
Japan J. Indust. Appl. Math., 23 (2006), 139–161 Area 〈3〉

Comparison Between Passive and Active Control

of a Non-Linear Dynamical System

S. A. El-Serafi∗, M. H. Eissa∗, H. M. El-Sherbiny∗∗

and T. H. El-Ghareeb∗∗

∗Department of Engineering Mathematics,
Faculty of Electronic Engineering,
Minufiya University, Menouf 32952, Egypt

∗∗Department of Mathematics, Faculty of Education,

Suez Canal University, Suez, Egypt

Received March 3, 2005

Revised January 5, 2006

Vibrations and dynamic chaos should be controlled in structures and machines. The wing
of the airplane should be free from vibrations or it should be kept minimum. To do so, two
main strategies are used. They are passive and active control methods. In this paper we
present a mathematical study of passive and active control in some non-linear differential
equations describing the vibration of the wing. Firstly, non-linear differential equation
representing the wing system subjected to multi-excitation force is considered and solved
using the method of multiple scale perturbation. Secondly, a tuned mass absorber (TMA)
is applied to the system at simultaneous primary resonance. Thirdly, the same system is

considered with 1:2 internal resonance active control absorber. The approximate solution
is derived up to the fourth order approximation, the stability of the system is investigated
applying both frequency response equations and phase plane methods. Previous work
regarding the wing vibration dealt only with a linear system describing its vibration.
Some recommendations are given by the end of the work.
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0. Introduction

Vibrations and dynamic chaos are undesired phenomenon in structures. They
cause disturbance, discomfort, damage and destruction of the system or the struc-
ture. One of the most effective tools for passive vibration control is the dynamic
absorber or the damper or the neutralizer [1]. Eissa [2] has shown that the non-
linear absorber widens its range of applications, and its damping coefficient should
be kept minimum for better performance [3]. Cheng-Tang Lee et al. [4] demon-
strated that a dynamic vibration absorber system can be used to reduce speed
fluctuations in rotating machinery. Eissa and El-Ganaini [5, 6] studied the control
of vibration and dynamic chaos of mechanical structures having quadratic and cubic
non-linearities, subjected to harmonic excitation using single and multi-absorbers.
Active constrained layer damping (ACLD) has been successfully utilized as effective
means of damping out the vibration of various flexible structures [7–12]. In weakly
non-linear systems, internal resonances may occur if the linear natural frequencies
are commensurate or nearly commensurate, and internal resonances provide cou-
pling and energy exchange among the vibration modes [13, 14]. If two natural
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frequencies of a system with quadratic non-linearities are in the ratio 1:2 there ex-
ists a saturation phenomenon [13]. When the system is excited at a frequency near
the higher natural frequency, the structure responds at the excitation frequency
and the amplitude of the response increases linearly with the excitation amplitude.
However, when the high-frequency modal amplitude reaches a critical value, this
mode saturates and all additional energy added to the system by increasing the
excitation amplitude overflows into the low-frequency mode. Recently the use of
internal resonance and saturation phenomena in non-linear control has been exten-
sively studied [15, 18]. This method is based on an approach originally introduced
by Golnaraghi [15] and thoroughly investigated by Nayfeh et al. [17]. To control
transient vibrations, reference [15] used a second-order controller coupled to a vi-
brating system via quadratic or cubic terms. References [16, 17] used the saturation
phenomenon to successfully control the motion of a d.c. motor with a rigid beam
attached.

Aerospace structures are required to be light in weight and hence composite
structures are increasingly used. Moreover, aerospace composite structures (e.g.
helicopter rotor blades) are often designed with built in elastic bending torsion
couplings to improve aerodynamic efficiency. To actively control such structures
without too much added weight, PZT (lead zirconate titanate) sensors and actua-
tors are attractive because of their mechanical simplicity, small volume, light weight,
large useful bandwidth, efficient conversion of electrical to mechanical energy, abil-
ity to perform shape control, and ability to be easily integrated with the structure
[19]. Wen, et al. [20] investigated non-linear saturation control, non-linear internal
resonance control and linear position-feedback control of steady-state and transient
vibrations of a cantilever beam using PZT patches as sensors and actuators.

The aim of this work is to apply both linear passive, and active non-linear
vibration absorbers using higher-order internal resonances and saturation phenom-
ena to suppress the steady-state vibrations of a cantilever skew aluminum plate
representing the wing of an aircraft [21], [22]. Higher-order internal resonances
are introduced using quadratic terms to couple the controller with the plate. The
multiple time scale perturbation technique is applied throughout. An approximate
solution is derived up to third order approximation. The stability of the system is
investigated applying both frequency response functions (FRFs) and phase-plane
methods. The effects of the absorber on system behavior are studied numerically.
Optimum working conditions of the system are obtained applying both passive and
active control methods. Both control methods are demonstrated and compared
numerically.

