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This paper is concerned with semilinear tow-point boundary value problems of the form
−(p(x)u′)′ + f(x, u) = 0, a ≤ x ≤ b, α0u(a)−α1u′(a) = α, β0u(b) + β1u′(b) = β, αi ≥ 0,
βi ≥ 0, i = 0, 1, α0+α1 > 0, β0+β1 > 0, α0+β0 > 0. Under the assumption inf fu > −λ1,
where λ1 is the smallest eigenvalue of L u = −(pu′)′ with the boundary conditions, unique
existence theorems of solution for the continuous problem and a discretized system with
not necessarily uniform nodes are given as well as error estimates. The results generalize
three theorems of Lees for u′′ = f(x, u), 0 ≤ x ≤ 1, u(0) = α, u(1) = β.

Key words: tow-point boundary value problems, discretization, existence of solution, error
estimates, theorems of Lees

1. Introduction

We will be concerned with a mathematical theory for numerical treatment of
semilinear boundary value problem

− d

dx

(
p(x)

du

dx

)
+ f(x, u) = 0, a ≤ x ≤ b, (1.1)

B1(u) = α0u(a) − α1u
′(a) = α, (1.2)

B2(u) = β0u(b) + β1u
′(b) = β, (1.3)

where p(x) ∈ C1[a, b], p(x) > 0, f(x, u) ∈ C([a, b] × R) and αi, βi, i = 0, 1 are
constants which satisfy

α0 ≥ 0, α1 ≥ 0, α0 + α1 > 0, (1.4)

β0 ≥ 0, β1 ≥ 0, β0 + β1 > 0, (1.5)

and

α0 + β0 > 0. (1.6)

Let L u = −(d/dx)(p(x)(du/dx)) and put D = {u ∈ C2[a, b] | B1(u) =
B2(u) = 0}. Then, as is easily verified, the Green function for (L ,D) exists
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under the conditions (1.4)–(1.6). It is known that if fu = ∂f/∂u exists, is contin-
uous on [a, b] × R and fu ≥ 0, then the problem has a unique solution u ∈ C2[a, b]
(cf. [8]; Remark 2.1). To find a numerical solution, we discretize (1.1)–(1.3) at not
necessarily uniform nodes

Δ : a = x0 < x1 < · · · < xn < xn+1 = b, (1.7)

and put

hi = xi − xi−1, h = max
i
hi.

The discretized system we consider here is

HAU + f̃(U) = 0 (1.8)

where, if α1β1 �= 0, then

H =

⎛⎜⎜⎜⎝
ω−1

0

ω1
1

. . .
ω−1
n+1

⎞⎟⎟⎟⎠ , ωi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2
h1 (i = 0)

1
2
(hi + hj+1) (1 ≤ i ≤ n)

1
2
hn+1 (i = n+ 1),

A =

⎛⎜⎜⎜⎝
a0 + a1 −a1

−a1 a1 + a2 −a2

. . . . . . . . .
−an+1 an+1 + an+2

⎞⎟⎟⎟⎠

ai =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0

α1
p(a) (i = 0)(∫ xi

xi−1

dt

p(t)

)−1

(1 ≤ i ≤ n+ 1)

β0

β1
p(b) (i = n+ 2),

U = (U0, U1, . . . , Un+1)t

f(U) = (f(x0, U0), . . . , f(xn+1, Un+1))t

f̃(U) = f(U) −
(

2
h1

· α
α1
p(a), 0, . . . , 0,

2
hn+1

· β
β1
p(b)
)t
.

If α1β1 = 0, then (1.2) or (1.3) reduces to the Dirichlet condition u(a) = 0 or
u(b) = 0 so that a modification of (1.8) is necessary. Namely, if α1 = 0 and β1 �= 0,
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then α0 �= 0 and we replace H, A, U , f , and f̃ by

H = diag
(
ω−1

1 , ω−1
2 , . . . , ω−1

n+1

)
,

A =

⎛⎜⎜⎜⎝
a1 + a2 −a2

−a2 a2 + a3 −a3

. . . . . . . . .
−an+1 an+1 + an+2

⎞⎟⎟⎟⎠
U = (U1, U2, . . . , Un+1)t,

f(U) = (f(x1, U1), f(x2, U2), . . . , f(xx+1, Un+1))t

(1.9)

and

f̃(U) = f(U) −
(

2
h1 + h2

α

α0
a1, 0, . . . , 0,

2
hn+1

· β
β1
p(b)
)t
.

If a1 �= 0 and β1 = 0, then β0 �= 0 and H, A, U , f and f̃ in (1.8) are replaced by

H = diag
(
ω−1

0 , ω−1
1 , . . . , ω−1

n

)
,

A =

⎛⎜⎜⎜⎜⎝
a0 + a1 −a1

−a1 a1 + a2 −a2

. . . . . . . . .

. . . −an an + an+1

⎞⎟⎟⎟⎟⎠ ,

U = (U0, U1, . . . , Un)t,

f(U) = (f0(x0, U0), f(x1, U1), . . . , f(xn, Un))t

and

f̃(U) = f(U) −
(

2
h1

α

α1
p(a), 0. . . . , 0,

2
hn + hn+1

β

β0
an+1

)t
.

