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This paper is concerned with semilinear tow-point boundary value problems of the form
—(p(@)u) + f(z,u) =0, a <z < b, apu(a) — a1u/(a) = a, Bou(b) + S1u/(b) = B, a; >0,
B; >0,1=0,1, ap+a1 >0, Bo+L1 > 0, ap+Bo > 0. Under the assumption inf f,, > —Ap,
where A1 is the smallest eigenvalue of Zu = —(pu’)’ with the boundary conditions, unique
existence theorems of solution for the continuous problem and a discretized system with
not necessarily uniform nodes are given as well as error estimates. The results generalize
three theorems of Lees for v/ = f(z,u), 0 < x <1, u(0) = a, u(1) = 8.

Key words: tow-point boundary value problems, discretization, existence of solution, error
estimates, theorems of Lees
1. Introduction

We will be concerned with a mathematical theory for numerical treatment of
semilinear boundary value problem

& (0 F) + s =0, a<as<o, )
Bi(u) = apu(a) — ayv/(a) = a, (1.2)
Bs(u) = Bou(b) + Bru'(b) = B, (1.3)

where p(z) € C'la,b], p(x) > 0, f(z,u) € C([a,b] x R) and «y, B;, i = 0,1 are
constants which satisfy

CVOZOa a1207 Ol0+C¥1>0,
Bo>0, B1>0, Bo+p1>0,

and
o + fFo > 0. (1.6)

Let Lu = —(d/dx)(p(x)(du/dz)) and put 2 = {u € C?[a,b] | Bi(u) =
By(u) = 0}. Then, as is easily verified, the Green function for (£, 2) exists
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under the conditions (1.4)—(1.6). It is known that if f,, = Jf/0u exists, is contin-
uous on [a,b] x R and f, > 0, then the problem has a unique solution u € C?[a, b]
(cf. [8]; Remark 2.1). To find a numerical solution, we discretize (1.1)—(1.3) at not
necessarily uniform nodes

Ara=x9g <21 <+ <Zp <Tpy1 =0, (1.7)

and put

hi:-ri_xifl, h:maxhi.
7

The discretized system we consider here is

HAU + f(U) =0 (1.8)
where, if a1 # 0, then
w% 1
H= , Wi = §(h¢+hj+1) (1<Z<n)
—1 1
“nt Fhn+1 (i=n+1),
ag+a1 —aq
—a1 a1 +as —as
A =
—Un41 Gp41 + (42
Qo .
- =0
alp(a) (i=0)
wog\
a; = — (1<i<n+1)
</x p(t)>
%) (i=n+2),
I3}

U= (U07 U17 ceey Un+1)t
f(U) = (f(x()v UO)a ey f(xn-i-lv Un-‘rl))t

f(U)=f(U)—<2 © p@),0,....0, 2 (b)).

hi ar hot Bi”

If ayB1 = 0, then (1.2) or (1.3) reduces to the Dirichlet condition u(a) = 0 or
u(b) = 0 so that a modification of (1.8) is necessary. Namely, if oy = 0 and 3 # 0,
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then ag # 0 and we replace H, A, U, f, and f by

: -1 -1 ~1
H =diag(wy ' wy 'y wiiy),

a1 +ax —as
—as a2 +asz —as
A =
(1.9)
*an-&-l Ap+41 + Ap4-2
U= (U17 U27 C) Un+1)t7

f(U) = (f(xh Ul)a f(‘TQv U2)7 sy f(zﬂ?-‘rla Un+1))t

and

= 2 2 '
F) = 1) - (52 S0 2 20

If ay #0 and B; =0, then 5y # 0 and H, A, U, f and f in (1.8) are replaced by

: -1 -1 -1
H:dlag(wo JWY e, Wy ),

ap —+ a1 —aq
—ay a1+ a2 —a

—0apn Gn +an+l
U = (Uy,Uy,...,U,)",
f(U) = (fO(xO,UO)af(xh Ul)a .. .’f('r’ru Un))t

and

F) f(U)(Qap(a),O....,O _* 5 )t.