1. Mathematical Modeling

The considered system is shown schematically in Fig. 1.
The investigated equation is the modified non-linear differential equation de-
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Fig. 1. The non-linear cantilevered skew aluminium plate with a 1:2 non-linear

vibration absorber for controlling the first-mode vibration.

scribing the vibration of an aircraft wing [22] which is given by:

ü + 2ζ̄ωu̇ + ω2u + ᾱu2 + β̄u3 =
N∑

j=1

F̄j cos Ωjt (1)

where u, u̇ and ü represent displacement, velocity and acceleration of the vibrating
system, ω is the natural frequency, ζ̄ is the damping coefficient, ᾱ and β̄ are non-
linear stiffness coefficients, F̄j is the forcing amplitudes and Ωj are the excitation
frequencies.

1.1. Perturbation analysis
We seek a first-order approximate solution of equation (1) by using the method

of multiple scales [2] in the form

u(T0, Tn; ε) =
∞∑

k=0

εkuk(T0, Tn) (2)

where ε is a small dimensionless parameter used for book-keeping only; T0 = t

and Tn = εnt where n = (1, 2, . . .) are the fast and slow time scales respectively.
To make dampings, non-linearities, and the primary resonance force appear in the
same perturbation equations, we order that ζ̄ = εζ, ᾱ = εα, β̄ = εβ, F̄j = εFj .
Substituting equation (2) into equation (1) and equating coefficients of like powers
of ε, we obtain the following set of ordinary differential equations:

(D2
0 + ω2)u0 = 0 (3)

(D2
0 + ω2)u1 = −2D0D1u0 − 2ζωD0u0 − αu2

0 − βu3
0 +

N∑
j=1

Fj cos ΩjT0 (4)

(D2
0 + ω2)u2 = −D2

1u0 − 2D0D1u1 − 2ζω(D1u0 + D0u1) − 2αu0u1 − 3βu2
0u1

(5)

(D2
0 + ω2)u3 = −D2

1u1 − 2D0D1u2 − 2ζω(D1u1 + D0u2) − α(u2
1 + 2u0u2)

− 3β(u2
1u0 + u2

0u2) (6)
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where
d

dt
= D0 + εD1 + ε2D2 + · · · , Di =

∂

∂Ti
, i = 0, 1, 2, . . . .

For our considered case we have the external excitation frequency will be Ωj ,
j = 1, 2, 3, 4 for simplicity.

The solution of equation (3) can be expressed in the form

u0(T0, Tn) = A0(Tn)eiωT0 + cc (7)

where A0 is a complex function in Tn and cc represents the complex conjugate.
Substituting equation (7) into equation (4), yields

(D2
0 + ω2)u1 =

[−2iω(D1A0 + ζωA0) − 3βA2
0A0

]
eiωT0 − αA2

0e
2iωT0

− 2αA0A0 − βA3
0e

3iωT0 +
1
2

4∑
j=1

Fje
iΩjT0 + cc (8)

Eliminating the secular terms, then the first order approximation is given by

u1(T0, Tn) = E1e
iωT0 + E2e

2iωT0 + E3e
3iωT0 + E4 +

4∑
j=1

E(4+j)e
iΩjT0 + cc (9)

where Em (m = 1, 2, 3, 4) are complex functions in Tn. From equation (7) and (9)
into equation (5), yields

(D2
0 + ω2)u2 =

[
−D2

1A0 − 2iωD1A1 − 2ζωD1A0 − 2iζω2A1 +
10α2

3ω2
A2

0A0

− 3β2

8ω2
A3

0A
2

06βA0A0A1 − 3βA1A
2
0

]
eiωT0

+
[
−8iα

3ω
A0D1A0 − 4iα

3
ζA2

0 +
15αβ

4ω2
A3

0A0 − 2αA0A1

]
e2iωT0

−
[9iβ

4ω
A2

0D1A0 +
3iβ

4
ζA3

0 +
2α2

3ω2
A3

0 +
3β2

4ω2
A4

0A0 + 3βA2
0A1

]
e3iωT0

−
4∑

j=1

Fj

ω2 − Ω2
j

[
(iζωΩj + 3βA0A0)eiΩjT0 + αA0(ei(ω+Ωj)T0 + ei(ω−Ωj)T0)

+
3
2
βA2

0(e
i(2ω+Ωj)T0 + ei(2ω−Ωj)T0)

]
− 5αβ

4ω2
A4

0e
4iωT0 − 3β2

8ω2
A5

0e
5iωT0

+
10αβ

ω2
A2

0A
2

0 + A0A1 + A1A0 + cc (10)

