1 log π

m = 0 m = 1 m = 2
N = 10 N = 40 N = 10 N = 40 N = 10 N = 40

l = 5 −6.94 −27.69 −5.01 −25.15 −2.79 −22.32
l = 10 −6.55 −27.25 −4.63 −24.72 −2.42 −21.49
l = 15 −6.20 −26.83 −4.28 −24.29 −2.09 −21.16
l = 20 −5.89 −26.41 −3.97 −23.88 −1.80 −20.62

Table 14. log10(max error)/N for f = sincl with d = π−1 log π

m = 0 m = 1 m = 2
l = 5 −0.690 −0.673 −0.656
l = 10 −0.689 −0.672 −0.643
l = 15 −0.688 −0.670 −0.644
l = 20 −0.685 −0.668 −0.638

5. Proofs

We first note the following fact, the proof of which is omitted.

Lemma 5.1. For arbitrary nonnegative real numbers a, b, and τ , we have
(a + b)τ ≤ 2τ (aτ + bτ ), where 00 = 1 by convention.

5.1. Proof of Lemma 2.1
For n ∈ Z+, we set Vn := {x + yi | |x| = (n + 1/2)h, |y| ≤ d} and Un :=

{x + yi | |x| ≤ (n + 1/2)h, |y| = d}, where Z+ is the set of nonnegative ingeters.
By the residue theorem we have

f(x) −
n∑

k=−n

f(kh)
(

sin(π(x − kh)/h)
π(x − kh)/h

exp
[
− (x − kh)2

2r2h2

])

=
1

2πi

∫
Vn∪Un

sin(πx/h)
z − x

exp
[
− (x − z)2

2r2h2

]
f(z)

sin(πz/h)
dz,

and hence it suffices to estimate

lim
n→∞

1
2πi

∫
Vn∪Un

dm

dxm

(
sin(πx/h)

z − x
exp

[
− (x − z)2

2r2h2

])
f(z)

sin(πz/h)
dz. (5.1)

Note that

dm

dxm

(
sin(πx/h)

z − x
exp

[
− (x − z)2

2r2h2

])

=
m∑

p=0

p∑
l=0

m!
l! (m − p)!

(−1)m−p

(
√

2rh)m−p

(π

h

)l sin(πx/h + πl/2)
(z − x)p−l+1

· Hm−p

(
x − z√

2rh

)
exp

[
− (x − z)2

2r2h2

]
, (5.2)
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where Hj(x) is the j-th degree Hermite polynomial

Hj(x) := (−1)j exp(x2)
dj

dxj
exp(−x2) =

�j/2�∑
i=0

(−1)ij! (2x)j−2i

i! (j − 2i)!
. (5.3)

We assume that −L ≤ x ≤ L in the following.
Estimate of the integral on Vn: By (5.2), it follows from

lim
n→∞

∫
Vn

1
|z − x|p−l+1

∣∣∣∣Hm−p

(
x − z√

2rh

)∣∣∣∣
∣∣∣∣exp

[
− (x − z)2

2r2h2

]∣∣∣∣ |f(z)|
|sin(πz/h)| |dz| = 0

(5.4)

that the integral on Vn of (5.1) converges to 0 as n → ∞. We assume that n is
sufficiently large. For z ∈ Vn we have

(n + 1/2)h − L ≤ |z − x| ≤ (n + 1/2)h + L + d,

Re(x − z)2 = [±(n + 1/2)h − x]2 − (Im z)2 ≥ [(n + 1/2)h − L]2 − d2,

|z| ≤ (n + 1/2)h + d,

|sin(πz/h)| = |cosh(π Im z/h)| ≥ 1,

and therefore∫
Vn

1
|z − x|p−l+1

∣∣∣∣Hm−p

(
x − z√

2rh

)∣∣∣∣
∣∣∣∣exp

[
− (x − z)2

2r2h2

]∣∣∣∣ |f(z)|
| sin(πz/h)| |dz|

≤ 4d · A + B[(n + 1/2)h + d]α

[(n + 1/2)h − L]p−l+1

[�j/2�∑
i=0

2j−2ij!
i! (j − 2i)!