- 9 —Qn
hi aq B+ Byi1 Bo Y

Furthermore, if oy = 81 = 0, then g, 5y # 0 and H, A, U, f and f are replaced by

: -1 -1 -1
H:dlag(wl JWo s, Wy, ),
a1 +azx —as
—ag az + az —as
A=
—Qp an+an+1
t
U= U,...,U,)",

.f(U) = (f(‘rla Ul)v e '7f(xn7 Un))t

and

FO) = 10 - (s o0 )

Y "a07 - On41
hi+ ha ag ho + hogt Bo
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It should be remarked here that, in any case, we have A™! = (G(z;,z;))
(cf. [8]), where G(x,&) denotes the Green function for (¥,2) with £ =
~ (d/dz)(pld/d)] ).

Observe also that, if the nodes are uniform, i.e., z; = ih, h = (b —a)/(n + 1),
p(x) = 1 and the boundary conditions are of Dirichlet’s type u(a) = o and u(b) = S,
then (1.8) reduces to a system of n equations

2 -1 flen,Uh) —
-1 2 4 i oo 0
o e S S D
-1 2 Un f(xnyUn)iﬁ 0
In [4], M. Lees considered the problem
u' = f(z,u), z€FE=]0,1], (1.11)
u(0)=«a, u(l)=p (1.12)

and proved the following three theorems:

THEOREM 1.1. If f, exists, is continuous on E X R and satisfies

: _ 2
int fu=-n>-7, (1.13)

then the problem (1.11), (1.12) has a unique solution u € C[E].

THEOREM 1.2.  Assume that uw € CA[E]. If f satisfies (1.13) and h is suffi-
ciently small, i.e., if h < hg, where hqy is a constant satisfying

h2
n < [1&%2},

then (1.10) has a unique solution U = (Uy,...,U,)" € R™.

THEOREM 1.3. Let

n+1 2
U; —U;_1
05 = 13 (5

Jj=1

where Uy = a and Uy, 41 = B. Then, under the assumption of Theorem 1.2,

1 1
lu=Ulloo < 5 lu=Ullp < K (Ro)?[[u ]|,
where u = (u(xy),...,u(zy,))t, K(ho) is a constant and

09 = maxu® ).

The purpose of this paper is to generalize these result to the problem (1.1)—(1.6)
and its discretized system (1.8).
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2. Existence of Solution for (1.1)—(1.6)

Observing that the number 72 in (1.13) is the smallest eigenvalue for the
operator —(d?/dz?): {u € C?[0,1] | u(0) = u(1) = 0} — C[0,1], we generalize
Theorem 1.1 on the basis of the following three lemmas.

LEMMA 2.1. Let Lu = —(d/dx)(p(du/dz)) and 2 = {u € C*[a,b] | B1(u) =
By(u) = 0}. We denote by A1 the smallest eigenvalue of (£,2). Then A1 is
positive and

(Lu,u) > M|ul|* Yue 2,
where || - || denote the Ly norm.

Proof. The proof is straightforward since (%, %) has a complete system of
orthonrmal eigenfunctinos in Lo[a, b]. O

LEMMA 2.2. Let r(x),g(z) € Cla,b] and

argn;gbr(x) =—n> =)\, (2.1)

where \1 is as defined by Lemma 2.1. Then the boundary value problem

Lu+r(x)u=g(x), a<xz<b
ueP

has a unique solution and

loll
AL—n

Proof. Let Lu+r(x)u=0,u e P. Then

[[ull <

0

(Lu,u) + (ru,u)
A (1) + (e, 0) = (g + 1)) > (g — 1), 0)

v

Since A\; — 1 > 0, we obtain |Jul| = 0. Hence, (£ + 11, 2), where I is the identity,
is injective and the problem