To obtain a bounded solution the secular terms should be eliminated, then the
second order approximation is given by

u2(T0, Tn) = H1e
iωT0 + H2e

2iωT0 + H3e
3iωT0 + H4e

4iωT0 + H5e
5iωT0
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+
4∑

j=1

[
H(5+j)e

iΩjT0 + H(9+j)e
i(ω+Ωj)T0 + H(13+j)e

i(ω−Ωj)T0

+ H(17+j)e
i(2ω+Ωj)T0 + H(21+j)e

i(2ω−Ωj)T0
]
+ H26 + cc (11)

where Hm (m = 1, 2, . . . , 26) are complex functions in Tn. From (7), (9) and (11)
into (6), we get the third order approximation as:

u3(T0, Tn)=P1e
iωT0 + P2e

2iωT0 + P3e
3iωT0 + P4e

4iωT0 + P5e
5iωT0 + P6e

6iωT0

+ P7e
7iωT0 + P8e

iΩ1T0 + P9e
iΩ2T0 + P10e

iΩ3T0 + P11e
iΩ4T0

+ P12e
2iΩ1T0 + P13e

2iΩ2T0 + P14e
2iΩ3T0 + P15e

2iΩ4T0 + P16e
i(2Ω1+ω)T0

+ P17e
i(2Ω2+ω)T0 + P18e

i(2Ω3+ω)T0 + P19e
i(2Ω4+ω)T0 + P20e

i(2Ω1−ω)T0

+ P21e
i(2Ω2−ω)T0 + P22e

i(2Ω3−ω)T0 + P23e
i(2Ω4−ω)T0 + P24e

i(Ω1+ω)T0

+ P25e
i(Ω2+ω)T0 + P26e

i(Ω3+ω)T0 + P27e
i(Ω4+ω)T0 + P28e

i(Ω1−ω)T0

+ P29e
i(Ω2−ω)T0 + P30e

i(Ω3−ω)T0 + P31e
i(Ω4−ω)T0 + P32e

i(Ω1+2ω)T0

+ P33e
i(Ω2+2ω)T0 + P34e

i(Ω3+2ω)T0 + P35e
i(Ω4+2ω)T0 + P36e

i(Ω1−2ω)T0

+ P37e
i(Ω2−2ω)T0 + P38e

i(Ω3−2ω)T0 + P39e
i(Ω4−2ω)T0 + P40e

i(Ω1+3ω)T0

+ P41e
i(Ω2+3ω)T0 + P42e

i(Ω3+3ω)T0 + P43e
i(Ω4+3ω)T0 + P44e

i(Ω1−3ω)T0

+ P45e
i(Ω2−3ω)T0 + P46e

i(Ω3−3ω)T0 + P47e
i(Ω4−3ω)T0 + P48e

i(Ω1+4ω)T0

+ P49e
i(Ω2+4ω)T0 + P50e

i(Ω3+4ω)T0 + P51e
i(Ω4+4ω)T0 + P52e

i(Ω1−4ω)T0

+ P53e
i(Ω2−4ω)T0 + P54e

i(Ω3−4ω)T0 + P55e
i(Ω4−4ω)T0

+ P56[ei(Ω2+Ω1)T0 + ei(Ω2−Ω1)T0 ] + P57[ei(Ω3+Ω1)T0 + ei(Ω3−Ω1)T0 ]

+ P58[ei(Ω3+Ω2)T0 + ei(Ω3−Ω2)T0 ] + P59[ei(Ω4+Ω1)T0 + ei(Ω4−Ω1)T0 ]

+ P60[ei(Ω4+Ω2)T0 + ei(Ω4−Ω2)T0 ] + P61[ei(Ω4+Ω3)T0 + ei(Ω4−Ω3)T0 ]

+ P62e
i[(Ω2+Ω1)+ω]T0 + P63e

i[(Ω2+Ω1)−ω]T0 + P64e
i[(Ω2−Ω1)+ω]T0

+ P65e
i[(Ω2−Ω1)−ω]T0 + P66e

i[(Ω3+Ω1)+ω]T0 + P67e
i[(Ω3+Ω1)−ω]T0

+ P68e
i[(Ω3−Ω1)+ω]T0 + P69e

i[(Ω3−Ω1)−ω]T0 + P70e
i[(Ω3+Ω2)+ω]T0

+ P71e
i[(Ω3+Ω2)−ω]T0 + P72e

i[(Ω3−Ω2)+ω]T0 + P73e
i[(Ω3−Ω2)−ω]T0

+ P74e
i[(Ω4+Ω1)+ω]T0 + P75e

i[(Ω4+Ω1)−ω]T0 + P76e
i[(Ω4−Ω1)+ω]T0

+ P77e
i[(Ω4−Ω1)−ω]T0 + P78e

i[(Ω4+Ω2)+ω]T0 + P79e
i[(Ω4+Ω2)−ω]T0

+ P80e
i[(Ω4−Ω2)+ω]T0 + P81e

i[(Ω4−Ω2)−ω]T0 + P82e
i[(Ω4+Ω3)+ω]T0

+ P83e
i[(Ω4+Ω3)−ω]T0 + P84e

i[(Ω4−Ω3)+ω]T0 + P85e
i[(Ω4−Ω3)−ω]T0

+ P86 + cc (12)

where Pm (m = 1, 2, . . . , 55, 62, 63, . . . , 86) are complex functions in Tn. From the
above analysis the solution of u is given by

u = u0 + εu1 + ε2u2 + ε3u3 + O(ε4) (13)

From the above-derived solutions, the reported resonance cases are deduced as
shown in Table 1.
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Table 1.

