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The source-sink dynamics is a major hypothesis to explain dispersal-mediated coexistence
of locally exclusive competitors. We study Lotka–Volterra diffusive models of indirect
competition in patchy metacommunities. In a model of exploitative competition, we
numerically show that the effect of resource movement on the coexistence depends
on demographic factors that create source-sink structures and that the dispersal rate
of the superior competitor need not be higher than that of the inferior to promote
dispersal-mediated coexistence. In a model of apparent competition, we analytically prove
that dispersal can make coexistence possible even if any patches are sinks for the inferior
resource species. The requirement for this coexistence is the lower dispersal rate of the
inferior competitor. We conclude that dispersal among patches can be a mechanism to
save inferior indirect competitors from regional extinction and that the level of spatial
heterogeneity need not be so high to reverse the competitive rankings among patches.

Key words: exploitative competition, apparent competition, metacommunity, source-sink
dynamics, dispersal-mediated coexistence

1. Introduction

A “metacommunity” is defined as a set of local communities coupled by disper-
sal or movement of one or more component species in a heterogeneous landscape
(Hanski and Gilpin [16], Wilson [70]). Metacommunity dynamics are influenced
by both the species interactions and dispersal among patches (Leibold et al. [37],
Holyoak et al. [26, 27]).

The most striking patterns and processes in metacommunities are the facil-
itation of species coexistence and the maintenance of biodiversity (Amarasekare
[3], Chase et al. [11], Hoopes et al. [28], Mouquet et al. [43]). Numerous models
and mechanisms have been proposed to explain spatial coexistence of locally ex-
clusive competitors (Hanski and Gilpin [17], Tilman and Kareiva [67], Dieckmann
et al. [15]). Now, it is necessary to synthesize them (Chesson [13, 14], Amarasekare
[3], Chase et al. [11], Hoopes et al. [28], Mouquet et al. [43]) and investigate the effect
of simultaneous operations of multiple spatial mechanisms (Amarasekare et al. [4]).

Leibold et al. [37] and Holyoak et al. [26, 27] recently classified metacommunity
models into four conceptual perspectives, (1) “patch dynamic,” (2) “species sort-
ing,” (3) “mass effect,” and (4) “neutral” perspectives, to illuminate different as-
pects of spatial community dynamics. In two of the four perspectives, the patch
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dynamics and mass effect, dispersal plays important roles to promote spatial coex-
istence of locally exclusive competitors.

The patch dynamic perspective is a direct descendant of the classical patch oc-
cupancy models (Levins [40, 41]) that assume identical patches and spatial dynam-
ics dominated by local extinction and recolonization. The competition-colonization
trade-off (reviewed in Kneitel and Chase [34]) is a popular hypothesis that explains
spatial coexistence of locally exclusive competitors in this framework (Tilman [66],
Tilman et al. [68], Yu and Wilson [71], Calcagno et al. [9]). It suggests that locally
inferior competitors can escape regional extinction if they are good colonizers and
exploit gaps in the landscape left unused by the superior. This implies that inferior
competitors should disperse at faster rates or farther away to become good coloniz-
ers when they are not fecund enough (Levins and Culver [42], Horn and MacArthur
[29], Hastings [18], Tilman [66], Tilman et al. [68]). However, short range dispersal
of inferior competitors can sometimes facilitate coexistence, by allowing them to
quickly fill and exploit empty patches (Bolker and Pacala [7]), concentrating lower-
density species in areas where the growth rates are higher (Chesson [14], Snyder and
Chesson [61]) or promoting spatial segregation of competitors that have different
interaction neighborhoods among herospecific and conspecific individuals (Murrell
and Law [49]). It should also be noted that this mechanism owes the coexistence of
a potentially infinite number of species to the assumptions of the strict competitive
hierarchy (Pacala and Rees [54], Bolker and Pacala [7], Adler and Mosquera [2])
and the instantaneous displacement of the inferior by the dominant (Yu and Wilson
[71], Calcagno et al. [9]).

The mass effect perspective focuses on immigration and emigration. In spa-
tially heterogeneous habitats, locally inferior species in unfavorable patches may be
rescued by immigrants from communities where they are good competitors (Brown
and Kodric–Brown [8], Shmida and Whittaker [60]). This perspective assumes
that habitats are spatially heterogeneous in the sense that competitive rankings
vary within the spatial extent of the landscape (Mouquet and Loreau [44, 45],
Amarasekare [3], Amarasekare et al. [4], Mouquet et al. [43]). Thus, it is almost
equivalent to or an important limiting case (Holt [22]) of the source-sink dynamics
(Namba [50], Holt [21], Pulliam [56], Pulliam and Danielson [57]) and closely re-
lated to the spatial storage effect (Chesson [12, 13, 14]). The source-sink dynamics
are usually described by either one of the hierarchical patch occupancy models (or
weighted competitive lottery models; Chesson [12], Iwasa and Roughgarden [32],
Muko and Iwasa [47, 48], Mouquet and Loreau [44, 45], Amarasekare et al. [4]) or
the explicit within-patch dynamics models describing species abundances and inter-
actions within patches (Levin [39], Kishimoto [33], Namba et al. [52], Amarasekare
and Nisbet [5]).