Lu+ru=g, ueP (2.2)
has a unique solution. We then have
A = mllul® < (Lu,w) + (ru,u) = (g,u) < gl - ul. (2:3)
If ||u|| > 0, then (2.3) implies

(A1 =m)lull < llgll
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or

_ gl

u
ful < 5,2

This inequality holds for |lu|| = 0, too. O

LEMMA 2.3. Let G(z,&) be the Green function for (£, 2), where £ and 9
are defined in Lemma 2.1. Then

G(z,¢)

m <a1 + aop(a) /a”” pﬁ)) (51 + Bop(b) /gb pd(i

1 S odt boat
@) (Oé1+040p(a)/a p(t)) <51+50P(b)/$ 20

~—

~ ——
)
vV
o

where

_ bdt B\ | b
5= ag <ﬂo/a 0 +p(b)> +o >0 (2.4)

Proof.  See [8]. O
We are now in a position to prove the following:

THEOREM 2.1. If f(x,u) satisfies

inf = — — 2.
[a’lg]lfou(m7u) n> )‘1’ ( 5)

where A\ is defined in Lemma 2.1, then the problem (1.1)—~(1.6) has a unique solu-
tion u € C?[a,b].

Proof. Without loss of generality, we may assume o = 5 =0 (cf. [8]).
(i) EXISTENCE. Putting

1
r(x;u):/o Sulx; 0u)do,

we have
f(z,u) = fo(z) +r(z;u)u,

where fo(x) = f(x,0). Then, by Lemma 2.2, given u € C|[a, b], the linear boundary
value problem

Lw+r(x;u)w=—fo(z), weP (2.6)
has a unique solution w € C?[a, b], which satisfies

5ol _

wi < ———
ol < 572

(say) (2.7)
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by Lemma 2.2. Furthermore, we have from (2.6)
Lw = —fo(z) — r(z;u)w
and

b
- / G, E){ fol€) + (€ u(€))w(€) } de

so that, using Lemma 2.3, we obtain

g (h(©) + r( u(©)w(©)} de
a

. + (€ ul€)u(e)} de

1 Bo St .

5 (- (> ( [ p(t)) o)+ rlEsu(€))ule)} de
b

(o )<+5o / Cf;){fo(£>+r(£;u<5>>w<£)}d5,

where § is as defined in (2.4).
Observing that

[
-
-~/
-/

!
5

B TR L B S (- R A
o= (p<a> +oo | p<t>> O <p<a> voo | p<t>>

and similary
B bodt
o 2 @ — + 6 / A |
’ <p<b> * Je 20

we have
‘d‘jlf) <[ (x)(lfo( )+ (€5 ()] - w(€)]) d
+ [ p(lx) (£6(©)] + 1€ u(©)] - lw(©)]) de
_/: S )] + (€ (e - e de
< " ollwss + (6 w(E) - o) e
where p. = ming<z<p p(x) > 0 and || - |44 denotes the maximum norm in [a, b]:

ol = masc Ifo(a)l,  uwlluy = masx (e, ete

299
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Hence, if u € C?[a, b] and || [a,5) < d0, then, putting

K= sup | fulx,uw)]
[a,b] X [—60,60]

we have
1 [ -
[0 [l < pi/a (Hfo”[a,b] +K5o> dg
1 _
= <||f0||[a,b] + K50) (b—a) =061 (say).

Consider a Banach space X = C[a, b] equipped with the norm |lul|c: = ||U||[a,b] +
l[u'[|{a,) for u € X and put

S = {’LL cX | Hu”[a,b] < 50, ||ul||[a,b] < 61, Bl(u) = BQ(U) = 0}

Then S is a bounded and closed convex set in X. The map T: S — SNC?[a,b] C S
defined by Tu = w,u € S, is then continuous and it can be shown by Ascoli-Arzela’s
theorem that T'(.S) is relatively compact in X (cf. [8]). Hence, Schauder’s theorem
implies that T has a fixed point v € S. It is clear that v = Tu is a solution
of (1.1)—(1.6).