No. Type of Resonances Case
1 trivial resonance Ωj

∼= ω = 0
2 primary resonance Ωj

∼= ω

3 sub-harmonic resonances Ωj
∼= nω, n = 2, 3, 4

4 super-harmonic resonances Ωj
∼= ω/2

5 combined resonances ±ω ∼= ±Ω1 ± Ω2, ±ω ∼= ±Ω1 ± Ω3,
±ω ∼= ±Ω1 ± Ω4, ±ω ∼= ±Ω2 ± Ω3,
±ω ∼= ±Ω2 ± Ω4, ±ω ∼= ±Ω3 ± Ω4

±ω ∼= 1
2 (±Ω1 ± Ω2), ±ω ∼= 1

2 (±Ω1 ± Ω3)

±ω ∼= 1
2 (±Ω1 ± Ω4), ±ω ∼= 1

2 (±Ω2 ± Ω3)

±ω ∼= 1
2 (±Ω2 ± Ω4), ±ω ∼= 1

2 (±Ω3 ± Ω4)

6 simultaneous resonance any combination of the two resonance cases
are classified as simultaneous resonance

1.2. Stability of the system
After studying numerically the different resonance cases, one of the worst cases

has been chosen to study the system stability. The selected resonance case is
the primary resonance one where Ωj

∼= ω. In this case we introduce a detuning
parameter σ such that

Ωj = ω + εσ, j = 1, 2, 3, 4 (14)

Eliminating the secular terms of the first order approximation given by equa-
tion (8) leads to the solvability conditions for the first order approximation. Using
equation (14) and noting that A0 is a function in T1 only, we get

−2iωD1A0 − 2iζω2A0 − 3βA2
0A0 +

1
2
Fje

iσT1 = 0 (15)

Substituting the polar form A0 = 1
2a(T1)eiγ(T1) into equation (15), we get

−2iω

(
1
2
a′ +

1
2
iaγ′

)
eiγ − 2iζω2

(
1
2
aeiγ

)
− 3β

(
1
8
a3eiγ

)
+

1
2
Fje

iσT1 = 0 (16)

which yields:

a′ + iaγ′ + ζωa − 3iβa3

8ω
+

iFj

2ω
(cos μ + i sin μ) = 0 (17)

where μ = σT1 − γ, μ′ = σ − γ′, separating real and imaginary parts in equation
(17), we get

a′ + ζωa − Fj

2ω
sin μ = 0 a(σ − μ′) − 3βa3

8ω
+

Fj

2ω
cos μ = 0 (18)
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Then for steady state solution a′ = μ′ = 0, and equation (18) becomes

ζω =
Fj

2aω
sin μ σ − 3βa2

8ω
= − Fj

2aω
cos μ (19)

squaring equation (19), and adding the results,we get

σ2− 3βa2

4ω
σ+

(
ζ2ω2 +

9β2a4

64ω2
− F 2

j

4a2ω2

)
= 0 ⇒ σ =

3βa2

8ω
±

√
F 2

j − 4a2ζ2ω4 (20)

Stability of the fixed points
To analyze the stability of the fixed points, one lets

a = b0 + b1(T1), μ = μ0 + μ1(T1) (21)

where b0 and μ0 satisfy equation (18) and b1 and μ1 are perturbation terms which
are assumed to be small compared to b0 and μ0, substituting equation (21) into
equation (18), the following are obtained

b́1 + Γ1b1 + Γ2μ1 = 0 (22)

μ́1 + Γ1μ1 + Γ3b1 = 0 (23)

where

Γ1 = ζω, Γ2 = b0

(
σ − 3βb2

0

8ω

)
and Γ3 =

1
b0

(
μ́0 +

9βb2
0

8ω
− σ

)

The eigenvalues of the above system of equations (22) and (23) can be obtained
as follows ∣∣∣∣∣

(λ + Γ1) Γ2

Γ3 (λ + Γ1)

∣∣∣∣∣ = 0

i.e.

λ2 + 2λΓ1 + (Γ 2
1 − Γ2Γ3) = 0 or λ = −Γ1 ±

√
Γ2Γ3

Hence, the non-linear solution is stable if and only if the real part of λ ≺ 0, i.e.
Γ 2

1 � Γ2Γ3 otherwise it is unstable.