Furthermore, if α1 = β1 = 0, then α0, β0 �= 0 and H, A, U , f and f̃ are replaced by

H = diag
(
ω−1

1 , ω−1
2 , . . . , ω−1

n

)
,

A =

⎛⎜⎜⎜⎝
a1 + a2 −a2

−a2 a2 + a3 −a3

. . . . . . . . .
−an an + an+1

⎞⎟⎟⎟⎠ ,

U = (U1, . . . , Un)t,

f(U) = (f(x1, U1), . . . , f(xn, Un))t

and

f̃(U) = f(U) −
(

2
h1 + h2

α

α0
, 0, . . . , 0,

2
hn + hn+1

β

β0
an+1

)t
.
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It should be remarked here that, in any case, we have A−1 = (G(xi, xj))
(cf. [8]), where G(x, ξ) denotes the Green function for (L ,D) with L =
− (d/dx)(p(d/dx)[ ]).

Observe also that, if the nodes are uniform, i.e., xi = ih, h = (b− a)/(n+ 1),
p(x) = 1 and the boundary conditions are of Dirichlet’s type u(a) = α and u(b) = β,
then (1.8) reduces to a system of n equations

1
h2

⎛⎜⎜⎜⎝
2 −1
−1 2 −1
. . . . . . . . .

−1 2

⎞⎟⎟⎟⎠
⎛⎜⎝ U1

...
Un

⎞⎟⎠+

⎛⎜⎜⎜⎝
f(x1, U1) − α

h2

...

f(xn, Un) − β

h2

⎞⎟⎟⎟⎠ =

⎛⎜⎝ 0
...
0

⎞⎟⎠ . (1.10)

In [4], M. Lees considered the problem

u′′ = f(x, u), x ∈ E = [0, 1], (1.11)

u(0) = α, u(1) = β (1.12)

and proved the following three theorems:

Theorem 1.1. If fu exists, is continuous on E × R and satisfies

inf
E×R

fu = −η > −π2, (1.13)

then the problem (1.11), (1.12) has a unique solution u ∈ C2[E].

Theorem 1.2. Assume that u ∈ C4[E]. If f satisfies (1.13) and h is suffi-
ciently small, i.e., if h ≤ h0, where h0 is a constant satisfying

η < π2

[
1 − h2

0

12
π2

]
,

then (1.10) has a unique solution U = (U1, . . . , Un)t ∈ R
n.

Theorem 1.3. Let

‖U‖D =

√√√√h

n+1∑
j=1

(
Uj − Uj−1

h

)2

,

where U0 = α and Un+1 = β. Then, under the assumption of Theorem 1.2,

‖u − U‖∞ ≤ 1
2
‖u − U‖D ≤ 1

12
K(h0)h2

∥∥u(4)
∥∥
E
,

where u = (u(x1), . . . , u(xn))t, K(h0) is a constant and∥∥u(4)
∥∥
E

= max
x∈E
∣∣u(4)(x)

∣∣.
The purpose of this paper is to generalize these result to the problem (1.1)–(1.6)

and its discretized system (1.8).



On Three Theorems of Lees for Semilinear Two-Point 297

2. Existence of Solution for (1.1)–(1.6)

Observing that the number π2 in (1.13) is the smallest eigenvalue for the
operator −(d2/dx2) : {u ∈ C2[0, 1] | u(0) = u(1) = 0} → C[0, 1], we generalize
Theorem 1.1 on the basis of the following three lemmas.

Lemma 2.1. Let L u = −(d/dx)(p(du/dx)) and D = {u ∈ C2[a, b] | B1(u) =
B2(u) = 0}. We denote by λ1 the smallest eigenvalue of (L ,D). Then λ1 is
positive and

(L u, u) ≥ λ1‖u‖2 ∀u ∈ D ,

where ‖ · ‖ denote the L2 norm.

Proof. The proof is straightforward since (L ,D) has a complete system of
orthonrmal eigenfunctinos in L2[a, b]. �

Lemma 2.2. Let r(x), g(x) ∈ C[a, b] and

min
a≤x≤b

r(x) = −η > −λ1, (2.1)

where λ1 is as defined by Lemma 2.1. Then the boundary value problem

L u+ r(x)u = g(x), a ≤ x ≤ b

u ∈ D

has a unique solution and

‖u‖ ≤ ‖g‖
λ1 − η

.

Proof. Let L u+ r(x)u = 0, u ∈ D . Then

0 = (L u, u) + (ru, u)

≥ λ1(u, u) + (ru, u) = ((λ1 + r)u, u) ≥ (λ1 − η)(u, u).

Since λ1 − η > 0, we obtain ‖u‖ = 0. Hence, (L + rI,D), where I is the identity,
is injective and the problem

L u+ ru = g, u ∈ D (2.2)

has a unique solution. We then have

(λ1 − η)‖u‖2 ≤ (L u, u) + (ru, u) = (g, u) ≤ ‖g‖ · ‖u‖. (2.3)

If ‖u‖ > 0, then (2.3) implies

(λ1 − η)‖u‖ ≤ ‖g‖
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or

‖u‖ ≤ ‖g‖
λ1 − η

.