(ii) UNIQUENESS. Let u and v be two solutions of the problem and set ¢ =
u —v. Then

fla,u) = f(z,0) = r(z;u,0)0

where
1
r(x;u,v) = / Sfulz,v+0(u—v))do.
0
Therefore
Lo+r(x;u,v)p=0, a<x<b
pe,
where
r(z;u,v) > —n > =\
Hence Lemma 2.2 applies to conclude that ¢ = 0. O

REMARK 2.1. If 367 # 0 and o = § = 0, then the existence of solution
for the problem (1.1)—(1.6) follows from the following result which is the one-
dimensional version of Theorem 2.3.1 in Sattinger [5]. (Also see Amann [1], [2])

THEOREM 2.2. Let p(x) and ¢ (x) be upper and lower solutions for the prob-
lem (1.1)—(1.6) with « = 3 =0:

Lo+ f(z,0)
LY+ f(x,9)

2
<
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where £ is as defined in Lemma 2.1. If ¢ < ¢ in [a,b], then there exists a solution
u for (1.1)—(1.6) with ¥ < u < .

In fact, if we put F(z,u) = f(z,u) + A\yu where \; is defined in Lemma 2.1, then
Fu(z,u) = fu(z,u)+ X\ > X\ —n>0.

Hence, at each x fixed, F' is monotonically increasing in v and F(x,—00) = —o0,
F(x,4+00) = 400, x € [a,b], so that, by the implicit function theorem, there exists
a unique &(z) € Cla,b] satistying F(z,P(x)) = 0. Take a positive constant m
with —m < @(x) < m Vz € [a,b] and an eigenfunction v(z) corresponding to the
eigenvalue \; for (£, Z). Then v(x) > 0 in [a, b] since oy 81 # 0.

Furthermore, letting

we have

v(xz) VY € la,d]

and it can be shown that p(z) = (m/v)v(x) and ¥ (x) = —(m/y)v(z) are upper
and lower solutions with ¢ (z) < ¢(z) in [a, b].
In fact, we have

Lo+ f(z,0) = Lo~ p+ F(z,p)
= F(z,¢)
> F(x,d(z)) =0

and
Bi(p) = Ba(p) =0.
Similarly
L+ fla,¢) = F(a,¢) < F(z,(x)) =0
and

Bi(¢) = Ba() = 0.

Hence, by Theorem 2.2, the problem (1.1)—(1.6) has a solution u with ¥ <u < .

3. Existence of Solution for the Discretized System

In this section, we shall show that (1.8) has a unique solution U € R"*2 for
sufficiently small h. Before doing this, we prepare several lemmas. In the following,
we assume aq 31 # 0 without loss of generality.
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LEMMA 3.1.

(2,U;),i=0,1,2,...,n+ 1. Then

%(U,H‘lU) <

(el

T. YAMAMOTO and S. OISHI

Let ﬁ(x) be the piecewise linear interpolant for the n+ 2 points

<(U,H'U).

Proof. The trapezoidal rule for numerical integration implies that if ¢ €

C%[xj_1,2], 1 <j < n+1, then there exists ¢; €

(xj—1,x;) for each j such that

zj hj h? 1
pla)de = = (p(z;) + ¢(2j-1)) = 1597 (&):
Hence
b n+1 h n+1
/aw(x)dx:;;( o(x) + p(zi-1) 122113 "(Es)
n+1 n+1
_ijgp xj) 122h3 " §J
or

n+1

b
3 wyple) = /
j=0
An application of this formula to ¢(x

n+1
(U,H'U)

