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This paper considers the dynamics of a general nonlinear structured population model
governed by ordinary differential equations. We are especially concerned with the
survival possibility of structured populations. Our results show that, under a certain
mild condition, the instability of the population free equilibrium point implies that
the structured population survives in the sense of permanence. Furthermore, the
relationship between the basic reproduction number and the instability of the population
free equilibrium point provides simple criteria for population survival. The results are
applied to both stage-structured and spatially structured models.
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1. Introduction

One of the important properties of a population model is the stability of the
population free (or extinction) equilibrium. When the population free equilibrium
is unstable, we expect that the population survives. If a population model is simple,
this expectation is easily validated. For example, consider the logistic equation

ẋ = r
(
1 − x

K

)
x,

where the variable x denotes the total population density, and the parameters r
and K denote the intrinsic growth rate and the carrying capacity of the population,
respectively. It is clear that the population survives if r > 0 and K > 0. In fact,
if r > 0 and K > 0, then the population free equilibrium point x = 0 is unstable
and this instability leads to the globally asymptotically stable positive equilibrium
point x = K. On the other hand, if a population model is complex, it is not clear
whether the instability of the population free equilibrium implies that the popula-
tion survives. For example, consider a high dimensional system of the population
dynamics. Then the population free equilibrium could be saddle. Therefore, even if
it is unstable, it could attract some orbits starting at the state where the population
density is positive. The purpose of this paper is to provide a condition under which
the survival possibility of a population is completely determined by the instability
of the population free equilibrium.

One way to generalize the logistic equation is to incorporate the heterogeneity
of individuals within a population. In the logistic equation, all individuals within
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the population are treated as identical. However, individuals in biological popu-
lations are not homogeneous. They are distinct with regard to their physiological
and behavioral characteristics. Such distinctions are influential to the vital pro-
cesses such as birth, death and growth. Especially, the heterogeneity is crucially
important when we consider the spread of infectious diseases since the population
is divided into at least two classes: the classes of susceptibles and infectives.

The population model taking into account the heterogeneity of individuals
within a population is called the structured population model. There are several
frameworks for structured population models (e.g., see [3, 4, 6, 14]). One of such
frameworks has the following form

ẋ = Axx, (1)

where x = (x1, x2, . . . , xn)�, ẋ = (dx1/dt, dx2/dt, . . . , dxn/dt)� and Ax = (aij(x))
is an n×n matrix. In this equation, the population is divided into n classes accord-
ing to some discretized property of heterogeneous individuals (e.g., developmental
stage, spatial location or infection stage). Each variable xi represents the popula-
tion density of class i. We can find many specific examples of (1) in the literature
(e.g., see [13, 17]).

This paper considers the survival possibility of the structured population in
system (1). Since each variable xi represents a population density, we are interested
only in the solutions of (1) in the nonnegative cone R

n
+ = {x ∈ R

n : x1 ≥ 0, x2 ≥
0, . . . , xn ≥ 0}. Furthermore, we are not concerned with a system with unbounded
solutions. We concentrate on system (1) with the dissipativity, which is defined as
follows.

Definition 1 (dissipativity). System (1) is said to be dissipative if there
exists a compact set X ⊂ R

n
+ such that for every x(0) ∈ R

n
+ there exists a T =

T (x(0)) ≥ 0 satisfying x(t) ∈ X for all t ≥ T .

One way to evaluate the possibility of population survival is to investigate the
dynamical property defined as follows.

Definition 2 (p-permanence). Let N = {1, 2, . . . , n} and J ⊂ N . System
(1) is said to be p-permanent with respect to J if it is dissipative and there exists a
positive constant δ > 0 such that

lim inf
t→∞

∑
i∈J

xi(t) ≥ δ

holds for all x(0) ∈ R
n
+ \OJ , where OJ = {x ∈ R

n
+ : xi = 0 for all i ∈ J}.

By this definition, p-permanence with respect to J ensures that the sum of
the population densities xi, i ∈ J , is bounded below from zero. Thus, a part of
the structured population associated with J survives as long as it presents initially,
i.e.,

∑
i∈J xi(0) > 0 (if J = N , then the total population survives). Note that each
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class corresponding to J does not necessarily survive even if (1) is p-permanent
with respect to J because some xi, j ∈ J , could approach zero.

We introduce another definition associated with the population survival as
follows.

Definition 3 (c-permanence). Let N = {1, 2, . . . , n} and J ⊂ N . System
(1) is said to be c-permanent with respect to J if it is dissipative and there exists a
positive constant δ > 0 such that

lim inf
t→∞ xi(t) ≥ δ, i ∈ J

holds for all x(0) ∈ R
n
+ \OJ , where OJ = {x ∈ R

n
+ : xi = 0 for all i ∈ J}.

If system (1) is c-permanent with respect to J , then it is ensured that each
population density xi, i ∈ J , does not approach zero (note that each xi is bounded
above). That is, coexistence of all classes is guaranteed. If J is identical to
N , then we omit the part “with respect to N .” In this paper, we focus on
these dynamical properties (p- and c-permanence) and provide a condition under
which the instability of the population free equilibrium point x = 0 implies p- or
c-permanence of (1).

This paper is organized as follows. In Section 2, we introduce some useful
notation used throughout in this paper. Since system (1) includes biologically
unrealistic cases, we introduce some assumptions for (1) in Section 3. Section 4
includes the main results of this paper. The main results show that, under some
mild condition, system (1) is c-permanent if the population free equilibrium point
x = 0 is unstable. This result is analogous to the result for the logistic equation. In
Section 5, in order to evaluate the instability of the population free equilibrium point
x = 0, we introduce the basic reproduction number R0. We show the mathematical
relationship between R0 and the instability of x = 0. In Section 6, to illustrate
our results, we apply them to two specific models: stage-structured and spatially
structured population models. The final section includes concluding remarks. Some
mathematical theorems are listed in Appendices.

2. Preliminaries

Terminology concerning dynamical systems is given in Appendix A.
Both the zero vector and the zero matrix are denoted by 0. For vectors x =

(x1, x2, . . . , xn)� and y = (y1, y2 . . . , yn)�, we write x ≥ y (resp. x > y) if xi ≥
yi (resp. xi > yi) for all i. A vector x is called nonnegative (resp. positive) if
x ≥ 0 (resp. x > 0). For matrices A = (aij) and B = (bij), we write A ≥ B
(resp. A > B) if aij ≥ bij (resp. aij > bij) for all i, j. A matrix A is called
nonnegative (resp. positive) if A ≥ 0 (resp. A > 0). An n × n matrix A = (aij)
is said to be exponentially nonnegative if aij ≥ 0 for all i �= j, 1 ≤ i, j ≤ n,
i.e., all off-diagonal entries are nonnegative. Appendix B includes some important
properties of exponentially nonnegative matrices. The directed graph of an n × n

matrix A = (aij) is denoted by G(A), which is obtained by drawing an arrow from
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j to i whenever aij �= 0. For i, j ∈ {1, 2 . . . , n}, j is said to be accessible to i in
G(A) if there is a path from j to i in G(A), i.e., aik1ak1k2 · · · aklj �= 0 for some
k1, k2, . . . , kl ∈ {1, 2, . . . , n}.