(
(n + 1/2)h + L + d√

2rh

)j−2i
]

· exp
[
− [(n + 1/2)h − L]2 − d2

2r2h2

]
,

where j = m − p. This implies (5.4).
Estimate of the integral on Un: By (5.2), we have∣∣∣∣ lim

n→∞
1

2πi

∫
Un

dm

dxm

(
sin(πx/h)

z − x
exp

[
− (x − z)2

2r2h2

])
f(z)

sin(πz/h)
dz

∣∣∣∣
≤ lim

n→∞
1
2π

∫
Un

m∑
p=0

p∑
l=0

m!
l! (m − p)!

(
1√
2rh

)m−p(π

h

)l 1
|z − x|p−l+1

·
∣∣∣∣Hm−p

(
x − z√

2rh

)∣∣∣∣
∣∣∣∣exp

[
− (x − z)2

2r2h2

]∣∣∣∣ |f(z)|
|sin(πz/h)| |dz|. (5.5)

For z = t ± di (t ∈ R) we have

1
|z − x|p−l+1

=
1

|t − x ± di|p−l+1
≤ 1

dp−l+1
≤ max

{
1
d
,

1
dm+1

}
≤ 1

d
+

1
dm+1

,
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[
− (x − z)2

2r2h2

]∣∣∣∣ =
∣∣∣∣exp

[
− (x − t)2 ∓ 2(x − t)di − d2

2r2h2

]∣∣∣∣
= exp

[
− (x − t)2

2r2h2

]
exp

(
d2

2r2h2

)
,

|f(z)| ≤ A + B|t ± di|α ≤ A + B(|t| + d)α,

1
|sin(πz/h)| ≤

1
sinh(πd/h)

≤ 4 exp
(
−πd

h

)
,

where the assumption h ≤ min{2πd/log 2, π} is used in the last inequality. These
estimates and (5.5) imply that∣∣∣∣ lim

n→∞
1

2πi

∫
Un

dm

dxm

(
sin(πx/h)

z − x
exp

[
− (x − z)2

2r2h2

])
f(z)

sin(πz/h)
dz

∣∣∣∣
≤ 2m!

π

(
1
d

+
1

dm+1

)
exp

(
−πd

h
+

d2

2r2h2

)

·
∫ ∞

−∞
exp

[
− (x − t)2

2r2h2

]
[A + B(|t| + d)α]

·
m∑

p=0

p∑
l=0

1
l! (m − p)!

(
1√
2rh

)m−p(π

h

)l

·
[∣∣∣∣Hm−p

(
x − t − di√

2rh

)∣∣∣∣ +
∣∣∣∣Hm−p

(
x − t + di√

2rh

)∣∣∣∣
]
dt

≤ 2(m + 1)!
π

(
1
d

+
1

dm+1

)
exp

(
−πd

h
+

d2

2r2h2

)(π

h

)m

·
∫ ∞

−∞
exp

[
− (x − t)2

2r2h2

]
[A + B(|t| + d)α]

·
m∑

p=0

1
(m − p)!

(
1√
2rh

)m−p

·
[∣∣∣∣Hm−p

(
x − t − di√

2rh

)∣∣∣∣ +
∣∣∣∣Hm−p

(
x − t + di√

2rh

)∣∣∣∣
]
dt. (5.6)

With ξ = (x − t)/(rh), the integral in (5.6) becomes∫ ∞

−∞
exp

(
−ξ2

2

)
[A + B(|x − rhξ| + d)α]

·
m∑

j=0

1
j!

(
1√
2rh

)j[∣∣∣∣Hj

(
rhξ − di√

2rh

)∣∣∣∣ +
∣∣∣∣Hj

(
rhξ + di√

2rh

)∣∣∣∣
]
rh dξ. (5.7)

In (5.7), it follows from −L ≤ x ≤ L that

(|x − rhξ| + d)α ≤ (|x| + rh|ξ| + d)α

≤ [(L + d) + rh|ξ|]α ≤ 2α[(L + d)α + (rh)α|ξ|α], (5.8)
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where the last inequality is due to Lemma 5.1. The Hermite polynomial in (5.7) is
evaluated as follows. By (5.3), for ζ ∈ C we have

|Hj(ζ)| ≤ 2jj!
�j/2�∑
i=0

|ζ|j−2i ≤ 2jj!
j + 2

2
max{1, |ζ|j} ≤ 2j−1j! (j + 2)(1 + |ζ|j),

and therefore
m∑

j=0

1
j!