This inequality holds for ‖u‖ = 0, too. �

Lemma 2.3. Let G(x, ξ) be the Green function for (L ,D), where L and D

are defined in Lemma 2.1. Then

G(x, ξ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

p(a)p(b)δ

(
α1 + α0p(a)

∫ x

a

dt

p(t)

)(
β1 + β0p(b)

∫ b

ξ

dt

p(t)

)
(x ≤ ξ)

1
p(a)p(b)δ

(
α1 + α0p(a)

∫ ξ

a

dt

p(t)

)(
β1 + β0p(b)

∫ b

x

dt

p(t)

)
(x ≥ ξ)

≤ G(x, x)

where

δ = α0

(
β0

∫ b

a

dt

p(t)
+

β1

p(b)

)
+
α1β0

p(a)
> 0. (2.4)

Proof. See [8]. �

We are now in a position to prove the following:

Theorem 2.1. If f(x, u) satisfies

inf
[a,b]×R

fu(x, u) = −η > −λ1, (2.5)

where λ1 is defined in Lemma 2.1, then the problem (1.1)–(1.6) has a unique solu-
tion u ∈ C2[a, b].

Proof. Without loss of generality, we may assume α = β = 0 (cf. [8]).
(i) Existence. Putting

r(x;u) =
∫ 1

0

fu(x; θu) dθ,

we have

f(x, u) = f0(x) + r(x;u)u,

where f0(x) = f(x, 0). Then, by Lemma 2.2, given u ∈ C[a, b], the linear boundary
value problem

Lw + r(x;u)w = −f0(x), w ∈ D (2.6)

has a unique solution w ∈ C2[a, b], which satisfies

‖w‖ ≤ ‖f0‖
λ1 − η

≡ δ0 (say) (2.7)
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by Lemma 2.2. Furthermore, we have from (2.6)

Lw = −f0(x) − r(x;u)w

and

w(x) = −
∫ b

a

G(x, ξ){f0(ξ) + r(ξ;u(ξ))w(ξ)} dξ

so that, using Lemma 2.3, we obtain

dw(x)
dx

= −
∫ x

a

∂G(x, ξ)
∂x

{f0(ξ) + r(ξ;u(ξ))w(ξ)} dξ

−
∫ b

x

∂G(x, ξ)
∂x

{f0(ξ) + r(ξ;u(ξ))w(ξ)} dξ

= −
∫ x

a

1
δ

(
− β0

p(x)

)(
α

p(a)
+ α0

∫ ξ

a

dt

p(t)

)
{f0(ξ) + r(ξ;u(ξ))w(ξ)} dξ

−
∫ b

x

1
δ

(
α0

p(x)

)(
β1

p(b)
+ β0

∫ b

ξ

dt

p(t)

)
{f0(ξ) + r(ξ;u(ξ))w(ξ)} dξ,

where δ is as defined in (2.4).
Observing that

δ = β0

(
α1

p(a)
+ α0

∫ b

a

dt

p(t)

)
+
α0β1

p(b)
≥ β0

(
α1

p(a)
+ α0

∫ ξ

a

dt

p(t)

)

and similary

δ ≥ α0

(
β1

p(b)
+ β0

∫ b

ξ

dt

p(t)

)
,

we have ∣∣∣∣dw(x)
dx

∣∣∣∣ ≤ ∫ x

a

1
p(x)

(|f0(ξ)| + |r(ξ;u(ξ))| · |w(ξ)|) dξ

+
∫ b

x

1
p(x)

(|f0(ξ)| + |r(ξ;u(ξ))| · |w(ξ)|) dξ

=
∫ b

a

1
p(x)

(|f0(ξ)| + |r(ξ;u(ξ))| · |w(ξ)|) dξ

≤ 1
p∗

∫ b

a

(‖f0‖[a,b] + |r(ξ;u(ξ))| · ‖w‖[a,b]

)
dξ,

where p∗ = mina≤x≤b p(x) > 0 and ‖ · ‖[a,b] denotes the maximum norm in [a, b]:

‖f0‖[a,b] = max
x∈[a,b]

|f0(x)|, ‖w‖[a,b] = max
x∈[a,b]

|w(x)|, etc.
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Hence, if u ∈ C2[a, b] and ‖u‖[a,b] ≤ δ0, then, putting

K̃ = sup
[a,b]×[−δ0,δ0]

|fu(x, u)|

we have

‖w′‖[a,b] ≤
1
p∗

∫ b

a

(
‖f0‖[a,b] + K̃δ0

)
dξ

=
1
p∗

(
‖f0‖[a,b] + K̃δ0

)
(b− a) ≡ δ1 (say).

Consider a Banach space X = C1[a, b] equipped with the norm ‖u‖C1 = ‖u‖[a,b] +
‖u′‖[a,b] for u ∈ X and put

S =
{
u ∈ X

∣∣ ‖u‖[a,b] ≤ δ0, ‖u′‖[a,b] ≤ δ1, B1(u) = B2(u) = 0
}
.

Then S is a bounded and closed convex set in X. The map T : S → S∩C2[a, b] ⊂ S

defined by Tu = w, u ∈ S, is then continuous and it can be shown by Ascoli-Arzela’s
theorem that T (S) is relatively compact in X (cf. [8]). Hence, Schauder’s theorem
implies that T has a fixed point u ∈ S. It is clear that u = Tu is a solution
of (1.1)–(1.6).

(ii) Uniqueness. Let u and v be two solutions of the problem and set ϕ =
u− v. Then

f(x, u) − f(x, v) = r(x;u, v)ϕ

where

r(x;u, v) =
∫ 1

0

fu(x, v + θ(u− v)) dθ.

Therefore

Lϕ+ r(x;u, v)ϕ = 0, a ≤ x ≤ b

ϕ ∈ D ,

where

r(x;u, v) ≥ −η > −λ1.