1.3. Results and discussion
Results are presented in graphical forms as steady state amplitude against

detuning parameter (σ) and as time history. A good criterion of both stability
and dynamic chaos presence is the phase-plane trajectories, which are shown for
some considered cases. The solutions of the frequency response equations regard-
ing the stability of the system is shown in Fig. 2. It can be seen from the figure
that maximum steady state amplitude occurs at primary resonance when Ωj

∼= ω.
Figs. 2 (a)–(d) show the effects of the damping coefficient ζ, the non-linear param-
eter β, the natural frequency ω and the excitation amplitudes Fj on the steady
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state amplitude “a”. Fig. 2 (a) shows that the curve is bent to the right, leading
to the occurrence of the jump phenomena and the effect of increasing or decreasing
ζ is insignificant denoting the occurrence of the saturation phenomena. Fig. 2 (b)
shows that the positive and negative values of β, produce either hard or soft spring
respectively as the curve is either bent to the right or the left, leading to the appear-
ance of the jump phenomenon. Fig. 2 (c) indicates that the steady state amplitude
is monotonic decreasing function in ω also for the decreasing natural frequency ω,
the curve is bent to the right leading to the occurrence of the jump phenomena.
Fig. 2 (d) shows that the steady state amplitude is a monotonic increasing function
in the excitation amplitude Fj .

(a) Effects of damping coefficient ζ (b) Effects of non-linear parameter β

(c) Effects of natural frequency (d) Effects of excitation amplitude Fj

Fig. 2.

Fig. 3 illustrates the response and the phase plane for the non-resonant system
at some practical values of the equation parameters. It can be seen from the figure
that the maximum steady state amplitude is about 30% of the maximum excitation
amplitude F1. The phase-plane shows approximately fine limit cycle denoting that
the system is free of chaos.
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Fig. 3. Non-resonance system behavior (basic case). ζ = 0.08, ω = 3, α = 0.05,

β = 0.2, F1 = 0.05, F2 = 0.0125, F3 = 0.0025, F4 = 0.0005, Ω1 = 3.5, Ω2 = 7,

Ω3 = 10.5, Ω4 = 14.

1.4. Resonance cases
Some of the deduced resonance cases are confirmed numerically (Fig. 4). Ta-

ble 2 summarizes the different considered cases. It can be seen that the primary
resonance case or cases represent the system worst case.

(a) Primary resonance Ω1
∼= ω

(b) Sub-harmonic resonance Ω1
∼= 2ω
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(c) Super-harmonic resonance Ω1
∼= ω/2

(d) Combined resonance ω ∼= Ω1 + Ω2

(e) Combined resonance ω ∼= Ω2 − Ω1

(f) Simultaneous resonance Ω1
∼= Ω2

∼= Ω3
∼= Ω4

∼= ω

Fig. 4.
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Table 2. Summary of some investigated resonance cases.

No Resonance type Case Amplitude ratio Chaos
1 Non-resonant 100% Limit cycle
2 Primary Ω1

∼= ω 460% Limit cycle
3 resonance Ω2

∼= ω 215% Multi-Limit cycle
4 Sub-harmonic Ω1

∼= 2ω 15% Multi-Limit cycle
5 resonance Ω2

∼= 2ω 105% Double-Limit
6 Ω1

∼= 3ω 10% Multi-Limit cycle
7 Ω2

∼= 3ω 105% Limit cycle
8 Ω1

∼= 4ω 5% Multi-Limit cycle
9 Ω2

∼= 4ω 100% Limit cycle
10 Super-harmonic Ω1

∼= ω/2 50% Multi-Limit cycle
11 resonance Ω2

∼= ω/2 115% Multi-Limit cycle
12 Combined ω ∼= Ω1 + Ω2 60% Double-Limit cycle
13 resonance ω ∼= Ω2 − Ω1 105% Limit cycle
14 2ω ∼= Ω1 + Ω2 150% Multi-Limit cycle
15 2ω ∼= Ω2 − Ω1 105% Limit cycle
16 Simultaneous ω ∼= Ω1

∼= Ω2 570% Limit cycle
resonance

2. Passive Control

Using a linear tuned mass absorber (TMA) connected to the system, equations
of motions can be written in the following form:

ü2 + 2εζωu̇2 + ω2u2 + εαu2
2 + εβu3

2 + εζ1(u̇2 − u̇1) + εγ(u2 − u1)

= ε
N∑

j=1

Fj cos Ωjt (24)

ü1 + 2εζ2ω1(u̇1 − u̇2) + ω2
1(u1 − u2) = 0 (25)

where u1 denotes the response of the second-order controller, u2 represents one of
the modal co-ordinates of a structure, ω and ω1 are the natural frequencies, ζ and
ζ2 are the damping coefficients, α and β are non-linear coefficients of the wing, ε is a
small perturbation parameter, Fj the forcing amplitudes and Ωj are the excitation
frequencies, j = 1, 2 for simplicity. Following the same procedure as in part 1, we
get:

u20(T0, Tn) = A0(Tn)eiωT0 + cc (26)

u10(T0, Tn) = B0(Tn)eiω1T0 + C0(Tn)eiωT0 + cc (27)
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u21(T0, Tn) = K1e
iωT0 + K2e