Levin [39] considered a Lotka–Volterra model of competition in two identical
patches. He assumed symmetric local dynamics and allowed each species to domi-
nate numerically in patches it occupies prior to the other species. Then, dispersal
from patches with abundant populations can sustain impoverished populations in
patches occupied beforehand by competitors unless the rate of dispersal is too high
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to homogeneize the habitat. Amarasekare and Nisbet [5] explored conditions for
coexistence when competitive rankings are spatially variable and Kishimoto [33]
found conditions on dispersal rates for coexistence of infinitely many competitors.

However, coexistence in the Lotka–Volterra metapopulation models requires
neither the priority effect nor the spatial heterogeneity in competitive rankings.
Two competitors can coexist regionally even if one of them is inferior in any
spatial region or in any patch throughout the habitat, in spatially continuous
(Pacala and Roughgarden [55], Cantrell and Costner [10]) and patchy (Takeuchi
[63]) competition-diffusion models of the Lotka–Volterra type. Coexistence is fa-
vored by a relatively small dispersal rate of the inferior and a moderate or relatively
large dispersal rate of the superior (Pacala and Roughgarden [55], Takeuchi [63]).

In natural ecological communities, many species are linked through numer-
ous trophic and competitive interactions. Thus, it is important to extend those
findings to food web models of three or more species in spatially heterogeneous
habitats. Recently, both the hierarchical patch occupancy models (Mouquet and
Loreau [44, 45], Amarasekare et al. [4]) and explicit within-patch models (Holt
[20, 21], Namba et al. [52]) of source-sink dynamics have been extended. In the
latter, it has been found that dispersal can mediate coexistence of two consumers
(predators) indirectly competing through a shared resource (prey) in a habitat in
which the competitive rankings are spatially invariable (Namba and Hashimoto
[51], Abrams and Wilson [1]). However, at least two important questions remain
unresolved. First, in exploitative metacommunities, the effect of resource (prey)
movement among patches has not yet been studied. On the other hand, it has
been experimentally shown that dispersal of both predators and prey is important
for persistence of protist predator-prey communities in subdivided habitats of con-
nected bottles (Holyoak and Lawler [24, 25]). We can also find many examples of
diffusion and range expansions of organisms in lower trophic levels (and thus are
prey), such as plants, plankton, and insects (Shigesada and Kawasaki [59], Okubo
and Levin [53]). Second, metacommunity models of another important indirect
competition, apparent competition (Holt [19, 20], Namba et al. [52]), have not yet
been fully studied, in particular, when resource species can move among patches
and competitive rankings are spatially homogeneous.

In this article, we study two Lotka–Volterra models of diffusive indirect com-
petitors in metacommunities of two different patches. First, in an exploitative com-
petition model, we summarize the results of Namba and Hashimoto [51] and Abrams
and Wilson [1]. Then, we numerically explore the effect of resource movement be-
tween the two patches and examine whether the resource movement promotes or de-
motes spatial coexistence of exploitative competitors and how the result depends on
demographic factors (resource growth rate, carrying capacity or consumer mortal-
ity) which generate source-sink spatial structures in the metacommunities. We will
also demonstrate that the higher dispersal rate of the superior competitor is not al-
ways needed for the dispersal-mediated coexistence, which was necessary in Namba
and Hashimoto [51] and Abrams and Wilson [1] unless higher demographic rates of
the inferior competitor save the latter. Second, in a metacommunity model of ap-
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parent competition, we will analytically show that dispersal-mediated coexistence
can be realized even if the competitive rankings are spatially invariable, making
use of bifurcation analysis and a Lyapunov function. The condition for coexistence
will be that the inferior competitor is sedentary as in Namba and Hashimoto [51]
and Abrams and Wilson [1]. We will also consider the case where the competitive
rankings differ between the two patches and a true source-sink structure appears.
Finally, we discuss ecological implications of our results and future directions.

2. Exploitative competition

A metacommunity model of exploitative competition which describes dynamics
of two consumers (predators) sharing a common resource (prey) in a habitat of two
different patches (Holt [21], Namba and Hashimoto [51], Abrams and Wilson [1])
can be written as follows;

dRi

dt
= f(Ri)Ri − g1(Ri)C1

i − g2(Ri)C2
i − dr(Ri − Rj),

dC1
i

dt
= (−m1

i − p1C1
i + b1g1(Ri))C1

i − d1(C1
i − C1

j),

dC2
i

dt
= (−m2

i − p2C2
i + b2g2(Ri))C2

i − d2(C2
i − C2

j),

(1)

where (i, j) = (1, 2) or (2, 1). Ri, C1
i, and C2

i are respectively the densities of
resource R and consumers C1 and C2 in the i-th patch. f(Ri) is the per capita rate
of increase of resource in the i-th patch; gk(Ri) is the per capita rate of consumption,
or the functional response of the k-th consumer, and bk is the conversion efficiency
of the k-th consumer. mk

i is the mortality of the k-th consumer in the i-th patch,
pk is the coefficient of intraspecific competition or density-dependent mortality of
the k-th consumer, and dr and dk (k = 1, 2) are the dispersal rates of resource and
consumers respectively.