Hence Lemma 2.2 applies to conclude that ϕ ≡ 0. �

Remark 2.1. If α1β1 �= 0 and α = β = 0, then the existence of solution
for the problem (1.1)–(1.6) follows from the following result which is the one-
dimensional version of Theorem 2.3.1 in Sattinger [5]. (Also see Amann [1], [2])

Theorem 2.2. Let ϕ(x) and ψ(x) be upper and lower solutions for the prob-
lem (1.1)–(1.6) with α = β = 0:

Lϕ+ f(x, ϕ) ≥ 0 (a ≤ x ≤ b), B1(ϕ) ≥ 0, B2(ϕ) ≥ 0

Lψ + f(x, ψ) ≤ 0 (a ≤ x ≤ b), B1(ψ) ≤ 0, B2(ψ) ≤ 0,
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where L is as defined in Lemma 2.1. If ψ ≤ ϕ in [a, b], then there exists a solution
u for (1.1)–(1.6) with ψ ≤ u ≤ ϕ.

In fact, if we put F (x, u) = f(x, u) + λ1u where λ1 is defined in Lemma 2.1, then

Fu(x, u) = fu(x, u) + λ1 ≥ λ1 − η > 0.

Hence, at each x fixed, F is monotonically increasing in u and F (x,−∞) = −∞,
F (x,+∞) = +∞, x ∈ [a, b], so that, by the implicit function theorem, there exists
a unique Φ(x) ∈ C[a, b] satisfying F (x, Φ(x)) = 0. Take a positive constant m
with −m ≤ Φ(x) ≤ m ∀x ∈ [a, b] and an eigenfunction v(x) corresponding to the
eigenvalue λ1 for (L ,D). Then v(x) > 0 in [a, b] since α1β1 �= 0.

Furthermore, letting

γ = min
a≤x≤b

v(x) > 0,

we have

−m
γ
v(x) ≤ −m ≤ Φ(x) ≤ m ≤ m

γ
v(x) ∀x ∈ [a, b]

and it can be shown that ϕ(x) = (m/γ)v(x) and ψ(x) = −(m/γ)v(x) are upper
and lower solutions with ψ(x) ≤ ϕ(x) in [a, b].

In fact, we have

Lϕ+ f(x, ϕ) = Lϕ− λ1ϕ+ F (x, ϕ)

= F (x, ϕ)

≥ F (x, Φ(x)) = 0

and

B1(ϕ) = B2(ϕ) = 0.

Similarly

Lψ + f(x, ψ) = F (x, ψ) ≤ F (x, Φ(x)) = 0

and

B1(ψ) = B2(ψ) = 0.

Hence, by Theorem 2.2, the problem (1.1)–(1.6) has a solution u with ψ ≤ u ≤ ϕ.

3. Existence of Solution for the Discretized System

In this section, we shall show that (1.8) has a unique solution U ∈ R
n+2 for

sufficiently small h. Before doing this, we prepare several lemmas. In the following,
we assume α1β1 �= 0 without loss of generality.
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Lemma 3.1. Let Û(x) be the piecewise linear interpolant for the n+ 2 points
(xi, Ui), i = 0, 1, 2, . . . , n+ 1. Then

1
3
(
U ,H−1U

) ≤ ∥∥Û∥∥2 ≤ (U ,H−1U
)
.

Proof. The trapezoidal rule for numerical integration implies that if ϕ ∈
C2[xj−1, xj ], 1 ≤ j ≤ n+ 1, then there exists ξj ∈ (xj−1, xj) for each j such that

∫ xj

xj−1

ϕ(x) dx =
hj
2

(ϕ(xj) + ϕ(xj−1)) −
h3
j

12
ϕ′′(ξj).

Hence ∫ b

a

ϕ(x) dx =
n+1∑
j=1

hj
2

(ϕ(xj) + ϕ(xj−1)) − 1
12

n+1∑
j=1

h3
jϕ

′′(ξj)

=
n+1∑
j=0

ωjϕ(xj) − 1
12

n+1∑
j=1

h3
jϕ

′′(ξj),

or
n+1∑
j=0

ωjϕ(xj) =
∫ b

a

ϕ(x) dx+
1
12

n+1∑
j=1

h3
jϕ

′′(ξj).

An application of this formula to ϕ(x) =
{
Û(x)

}2 yields

(
U ,H−1U

)
=
n+1∑
j=0

ωjU
2
j =

n+1∑
j=0

ωj
{
Û(xj)

}2

=
∫ b

a

Û(x)2 dx+
1
6

n+1∑
j=1

h3
j

(
Uj − Uj−1

hj

)2

=
∥∥Û∥∥2 +

1
6

n+1∑
j=1

hj (Uj − Uj−1)
2

≥ ∥∥Û∥∥2
,

where we have used the fact that

Û(x) =
Uj − Uj−1

hj
(x− xj−1) + Uj−1, x ∈ [xj−1, xj ]

and

d2

dx2

{
Û(x)2

}
=

2(Uj − Uj−1)2

h2
j

(constant), x ∈ [xj−1, xj ].
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On the other hand∫ b

a

Û(x)2 dx =
n+1∑
j=1

∫ xj

xj−1

{
Uj − Uj−1

hj
(x− xj−1) + Uj−1

}2

dx

=
n+1∑
j=1

{
(Uj − Uj−1)2

hj
3

+ 2(Uj − Uj−1)Uj−1
hj
2

+ U2
j−1hj

}

=
1
3

n+1∑
j=1

hj
(
U2
j + UjUj−1 + U2

j−1

)
≥ 1

3

n+1∑
j=1

hj
2
(
U2
j + U2

j−1

)
=

1
3

n+1∑
j=0

ωjU
2
j =

1
3
(U ,H−1U).