2iωT0 + K3e
3iωT0 + K4e

iω1T0 + K5e
iΩ1T0

+ K6e
iΩ2T0 + K7 + cc (28)

u11(T0, Tn) = K8e
iω1T0 + K9e

iωT0 + K10e
2iωT0 + K11e

3iωT0 + K12e
iΩ1T0

+ K13e
iΩ2T0 + K14 + cc (29)

u22(T0, Tn) = R1e
iωT0 + R2e

2iωT0 + R3e
3iωT0 + R4e

4iωT0 + R5e
5iωT0 + R6e

iω1T0

+ R7e
i(ω1+ω)T0 + R8e

i(ω1−ω)T0 + R9e
i(ω1+2ω)T0 + R10e

i(ω1−2ω)T0

+ R11e
iΩ1T0 + R12e

iΩ2T0 + R13e
i(ω+Ω1)T0 + R14e

i(ω+Ω2)T0

+ R15e
i(ω−Ω1)T0 + R16e

i(ω−Ω2)T0 + R17e
i(2ω+Ω1)T0 + R18e

i(2ω+Ω2)T0

+ R19e
i(2ω−Ω1)T0 + R20e

i(2ω−Ω2)T0 + R21 + cc (30)

u12(T0, Tn) = P1e
iωT0 + P2e

2iωT0 + P3e
3iωT0 + P4e

4iωT0 + P5e
5iωT0 + P6e

iω1T0

+ P7e
i(ω1+ω)T0 + P8e

i(ω1−ω)T0 + P9e
i(ω1+2ω)T0 + P10e

i(ω1−2ω)T0

+ P11e
iΩ1T0 + P12e

iΩ2T0 + P13e
i(ω+Ω1)T0 + P14e

i(ω+Ω2)T0

+ P15e
i(ω−Ω1)T0 + P16e

i(ω−Ω2)T0 + P17e
i(2ω+Ω1)T0 + P18e

i(2ω+Ω2)T0

+ P19e
i(2ω−Ω1)T0 + P20e

i(2ω−Ω2)T0 + P21 + cc (31)

u23(T0, Tn) = q1e
iωT0 + q2e

2iωT0 + q3e
3iωT0 + q4e

4iωT0 + q5e
5iωT0 + q6e

6iωT0

+ q7e
7iωT0 + q8e

iω1T0 + q9e
2iω1T0 + q10e

i(ω1+ω)T0 + q11e
i(ω1−ω)T0

+ q12e
i(ω1+2ω)T0 + q13e

i(ω1−2ω)T0 + q14e
iΩ1T0 + q15e

iΩ2T0

+ q16e
2iΩ1T0 + q17e

2iΩ2T0 + q18e
i(ω+Ω1)T0 + q19e

i(ω+Ω2)T0

+ q20e
i(ω−Ω1)T0 + q21e

i(ω−Ω2)T0 + q22e
i(2ω+Ω1)T0 + q23e

i(2ω+Ω2)T0

+ q24e
i(2ω−Ω1)T0 + q25e

i(2ω−Ω2)T0 + q26e
i(Ω1+Ω2)T0 + q27e

i(Ω2−Ω1)T0

+ q28e
i(ω+(Ω1+Ω2))T0 + q29e

i(ω+(Ω2−Ω1))T0 + q30e
i(ω−(Ω1+Ω2))T0

+ q31e
i(ω−(Ω2−Ω1))T0 + q32 + cc (32)

u13(T0, Tn) = g1e
iωT0 + g2e

2iωT0 + g3e
3iωT0 + g4e

4iωT0 + g5e
5iωT0 + g6e

6iωT0

+ g7e
7iωT0 + g8e

iω1T0 + g9e
2iω1T0 + g10e

i(ω1+ω)T0 + g11e
i(ω1−ω)T0

+ g12e
i(ω1+2ω)T0 + g13e

i(ω1−2ω)T0 + g14e
iΩ1T0 + g15e

iΩ2T0

+ g16e
2iΩ1T0 + g17e

2iΩ2T0 + g18e
i(ω+Ω1)T0 + g19e

i(ω+Ω2)T0

+ g20e
i(ω−Ω1)T0 + g21e

i(ω−Ω2)T0 + g22e
i(2ω+Ω1)T0 + g23e

i(2ω+Ω2)T0

+ g24e
i(2ω−Ω1)T0 + g25e

i(2ω−Ω2)T0 + g26e
i(Ω1+Ω2)T0 + g27e

i(Ω2−Ω1)T0

+ g28e
i(ω+(Ω1+Ω2))T0 + g29e

i(ω+(Ω2−Ω1))T0 + g30e
i(ω−(Ω1+Ω2))T0

+ g31e
i(ω−(Ω2−Ω1))T0 + g32 + cc (33)

where A0, B0, C0, Ki, Rm, Pm, qn, gn (i = 1, 2, . . . , 14), (m = 1, 2, . . . , 21) and
(n = 1, 2, . . . , 32) are complex functions in Tn. From the above analysis the general
solutions of u2 and u1 is given by

u2 = u20+εu21+ε2u22+ε3u23+O(ε4) and u1 = u10+εu11+ε2u12+ε3u13+O(ε3)
Many resonance cases are shown in Table 3.
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Table 3.