Let bd R
n
+ = {x ∈ R

n
+ : x1x2 · · ·xn = 0}. Let N = {1, 2, . . . , n} and J ⊂ N

with J �= ∅. Let O be the set consisting only of the origin and OJ = {x ∈ R
n
+ : xi =

0 for all i ∈ J}. Thus, OJ ⊂ bd R
n
+ and O = ON . A(J) is defined to be the

submatrix of A composed of aij , i, j ∈ J . The identity matrix is denoted by I. For
real numbers a and b, we write sign(a) = sign(b) if a and b have the same sign −, 0
or +.

The set of eigenvalues of a matrix A is called the spectrum of A and denoted
by σ(A). The stability modulus of a matrix A is defined by

μ(A) = max{Reλ : λ ∈ σ(A)},
where Reλ denotes the real part of λ. A matrix A is said to be unstable (resp. stable)
if μ(A) > 0 (resp. μ(A) < 0). The spectral radius of a matrix A is defined by

ρ(A) = max{|λ| : λ ∈ σ(A)}.

3. Assumptions

We assume that system (1) satisfies the following conditions:
(H1) Each aij : R

n
+ → R is continuously differentiable.

(H2) Each off-diagonal entry of Ax does not change its sign (−, 0 or +) on R
n
+,

i.e., sign(aij(x)) = sign(aij(0)), i �= j, for all x ∈ R
n
+.

(H3) A0 = (aij(0)) is exponentially nonnegative.
(H4) System (1) is dissipative.

(H1) ensures that there exists a unique solution of (1), which is locally defined.
(H2) means that each interaction between classes does not change qualitatively.
Under the assumptions (H1) and (H2), the condition (H3) is necessary and sufficient
for forward invariance of R

n
+.

Proposition 4. Assume that (H1) and (H2) hold. Then the nonnegative
cone R

n
+ is forward invariant if and only if (H3) holds. The assumption (H3) also

ensures that if xk(0) > 0, then xk(t) > 0 for all t > 0.

Proof. Suppose that (H3) holds. Let x ∈ bd R
n
+ with xk = 0. Since Ax is

exponentially nonnegative, every off-diagonal entry aij(x) of Ax is nonnegative.
Therefore, we have

ẋk =
n∑

j=1

akj(x)xj ≥ 0.

Note that akk(x)xk = 0. It follows from Theorem 18 of Appendix A that R
n
+ is

forward invariant.
Suppose that (H3) does not hold. Then there exist k, l ∈ N , k �= l such that

akl(0) < 0. We choose x ∈ bd R
n
+ satisfying xl > 0 and xi = 0 for all i �= l. Then,

by (H2), ẋk = akl(x)xl < 0 holds. This implies that R
n
+ is not forward invariant.
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Finally, consider the last statement. Let x(t) be a solution of (1) with x(0) ∈
R

n
+ and xk(0) > 0. Suppose that xk(t1) = 0 for some t1 > 0. Divide N into two

groups, J0 = {i ∈ N : xi(t1) = 0} and J+ = {i ∈ N : xi(t1) > 0}. If ẋi(t1) = 0
for all i ∈ J0, then system (1) has a solution x̃(t) which passes through the point
x(t1) and satisfies x̃i(t) ≡ 0 for all i ∈ J0 since aij(x) = 0, i ∈ J0, j ∈ J+, for
all x ∈ R

n
+. This is a contradiction to the uniqueness of the solutions (note that

k ∈ J0). If ẋi(t1) �= 0 for some i ∈ J0, then xi(t) < 0 for some t ∈ (0, t1). This is a
contradiction to the forward invariance of R

n
+. �

The following proposition provides a sufficient condition for (H4).

Proposition 5. Assume that (H1)–(H3) hold. If there exist constants K > 0
and λ∞ < 0 such that the inequalities

∑n
i=1 aij(x) ≤ λ∞, j = 1, 2, . . . , n, hold for

all x ∈ R
n
+ with

∑n
i=1 xi ≥ K, then system (1) is dissipative.

Proof. Let x(t) be a solution of (1) with x(0) ∈ R
n
+. Suppose that∑n

i=1 xi(t) ≥ K for all t ≥ 0. Then the solution satisfies
n∑

i=1

ẋi(t) =
n∑

i=1

n∑
j=1

aij(x(t))xj(t)

=
n∑

i=1

ai1(x(t))x1(t) +
n∑

i=1

ai2(x(t))x2(t) + · · · +
n∑

i=1

ain(x(t))xn(t)

≤ λ∞
n∑

i=1

xi(t).

It follows from λ∞ < 0 that x(t) → 0 as t → ∞. This is a contradiction. Hence,
for every x(0) ∈ R

n
+ there exists a T ≥ 0 such that

∑n
i=1 xi(T ) < K.

Let x(0) ∈ R
n
+ with

∑n
i=1 xi(0) ≤ K. Suppose that

∑n
i=1 xi(T ′) = K + ε

for some T ′ > 0 and ε > 0. Then we can choose t0, t1 ∈ [0, T ′], t0 < t1, such
that

∑n
i=1 xi(t0) = K,

∑n
i=1 xi(t1) = K + ε and K <

∑n
i=1 xi(t) < K + ε for all

t ∈ (t0, t1). By the mean value theorem, there exists a T ′′ ∈ (t0, t1) such that

n∑
i=1

ẋi(T ′′) =
∑n

i=1 xi(t1) −
∑n

i=1 xi(t0)
t1 − t0

=
ε

t1 − t0
> 0.

This is a contradiction since
∑n

i=1 xi(T ′′) > K implies
∑n

i=1 ẋi(T ′′) < 0. Therefore,
the compact set

{
x ∈ R

n
+ :

∑n
i=1 xi ≤ K

}
is a forward invariant set attracting every

point x ∈ R
n
+. �

Note that, under the assumptions (H1)–(H4), it is ensured that, for every
x(0) ∈ R

n
+, there exists a unique solution x(t) of (1), which is defined for all t ≥ 0.