This proves Lemma 3.1. �

Lemma 3.2. The following inequalities hold.
(i)

∑n+1
j=1 hj |Uj − Uj−1|2 ≤ 4(U ,H−1U)

(ii)
∑n+1
j=1 hj |Uj − Uj−1| ≤ 2

√
b− a

√
(U ,H−1U)

(iii)
∑n+1
j=1 hj |Uj−1|2 ≤ 2(U ,H−1U)

(iv)
∑n+1
j=1 hj |Uj−1| ≤

√
2(b− a)

√
(U ,H−1U)

(v)
∑n+1
j=1 hj max

(|Uj−1|2, |Uj |2
) ≤ 2(U ,H−1U)

(vi)
∑n+1
j=1 hj max (|Uj−1|, |Uj |) ≤ 2

√
b− a

√
(U ,H−1U)

Proof. For examples, we have

n+1∑
j=1

hj |Uj − Uj−1|2 ≤ 2
n+1∑
j=1

hj(U2
j + U2

j−1) = 4(U ,H−1U),

n+1∑
j=1

hj |Uj − Uj−1| ≤
√√√√n+1∑

j=1

(√
hj

)2 n+1∑
J=1

(√
hj

)2

|Uj − Uj−1|2

≤
√

(b− a) · 4(U ,H−1U)

= 2
√
b− a

√
(U ,H−1U), etc. �

Lemma 3.3.

∫ b
a

∣∣Û(x)
∣∣ dx ≤ (1 +

√
2)
√
b− a

√
(U ,H−1U).

Proof. We have from Lemma 3.2∫ b

a

∣∣Û(x)
∣∣ dx =

n+1∑
i=1

∫ xi

xi−1

∣∣Û(x)
∣∣ dx

≤
n+1∑
i=1

∫ xi

xi−1

{ |Ui − Ui−1|
hi

(x− xi−1) + |Ui−1|
}
dx
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≤
n+1∑
i=1

( |Ui − Ui−1|
2

+ |Ui−1|
)
hi

≤ (1 +
√

2)
√
b− a

√
(U ,H−1U). �

Since the Green function G(x, ξ) belongs to C2 class in the regions Ω1 = {(x, ξ) |
a ≤ x ≤ ξ ≤ b} and Ω2 = {(x, ξ) | a ≤ ξ ≤ x ≤ b}, there exists a constant M > 0
such that ∣∣∣∣∂kG(x, ξ)

∂xk

∣∣∣∣ ≤M (0 ≤ k ≤ 2)

in Ω1 or Ω2.

Lemma 3.4. Let (U ,H−1U) = 1. Then

n+1∑
j=0

G(xi, xj)ωjUj =
∫ b

a

G(xi, ξ)Û(ξ) dξ + εi, 0 ≤ i ≤ n+ 1,

where

|εi| ≤ ε ≡ Mh

6
(2 + h)

√
b− a = O(h).

Proof. Let Û(x) be as defined in Lemma 3.1 and put

ϕi(ξ) = G(xi, ξ)Û(ξ).

Then ∫ b

a

G(xi, ξ)Û(ξ) dξ =
n+1∑
j=1

∫ xj

xj−1

G(xi, ξ)Û(ξ) dξ

=
n+1∑
j=1

[
hj
2

{ϕi(xj−1) + ϕi(xj)} −
h3
j

12
ϕ′′
i (ξj)

]
(xj−1 ≤ ξj ≤ xj)

=
n+1∑
j=0

ωjϕi(xj) − εi,

where εi = (1/12)
∑n+1

j=1 h
3
jϕ

′′
i (ξj).

If xj−1 < ξ < xj , then

ϕ′′(ξ) =
∂2G(xi, ξ)

∂ξ2
Û(ξ) + 2

∂G(xi, ξ)
∂ξ

Û ′(ξ)

and

|ϕ′′(ξ)| ≤M
∣∣Û(ξ)

∣∣+ 2M
|Uj − Uj−1|

hj

≤M max (|Uj−1|, |Uj |) + 2M
|Uj − Uj−1|

hj
.
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Hence we have

h3
j

12
|ϕ′′(ξj)| ≤ M

12
h3
j max (|Uj−1|, |Uj |) +

M

6
h2
j |Uj − Uj−1|

and, by Lemma 3.2,

|εi| ≤ 1
12

n+1∑
j=1

h3
j |ϕ′′(ξj)|

≤ M

12

n+1∑
j=1

h3
j max (|Uj−1|, |Uj |) +

1
6

n+1∑
j=1

h2
j |Uj − Uj−1|

≤ Mh2

12

n+1∑
j=1

hj max (|Uj−1|, |Uj |) +
Mh

6

n+1∑
j=1

hj |Uj − Uj−1|

≤ Mh2

6

√
b− a

√
(U ,H−1U) +

Mh

6
2
√
b− a

√
(U ,H−1U)

=
Mh

6
(h+ 2)

√
b− a

√
(U ,H−1U)

=
Mh

6
(h+ 2)

√
b− a = ε. �

Lemma 3.5. Let (U ,H−1U) = 1. Then

∫ b

a

∫ b

a

G(x, ξ)Û(ξ) dξÛ(x) dx

=
n+1∑
i=0

n+1∑
j=0

G(xi, xj)(ωiUi)(ωjUj) +O(h).