In non-spatial models of exploitative competition, two consumers exploiting a
common resource compete indirectly through resource depletion. It is well-known
that they can never coexist in equilibrium (Stewart and Levin [62], Koch [35]),
unless some density dependence or interference competition is taken into consider-
ation in the dynamics of consumer (predator) populations (Kostitzin [36]). There
exists minimum resource density Rk

∗ necessary to sustain the consumer species Ck

in equilibrium (Tilman [64, 65]). It is known as the Tilman’s R∗ rule in resource
competition theory (Tilman [64, 65]; originally developed by Leon and Tumpson
[38]) that only the consumer species having minimum R∗ can survive in equilibrium
since any other species declines at R = mink Rk

∗. However, when the functional
responses are nonlinear and saturating, they can coexist (Koch [35], Hsu et al. [30,
31], Armstrong and McGehee [6]), since the competitive rankings vary temporally
because of population oscillations if each species is an efficient resource exploiter
respectively at lower or higher resource densities.
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Namba and Hashimoto [51] assumed the logistic resource growth, f(Ri) =
r(1 − Ri/Ki), and the Holling’s type II functional responses, gk(Ri) = akRi/(1 +
akhkRi) (k = 1, 2). They also assumed that only the resource carrying capacity
Ki is different between the two patches and ignored the resource dispersal rate dr

presuming that the resource is a sessile organism. Starting from a case where each
species has a favorable patch in which it excludes the other species in isolation,
they numerically explored conditions for spatial coexistence, changing the carrying
capacity in a patch. Consequently, they found that dispersal-mediate coexistence
is possible, even if the competitive rankings of the consumers become identical
in both patches. By the spatial difference in carrying capacities, the source-sink
structure appears and emigration of the superior competitor from the relatively
more productive patch releases the inferior from strong competitive pressure in the
patch. Eventually, a lower rate of dispersal of the inferior enables it to persist in
the entire habitat. Abrams and Wilson [1] analyzed a similar model of the Lotka–
Volterra type and found that coexistence is possible if an inferior consumer with the
higher R∗ either has a lower movement rate or a more rapid demographic response
to resource intake. They also verified that coexistence is possible in a wide range
of conditions measured by R∗ and that an inferior competitor with a higher R∗ can
exclude a superior exploiter with a lower R∗ from the entire habitat. Therefore,
both in Namba and Hashimoto [51] and Abrams and Wilson [1], coexistence is
facilitated when inferior exploiters (with higher R∗) are poorer dispersers if the
competitive rankings are spatially homogeneous.

In the following, we numerically examine the effect of resource movement,
which was ignored both in Namba and Hashimoto [51] and Abrams and Wilson [1].
We assume in equation (1) that f(Ri) = r(1 − Ri/Ki), gk(Ri) = akRi. Here, we
show two examples. In both examples, we assume that a1 = a2 = 1.0, b1 = 1.0,
b2 = 0.5, and p1 = p2 = 0.5. In the first example (Fig. 1), the intrinsic rate of
increase and carrying capacity of the resource are different between the two patches,
r1 = 1.2, K1 = 1.2, r2 = 3.6, K2 = 3.6, and the mortalities of the consumers are
the same between the two patches, m1

1 = m2
1 = m1

2 = m2
2 = 1.0. In the second

example (Fig. 2), the intrinsic rate of increase and carrying capacity of the resource
are identical between the two patches, r1 = r2 = 3.6, K1 = K2 = 3.6, and the
mortalities of the consumers differ between the two patches, m1

1 = m2
1 = 1.0,

m1
2 = 3.2, m2

2 = 2.0. In the absence of dispersal, the first consumer is superior
and the second consumer goes to extinction in both patches. It should be noted that
the following results do not depend on the assumed specific values of parameters,
although dispersal mediated coexistence becomes more unlikely as the habitat tends
to be more homogeneous. In the first example, both the resource and consumers
become more abundant in the second patch, because the bottom-up effect of the
higher intrinsic growth rate and carrying capacity enhances the resource and hence
increases the consumer. However, in the second example, the consumer densities
become lower and the resource density becomes higher in the second patch, because
the top-down effect of the higher consumer mortalities reduces the consumers and
hence increases the resource. This reverses the directions of flows of consumers and
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Fig. 1. Conditions for dispersal-mediated coexistence in a parameter space d1 − d2. In

a region denoted as “Coexistence,” there is a stable positive steady state. In
a region denoted as “C2-extinction,” a steady state in which C2 is extinct is

stable. Values of parameters are as follows; p1 = p2 = 0.5, b1 = 1, b2 = 0.5,
m1

1 = m2
1 = m1

2 = m2
2 = 1, r1 = 1.2, K1 = 1.2, r2 = 3.6, K2 = 3.6, and

dr = 0 in (a) and dr = 0.1 in (b).

Fig. 2. Conditions for dispersal-mediated coexistence in a parameter space d1 − d2. In

a region denoted as “Coexistence,” there is a stable positive steady state. In a
region denoted as “C2-extinction,” a steady state in which C2 is extinct is stable.
Values of parameters are as follows; p1 = p2 = 0.5, b1 = 1, b2 = 0.5, m1

1 = 1,
m2

1 = 1, m1
2 = 3.2, m2

2 = 2, r1 = 3.6, K1 = 3.6, r2 = 3.6, K2 = 3.6, and

dr = 0 in (a) and dr = 10 in (b).
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resource. The consumer population flows from the first patch to the second and
the resource population flows from the second patch to the first.