_ E T72
= w]Uj =
Jj=0

n+1
dLE + o Z hd // 5]
{U }2 yields

n+1

Z%‘{ﬁ(%)f

b n+1 2
1 U; —U;_1
= d h3 S ek
[ owra g3 (52
n+1
=TI + = Zh (U; = Uj)?
where we have used the fact that
~ U;:—-U,_
Ulx) = jhifl(l’ —zj1) +Ujm1, @ € [0, 2]
J
and
~ 2U; —Uj— )2
@{ z)?} = jh—§“ (constant), x € [xj_1,x;].
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On the other hand

/ab / {U U“(x—wj1)+Uj1}2dx
{U

h.
Uj-1) 2 J +2(U; —Uj—1)Uj—4 2J+Uj21hj}

3 <.
+ | I
_

+
h; (U? +UU1 + U3y

Il
w| =
3 .
+
_

hy
2

vV
Wl =
'M

(U7 +U7)

3 <
+ I
—_ =

(.«.)j[]]2 (U H™ IU)

W
<.
Il
=}

This proves Lemma 3.1. (|

LEMMA 3.2. The following inequalities hold.
) S (U = U2 < A(U,HIU)

) S iU, - U] < 2B a0 HTD)
(iif) Z"Hh Uj—1|* <2(U,H™'U)
)

)
)

z"“h U; 1| < /20— a)/(U, H-10)
Z"“h max (|U;_1|%, |U;?) < 2(U, H-'U)
z”“h max (|U;_1],|U;|) < 2vb — a/(U, H-1U)

Proof. For examples, we have

n+1 n+1
S i |Uj = Ui P <2 hi(UZ+UF ) =AU, H'U),
- =
n+1 n+1 2n+1 2
D ohilU =Ujal <\ (\/E) > (\/E) U; = Uja|?
j=1 j=1 J=1

<V(b—a) 4U,H'U)
:2\/b—a\/ (U,H-1U), etc. O

LemMA 3.3, [C|U(x)|de < (1+v2)Vb— a/(U, H-10).
Proof. We have from Lemma 3.2

n+1

/;U |dx_z/

<n§/ {U“|( —x“)+|U“|}dx
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n+1
<Z< — Ui 1+|Ui_1|>h
<(1+V2) \/b—a\/ U,H-U). 0

Since the Green function G(x,&) belongs to C? class in the regions 2 = {(z,¢) |
a<xz<¢<b}and & ={(z,8) | a <& < x < b}, there exists a constant M > 0
such that

‘ 85;9‘_1\4 0<k<2)

in {4 or (2.
LEMMA 3.4. Let (U,H 'U)=1. Then

n+1
S Glai,2y)wU; /G:Bz,é“ €de e, 0<i<n+l,

where

Mh
lei| <e= T(2 + h)Vb—a=0O(h).
Proof. Let U(xz) be as defined in Lemma 3.1 and put

0i(€) = Gz, )U(©).

Then
n+1

b o~
| ot e = Z " G006 de

=1v7Tj-1

n+1 h3
- Z [ ’ {901 xﬂ 1 +§02(x])} - 12901 (fj)

(xj—1 <& <)
n+1

= wipi(zy) — e,
=0

where = = (1/12) S5 Bl (E,).
If x;_1 <& <y, then

9? G(xza f)

(6 = 50O+

and
" (€)] < M’ﬁ(f)] + 2M|UJ_h7UJ—1|
j

< Mmax (|Uj-1], |Uj]) +2M ——~
J
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Hence we have

h? " M 3 M 2
15 197 (&) = g5 hg max (|Ujal, [Us]) + 5 h51U; = Uj
and, by Lemma 3.2,

n+1

les| < IQZhB (&)

n+1 n+1

< T3 K max (105 1], 1U;1) + me Uyl
j=1
< thg:lh max (|U;_1|, |U;|) + Mhnjr:lh |Uj — Uj-1]
< Mhz\/b—a\/ JH-1U) +—2\/b—a\/U H-1U)
:MGh(thz Vi—a/([U, 7 10)
:Mh(mg)m:g. O