Proof. Let

ψ(x) =
∫ b

a

G(x, ξ)Û(ξ) dξÛ(x).

Then ∫ b

a

∫ b

a

G(x, ξ)Û(ξ) dξÛ(x) dx

=
n+1∑
i=1

∫ xi

xi−1

ψ(x) dx

=
n+1∑
i=1

{
hi
2

[ψ(xi−1) + ψ(xi)] − h3
i

12
ψ′′(ηi)

}
, xi−1 < ηi < xi.

(3.1)
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If xi−1 < x < xi, then

ψ′′(x) =

(∫ b

a

∂2G(x, ξ)
∂x2

Û(ξ) dξ − Û(x)
p(x)

)
Û(x)

+ 2
∫ b

a

∂G(x, ξ)
∂x

Û(ξ) dξ · Û ′(x),

and

|ψ′′(x)| ≤
(
M

∫ b

a

∣∣Û(ξ)
∣∣ dξ +

1
p∗

max(|Ui−1|, |Ui|)
)

max(|Ui−1|, |Ui|)

+ 2M
∫ b

a

∣∣Û(ξ)
∣∣ dξ · |Ui − Ui−1|

hi
.

Therefore,

1
12

n+1∑
i=1

h3
i |ϕ′′(ηi)|

≤
(
M

12

∫ b

a

∣∣Û(ξ)
∣∣ dξ) n+1∑

i=1

h3
i max(|Ui−1|, |Ui|)

+
1

12p∗

n+1∑
i=1

h3
i max(|Ui−1|2, |Ui|2)

+
M

6

∫ b

a

∣∣Û(ξ)
∣∣ dξ n+1∑

i=1

h2
i |Ui − Ui−1|

≤ M

6

√
b− ah2

∫ b

a

∣∣Û(ξ)
∣∣ dξ +

h2

6p∗

+
Mh

3

√
b− a

∫ b

a

∣∣Û(ξ)
∣∣ dξ

≤ M

6
(1 +

√
2)(b− a)h2 +

h2

6p∗
+
M

3
(1 +

√
2)(b− a)h

= ε̃ (say). (3.2)

By Lemma 3.4, we have

ψ(xi) =

⎛⎝n+1∑
j=0

G(xi, xj)ωjUj − εi

⎞⎠Ui.

We obtain from (3.1) that∫ b

a

∫ b

a

G(x, ξ)Û(ξ) dξÛ(x) dx
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=
n+1∑
i=1

hi
2

[ψ(xi−1) + ψ(xi)] − 1
12

n+1∑
i=1

h3
iψ

′′(ηi)

=
n+1∑
i=0

ψ(xi)ωi − 1
12

n+1∑
i=1

h3
iψ

′′(ηi)

=
n+1∑
i=0

⎛⎝n+1∑
j=0

G(xi, xj)ωjUj − εi

⎞⎠Uiωi − 1
12

n+1∑
i=1

h3
iψ

′′(ηi)

=
n+1∑
i=0

n+1∑
j=0

G(xi, xj)(ωjUj)(ωiUi) + σ,

where

σ = −
n+1∑
i=0

εi(Uiωi) − 1
12

n+1∑
i=1

h3
iψ

′′(ηi).

We thus obtain from Lemma 3.4 and (3.2)

|σ| ≤
n+1∑
i=0

|εi| · |Ui|ωi + ε̃

≤ ε

n+1∑
i=0

ωi|Ui| + ε̃

= ε

n+1∑
i=1

hi
2

(|Ui| + |Ui−1|) + ε̃

≤ ε
√
b− a

(
U−1,H−1U

)
+ ε̃

= ε
√
b− a+ ε̃

= O(h)
√
b− a+O(h) = O(h). �

Lemma 3.6. For sufficiently small h, the matrix HA − ηI is an M -matrix,
hence nonsingular.

Proof. Since A is an irreducibly diagonally dominant L-matrix and symmet-
ric, A is a positive definite M -matrix. Then, for any U , V ∈ R

n+2, we have

(U ,V )2 =
(√

AU ,
√
A

−1
V
)2

≤ (√AU ,
√
AU

)(√
A

−1
V ,

√
A

−1
V
)

= (AU ,U)
(
A−1V ,V

)
. (3.3)

Let W ∈ R
n+2 and W �= 0. Then c =

(
W ,H−1W

)
> 0. We put U = (1/

√
c)W .

Then we have (U ,H−1U) = 1.
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We then have from (3.3), Lemma 3.1 and Lemma 3.5((
A− ηH−1

)
U ,U

)
= (AU ,U) − η

(
U ,H−1U

)
≥ (U ,H−1U)2

(A−1H−1U ,H−1U)
− η(U ,H−1U)

(Put V = H−1U in (3.3))

=

[
(U ,H−1U)∑n+1

i=0

∑n+1
j=0 G(xi, xj)(ωiUi)(ωjUj)

− η

] (
U ,H−1U

)
≥

∥∥Û∥∥2∫ b
a

∫ b
a
G(x, ξ)Û(ξ) dξÛ(x) dx+O(h)

− η

≥
∥∥Û∥∥2

(1/λ1)
∥∥Û∥∥2 +O(h)

− η

= (λ1 − η) +
O(h)∥∥Û∥∥2 .