In the first example, the resource dispersal reduces the difference in resource
densities, thereby reducing the difference in consumer densities between the habitats
and tend to lessen the source-sink spatial structure for the consumers. Therefore,
higher dispersal rate of the resource makes coexistence of consumers more difficult
(Fig. 1). At a fixed rate of resource movement, dispersal rate of the inferior con-
sumer should be lower than that of the superior competitor for coexistence, for the
outflow from a patch not to exceed the reproduction in that patch.

In the second example, the resource dispersal raises the resource level in the
patch where consumer mortality is lower and resource density is low. Therefore,
the resource dispersal enhances or subsidizes consumers in the recipient patch and
promotes coexistence of the consumers (Fig. 2). Release of competitive pressure,
or emigration of the superior competitor is not necessary for coexistence in this
case. However, the superior may be extinct in the second patch if d1 = 0, because
the resource is washed out. Although the dispersal rate of the inferior competitor
should not be too high not to be diluted out from the entire habitat, it need not
be smaller than that of the superior.

Thus, resource dispersal can either promote or demote spatial coexistence of
exploitative competitors, depending on which demographic factors contribute to
create the source-sink spatial structures of the consumers. Requirements on disper-
sal rates of consumers for coexistence change also with the mechanisms to create
the source-sink spatial structures.

3. Apparent competition

In this section, we consider a Lotka–Volterra metacommunity model of two
resources (prey) sharing a common consumer (predator) in a habitat of two different
patches (Holt [20], Namba et al. [52]);

dR1
i

dt
= (r1

i − a1
iR1

i − c1C
i)R1

i − d1(R1
i − R1

j),

dR2
i

dt
= (r2

i − a2
iR2

i − c2C
i)R2

i − d2(R2
i − R2

j),

dCi

dt
= (−mi + b1c1R1

i + b2c2R2
i)Ci − dc(Ci − Cj),

(2)

where (i, j) = (1, 2) or (2, 1). R1
i, R2

i, and Ci are respectively the densities of
resources R1 and R2 and consumer C in the i-th patch. rk

i and ak
i are respectively

the intrinsic growth rate and the intraspecific competition coefficient of the k-th
resource in the i-th patch; ck and bk are respectively the encounter rate of consumer
with the k-th resource and the conversion efficiency; mi is the mortality of consumer
in the i-th patch; d1, d2, and dc are respectively the dispersal rates of resources
1 and 2 and consumer. We assume, for simplicity, that only the intrinsic growth
rates, intraspecific competition coefficients of resources, and consumer mortality can
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differ in two patches. In this notation, the superscripts i and subscripts k = 1, 2
respectively denote the identities of patches and resource species.

In this model, alternate resources (prey) increase equilibrium abundance of
consumer and reduce each other’s equilibrium abundances. This indirect interaction
among resources that share a common consumer was termed apparent competition
(Holt [19]). In the non-spatial case where d1 = d2 = dc = 0, species with the
higher value of rk

i/ck excludes the other resource species, if we can ignore density
dependences in resource populations (ak

i = 0). This means that the resource (prey)
species that wins is the one that maintains the highest density of shared consumer
(predator), and this criterion was called the P ∗ rule for apparent competition (Holt
et al. [23]). In the following, we assume dc = 0 and mainly consider a question
whether a locally inferior resource species (without loss of generality, we can assume
that it is the second species) which becomes extinct in both patches can regionally
survive or not when the dispersal rates satisfy some appropriate conditions.

The system has a steady state solution E0 =
(
R1

1∗,R2
1∗,C1∗,R1

2∗,R2
2∗,C2∗),

satisfying R2
1∗ = R2

2∗ = 0, R1
i∗ = mi/(b1c1), Ci∗ = {r1

i − a1
imi/(b1c1)− d1(1−

mj/mi)}/c1 where i, j = 1, 2 and j �= i. When d1 = d2 = 0, we can easily prove
that the steady state is globally stable if Ci∗ > r2

i/c2, by constructing a Lyapunov
function similar to the one used later for proof of global stability of a steady state
when d1 �= 0.

When d1 > 0 and d2 > 0, the characteristic equation at E0 can be factorized
into two-dimensional and four-dimensional polynomials. The latter has eigenvalues
with negative real parts as long as Ci∗ > 0 is satisfied. The condition that the
former has an eigenvalue with positive real part is equivalent to the one that the
second resource can invade into the steady state. The steady state is stable if and
only if

(
r2

1 − c2C
1∗) +

(
r2

2 − c2C
2∗) − 2d2 < 0, (3)

and

(
r2

1 − c2C
1∗)(r2

2 − c2C
2∗)−{(

r2
1 − c2C

1∗) +
(
r2

2 − c2C
2∗)}d2 > 0. (4)