LEMMA 3.5. Let (U, H 'U)=1. Then

/ab/ab G(z,§)U(€) deU () d

n+1n+1
=Y Glai,z))(@ills)(w;Uj) + O(h).

i=0 j=0

Proof. Let

Then

S [ W,
= {Q[wm D+ 9] -y (m)}7 < <o
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o, 1<z< Ty, then

2 x U x -
¥'(a) = ( JRatnrs U((x;) 0()

+2/ 2 E) ey e - 0 ),

and
b 1
" (x)| < M/ !U(ﬁ)!d£+*maX(lUi_ll,IUil) max(|U;—1, |Uil)
+2M/ |U(€)| de - O: = Uica|
hi
Therefore,

n+1

Z h3 |<,0N 772
n+1

(12/ [U(e) d§>2h3max (|Ui-1l, Ui])

n+1
Zhgmax \Us_1 2, |Us %)

i=1

1
12p*

n+1

/|U |d§Zh2|U Ui_1|
SF\/b—ahz/a |U(g)|dg+@
Mh b
+T\/b—a/ \U()] d¢

M
6

< TAEVRb—an® + ot (14 VE) b~ aph

=¢ (say).

By Lemma 3.4, we have

We obtain from (3.1) that

// G(z, &)U (&) deU (z) da
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n+1 h n+1
- 3 //
=35 W) + ol = 35 DG
n+1 n+1
- ) 3 //
= ; U(x;)w; T Z hi"(
n+1 [n+1 1 n+1
— . . . P . () — — 3"
=3 | 20 Gyl — i | Ui = 35 30" ()
=0 7=0 =1
n+1n+1
ZZZG 33“33] WJ )(W1U1)+07
=0 j=0
where
n+1 1 n+1
(T—_;E’L(Ulwl) 12Zh1/)( )

We thus obtain from Lemma 3.4 and (3.2)

n+1
o] < el - |Uilwi + &
1=0
n+1
<e) wilUi|+&
=0

n+1
262 (Ul + |Ui—a]) + €
< evb— a(Uﬁl,H’lU) +
=evb—a+¢e
=O0(h)Vb—a+ O(h) =O(h). |
LEMMA 3.6. For sufficiently small h, the matric HA — nl is an M-matrix,
hence nonsingular.

Proof. Since A is an irreducibly diagonally dominant L-matrix and symmet-
ric, A is a positive definite M-matrix. Then, for any U, V € R"*2, we have

(U, V) = (\/ZU,\/TIV)2
< (VAU,VAU) (\/Z_lv,\/Z_lv)
= (AU, U)(A7'V, V). (3.3)

Let W € R"*2 and W # 0. Then ¢ = (W,H'W) > 0. We put U = (1//c)W
Then we have (U, H1U) = 1.
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We then have from (3.3), Lemma 3.1 and Lemma 3.5

(A~ nH~)U,U) = (AU, U) ~ 4(U, H~'0)
(U, H-U)?

_ H1
(A-'H-'U, H-'U) (U, H=U)

(Put V= H-'U in (3.3))
(U,H~'U)

- - U ,H'U
?:01 ;'L:OlG(xivl'j)(wiUi)(ijj) ! ( )
. 101 .
— rbpb = ~
), G, U () deU () dz + O(h)
o
~ (/)T + o)
= () + 2
1]

By Lemma 3.1, we have ||ﬁ|| = O(1) and

O(h)
1o)”

for sufficiently small h > 0 and ((A — nH Y)W, W) > 0 for any W # 0. Con-
sequently the symmetric matrix B = A — nH~! is then positive definite and
eigenvalues are all positive. Since B is a Z-matrix, this means that B as well
as HB = HA — nl is an M-matrix (cf. [7]). O

>0

)\1—77+

We are now in a position to prove the following:

THEOREM 3.1. Under the assumption of Theorem 2.1, the discretized sys-
tem (1.8) has a unique solution if h is sufficiently small.