By Lemma 3.1, we have
∥∥Û∥∥ = O(1) and

λ1 − η +
O(h)∥∥Û∥∥2 > 0

for sufficiently small h > 0 and ((A − ηH−1)W ,W ) > 0 for any W �= 0. Con-
sequently the symmetric matrix B = A − ηH−1 is then positive definite and
eigenvalues are all positive. Since B is a Z-matrix, this means that B as well
as HB = HA− ηI is an M -matrix (cf. [7]). �

We are now in a position to prove the following:

Theorem 3.1. Under the assumption of Theorem 2.1, the discretized sys-
tem (1.8) has a unique solution if h is sufficiently small.

Proof. We again assume α = β = 0, without loss of generality.
(i) Uniqueness. Let U ,V ∈ R

n+2 be two solutions of (1.8) and put W =
U − V = (W0,W1, . . . ,Wn+1)t. Then W satisfies the system of (n+ 2) equations

(HA+D)W = 0,

where

D = diag(d0, d1, . . . , dn+1), (3.4)

with

di =
∫ 1

0

fu(xi, Vi + θ(Ui − Vi)) dθ, 0 ≤ i ≤ n+ 1.
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By Lemma 3.6, we have for sufficiently small h((
A+H−1D

)
U ,U

) ≥ ((A− ηH−1
)
U ,U

)
> 0 ∀U (�= 0) ∈ R

n+2,

and HA+D is nonsingular. We thus obtain W = 0, which means the uniqueness
of the solution.

(ii) Existence. We write (1.8) as

HAU + ZU = −f̃(0),

where

Z = Z(U) = diag(ζ0, ζ1, . . . , ζn+1) (3.5)

with

ζi =
∫ 1

0

fu(xi, θUi) dθ, 0 ≤ i ≤ n+ 1,

and

f̃(0) = (f(x0, 0), f(x1, 0), . . . , f(xn+1, 0))t

= (f0(x0), f0(x1), . . . , f0(xn+1))t

with f0(x) = f(x, 0).
Since Z ≥ −ηI (I is the (n+2)×(n+2) identity), given U ∈ R

n+2, the system
of linear equations

(HA+ Z)W = −f̃(0)

has a unique solution

W = −(HA+ Z)−1f̃(0)

= −(A+H−1Z)−1H−1f̃(0), (3.6)

where A +H−1Z is again a symmetric M -matrix. Let ϕ ∈ C2[a, b] be the unique
solution of the problem

− d

dx

(
p(x)

du

dx

)
− ηu = 2, u ∈ D ,

whose existence is guaranteed by Theorem 2.1. Let

τ = (HA− ηI)ϕ − 2e,

where

ϕ = (ϕ(x0), ϕ(x1), . . . , ϕ(xn+1))
t and e = (1, 1, . . . , 1)t ∈ R

n+2.
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Then a simple computation based upon the usual Taylor expansion for p(x) ∈
C1[a, b] and ϕ(x) ∈ C2[a, b] yields

‖τ‖∞ = o(1) → 0

as h → 0, where we apply the midpoint rule to estimate the integrals ai =∫ xi

xi−1
(dt/p(t)), 1 ≤ i ≤ n + 1 and employ the fact that p′ and ϕ′′ are uniformly

continuous in the interval [a, b]. Hence, for sufficiently small h,

(HA− ηI)ϕ = 2e + τ ≥ e

or

(HA− ηI)−1e ≤ ϕ. (3.7)

We denote by |W | the vector (|W0|, |W1|, . . . , |Wn+1|)t.
Then we have from (3.6)

|W | ≤ (A+H−1Z
)−1

H−1
∣∣f̃(0)

∣∣
≤ (A− ηH−1

)−1
H−1

∥∥f̃(0)
∥∥
∞e

=
∥∥f̃(0)

∥∥
∞(HA− ηI)−1e

≤ ∥∥f̃(0)
∥∥
∞ϕ

and

‖W ‖∞ ≤ ∥∥f̃(0)
∥∥
∞‖ϕ‖∞ ≤ ‖f0‖[a,b]‖ϕ‖[a,b] = C (say), (3.8)

since we have assumed α = β = 0 and f̃(0) = (f0(x0), f0(x1), . . . , f0(xn+1))t.
Hence we put

S = {U ∈ R
n+2 | ‖U‖∞ ≤ C}

and define a map T : S → S by TU = W , U ∈ S. Then T is continuous. In fact,
we have for U , Û ∈ S

TU − T Û = −{(HA+ Z)−1 − (HA+ Ẑ
)−1}

f̃(0)

=
(
HA+ Ẑ

)−1(
Z − Ẑ

)
(HA+ Z)−1f̃(0), (3.9)

where Z = Z(U) and Ẑ = Z
(
Û
)
. It now follows from (3.8) and (3.9) that∥∥TU − T Û
∥∥
∞ ≤ ∥∥Z − Ẑ

∥∥
∞‖ϕ‖[a,b]C → 0

as
∥∥U − Û

∥∥
∞ → 0, since

∥∥Z− Ẑ∥∥∞ → 0 as
∥∥U − Û

∥∥
∞ → 0 because of the uniform

continuity of fu(x, u) in [a, b] × [−C,C].
Consequently, we conclude, by Brouwer’s theorem, that T has a fixed point U

in S, which is a solution of (1.8). �
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4. Error Estimates

We still keep the assumption α1β1 �= 0 without loss of generality.
Let u = u(x) be the solution of the continuous problem (1.1)–(1.6) and u =

(u(x0), u(x1), . . . , u(xn+1))t. We put

τ = HAu + f̃(u) = (τ0, τ1, . . . , τn+1)t.