Therefore, it is stable if Ci∗ > r2
i/c2 for i = 1, 2. However, since one of Ci∗ is a

decreasing function of d1 and the other is an increasing function unless m1 = m2,
one of r2

i − c2C
i∗ becomes positive and the other remains negative for sufficiently

high values of d1. Therefore, at least for d2 = 0, the second condition becomes
violated and the steady state loses stability if d1 becomes sufficiently large. We
can also find that increasing d2 stabilizes the steady state if d1 remains constant.
Hereafter, we assume that m1 > m2 without loss of generality. Since the mortality
of consumer is higher in the first patch, apparent competition becomes weaker in
this patch and coexistence of the two resource species is more readily realized. We
also assume d2 = 0 for our bifurcation analysis.
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At the point C1∗ = r2
1/c2, a new steady state E1 =

(
R̃1

1,R̃2
1,C̃1,R̃1

2,R̃2
2,C̃2

)
,

satisfying R̃2
1 > 0 and R̃2

2 = 0 bifurcates. Setting R̃1
1 = z, we can write the

solution as follows;

R̃1
1 = z, (5)

R̃2
1 =

b1c1

b2c2

(
m1

b1c1
− z

)
, (6)

C̃1 =
1
c2

{
r2

1 − a2
1 b1c1

b2c2

(
m1

b1c1
− z

)}
, (7)

R̃1
2 =

m2

b1c1
, (8)

R̃2
2 = 0, (9)

C̃2 =
1
c1

{
b1c1

m2

(
z − m2

b1c1

)
d1 +

(
r1

2 − a1
2 m2

b1c1

)}
. (10)

z is a unique positive solution of

Az2 + (B1 + B2)z + C = 0, (11)

where

A = a1
1b2(c2)2 + a2

1b1(c1)2, (12)

B1 = − m1

b1c1
A + d1b2(c2)2

m2

m1
, (13)

B2 = b2c1c2(r2
1 − c2C

1∗), (14)

C = −d1
m2b2(c2)2

b1c1
. (15)

We define a function of z, h(z) = Az2 + (B1 + B2)z + C. Since

Az2 + B1z + C = 0, if z =
m1

b1c1
, (16)

h(m1/(b1c1)) = B2m
1/(b1c1) ≥ 0, and

h

(
m2

b1c1

)
=

m2

b1c1

(
m2

b1c1
− m1

b1c1

)
A + b2c1c2

[
r2

1 − c2

c1

(
r1

1 − a1
1 m1

b1c1

)]
< 0 (17)

is satisfied if E0 is stable when d1 = d2 = 0.
Therefore, the equation h(z) = 0 has a unique positive solution between

m2/(b1c1) and m1/(b1c1) and R̃2
1 ≥ 0. C̃2 is positive if it is so when d1 = 0.

If d1 is not too large or the condition m1 − m2 < b2c2r2
1/a2

1 is satisfied, then C̃1

is also positive.
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Global stability of E1 can be proved by constructing a Lyapunov function as
follows. Define

ϕ(x) = x − x̃ − x̃ log
x

x̃
, (18)

and

VE1 = R̃1
1{b1ϕ(R1

1) + b2ϕ(R2
1) + ϕ(C1)} + R̃1

2{b1ϕ(R1
2) + b2R2

2 + ϕ(C2)}.
(19)

VE1 is positive definite and vanishes only at the steady state E1.
Then,

dVE1

dt
= −R̃1

1
{
b1a1

1
(
R1

1 − R̃1
1
)2 + b2a2

1
(
R2

1 − R̃2
1
)2}

− R̃1
2
{
b1a1

2
(
R1

2 − R̃1
2
)2 + b2a2

2(R2
2)2

}
+ R̃2

1b2

(
r2

2 − c2C̃
2
)
R2

2

− d1b1

(
R̃1

1R̃1
2
)2

R1
1R1

2

(
R1

1

R̃1
1
− R1

2

R̃1
2

)2

.

(20)

For d1 > 0, C̃2 is an increasing function of z and r2
2−c2C̃

2 is a decreasing function
of z. However, even if z = m2/(b1c1),

r2
2 − c2C̃

2 = r2
2 − c2

c1

(
r1

2 − a1
2 m2

b1c1

)
< 0 (21)

if it is negative for d1 = 0. Therefore, equation (20) is negative definite and the
invariant set in which it vanishes is the steady state E1. This completes the proof
of global stability of E1.

We have found that, as d1 increases, the competitive pressure on the inferior
resource in the first patch lessens and R̃2

1 becomes positive, since R̃1
1 is smaller

than m1/(b1c1). If d2 is positive, the inferior resource flows from the first patch to
the second and we can expect that a positive steady state bifurcates as the condition
(4) is violated. We numerically verify this prediction. In Fig. 3, we assumed the
following values of parameters; r1

1 = r2
1 = r1

2 = r2
2 = 1, a1

1 = a2
1 = a1

2 =
a2

2 = 0.1, c1 = 1, c2 = 2, b1 = 1, b2 = 0.5, m1 = 2, m2 = 1, dc = 0. A dot at
a grid point in a space of d1 − d2 denotes that a positive steady state exists for
the combination of dispersal rates d1 and d2. The fat curve on the left boundary
of the coexistence region is a set of bifurcation points. Across the boundary a
positive steady state bifurcates from E0. However, across the upper boundary, C̃1

becomes zero before R̃2
1 and R̃2

2 vanish. Therefore, it is much more difficult to
study a bifurcation phenomenon across the upper boundary, since we must solve
a steary state satisfying C̃1 = 0 for d1 > 0 and d2 > 0. Thus we skip it here.
Fig. 3 clearly shows that the higher dispersal rate of the superior competitor and
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Fig. 3. Conditions for dispersal-mediated coexistence in a parameter space d1 − d2. A

dot at a grid point denotes that a positive steady state exists for the combination

of dispersal rates d1 and d2. The fat curve on the left boundary of the coexistence

region is a set of bifurcation points. Across the boundary a positive stable steady

state bifurcates from E0. However, across the upper boundary, C̃1 becomes

zero before R̃2
1 and R̃2

2 vanish. Therefore, above the coexistence region, there
exists a stable steady state satisfying either (A) R2