4. Dynamics of an irreducible subsystem

The directed graph G(A0) reflects some structure of (1). According to the
graph G(A0), we can divide the structured model into some irreducible subsystems.
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In this section, we consider permanence of such an irreducible subsystem. The next
section consider the dynamics of the full system.

Before the main results (Theorems 8 and 10), we will obtain two lemmas for
some properties of system (1).

Lemma 6. Assume that (H1)–(H4) hold. Let J ⊂ N . If J = N , then
OJ = O is invariant. If J �= N, ∅ and aij(0) = 0 for all i ∈ J and j ∈ N \ J , then
OJ and R

n
+ \OJ are forward invariant.

Proof. The first statement obviously holds since the origin is an equilibrium
point of (1). Suppose that J �= N, ∅ and aij(0) = 0 for all i ∈ J and j ∈ N \ J .
Then, by (H2), aij(x) = 0, i ∈ J , j ∈ N \ J , also holds for all x ∈ R

n
+. Hence, for

every x ∈ OJ

ẋi =
∑

j∈N\J

aij(x)xj = 0, i ∈ J.

This implies that OJ and R
n
+ \ OJ are forward invariant. Otherwise, the initial

value problem does not have a unique solution. �

Lemma 7. Assume that (H1)–(H4) hold. Let J ⊂ N and J �= ∅. Suppose that
A

(J)
0 is irreducible. Then xi(t) > 0, i ∈ J , for all t > 0 provided x(0) ∈ R

n
+ \OJ .

Proof. Suppose J �= N . Without loss of generality, we can assume that
J = {1, 2, . . . , k}, 1 ≤ k ≤ n. Let x(t) be a solution of (1) with x(0) ∈ R

n
+ \ OJ

and x(J)(t) = (x1(t), x2(t), . . . , xk(t))�. Then x(t) is nonnegative for all t ≥ 0 and
satisfies

ẋ(J)(t) = A
(J)
x(t)x

(J)(t) + b(t),

where b(t) = (b1(t), b2(t), . . . , bk(t))� and bi(t) =
∑

j∈N\J aij(x(t))xj(t). Since
Ax(t) is exponentially nonnegative, b(t) ≥ 0 for all t ≥ 0. By assumption, we can

choose an exponentially nonnegative irreducible matrix B satisfying A(J)
x(t) ≥ B for

all t ∈ [0, 1]. Let c(t) =
(
A

(J)
x(t) −B

)
x(J)(t) + b(t). Then x(J)(t) satisfies

x(J)(t) = etBx(J)(0) +
∫ t

0

e(t−s)Bc(s) ds, t ∈ [0, 1]. (2)

Since B is exponentially nonnegative and irreducible, etB > 0 for all t > 0 (e.g.,
see Theorem 8.2 of [19]). Therefore, (2) with Proposition 4 implies that xi(t) > 0,
i ∈ J , for all t > 0. �

The following theorem is our main result and provides a condition for
p-permanence of subsystems of (1). Conditions (i) and (ii) are valid for (1) with
stage-structure and spatial structure, respectively (see Section 7).

Theorem 8. Assume that (H1)–(H4) hold, and that one of the following two
conditions is satisfied:
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(i) ω(OJ ) = O or
(ii) A

(J)
x = A

(J)
0 for all x ∈ OJ ,

where ω(OJ ) is the ω-limit set of OJ (see Appendix A) and J ⊂ N with J �= ∅.
Suppose that either J = N or aij(0) = 0 for all i ∈ J and j ∈ N \ J , and that

A
(J)
0 has a positive eigenvalue and corresponding positive eigenvector (i.e., it is

sufficient that A(J)
0 is irreducible; see Theorem 21 of Appendix B). Then system (1)

is p-permanent with respect to J if μ
(
A

(J)
0

)
> 0.

Proof. Without loss of generality, we can assume that J = {1, 2, . . . , k}, 1 ≤
k ≤ n. Since system (1) is dissipative, Theorem 19 of Appendix A guarantees
that there exists a compact absorbing set X ⊂ R

n
+ for R

n
+, i.e., all orbits in R

n
+

ultimately enter the compact forward invariant set X. Therefore, it is enough
to focus on the orbits in X. By Lemma 6, both OJ and X \ OJ are forward
invariant. By constructing an average Liapunov function, we shall show that (1) is
p-permanent with respect to J .

By assumption, there exists a positive vector v > 0 such that
(
A

(J)
0

)�
v = λv,

where λ is a positive eigenvalue of A(J)
0 . Let P (x) = v · x(J), where “ · ” denotes

the inner product and x(J) = (x1, x2, . . . , xk)�. Then it is clear that P : X → R+

is continuously differentiable. Furthermore, P (x) = 0 if and only if x ∈ OJ , i.e.,
condition (a) in Theorem 20 of Appendix A holds. Define ψ : X → R by

ψ(x) = min
i∈J

((
A

(J)
x

)�
v
)
i

vi
,

where
((
A

(J)
x

)�
v
)
i

is the i-th component of the vector
(
A

(J)
x

)�
v. Then ψ is con-

tinuous and

Ṗ (x) ≥ v ·A(J)
x x(J)

= x(J) · (A(J)
x

)�
v

=
∑
i∈J

vixi

((
A

(J)
x

)�
v
)
i

vi
≥ P (x)ψ(x)

for all x ∈ X.
If condition (i) holds, then it is clear that

sup
t≥0

∫ t

0

ψ(x(s)) ds = sup
t≥0

∫ t

0

λ ds > 0 (3)

holds for x(0) ∈ ω(OJ ). Furthermore, if condition (ii) holds, then (3) holds for all
x(0) ∈ OJ . This implies that system (1) is p-permanent with respect to J . �

Remark. An analogous result is found in [12], in which p-permanence of a
discrete-time version of (1) is considered. By using Theorem 2 of [10], we can show
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that, under the assumption of Theorem 8, system (1) has an equilibrium point
x∗ ∈ R

n
+ with x∗i > 0 for some i ∈ J . Furthermore, x∗i > 0 for all i ∈ J since A(J)

0

is irreducible.

The following corollary is a special case of Theorem 8.

Corollary 9. Assume that (H1)–(H4) hold. Suppose that A0 is irreducible.
Then system (1) is p-permanent if μ(A0) > 0.

We see that p-permanence implies c-permanence in the following sense.

Theorem 10. Assume that (H1)–(H4) hold. Suppose that A(J)
0 is irreducible

for J ⊂ N with J �= ∅. Then system (1) is c-permanent with respect to J if and
only if it is p-permanent with respect to J .