Proof. We again assume o = 3 = 0, without loss of generality.
(i) UNIQUENESS. Let U,V € R""2 be two solutions of (1.8) and put W =
U-V =Wy Wy,...,W,i1)t. Then W satisfies the system of (n + 2) equations

(HA+ D)W =0,

where
D = dii:tg(do7 dl, ey dn+1), (34)
with

1
di= [l Vit U = V)0, 0<i<nt1,
0
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By Lemma 3.6, we have for sufficiently small h
(A+H'D)U,U) > (A—nH ")U,U) >0 VU (#0) € R",

and HA + D is nonsingular. We thus obtain W = 0, which means the uniqueness
of the solution.
(ii) EXISTENCE. We write (1.8) as

HAU + ZU = —£(0),

where
Z = Z(U) - diag(C(M Cl? ey Cn—‘rl) (35)
with
1
Gi :/ Ju(zi, 0U;)d, 0 <i<n+1,
0
and

f(o) = (f(l’o,O),f(l'hO), .. '7f(xn+170))t
= (fo(zo), fo(x1), ..., folxns1))"
with fo(z) = f(x,0).

Since Z > —nI (I is the (n+2) x (n+2) identity), given U € R"*2, the system
of linear equations

(HA+ Z)W = —f(0)
has a unique solution

~(HA+2)7'§(0)
= —(A+H'Z)""H'f(0), (3.6)

w

where A + H~1Z is again a symmetric M-matrix. Let ¢ € C?[a,b] be the unique
solution of the problem

d du
o (p(:v)dx> —nu=2, u€,

whose existence is guaranteed by Theorem 2.1. Let
T=(HA—nl)p — 2e,
where

@ = (p(wo),p(x1), -, p(wn1))" and e=(1,1,...,1)F e R"2
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Then a simple computation based upon the usual Taylor expansion for p(z) €
Clla,b] and p(z) € C?[a,b] yields

[7lle0 = 0(1) = 0

as h — 0, where we apply the midpoint rule to estimate the integrals a; =
f; (dt/p(t)), 1 < i < n+ 1 and employ the fact that p’ and ¢” are uniformly
contmuous in the interval [a, b]. Hence, for sufficiently small h,

(HA—nl)p=2e+T1T2>e

or
(HA—nI) e < o. (3.7)
We denote by |W| the vector (|Wol, [Wil,. .., W)
Then we have from (3.6)
W| < (A+H'2)" H'|f(0)]
< (A—pa)" le 0)[| e
= [|£(0)|| (HA —nI)~
<[IF ).
and
W oo < [ FO)| Lllelloo < lfolljarlleliar = C  (say), (3.8)

since we have assumed a = # = 0 and £(0) = (fo(zo), fo(x1),-- ., fo(znir)).
Hence we put

S={UeR""?||U|x < C}

and define amap 7': S — S by TU = W, U € S. Then T is continuous. In fact,
we have for U, U € S

TU ~TU = —{(HA+2Z)"' — (HA+ Z)"'}F(0)
— (HA+2) (2 - Z)(HA+ 2)" ' (0), (3.9)
where Z = Z(U) and Z = Z(U). It now follows from (3.8) and (3.9) that
lTU - 10|, <12 - Z||  I¢lesnC — 0
as HU—ﬁHOO — 0, since HZ—?HOO — 0 as HU—IAJHOO — 0 because of the uniform
continuity of f,(z,u) in [a,b] x [-C, C].