1 > 0, R2
2 > 0, and

C1 = 0 or (B) R2
1 = R2

2 = C1 = 0. Values of parameters are as follows;
r1

1 = r2
1 = r1

2 = r2
2 = 1, a1

1 = a2
1 = a1

2 = a2
2 = 0.1, c1 = 1, c2 = 2, b1 = 1,

b2 = 0.5, m1 = 2, m2 = 1, dc = 0.

the lower dispersal rate of the inferior competitor promote coexistence of apparent
competitors just as well in the case of exploitative competition.

Hitherto, we only considered the case where the competitive rankings are the
same in both patches. Here, we consider the case in which each species has a
source and a sink. Thus, either of rk

i − ckCi∗ (i = 1, 2) is negative and the other is
positive. If the second species can move between the source and sink patches, the
condition (4) is violated at least for small d2, and E0 becomes unstable. However, if
(r2

1−c2C
1∗)+(r2

2−c2C
2∗) < 0 (the second species is an overall inferior competitor

when averaged across the metacommunity), both (3) and (4) are satisfied for large
d2, and E0 becomes stable. Therefore, there is a critical maximum dispersal rate
over which the overall inferior competitor goes to extinction when there is a true
source-sink structure (Amarasekare and Nisbet [5]).

When the first patch with the higher consumer mortality is a sink (r2
1 −

c2C
1∗ < 0) and the second patch is a source (r2

2 − c2C
2∗ > 0) for the second

species, the source will turn to a sink (r2
2 − c2C

2∗ < 0) and the sink to a source
(r2

1 − c2C
1∗ > 0) as d1 increases, since the consumer abundances C1∗ and C2∗



50 T. Namba

are a decreasing and an increasing function of d1 respectively (recall that Ci∗ =
{r1

i − a1
imi/(b1c1) − d1(1 − mj/mi)}/c1 for i, j = 1, 2 and j �= i, and that it does

not depend on d2). However, it should be noted that for some parameter values (for
example, if we change only the value of r2

2 to 2.5 in the example of Fig. 3), both
patches become sinks of the second species (r2

i − c2C
i∗ < 0 for i = 1, 2) and E0

turns stable for intermediate values of d1 when d2 = 0. As d1 becomes larger, the
first patch turns to a source for the second species (r2

1−c2C
1∗ > 0) and the species

can persist if d2 is small. However, if d2 is too large, the second species becomes
extinct since (r2

1−c2C
1∗)+(r2

2−c2C
2∗) < 0 and equation (4) is satisfied for large

d2. Thus, intermediate dispersal rates of competitors may be harmful for a species
in a true source-sink environment (Amarasekare and Nisbet [5]).

4. Discussion

We studied two metacommunity models of indirect competition in a habitat of
two different patches. The first is a model of two consumers (predators) sharing a
common resource (prey) and the second is a model of two resources (prey) sharing
a common consumer (predator). We have shown in both models that two indirect
competitors can coexist in a habitat of patches connected through dispersal of
individuals, even if their competitive rankings are spatially homogeneous and the
inferior species becomes driven to extinction in any patches in isolation.

In a natural habitat, some demographic parameters, for example, resource
growth rates, carrying capacities or consumer mortalities, usually differ among
patches. Then, populations become more abundant in more favorable patches and,
if the patches are connected through dispersal, the populations flow from the more
favorable patches to the less favorable ones. Thus, any spatial heterogeneity cre-
ates asymmetric population distributions in the habitat. However, this does not
necessarily imply emergence of the source-sink dynamics since some species might
go to extinction, if they are competitively inferior or inefficient in resource use in
any patches throughout the habitat. When the competitive rankings of indirect
competitors do not vary over space, any patch becomes a source for the winner
and a sink for the loser. However, because of slight spatial heterogeneity that
is insufficient to reverse the competitive rankings, there appear population flows
even in this case from the relatively favorable patches to the relatively unfavorable
ones. Therefore, some of the source patches accept immigrants and take parts of
“pseudo-sinks” in the sense of Watkinson and Sutherland [69].