Proof. Suppose that system (1) is p-permanent with respect to J . Then
Theorem 19 of Appendix A shows that there exists a compact absorbing set X for
R

n
+ \ OJ satisfying X ∩ OJ = ∅. If φt(x) denotes the solution map for (1), then

X ′ = φ1(X) is also a compact absorbing set for R
n
+ \ OJ . Moreover, Lemma 7

ensures that mini∈J xi > 0 holds for all x ∈ X ′. Since X ′ is compact, there exists
a δ > 0 such that mini∈J xi ≥ δ holds for every x ∈ X ′. This implies that system
(1) is c-permanent with respect to J .

It is clear that c-permanence with respect to J implies p-permanence with
respect to J . �

5. Dynamics of the full system

If A0 is irreducible, then c-permanence of (1) can be evaluated by Corollary 9
and Theorem 10. Furthermore, even if A0 is reducible, c-permanence of some
irreducible subsystem can be evaluated by Theorems 8 and 10. However, it is not
clear whether the populations in the remaining subsystem of (1) can survive if some
irreducible subsystem is c-permanent. In this section, we consider the destiny of a
subsystem connecting to a surviving subsystem. The following theorem shows that
the populations in the classes accessible from a surviving class also survive.

Theorem 11. Assume that (H1)–(H4) hold. Let J ⊂ N , j ∈ J and k ∈
N \ J . Suppose that j is accessible to k in G(A0). Then there exists a positive
constant δk > 0 such that

lim inf
t→∞ xk(t) ≥ δk

holds for all x(0) ∈ R
n
+ \ OJ if there exists a positive constant δj > 0 such that

lim inft→∞ xj(t) ≥ δj holds for all x(0) ∈ R
n
+ \OJ .

Proof. Since j is accessible to k in G(A0), akk1(0)ak1k2(0) · · · aklj(0) �= 0
for some k1, k2, . . . , kl ∈ N . Without loss of generality, we can assume that
k, k1, k2, . . . , kl, j are pairwise distinct. By (H4) and the existence of δj > 0, The-
orem 19 of Appendix A ensures that there exists a compact absorbing set Xj for
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R
n
+ \ OJ satisfying Xj ∩ O{j} = ∅. If φt(x) denotes the solution map for (1), then

Xkl
= φ1(Xj) is also a compact absorbing set for R

n
+ \ OJ . Let x(t) be a solution

of system (1) with x(0) ∈ O{kl} ∩Xj . Since Ax(0) is exponentially nonnegative and
aklj(x(0)) > 0, we have

ẋkl
(0) = akl1(x(0))x1(0) + akl2(x(0))x2(0) + · · · + akln(x(0))xn(0)

≥ aklj(x(0))xj(0) > 0.

Note that xj(0) > 0. The inequality ẋkl
(0) > 0 implies that Xj \ O{kl} is forward

invariant and x ∈ O{kl}∩Xj implies γ+(x)∩Xj\O{kl} �= ∅. Therefore, Xkl
∩O{kl} =

∅. If we replace j and kl in the above argument by kl and kl−1, respectively, then
we obtain a compact absorbing set Xkl−1 for R

n
+\OJ satisfying Xkl−1∩O{kl−1} = ∅.

By repeating this argument, we eventually obtain the conclusion. �

6. The basic reproduction number

In this section, we consider the basic reproduction number R0 of the following
linear ordinary differential equation

ẋ = A0x. (4)

This equation appears as the linearized system of (1) at the population free equi-
librium point x = 0. The basic reproduction number R0 is usually defined to be
the expected number of offspring per individual per life time. It is well known
that this number plays an important role in the study of structured models. The
basic reproduction number R0 can often be calculated and expressed in term of
the entries in the matrix A0 (see Chapter 5 of [6], and [7] for the definition of R0

for a more general class of structured models). Furthermore, the population free
equilibrium point x = 0 is usually unstable (resp. stable) if R0 > 1 (resp. R0 < 1).

The mathematical foundation of such a relationship between the basic repro-
duction number and the instability of x = 0 has been established by Cushing and
Yicang [5] (see also Section 1.1.2 of [4]). They established it for the framework of
structured models described by difference equations. Furthermore, van den Driess-
che and Watmough [18] also proved the same relationship for ordinary differential
equations with epidemiological models in mind. The purpose of this section is to
introduce the similar result with system (4) in mind. Since our proof for this re-
sult is somewhat different from that in [18], the proof of our theorem is given in
Appendix C.

We begin with the assumptions:
(A1) A0 is exponentially nonnegative irreducible n× n matrix.
(A2) A0 = F0 +T0 holds for some nonnegative matrix F0 and some exponentially

nonnegative matrix T0 satisfying μ(T0) < 0.
(A3) −F0T

−1
0 has a positive eigenvalue R0 such that R0 = μ(−F0T

−1
0 ) holds and

to R0 there corresponds a nonnegative right eigenvector w ≥ 0.
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Note that T−1
0 exists under the assumption (A2) (see Theorem 22 in Appendix B).

Under these assumptions, we define the basic reproduction number as follows.

Definition 12. Assume that (A1)–(A3) hold and −T−1
0 w > 0. Then R0 is

called the basic reproduction number of A0.

The matrix A0 of a structured model is usually divided into to two matrices:
the matrix F0 corresponding to the fertility and the remaining matrix T0 = A0 −
F0. The matrix T0 usually contains the terms corresponding to both death and
transition between classes. The dynamics without the reproduction process is given
by ẋ = T0x. Therefore, the expected time that an individual starting in class j will
spend in class i in the rest of its life is given by the (i, j)-entry of the n× n matrix∫ ∞

0

esT0 ds = −T−1
0 .

In fact, the probability that an individual starting in class j exists in class i after
s units of time is given by esT0y, where y is the unit vector whose j-th component
equals 1 while all other components are zero (see Chapter 5 of [6]). If the fertility
matrix F0 has only one nonzero row in the first row, then R0 is equivalent to the
(1, 1)-entry of −F0T

−1
0 . This entry is surly equivalent to the expected number of

offspring per newborn per life time if the first class corresponds to the newborn
class. Therefore, in this case, the mathematical definition of R0 coincides with the
biological meaning of the basic reproduction number (see Section 1.1.2 of [4] for the
case where F0 has multiple nonzero rows).

Concerning the relationship between R0 and the instability of x = 0, the
following theorem holds (see Appendix C for its proof).