Consequently, we conclude, by Brouwer’s theorem, that 7" has a fixed point U
in .S, which is a solution of (1.8). 0
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4. Error Estimates
We still keep the assumption aq/3; # 0 without loss of generality.
Let u = u(z) be the solution of the continuous problem (1.1)—(1.6) and u =
(w(zo), u(x1), ..., u(rni1))t. We put
T = HAU+ f(u) = (T077'1, ce 77'n+1)t.
Then we have from (1.8)

HA(u~U) + f(w) - FU) =7

or

(HA+D)(u-U) =T (4.1)

where D = diag(go,gl,...,gn+1)t with (Z = fol fulzi, Uy + 0(u; — U;))dB. As is
shown in the end of the proof of Lemma 3.6, HA — il is an M-matrix and

HA+D>HA—nl.
Hence, HA + D is an M-matrix and
0< (HA+D) ' <(HA—pI)~" (4.2)

since HA+ D is an irreducible Z-matrix and (HA—{—E) “lisa positive matrix ([7]).
It now follows from (4.1) and (4.2) that

u—U = (HAJrﬁ)flT. (4.3)
As is easily seen, we have

[lloe =

o(1) (if u € C?[a,b])
O(h) (ifu € C*a,b], p € C1ta,b])

and

lu—U| < (HA+ D) 7| < | 7|l (HA+ D) 'e
<rleHA=n) e < |7l Dby (3.7).

Hence
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Furthermore, if p € C?![a,b] and u € C®'[a,b], then it can be shown (see [§]
pp- 52-56) that

O(hy) (i=0)
2 .
T = h7(8i+(1/2)h12+1_Si7(1/2)h?)ug_(hi+l_hi>ﬁi+o(h2) (1 S 1 S ’I'L)
i+hip1
O(hn+1) (i=n+1)
where
1 1 " )
s(x) = —| — , 4.5
@=5(5) » (15)
1
r(x) = 539" (2)' (2) + 6p'(2)u" () + 4p(x)u™ (x)}, (4.6)
1
Sit(1/2) = S <xz + 2hz‘+1) ;
1
Si—(1/2) = 8§ (l‘i - th)
and

ki = K(24).

We have from (4.3)

u—U=(HA+D) 'r
- [(HA)*1 — (HA+ D)*lﬁ(HA)*l] T
= A'H ' — (HA+ D) 'D(A'H '7)
and
lu—U| < |A'H 'r| + (HA+ D) '|D||A " H 7|
<|AT'H 'r| + (HA—nD)7'|D||A H 7. (4.7)

Since [|[U — ulloc — 0 as h — 0 by (44), [|ullec < |lulljay < do (cf. the proof
of Theorem 2.1) and, for any 6 € [0, 1],

U +0(u—-Ufe = [lut+(1-0)U - v
< Hufloo + (1 =0)[[U - uflw
< Hlulloo + U = vlo,

we may assume that |U + 0(u — U)o < 200 VO € [0, 1].
Then

| <K= max |fulz,u)| <400 Vi.
[a,b]x[—2680,280]
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Therefore we obtain from (4.7) and (3.7)

Ju—Ulls < A H 7|+ K[ AT H 7]l
< (14 Kglly) |AT H || (4.8)

If p e C%'a,b] and u € C*'[a,b], then we have

n+1

(AilHilT)i = Z G(xi,xj)ijj

=0
and we can show
AT H || = 0(h?)

by noting that the functions s(x) and x(z) defined by (4.5) and (4.6) are Lipschitz
continuous in [a, ] (cf. [8]). Hence, from (4.8) we have |[u — Ul|o = O(h?).
Summarizing we have the following result.

THEOREM 4.1. Under the assumption (2.5), we have

o(1) (u € C?[a,b], p € Ca,b])
lu-Ulw={0)  (ueC?a,b], peCiab))
O(h?) (u € C*a,b], p € C*a,b]).

5. Remark

In (1.8), if we replace the integral f;j_l(dt/p(t)) by the mid point formula
hi/p(wi—1/2)) (Ti—(1/2) = (1/2)(2;42;_1)) for each 4, then the usual finite difference
formula arises. We can also derive Theorems 3.1 and 4.1 in this case.
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