If the competitive rankings are spatially invariant and any patches are sinks for
inferior competitors, their own dispersal alone cannot save them from extinction.
However, there are at least two spatial mechanisms to create sourse-sink spatial
structures in populations of inferior competitors and save them from regional ex-
tinction. (1) Source-sink (pseudosink) spatial structure of the superior competitors
induces emigration of their populations from the more favorable patches and re-
lease competitive pressures on the inferior in these patches. (2) Resource flows into
patches with the lower consumer mortalities and lower resource abundance enhance
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(or subsidize) growth of the inferior exploitative competitors and save the popula-
tions from extinction. Once the populations in the more productive patches in the
first case or in the patches with the lower consumer mortalities in the second case
become established, emigrants from the patches can save populations of the inferior
competitors in the other patches. Thus, for the inferior indirect competitors, there
emerges a spatial structure of a “relative source” and a “relative sink” (Pacala and
Roughgarden [55]) or an “apparent source” and an “apparent sink” (Namba and
Hashimoto [51]) in a habitat of sole sinks. Since the relative or apparent source ex-
porting individuals of the inferior species is a sink in isolation, it might be possible
to call it a ‘pseudo-source.’

Metacommunity dynamics depends on the degree of spatial heterogeneity
(Mouquet et al., [46]) and the magnitude of dispersal rates. We found that spatial
coexistence of indirect competitors in metacommunities does not require so high
degree of heterogeneity to reverse the competitive rankings within the habitat.
When local abiotic conditions or biotic interactions in a patch prevent a species
from maintaining a population in isolation, dispersal of competitors or resources
owing to their source-sink spatial structures may favor the inferior species and save
it from extinction. This means that not only the dispersal rate of the species itself
but also the dispersal rates of interacting species determine the spatial structure of
a species in a metacommunity.

The competition-colonization trade-off and source-sink dynamics are the two
major hypothesis to explain coexistence of competitors in a metacommunity. Our
mechanism of coexistence belongs to the source-sink dynamics in a broader sense.
However, it does not rely on high degree of spatial heterogeneity to make competi-
tive rankings spatially variable. Thus, to infer which mechanism, ours or the source-
sink dynamics in a narrower sense, is relevant to explain empirically found patterns,
it is necessary to measure the degree of spatial heterogeneity in the metacommunity.
However, it is not easy to assess competitive rankings in isolated patches across the
habitat. It may be necessary not only to measure demographic parameters and in-
teraction strengths but also to enclose habitat patches for isolating them. Since the
habitat is nearly homogeneous in our model, it is necessary to determine which of
the two mechanisms, ours or the competition-colonization trade-off, is appropriate
to explain empirically observed spatial coexistence. If the dispersal rate of locally
inferior species is found to be low, then the competition-colonization trade-off is
irrelevant. However, it may also be a tough task to estimate dispersal rates and
new techniques will be necessary (Schneeberger and Jansen [58]).

In the metacommunity model of apparent competition, we neglected consumer
dispersal. Thus, differences in consumer mortalities between patches were necessary
for dispersal to destabilize the steady state at which the inferior species is extinct.
However, our preliminary numerical analysis showed that dispersal-mediated coex-
istence is possible even if the consumer mortality is identical in the two patches
when the consumer can move between the patches. Thus it may be an interesting
future question to reveal the effect of consumer dispersal on spatial coexistence
of apparent competitors. To date, most metacommunity models assume spatially
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discrete habitats. A few spatially continuous models are either the spatial point
processes (Bolker and Pacala [7], Murrell and Law [49]) or the lottery models (Sny-
der and Chesson [61]), with dispersal and competition kernels. The reason may
lie in the difficulty to analyze continuous models with spatial heterogeneity in pa-
rameter values. To study another kind of spatially continuous models, such as the
reaction-diffusion models (Shigesada and Kawasaki [59], Okubo and Levin [53]),
will be an important future challenge.

Acknowledgement. I thank Professors Masayasu Mimura and Yasuhiro Take-
uchi for inviting me to this special issue of JJIAM. This work was partially sup-
ported by Grants-in-Aid for Scientific Research (C) 13640634 and (A) 13304006
from Japan Society for the Promotion of Science and by the Osaka Prefectural
Government through the Special Joint Research Project for Environmental
Sciences.

References

[ 1 ] P. Abrams and W.G. Wilson, Coexistence of competitors in metacommunities due to spatial
variation in resource growth rates; does R∗ predict the outcome of competition? Ecol. Lett.,
7, (2004) 929–940.

[ 2 ] F.R. Adler and J. Mosquera, Is space necessary? Interference competition and limits to
biodiversity, Ecology, 81, (2000) 3226–3232.

[ 3 ] P. Amarasekare, Competitive coexistence in spatially structured environments: a synthesis.
Ecol. Lett., 6, (2003) 1109–1122.

[ 4 ] P. Amarasekare, M.F. Hoopes, N. Mouquet and M. Holyoak, Mechanisms of coexistence in
competitive metacommunities. Am. Nat., 164, (2004) 310–326.

[ 5 ] P. Amarasekare and R.M. Nisbet, Spatial heterogeneity, source-sink dynamics, and the local
coexistence of competing species. Am. Nat., 158, (2001) 572–584.

[ 6 ] R.A. Armstrong and R. McGehee, Competitive exclusion. Am. Nat., 115, (1980) 151–170.
[ 7 ] B.M. Bolker and S.W. Pacala, Spatial moment equations for plant communities: under-

standing spatial strategies and the advantages of short dispersal. Am. Nat., 153, (1999)
575–602.

[ 8 ] J.H. Brown and A. Kodric-Brown, Turnover rates in insular biogeography: effect of immi-
gration on extinction. Ecology, 58, (1977) 445–449.