Theorem 13. Assume that (A1)–(A3) hold and −T−1
0 w > 0. Then μ(A0) >

0 (resp. μ(A0) < 0 or μ(A0) = 0) if and only if R0 > 1 (resp. R0 < 1 or R0 = 1).

It is worth noting that even if R0 does not have a correct biological meaning,
due to the arbitrariness of F0 and T0, Theorem 13 provides a simple method eval-
uating the stability of the population free equilibrium point x = 0. Furthermore,
an application of this theorem is not restricted to systems with the form (4) (see
Appendix C).

7. Applications

In this section, we apply the results obtained in the previous sections to two
specific structured models: a stage-structured model and a spatially structured
model.
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7.1. Stage-structured models
Consider the following stage-structured model (the corresponding discrete-time

model is called the Usher matrix model [4]):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =
n∑

i=1

βi(x)xi − d1(x)x1 − f1(x)x1

ẋ2 = f1(x)x1 − d2(x)x2 − f2(x)x2

...
ẋn = fn−1(x)xn−1 − dn(x)xn.

(5)

This system consists of a single-species population. The individuals in this popu-
lation are categorized into n classes by developmental stage (or increasing size). xi

denotes the population density in stage i. βi(x) is the per capita reproduction rate
of an individual in stage i. di(x) is the per capita mortality rate of an individual in
stage i. fi(x) is the per capita transition rate from stage i to the next higher stage
i + 1 (note that fn = 0). It is assumed that no individuals can move to the lower
stage, and all newborns lie in the first stage.

The matrix Ax of model (5) is given as follows:

Ax =

⎛⎜⎜⎜⎜⎜⎜⎝

β1(x) − d1(x) − f1(x) β2(x) · · · βn−1(x) βn(x)

f1(x) −d2(x) − f2(x) · · · 0 0

0 f2(x) · · · 0 0
...

...
. . .

...
...

0 0 · · · fn−1(x) −dn(x)

⎞⎟⎟⎟⎟⎟⎟⎠ .

This matrix is divided into two matrices, the fertility matrix Fx and the transition
matrix Tx as follows:

Fx =

⎛⎜⎜⎜⎜⎜⎜⎝
β1(x) β2(x) · · · βn−1(x) βn(x)

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
and

Tx =

⎛⎜⎜⎜⎜⎜⎜⎝

−d1(x) − f1(x) 0 · · · 0 0

f1(x) −d2(x) − f2(x) · · · 0 0

0 f2(x) · · · 0 0
...

...
. . .

...
...

0 0 · · · fn−1(x) −dn(x)

⎞⎟⎟⎟⎟⎟⎟⎠ .



28 R. Kon

Note that Tx = (tij(x)) contains not only the terms corresponding to transition
between stages, but also the terms corresponding to death. So,

∑n
i=1 tij(x) = 0

does not necessarily hold, but
∑n

i=1 tij(x) ≤ 0 must hold for every x ∈ R
n
+.

We assume the following:
(C1) All functions βi, di and fi are continuously differentiable. All functions βi

are nonnegative and do not change their sign on R
n
+. All functions di and fi

are positive.
Then it is clear that the conditions (H1)–(H3) hold. By Proposition 5, we can
obtain a sufficient condition for (H4) as follows.

Proposition 14. Assume that (C1) holds. If there exist constants K > 0
and λ∞ < 0 such that βi(x) − di(x) < λ∞, i = 1, 2, . . . , n, for all x ∈ R

n
+ with∑n

i=1 xi ≥ K, then (5) is dissipative.

Remark. Theorem 11.2 of [17] gives much more sophisticated results for
dissipativity of (5) with n = 2 and β1 = 0.

By applying the results in Sections 4 and 5, we can prove the following propo-
sition.

Proposition 15. Assume that (C1) and (H4) hold.
(i) Suppose that βn is positive. If μ(A0) > 0, then (5) is c-permanent.
(ii) Let J = {1, 2, . . . , k} for some 1 ≤ k ≤ n− 1. Suppose that βk is positive and

βk+1 = βk+2 = · · · = βn = 0. If μ(A(J)
0 ) > 0, then there exists a positive

constant δ > 0 such that

lim inf
t→∞ xi(t) ≥ δ, i = 1, 2, . . . , n,

for all x(0) ∈ R
n
+ \OJ .

Remark. (i) follows from Corollary 9 and Theorem 10, and (ii) follows from
Theorems 8 (i), 10 and 11. The schematic portraits of cases (i) and (ii) are depicted
in Fig. 1. In case (i), all individuals can reproduce as long as they can attain the
final stage. While, in case (ii), individuals cannot reproduce after stage k.

The instability of A0 (or A(J)
0 ) can be evaluated by using Theorem 13. Under

the assumption (C1), F0 and T0 satisfy (A1) and (A2). Note that

−T−1
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d1(0)+f1(0)

0 0 · · · 0

f1(0)∏2
i=1(di(0)+fi(0))

1
d2(0)+f2(0)

0 · · · 0

f1(0)f2(0)∏3
i=1(di(0)+fi(0))

f2(0)∏3
i=2(di(0)+fi(0))

1
d3(0)+f3(0)

· · · 0
...

...
...

. . .
...∏n−1

i=1 fi(0)∏n
i=1(di(0)+fi(0))

∏n−1
i=2 fi(0)∏n

i=2(di(0)+fi(0))

∏n−1
i=3 fi(0)∏n

i=3(di(0)+fi(0))
· · · 1

dn(0)+fn(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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(i)

(ii)

Fig. 1. The schematic portrait of the stage-structured model (5). (i): All individuals

can reproduce their offspring as long as they can attain the final stage. (ii): The

stages k + 1, k + 2, . . . , n are not fertile.

where for notational convenience fn is defined to be 0. Then −F0T
−1
0 has the

eigenvalue

R0 =
n∑

i=1

βi(0)
di(0) + fi(0)

i−1∏
j=1

fj(0)
dj(0) + fj(0)

,

which satisfies R0 = μ(−F0T
−1
0 ) and whose right eigenvector w = (1, 0, . . . , 0)� is

nonnegative, i.e., (A3) holds. Moreover, −T−1
0 w > 0. Hence, Theorem 13 ensures

that A0 is unstable (resp. stable) if R0 > 1 (resp. R0 < 1). Similarly, the stability
of A(J)

0 is determined by the basic reproduction number of A(J)
0 .