(
1√
2rh

)j

|Hj(ζ)| ≤
m∑

j=0

(√
2

rh

)j (j + 2)
2

(1 + |ζ|j)

≤ (m + 2)
2

max
{

1,

(√
2

rh

)m} m∑
j=0

(1 + |ζ|j)

≤ (m + 2)
2

[
1 +

(√
2

rh

)m] m∑
j=0

(1 + |ζ|j)

≤ (m + 2)
2

[
1 +

(√
2

rh

)m]
(m + 1)(1 + max{1, |ζ|m})

≤ (m + 1)(m + 2)
2

[
1 +

(√
2

rh

)m]
(2 + |ζ|m).

Substituting ζ = (rhξ ± di)/
√

2rh, we obtain
m∑

j=0

1
j!

(
1√
2rh

)j∣∣∣∣Hj

(
rhξ ± di√

2rh

)∣∣∣∣
≤ (m + 1)(m + 2)

2

[
1 +

(√
2

rh

)m](
2 +

∣∣∣∣ ξ√
2
± di√

2rh

∣∣∣∣
m)

≤ (m + 1)(m + 2)
2

[
1 +

(√
2

rh

)m][
2 +

(∣∣∣∣ ξ√
2

∣∣∣∣ +
∣∣∣∣ d√

2rh

∣∣∣∣
)m]

≤ (m + 1)(m + 2)
2

[
1 +

(√
2

rh

)m][
2 + 2m

(∣∣∣∣ ξ√
2

∣∣∣∣
m

+
∣∣∣∣ d√

2rh

∣∣∣∣
m)]

, (5.9)

where the last inequality is due to Lemma 5.1. Note that this inequality holds good
even when m = 0.

It follows from (5.6), (5.7), (5.8), and (5.9) that∣∣∣∣ lim
n→∞

1
2πi

∫
Un

dm

dxm

(
sin(πx/h)

z −x
exp

[
− (x− z)2

2r2h2

])
f(z)

sin(πz/h)
dz

∣∣∣∣
≤ 2(m + 1)!

π

(
1
d

+
1

dm+1

)
exp

(
−πd

h
+

d2

2r2h2

)(π

h

)m

rh(m + 1)(m + 2)

·
(

1+
(√

2
rh

)m)∫ ∞

−∞
exp

(
−ξ2

2

)
[A+ 2αB[(L+ d)α + (rh)α|ξ|α]]

·
[
2 + 2m

(∣∣∣∣ ξ√
2

∣∣∣∣
m

+
∣∣∣∣ d√

2rh

∣∣∣∣
m)]

dξ
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=
m + 1
m + 3

C0 exp
(
−πd

h
+

d2

2r2h2

)

·
∫ ∞

−∞
exp

(
−ξ2

2

)
[C1 +C2|ξ|α][C3 + 2m/2|ξ|m]dξ

= exp
(
−πd

h
+

d2

2r2h2

)
·C0

[
C1C3

√
2π +C2C32

α+1
2 Γ

(
α + 1

2

)

+C12
2m+1

2 Γ
(

m + 1
2

)
+C22

α+2m+1
2 Γ

(
α +m + 1

2

)]
,

where C0, . . . , C3 are defined in (2.3)–(2.6), and we used

∫ ∞

−∞
|ξ|p exp

(
−ξ2

2

)
dξ = 2

p+1
2 Γ

(
p + 1

2

)
.

5.2. Proof of Lemma 2.2
We prepare the following lemma.

Lemma 5.2. Let p be a nonnegative integer, N a positive integer, and r

a positive number. If N ≥ √
pr, we have

∞∑
n=N+1

np exp
(
− n2

2r2

)
≤ (p + 1)!!max{Np, rp}r2

N
exp

(
−N2

2r2

)
.