No. Type of Resonances Case
1 trivial resonance Ω1

∼= Ω2
∼= ω ∼= ω1 = 0

2 primary resonance Ω1
∼= ω, Ω2

∼= ω, Ω1
∼= ω1, Ω2

∼= ω1

3 sub-harmonic resonances Ω1
∼= nω, Ω2

∼= nω, ω1 = mω

n = 2, 3 and m = 2, 3, . . . , 7
4 super-harmonic resonances Ω1

∼= ω/2, Ω2
∼= ω/2, Ω1

∼= ω/3, Ω2
∼= ω/3,

ω1 = ω/2, Ω1
∼= ω1/2, Ω2

∼= ω1/2
5 combined resonances ±ω ∼= ±Ω1 ± Ω2, ±ω1

∼= ±Ω1 ± Ω2,
±ω ∼= 1

2 (±Ω1 ± Ω2), ±Ω1
∼= ±ω ± ω1,

±Ω2
∼= ±ω ± ω1, ±Ω1

∼= ±2ω ± ω1,
±Ω2

∼= ±2ω ± ω1, ±Ω1 ± Ω2 = ±ω ± ω1

6 simultaneous resonance any combination of the two resonance cases
are classified as simultaneous resonance

2.1. Stability of the system
We study the stability of the system at the simultaneous primary resonance

Ω1
∼= ω, Ω2

∼= ω1. Using the detuning σ1 and σ2 such that

Ω1
∼= ω + εσ1 and Ω2

∼= ω1 + εσ2 (34)

Eliminating the secular terms of equations (28) and (29), leads to the solvabil-
ity conditions for the first order approximation and noting that A0 and B0 are a
function in T1 only, we get

[
−2iω(D1A0 + ζωA0) − 3βA2

0A0 − iωζ1A0 − γA0 +
ω2

1A0

ω2
1 − ω2

(iωζ1 + γ)
]

eiωT0

+
1
2
F1e

iΩ1T0 = 0 (35)

−
[
2iω1(D1B0 + ζ2ω1B0) +

ω2
1B0

ω2
1 − ω2

(iω1ζ1 + γ)
]

eiω1T0

+
ω2

1F2

2(ω2 − Ω2
2)

eiΩ2T0 = 0 (36)

putting

A0 =
1
2
a1(T1)eim(T1) and B0 =

1
2
a2(T1)ein(T1)

similar to the former system, there are three possibilities in addition to the trivial
solution. They are

(1) a1 �= 0, a2 = 0 (2) a2 �= 0, a1 = 0 (3) a1 �= 0, a2 �= 0
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The corresponding frequency response function (FRF) for each case are:

σ2
1 −

(
3βa2

1

4ω
+

γ

ω
− γω3

1

ω2(ω2
1 − ω2)

)
σ1 +

[
9β2a4

1

64ω2
+

γ2

4ω2
+

γ2ω4
1

4ω2(ω2
1 − ω2)2

+
3βγa2

1

4ω2
− 3βγω2

1a
2
1

8ω2(ω2
1 − ω2)

− γ2ω2
1

2ω2(ω2
1 − ω2)

+ ζ2ω2 +
ζ2
1

4
+

ω4
1ζ2

1

4(ω2
1 − ω2)2

+ ζζ1ω − ωω2
1ζζ1

ω2
1 − ω2

− ω2
1ζ2

1

2(ω2
1 − ω2)

− F 2
1

4ω2a2
1

]
= 0 (37)

σ2
2 − γω1

ω2
1 − ω2

σ2 +
(

ω2
1γ2

4(ω2
1 − ω2)2

+ ζ2
2ω2

1 +
ω4

1ζ
2
1

4(ω2
1 − ω2)2

+
ω3

1ζ1ζ2

ω2
1 − ω2

− F 2
2 ω2

1

4a2
2(ω2 − Ω2

2)2

)
= 0 (38)

and case (3) is represented by equations (37) and (38).

2.2. Results and discussion
Fig. 5 shows the effects of the detuning parameter σ1 on the steady state

amplitude of the main system a1 for the stability first case where a1 �= 0 and
a2 = 0. Fig. 5 (a) shows that the curves converges or diverges as γ is decreasing
or increasing, leading to the appearance of the jump phenomenon. Figs. 5 ((b) and

(a) Effects of non-linear parameter γ

(b) Effects of natural frequency ω1 (c) Effects of damping coefficient ζ1

Fig. 5.
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(c)) show that the curves are bent to the right leading to the appearance of the
jump phenomenon and the effect of increasing or decreasing ω1 and ζ1 trivial.