7.2. Spatially structured models
Consider the following spatially structured model:

ẋi = gi(xi)xi +
n∑

j=1

(
dij(xj)xj − d̃ji(xi)xi

)
, i = 1, 2, . . . , n, (6)

where dii = d̃ii = 0. In this model, the population dynamics of a single-species is
considered. The habitat for the species is divided into n patches. The population
density in patch i is denoted by xi. gi(xi) is the per capita growth rate in patch i

when this patch is isolated from the others. dij(xj) and d̃ij(xj) are the immigra-
tion and emigration rates from patch j to patch i. Since the reproduction during
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dispersal is not considered, d̃ij(xj) ≥ dij(xj) holds for all xj ≥ 0. The matrix Ax

of this model is

Ax =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1(x1) −
n∑

j=1

d̃j1(x1) d12(x2) · · · d1n(xn)

d21(x1) g2(x2) −
n∑

j=1

d̃j2(x2) · · · d2n(xn)

...
...

. . .
...

dn1(x1) dn2(x2) · · · gn(xn) −
n∑

j=1

d̃jn(xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We divide this matrix into two matrices as follows:

Fx =

⎛⎜⎜⎜⎝
g1(x1) 0 · · · 0

0 g2(x2) · · · 0
...

...
. . .

...
0 0 · · · gn(xn)

⎞⎟⎟⎟⎠
and

Tx =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
n∑

j=1

d̃j1(x1) d12(x2) · · · d1n(xn)

d21(x1) −
n∑

j=1

d̃j2(x2) · · · d2n(xn)

...
...

. . .
...

dn1(x1) dn2(x2) · · · −
n∑

j=1

d̃jn(xn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We assume the following:
(C2) All functions gi, dij and d̃ij are continuously differentiable. All functions dij

and d̃ij are nonnegative, and sign(dij(xj)) = sign(dij(0)) = sign
(
d̃ij(xj)

)
and∑n

i=1 d̃ij(xj) ≥
∑n

i=1 dij(xj) for all xj ≥ 0.
Then it is clear that the conditions (H1)–(H3) hold. The following proposition gives
a sufficient condition for (H4) (note that we cannot apply Theorem 5 to (6)).

Proposition 16. Assume that (C2) holds. Suppose that there exist positive
constants c, r,K > 0 such that maxi∈N gi(x)x ≤ c for all x ≥ 0 and maxi∈N gi(x) ≤
−r for all x ≥ K. Then (6) is dissipative.

Proof. Let k = max{((n− 1)c+ ε)/r,K}, where ε > 0 is an arbitrary positive
constant. Then, for every x ∈ R

n
+ with

∑n
i=1 xi ≥ nk, there exists an i ∈ N such

that xi ≥ k. Then

n∑
i=1

ẋi ≤
n∑

i=1

gi(xi)xi ≤ (n− 1)c− rk ≤ −ε
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Fig. 2. The schematic portrait of the spatially structured model (6). J is accessible to

N \ J but N \ J is not accessible to J in G(T0).

holds for all x ∈ R+ with
∑n

i=1 xi ≥ nk. This implies that (6) is dissipative. �

By applying the results in Sections 4 and 5, we can obtain the following propo-
sition.

Proposition 17. Assume that (C2) and (H4) hold. Suppose that there exists
a nonempty subset J ⊂ N such that T (J)

0 is irreducible and J is accessible to N \J
but N \ J is not accessible to J in G(T0). If μ(A(J)

0 ) > 0, then there exists a
positive constant δ > 0 such that

lim inf
t→∞ xi(t) ≥ δ, i = 1, 2, . . . , n,

for all x(0) ∈ R
n
+ \OJ .

Remark. This proposition follows from Theorems 8 (ii), 10 and 11. The
schematic portrait for the situation satisfying the assumptions of the proposition
is depicted in Fig. 2. Note that if T0 is irreducible, then μ(A0) > 0 implies
c-permanence of (6). We can find more sophisticated results for the global dy-
namics of (6) with constant dij and d̃ij in [10, 13].

The instability of A(J)
0 can be evaluated as follows (in this case Theorem 13 is

not useful). Suppose that T (J)
0 is irreducible. Let

∑
i∈J dij(xj) −

∑
i∈J d̃ij(xj) =

−εj ≤ 0, j ∈ J . Then
∑

i∈J aij(0) = gj(0) − εj for all j ∈ J . Since A
(J)
0 is

exponentially nonnegative and irreducible,

min
j∈J

{∑
i∈J

aij(0)

}
≤ μ

(
A

(J)
0

) ≤ max
j∈J

{∑
i∈J

aij(0)

}
.

Hence, μ
(
A

(J)
0

)
> 0 if minj∈J{gj(0) − εj} > 0 and μ

(
A

(J)
0

)
< 0 if maxj∈J{gj(0) −
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εj} < 0. If εi = 0 and gi(0) = gc for all i ∈ J , then μ
(
A

(J)
0

)
> 0 (resp. μ

(
A

(J)
0

)
< 0)

if and only if gc > 0 (resp. gc < 0).

8. Concluding remarks

In this paper, we have investigated p- and c-permanence of the structured
population model (1). Our results show that, under a certain mild condition, the
instability of the population free equilibrium point x = 0 implies that the popu-
lation survives in the sense of c-permanence (note that it is clear that (1) is not
c-permanent if x = 0 is stable). This result is analogous to the result for the logistic
equation, which is an unstructured model.

Our results are applicable even if A0 is reducible. By Theorem 8, we can show
that an irreducible subsystem of system (1) is c-permanent if the associated sub-
matrix is unstable. Furthermore, by Theorem 11, we can show that every subsystem
connecting to the permanent subsystem also survives. However, these theorems
are useless to show that all classes in (1) coexist if G(A0) is not connected (i.e.,
G(A0) is split into disconnected groups). In fact, if all individuals in a disconnected
subsystem are removed, they cannot reappear by the help of other disconnected
subsystems. In this case, we can regard system (1) as a multi-species model. The
typical examples are the Lotka–Volterra equations, which have the form (1) with
a diagonal matrix Ax. It is interesting to extend our results to system (1) with
disconnected groups in G(A0). Furthermore, it is also interesting to consider the
extension to a system with inflows from the external system, i.e.,

ẋ = Axx + b(x),

where b(x) ≥ 0 for all x ∈ R
n
+. This type of system often appears as a model of

epidemiological or immunological systems (e.g., see [6, 15]).

Appendix A.

Consider an ordinary differential equation of the form

ẋi = fi(x), i = 1, 2, . . . , n,

where x = (x1, x2, . . . , xn)� ∈ R
n and fi : R

n → R. For this equation, we have the
following result.

Theorem 18 (Proposition B.7 of [16]). Suppose that f = (f1, f2, . . . , fn)�

has the property that solutions of initial value problems x(0) ∈ R
n
+ are unique and,

for all i, fi(x) ≥ 0 whenever x ∈ R
n
+ satisfies xi = 0. Then x(t) ∈ R

n
+ for all t ≥ 0

for which it is defined, provided x(0) ∈ R
n
+.