Proof. Put η(x) := xp exp[−x2/(2r2)]. Since

η′(x) =
(

pxp−1 − xp+1

r2

)
exp

(
− x2

2r2

)
,

η(x) decreases at x ≥ √
pr. Since N ≥ √

pr by the assumption, we have an estimate
by an integral:

∞∑
n=N+1

np exp
(
− n2

2r2

)
≤

∫ ∞

N

xp exp
(
− x2

2r2

)
dx. (5.10)

Denote by Ip the integral of the right hand side in (5.10). By integration by
parts, we have

Ip = −r2

∫ ∞

N

xp−1
(
− x

r2

)
exp

(
− x2

2r2

)
dx = −r2

∫ ∞

N

xp−1 d
dx

exp
(
− x2

2r2

)
dx

= −r2

[
−Np−1 exp

(
−N2

2r2

)
− (p − 1)

∫ ∞

N

xp−2 exp
(
− x2

2r2

)
dx

]

= Np−1r2 exp
(
−N2

2r2

)
+ (p − 1)r2Ip−2.
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Iterating the similar operation, we obtain

Ip = (p − 1)!!

[[
k−1∑
i=0

Np−2i−1r2i

(p − 2i − 1)!!

]
r2 exp

(
−N2

2r2

)
+

r2k

(p − 2k − 1)!!
Ip−2k

]
(5.11)

for k = 0, 1, . . . , �p/2�, where we set (−1)!! = 0!! = 1. In the case of k = �p/2�, it
holds that Ip−2k = I1 or I0. These integrals are evaluated as follows:

I1 = r2 exp
(
−N2

2r2

)
, (5.12)

I0 =
√

2r

∫ ∞

N/(
√

2r)

exp(−u2) du

≤
√

2r ·
√

2r

2N
exp

(
−N2

2r2

)
=

r2

N
exp

(
−N2

2r2

)
, (5.13)

where the latter is due to the general fact that∫ ∞

t

exp(−u2) du ≤ exp(−t2)
2t

holds for t > 0. It follows from (5.11), (5.12), and (5.13) that

Ip ≤ (p − 1)!!

[�p/2�∑
i=0

Np−2i−1r2i

(p − 2i − 1)!!

]
r2 exp

(
−N2

2r2

)

≤ Np−1(p − 1)!!

(�p/2�∑
i=0

r2i

N2i

)
r2 exp

(
−N2

2r2

)

≤ Np−1(p − 1)!!

(�p/2�∑
i=0

max
{

1,
rp

Np

})
r2 exp

(
−N2

2r2

)

≤ Np−1(p + 1)!!max
{

1,
rp

Np

}
r2 exp

(
−N2

2r2

)

=
(p + 1)!!max{Np, rp}r2

N
exp

(
−N2

2r2

)
.

With this expression and (5.10), we obtain the conclusion. �

We now prove Lemma 2.2. In a similar manner to (5.2), we see

dm

dxm

(
sin(π(x − kh)/h)

π(x − kh)/h
exp

[
− (x − kh)2

2r2h2

])

=
m∑

p=0

p∑
l=0

m!
l! (m − p)!

(−1)m−l

(
√

2rh)m−p

(π

h

)l−1 sin(π(x − kh)/h + πl/2)
(x − kh)p−l+1

· Hm−p

(
x − kh√

2rh

)
exp

[
− (x − kh)2

2r2h2

]
,
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and therefore∣∣(G(m)
h f

)
(x)−

(
T (m)

N,h f
)
(x)

∣∣
≤

∑
k−�x/h�>N or
k−�x/h�<−N

|f(kh)|
m∑

p=0

p∑
l=0

m!
l! (m− p)!

1
(
√

2rh)m−p

(π

h

)l−1 1
hp−l+1|x/h− k|p−l+1

·
∣∣∣∣Hm−p

(
x/h− k√

2r

)∣∣∣∣ exp
[
− (x/h− k)2

2r2

]
. (5.14)

We assume that −L ≤ x ≤ L.
We estimate the sum in (5.14) in the case of k − �x/h� > N . Note that

N < k −
⌈x

h

⌉
≤ k − x

h
≤ k −

⌈x

h

⌉
+ 1. (5.15)

By (5.3), setting

ai(t) :=
j! (2t)j−2i

i! (j − 2i)!

for t ∈ R, we have that

Hj(t) =
�j/2�∑
i=0

(−1)iai(t),

and that ai(t) (i = 0, 1, . . . , �j/2�) have the same sign. Furthermore, if |t| ≥ j/2,
we have |a0(t)| ≥ · · · ≥ |a�j/2�(t)|, and therefore |Hj(t)| ≤ |a0(t)|.