[ 9 ] V. Calcagno, N. Mouquet, P. Jarne and P. David, Coexistence in a metacommunity: the
competition-colonization trade-off is not dead. Ecol. Lett., 9, (2006) 897–907.

[10] R.S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of
interacting species. J. Math. Biol., 37, (1998) 103–145.

[11] J.M. Chase, P. Amarasekare, K. Cottenie, A. Gonzalez, R.D. Holt, M. Holyoak, M.F.
Hoopes, M.A. Leibold, M. Loreau, N. Mouquet, J.B. Shurin and D. Tilman, Competing
theories for competitive metacommunities. Metacommunities: Spatial Dynamics and Eco-
logical Communities, (M. Holyoak, M.A. Leibold and R.D. Holt eds.), Chicago University
Press, Chicago, 2005, 335–354.

[12] P. Chesson, Coexistence of competitors in spatially and temporally varying environments: a
look at the combined effects of different sorts of variability. Theor. Popul. Biol., 28, (1985)
263–287.

[13] P. Chesson, General theory of competitive coexistence in spatially-varying environments.
Theor. Popul. Biol., 58, (2000) 211–237.

[14] P. Chesson, Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst., 31,

(2000) 343–366.
[15] U. Dieckmann, R. Law and J.A.J. Metz (eds.), The Geometry of Ecological Interactions:

Simplifying Spatial Complexity, Cambridge University Press, Cambridge, 2000.



Source-Sink Metacommunities 53

[16] I.A. Hanski and M.E. Gilpin, Metapopulation dynamics: brief history and conceptual do-
main. Biol. J. Linn. Soc., 42, (1991) 3–16.

[17] I.A. Hanski and M.E. Gilpin (eds.), Metapopulation Biology: Ecology, Genetics, and Evo-
lution. Academic Press, San Diego, 1997

[18] A. Hastings, Disturbance, coexistence, history, and competition for space. Theor. Popul.
Biol., 18, (1980) 363–373.

[19] R.D. Holt, Predation, apparent competition, and the structure of prey communities. Theor.
Popul. Biol., 12, (1977) 197–229.

[20] R.D. Holt, Spatial heterogeneity, indirect interactions, and coexistence of prey species. Am.
Nat., 124, (1984) 377–406.

[21] R.D. Holt, Population dynamics in two-patch environments: some anomalous consequences
of optimal habitat selection. Theor. Popul. Biol., 28, (1985) 181–208.

[22] R.D. Holt, Ecology at the mesoscale: the influence of regional processes on local communi-
ties. Species Diversity in Ecological Communities: Historical and Geographical Perspectives,
(R.E. Ricklefs and D. Schulter eds.), University of Chicago Press, Chicago, 1993, 77–88.

[23] R.D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems
with exploitative and apparent competition. Am. Nat., 144, (1994) 741–771.

[24] M. Holyoak and S.P. Lawler, The role of dispersal in predator-prey metapopulation dynam-
ics. J. Anim. Ecol., 65, (1996) 640–652.

[25] M. Holyoak and S.P. Lawler, Persistence of an extinction-prone predator-prey interaction
through metapopulation dynamics. Ecology, 77, (1996) 1867–1879.

[26] M. Holyoak, M.A. Leibold and R.D. Holt editors, Metacommunities: Spatial Dynamics and
Ecological Communities. Chicago University Press, Chicago, 2005.

[27] M. Holyoak, M.A. Leibold, N. Mouquet, R.D. Holt, M.F. Hoopes, Metacommunities. A
framework for large-scale community ecology. Metacommunities: Spatial Dynamics and Eco-
logical Communities, (M. Holyoak, M.A. Leibold and R.D. Holt, eds.), Chicago University
Press, Chicago, 2005, 35–67.

[28] M.F. Hoopes, R.D. Holt and M. Holyoak, The effects of spatial processes on two species in-
teractions. Metacommunities: Spatial Dynamics and Ecological Communities, (M. Holyoak,
M.A. Leibold and R.D. Holt eds.), Chicago University Press, Chicago, 2005, 35–67.

[29] H.S. Horn and R.H. MacArthur, Competition among fugitive species in a harlequin envi-
ronment. Ecology, 53, (1972) 749–752.

[30] S.B. Hsu, S.P. Hubbell and P. Waltman, Competing predators. SIAM J. Appl. Math., 35,
(1978) 617–625.

[31] S.B. Hsu, S.P. Hubbell and P. Waltman, A contribution to the theory of competing preda-
tors. Ecol. Monog., 48, (1978) 337–349.

[32] Y. Iwasa and J. Roughgarden, Interspecific competition among metapopulations with space-
limited subpopulations. Theor. Popul. Biol., 30, (1986) 194–214.

[33] K. Kishimoto, Coexistence of any number of species in the Lotka–Volterra competitive
system over two patches. Theor. Popul. Biol., 38, (1990) 149–158.

[34] J.M. Kneitel and J.M. Chase, Trade-offs in community ecology: linking spatial scales and
species coexistence. Ecol. Lett., 7, (2004) 69–80.

[35] A.L. Koch, Competitive coexistence of two predators utilizing the same prey under constant
environmental conditions. J. Theor. Biol., 44, (1974) 387–395.
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