It is well known that if f = (f1, f2, . . . , fn)� is continuously differentiable
and all solutions exist for all time, then the above equation generates a continuous
dynamical system π, i.e., π is continuous and satisfies (i) π(x, 0) = x and (ii) π(x, t+
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s) = π(π(x, t), s) for all s, t ∈ R. The set γ+(x) = {y : π(x, t) = y for some t ≥ 0}
is called a semi-orbit through x. A set X ⊂ R

n is said to be forward invariant if
γ+(x) ⊂ X for all x ∈ X. For subsets M,Y ⊂ R

n
+, M is said to be absorbing for Y

if M is forward invariant and γ+(x) ∩M �= ∅ for every x ∈ Y . The ω-limit set of
x is defined by

ω(x) =
{
y : lim

j→∞
π(x, tj) → y for some tj → ∞

}
.

For a subset X ⊂ R
n

ω(X) =
⋃

x∈X

ω(x).

S is said to be repellor if there exists a neighborhood of U of S such that for all
x /∈ S there exists T = T (x) > 0 satisfying π(x, t) /∈ U for all t ≥ T .

For a continuous dynamical system π, we have the following theorems.

Theorem 19 (c.f. Lemma 2.1 of [11]). Let X ⊂ R
n
+. Let Y ⊂ X be open, and

let N be open with a compact closure N ⊂ Y . Assume that Y is forward invariant
and that γ+(x)∩N �= ∅ for every x ∈ Y . Then M = γ+

(
N

)
is a compact absorbing

set for Y .

Theorem 20 (c.f. Theorem 2.5 of [11] and Corollary 2 of [9]). Let X be a
compact subset of R

n
+. Let S be a compact subset of X such that both X \ S

and S are forward invariant. Then S is a repellor if there exists a continuously
differentiable function P : X → R+ such that (a) P (x) = 0 ⇐⇒ x ∈ S and (b) for
all x ∈ ω(S), supt≥0

∫ t

0
ψ(x(s)) ds > 0, where ψ : X → R is a continuous function

with Ṗ (x) ≥ ψ(x)P (x) (“ · ” denotes differentiation along an orbit).

Appendix B.

In this Appendix, we list some useful theorems of exponentially nonnegative
matrices. It is known that exponentially nonnegative matrices have analogous prop-
erties to nonnegative matrices (e.g., see [1, 2, 8, 19] and Appendices in [16, 17] for
the theory of nonnegative matrices). We can find some descriptions about exponen-
tially nonnegative matrices in several books (see [1, 19] and Appendices in [16, 17]).
It is worth noting that the theory of exponentially nonnegative matrices is strongly
related to the theory of M -matrices (e.g., see Chapter 6 of [2]).

Exponentially nonnegative matrices have the properties stated in the following
theorems (Theorem 21 is closely related to the Perron–Frobenius Theorem).

Theorem 21 (c.f. Theorem 8.3 of [19]). Let A be an exponentially non-
negative irreducible n× n matrix. Then A has a real eigenvalue λ such that
(i) To λ there corresponds positive right and left eigenvectors.
(ii) Re λ̃ < λ for all other eigenvalues λ̃.
(iii) λ is algebraically simple.
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Remark. λ is equivalent to μ(A). μ(A) is still an eigenvalue of A even if
it is reducible. Furthermore, μ(A) + s = ρ(A + sI) holds for all sufficiently large
s ≥ 0. This can be checked by using the result for nonnegative matrices (e.g., see
Theorem 13.3 of [8]).

Theorem 22 (see Chapter 6 of [2]). Let A be an exponentially nonnegative
n× n matrix. μ(A) < 0 if and only if −A−1 exists and −A−1 ≥ 0.

Remark. See also Lemma of [10] and Theorem A.12 of [16].

Appendix C.

Theorem 13 is proved by using the following two lemmas.

Lemma 23 (Lemma 6 of [5]). Suppose that B = (bij) is a nonnegative n× n

matrix. Then

ρ(B) = max
x≥0
x	=0

min
i∈N
xi 	=0

(Bx)i

xi
= min

x≥0
x	=0

max
i∈N
xi 	=0

(Bx)i

xi
,

where (Bx)i =
∑n

j=1 bijxj.

Lemma 24. Suppose that B = (bij) is an exponentially nonnegative n × n

matrix. Then

μ(B) = max
x≥0
x	=0

min
i∈N
xi 	=0

(Bx)i

xi
= min

x≥0
x	=0

max
i∈N
xi 	=0

(Bx)i

xi
,

where (Bx)i =
∑n

j=1 bijxj.

Proof. By the remark of Theorem 21 in Appendix B, B + sI is nonnegative
and μ(B)+s = ρ(B+sI) holds for some s ≥ 0. Therefore, by Lemma 23, ρ(B+sI)
satisfies

ρ(B + sI) = max
x≥0
x	=0

min
i∈N
xi 	=0

((B + sI)x)i

xi
= min

x≥0
x	=0

max
i∈N
xi 	=0

((B + sI)x)i

xi
.

This provides the desired equations. �

Proof of Theorem 13. The proof is almost parallel to that in [5].
Note that any eigenvalue of −F0T

−1
0 is also an eigenvalue of −T−1

0 F0 and vice
versa, since both matrices have the same characteristic polynomial. Hence, R0 is
also an eigenvalue of −T−1

0 F0 and satisfies R0 = μ(−T−1
0 F0). Furthermore, to R0

there corresponds a right eigenvector −T−1
0 w > 0.

By (A1), λ0 = μ(A0) is an eigenvalue of A0 and to λ0 there corresponds a
positive right eigenvector u > 0. Then A0u = λ0u. Let G0 = −T−1

0 F0 and
w̃ = −T−1

0 w. By (A3), G0w̃ = R0w̃ holds.
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Since A0 = F0 + T0 and G0 = −T−1
0 F0, the matrices A0 and G0 satisfy

A0 = −T0G0 + T0,

G0 = −T−1
0 A0 + I.

Therefore, the following equations hold:

A0w̃ = (1 −R0)T0w̃,

G0u = −λ0T
−1
0 u + u.