Since k − x/h > N ≥ mr/
√

2 holds by the assumption, setting t = (k −
x/h)/(

√
2r) in the above discussion, we have

∣∣∣∣Hj

(
x/h − k√

2r

)∣∣∣∣ ≤
(√

2|x/h − k|
r

)j

=
[√

2(k − x/h)
r

]j

(5.16)

for j = 0, 1, . . . , m.
By (5.15) and (5.16), we have

∑
k−�x/h�>N

|f(kh)|
m∑

p=0

p∑
l=0

m!
l! (m− p)!

1
(
√

2rh)m−p

(π

h

)l−1 1
hp−l+1|x/h− k|p−l+1

·
∣∣∣∣Hm−p

(
x/h− k√

2r

)∣∣∣∣ exp
[
− (x/h− k)2

2r2

]

≤ 1
Nhm

∑
k−�x/h�>N

[
A+B

[(
k−

⌈x

h

⌉)
h + (L+h)

]α]

·
m∑

p=0

p∑
l=0

m!πl−1

l! (m− p)!

(
k−�x/h�+ 1

r2

)m−p

exp
[
− (k−�x/h�)2

2r2

]
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≤ 1
Nhm

∞∑
n=N+1

[A+B[nh + (L+h)]α]

·
m∑

p=0

p∑
l=0

m!πl−1

l! (m− p)!

(
n + 1
r2

)m−p

exp
(
− n2

2r2

)
. (5.17)

Furthermore, noting that

[nh + (L + h)]α ≤ 2α[(nh)α + (L + h)α]

≤ 2α[(L + h)α + 2αhα] + 22αhα(n − 1)α,

p∑
l=0

πl−1

l!
≤ 1

π

∞∑
l=0

πl

l!
=

eπ

π
,

m∑
p=0

1
(m − p)!

(
n + 1

r2

)m−p

≤ exp
(

n + 1
r2

)
,

where Lemma 5.1 is used, we have

1
Nhm

∞∑
n=N+1

[A + B[nh + (L + h)]α]
m∑

p=0

p∑
l=0

m!πl−1

l! (m − p)!

(
n + 1

r2

)m−p

exp
(
− n2

2r2

)

≤ m! eπ

Nhmπ

∞∑
n=N+1

[A + 2αB[(L + h)α + 2αhα] + 22αBhα(n − 1)α]

· exp
(

n + 1
r2

)
exp

(
− n2

2r2

)

≤ m! eπe
3

2r2

Nhmπ

∞∑
n=N+1

[A + 2αB[(L + h)α + 2αhα] + 22αBhα(n − 1)α]

· exp
[
− (n − 1)2

2r2

]
. (5.18)

Applying Lemma 5.2
(
by the assumption N ≥

√
�α�r + 1, we have only to

replace N with N − 1 and set p = 0, �α�
)
, we have

m! eπe
3

2r2

Nhmπ

∞∑
n=N+1

[A + 2αB[(L + h)α + 2αhα] + 22αBhα(n − 1)α] exp
[
− (n − 1)2

2r2

]

≤ m! eπe
3

2r2 r2

N(N − 1)hmπ
(C ′

1 + C ′
2) exp

[
− (N − 1)2

2r2

]
, (5.19)

where C ′
1 and C ′

2 are defined in (2.8) and (2.9), respectively.
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Noting that the sum in (5.14) in the case of k−�x/h� < −N can be estimated
in a similar manner, we see from (5.14), (5.17), (5.18), and (5.19) that

∣∣(G(m)
h f

)
(x) −

(
T (m)

N,h f
)
(x)

∣∣ ≤ C ′
0(C

′
1 + C ′

2) exp
[
− (N − 1)2

2r2

]
,

where C ′
0 is defined in (2.7). Thus we have proven Lemma 2.2.
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