Then we have from (1.8)

HA(u − U) + f̃(u) − f̃(U) = τ

or (
HA+ D̃

)
(u − U) = τ (4.1)

where D̃ = diag
(
d̃0, d̃1, . . . , d̃n+1

)t with d̃i =
∫ 1

0
fu(xi, Ui + θ(ui − Ui)) dθ. As is

shown in the end of the proof of Lemma 3.6, HA− ηI is an M -matrix and

HA+ D̃ ≥ HA− ηI.

Hence, HA+ D̃ is an M -matrix and

0 <
(
HA+ D̃

)−1 ≤ (HA− ηI)−1 (4.2)

since HA+D̃ is an irreducible Z-matrix and
(
HA+D̃

)−1 is a positive matrix ([7]).
It now follows from (4.1) and (4.2) that

u − U =
(
HA+ D̃

)−1
τ . (4.3)

As is easily seen, we have

‖τ‖∞ =

{
o(1) (if u ∈ C2[a, b])

O(h) (if u ∈ C2,1[a, b], p ∈ C1,1[a, b])

and

|u − U | ≤ (HA+ D̃
)−1|τ | ≤ ‖τ‖∞

(
HA+ D̃

)−1
e

≤ ‖τ‖∞(HA− η)−1e ≤ ‖τ‖∞ϕ by (3.7).

Hence

‖u − U‖∞ =

{
o(1) (u ∈ C2[a, b])

O(h) (u ∈ C2,1[a, b]).
(4.4)
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Furthermore, if p ∈ C2,1[a, b] and u ∈ C3,1[a, b], then it can be shown (see [8]
pp. 52–56) that

τi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(h1) (i = 0)

2
hi+hi+1

(
si+(1/2)h

2
i+1−si−(1/2)h

2
i

)
u′i−(hi+1−hi)κi+O(h2) (1 ≤ i ≤ n)

O(hn+1) (i = n+1)

where

s(x) =
1
24

(
1
p

)′′
p2, (4.5)

κ(x) =
1
12

{3p′′(x)u′(x) + 6p′(x)u′′(x) + 4p(x)u′′′(x)}, (4.6)

si+(1/2) = s

(
xi +

1
2
hi+1

)
,

si−(1/2) = s

(
xi − 1

2
hi

)
and

κi = κ(xi).

We have from (4.3)

u − U =
(
HA+ D̃

)−1
τ

=
[
(HA)−1 − (HA+ D̃

)−1
D̃(HA)−1

]
τ

= A−1H−1τ − (HA+ D̃
)−1

D̃
(
A−1H−1τ

)
and

|u − U | ≤ ∣∣A−1H−1τ
∣∣ +
(
HA+ D̃

)−1∣∣D̃∣∣ ∣∣A−1H−1τ
∣∣

≤ ∣∣A−1H−1τ
∣∣+ (HA− ηI)−1

∣∣D̃∣∣ ∣∣A−1H−1τ
∣∣. (4.7)

Since ‖U − u‖∞ → 0 as h → 0 by (4.4), ‖u‖∞ ≤ ‖u‖[a,b] ≤ δ0 (cf. the proof
of Theorem 2.1) and, for any θ ∈ [0, 1],

‖U + θ(u − U)‖∞ = ‖u + (1 − θ)(U − u)‖∞
≤ ‖u‖∞ + (1 − θ)‖U − u‖∞
≤ ‖u‖∞ + ‖U − u‖∞,

we may assume that ‖U + θ(u − U)‖∞ ≤ 2δ0 ∀θ ∈ [0, 1].
Then ∣∣d̃i∣∣ ≤ K̂ = max

[a,b]×[−2δ0,2δ0]
|fu(x, u)| < +∞ ∀i.
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Therefore we obtain from (4.7) and (3.7)

‖u − U‖∞ ≤ ∥∥A−1H−1τ
∥∥
∞ + K̂

∥∥A−1H−1τ
∥∥
∞‖ϕ‖∞

≤ (1 + K̂‖ϕ‖[a,b]

)∥∥A−1H−1τ
∥∥
∞. (4.8)

If p ∈ C2,1[a, b] and u ∈ C3,1[a, b], then we have

(
A−1H−1τ

)
i
=
n+1∑
j=0

G(xi, xj)ωjτj

and we can show ∥∥A−1H−1τ
∥∥
∞ = O(h2)

by noting that the functions s(x) and κ(x) defined by (4.5) and (4.6) are Lipschitz
continuous in [a, b] (cf. [8]). Hence, from (4.8) we have ‖u − U‖∞ = O(h2).

Summarizing we have the following result.

Theorem 4.1. Under the assumption (2.5), we have

‖u − U‖∞ =

⎧⎪⎪⎨⎪⎪⎩
o(1) (u ∈ C2[a, b], p ∈ C1[a, b])

O(h) (u ∈ C2,1[a, b], p ∈ C1,1[a, b])

O(h2) (u ∈ C3,1[a, b], p ∈ C2,1[a, b]).

5. Remark

In (1.8), if we replace the integral
∫ xi

xi−1
(dt/p(t)) by the mid point formula

hi/p(xi−(1/2)) (xi−(1/2) = (1/2)(xi+xi−1)) for each i, then the usual finite difference
formula arises. We can also derive Theorems 3.1 and 4.1 in this case.

Acknowledgements. The authors are grateful to the referees for their helpful
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of upper and lower solutions described in Remark 2.1 are due to one of the referees.
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