Consequently, for every i ∈ N , we have

(A0w̃)i

w̃i
= (1 −R0)

(T0w̃)i

w̃i
, (7)

(G0u)i

ui
= 1 + λ0

(−T−1
0 u)i

ui
, (8)

where w̃i and ui are the i-th components of w̃ and u, respectively. By Lemmas 23
and 24, we have

λ0 = max
x≥0
x	=0

min
i∈N
xi 	=0

(A0x)i

xi
= min

x≥0
x	=0

max
i∈N
xi 	=0

(A0x)i

xi
,

R0 = max
x≥0
x	=0

min
i∈N
xi 	=0

(G0x)i

xi
= min

x≥0
x	=0

max
i∈N
xi 	=0

(G0x)i

xi
.

Note that G0 = −T−1
0 F0 is a nonnegative matrix. By using these equations and

equations (7) and (8), we obtain the following inequalities:

min
i∈N

(1 −R0)
(T0w̃)i

w̃i
≤ λ0 ≤ max

i∈N
(1 −R0)

(T0w̃)i

w̃i
, (9)

1 + min
i∈N

λ0
(−T−1

0 u)i

ui
≤ R0 ≤ 1 + max

i∈N
λ0

(−T−1
0 u)i

ui
. (10)

Note that maxi∈N (T0w̃)i/w̃i ≤ 0 holds since (T0w̃)i/w̃i = (−1/R0)((F0w̃)i/w̃i).
From (9) and (10), it is clear that R0 = 1 if and only if λ0 = 0. Suppose that
R0 > 1. Then (9) implies λ0 ≥ 0 and hence λ0 > 0. Conversely, suppose that
R0 < 1. Then (9) implies λ0 ≤ 0 and hence λ0 < 0. Similarly, by using (10) and
−T−1

0 ≥ 0, we can show that λ0 > 0 (resp. λ0 < 0) implies R0 > 1 (resp. R0 < 1).
�

The relationship between the basic reproduction number R0 and the insta-
bility of the population free equilibrium is applicable to a wide class of structured
population models. For example, consider the following SIR epidemiological model:⎧⎨⎩

Ṡ = B − βSI − μS

İ = βSI − μI − αI

Ṙ = −μR+ αI,
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where S, I and R denotes the population densities of susceptibles, infectives and
removed individuals, respectively, and all parameters are positive (e.g., see [6]). The
invasibility of the infectious disease is determined by the instability of the disease
free equilibrium (B/μ, 0, 0), i.e., the instability of the matrix

A =
(
βS∗ − μ− α 0

α −μ
)
.

Define F and T by

F =
(
βS∗ 0
0 0

)
, T =

(−μ− α 0
α −μ

)
.

The positive entry of F denotes the per capita reproduction rate of infectives. The
matrix T includes the terms corresponding to death and transition from the class
of infectives to the class of removed individuals. The matrices A, F and T satisfy
(A1) and (A2), and −FT−1 is given as follows:

−FT−1 =

⎛⎝ βS∗

μ+ α
0

0 0

⎞⎠ .

This has the eigenvalues R0 = βS∗/(μ+α) and 0. We see that R0 is consistent with
the biological meaning of the basic reproduction number of infectives. To R0 there
corresponds the nonnegative right eigenvector w = (1, 0)�. By Theorem 13, the
disease free equilibrium (S∗, 0, 0) is unstable (resp. stable) if R0 > 1 (resp. R0 < 1).
Therefore, application of our theorem is not restricted to systems with the form (1).

Acknowledgements. The author would like to thank the anonymous referees
for their generous and valuable comments, which greatly improved and simplified
the proofs of the theorems. This research is partially supported by the Ministry of
Education, Science, Sports and Culture of Japan, Grant-in-Aid for JSPS fellows,
18–9289, 2006.

References

[ 1 ] A. Berman, M. Neumann and R.J. Stern, Nonnegative matrices in dynamic systems. Pure
and Applied Mathematics (New York). A Wiley-Interscience Publication, John Wiley &
Sons, Inc., New York, 1989.

[ 2 ] A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences (Revised
reprint of the 1979 original). Classics in Applied Mathematics, 9, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1994.

[ 3 ] H. Caswell, Matrix Population Models (second edition). Sinauer Associates, Sunderland,
MA, 2001.

[ 4 ] J.M. Cushing, An introduction to structured population dynamics. CBMS-NSF Regional
Conference Series in Applied Mathematics, 71, Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, PA, 1998.

[ 5 ] J.M. Cushing and Z. Yicang, The net reproductive value and stability in matrix population
models. Natur. Resource Modeling, 8 (1994), 297–333.



Permanence of Structured Models 37

[ 6 ] O. Diekmann and J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases.
Model building, analysis and interpretation. Wiley Series in Mathematical and Computa-
tional Biology, John Wiley & Sons, Ltd., Chichester, 2000.

[ 7 ] O. Diekmann, J.A.P. Heesterbeek and J.A.J. Metz, On the definition and the computa-
tion of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous
populations. J. Math. Biol., 28 (1990), 365–382.

[ 8 ] F.R. Gantmacher, The theory of matrices, volume 1 (translated from the Russian by
K.A. Hirsch, reprint of the 1959 translation). A.M.S. Chelsea Publishing, Providence, RI,
1998.

[ 9 ] J. Hofbauer, A unified approach to persistence. Acta Appl. Math., 14 (1989), 11–22.
[10] J. Hofbauer, An index theorem for dissipative semiflows. Rocky Mountain J. Math., 20

(1990), 1017–1031.

[11] V. Hutson, A theorem on average Liapunov functions. Monatsh. Math., 98 (1984), 267–275.
[12] R. Kon, Y. Saito and Y. Takeuchi, Permanence of single-species stage-structured models. J.

Math. Biol., 48 (2004), 515–528.
[13] Z. Lu and Y. Takeuchi, Global asymptotic behavior in single-species discrete diffusion sys-

tems. J. Math. Biol., 32 (1993), 67–77.
[14] J.A.J. Metz and O. Diekmann, The dynamics of physiologically structured populations.

Lecture Notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986.
[15] M.A. Nowak and R.M. May, Virus dynamics: mathematical principles of immunology and

virology. Oxford University Press, Oxford, 2000.
[16] H.L. Smith and P. Waltman, The theory of the chemostat, Dynamics of microbial com-

petition, Cambridge Studies in Mathematical Biology, 13, Cambridge University Press,
Cambridge, 1995.

[17] H.R. Thieme, Mathematics in population biology. Princeton Series in Theoretical and Com-
putational Biology, Princeton University Press, Princeton, NJ, 2003.

[18] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Math. Biosci., 180 (2002),
29–48.

[19] R.S. Varga, Matrix iterative analysis (second revised and expanded edition). Springer Series
in Computational Mathematics, 27, Springer-Verlag, Berlin, 2000