Fig. 6 shows the effects of the detuning parameter σ2 on the steady state am-
plitude of the main system a2 for the stability second case a2 �= 0 and a1 = 0,

not leading to the appearance of the jump phenomenon. Fig. 6 (a) shows that the
positive and negative values of γ, the curve is neither bent to the right nor the left.
Figs. 6 ((b) and (g)) indicate that the steady state amplitude is monotonic decreas-
ing function in natural frequency ω and in the excitation frequency Ω2. Figs. 6 ((c)

(a) Effects of non-linear parameter γ

(b) Effects of natural frequency ω (c) Effects of natural frequency ω1

(d) Effects of damping coefficient ζ1 (e) Effects of damping coefficient ζ2
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(f) Effects of excitation amplitude F2 (g) Effects of excitation frequency Ω2

Fig. 6.

and (f)) show that the steady state amplitude a2 is a monotonic decreasing function
in the natural frequency ω1 and increasing function in the excitation amplitude F2.
Figs. 6 ((d) and (e)) show increasing or decreasing ζ1 and ζ2 do not effect the steady
state amplitude a2.

Fig. 7 shows that the steady state amplitude without absorber at primary
resonance where, Ω1 = ω is about 100% of the maximum excitation amplitude F1,

the system is stable and free of dynamic chaos.

Fig. 7. System behavior at primary resonance.

Effects of the TMA
Fig. 8 illustrates the response for the system with absorber at the simultaneous

primary resonance Ω1
∼= ω ∼= ω1. The effectiveness of the absorber Ea (steady state

of the wing without absorber /steady state with absorber) is increased about 125.
The phase plane is approximately limit cycle.
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Fig. 8. System behavior with absorber at the simultaneous primary resonance

Ω1
∼= ω ∼= ω1. ω = ω1 = Ω1 = 4, α = 0.1, β = 0.1, γ = 1.6, ζ = 0.03,

ζ1 = 0.005, ζ2 = 0.00625, F1 = 1, F2 = 0.0025, Ω2 = 7.5.

3. Active Control

Here, active control is applied to improve the behavior of the system. A second
order non-linear controller is added to the main system which represents a 1:2 in-
ternal resonance active control absorber of a vibrating aircraft wing in the following
form [20], [21] and [22].

ü1 + 2εζ1ω1u̇1 + ω2
1u1 = εg12u1u2 (39)

ü2 + 2εζ2ω2u̇2 + ω2
2u2 + εαu2

2 + εβu3
2 = εg11u

2
1 + ε

2∑
j=1

Fj cos(ΩjT0) (40)

where u1 denotes the response of a second-order controller, ω1 is the natural fre-
quency of the controller, ζ1 is the damping ratio of the controller, u2 represents one
of the modal co-ordinates of the wing, ω2 is this modal frequency, ζ2 is the damping
ratio, g11 and g12 are positive gain constants, F is the amplitude of the external
excitation force, Ωj are the external excitation frequencies, ω2 is close to 2ω1 (i.e.
1:2), Ωj is close to ω2, t is the time, α and β are coefficients of non-linear terms,
ε is a small perturbation parameter. The analytic solutions of equations (39) and
(40) are obtained assuming that the coefficients of ζ1ω1, ζ2ω2, g12, g11, F , α and β

are small. Following the same procedure, we get:

u10(T0, Tn) = A0(Tn)eiω1T0 + cc (41)

u20(T0, Tn) = B0(Tn)eiω2T0 + cc (42)

u11(T0, Tn) = C1e
iω1T0 + C2e

i(ω1+ω2)T0 + C3e
i(ω1−ω2)T0 + cc (43)

u21(T0, Tn) = C4e
iω2T0 + C5e

2iω2T0 + C6e
3iω2T0 + C7e

iΩ1T0 + C8e
iΩ2T0

+ C9 + cc (44)

u12(T0, Tn) = F1e
iω1T0 + F2e

i(ω1+ω2)T0 + F3e
i(ω1−ω2)T0 + F4e

i(ω1+2ω2)T0



156 S.A. El-Serafi, M.H. Eissa, H.M. El-Sherbiny and T.H. El-Ghareeb

+ F5e
i(ω1−2ω2)T0 + F6e

i(ω1+3ω2)T0 + F7e
i(ω1−3ω2)T0 + F8e

i(ω1+Ω1)T0

+ F9e
i(ω1−Ω1)T0 + F10e

i(ω1+Ω2)T0 + F11e
i(ω1−Ω2)T0 + cc (45)

u22(T0, Tn) = g1e
iω2T0 + g2e

2iω2T0 + g3e
3iω2T0 + g4e

4iω2T0 + g5e
5iω2T0 + g6e

2iω1T0

+ g7e
i(ω2+2ω1)T0 + g8e

i(ω2−2ω1)T0 + g9e
iΩ1T0 + g10e

iΩ2T0

+ g11e
i(ω2+Ω1)T0 + g12e

i(ω2−Ω1)T0 + g13e
i(ω2+Ω2)T0 + g14e

i(ω2−Ω2)T0

+ g15e
i(2ω2+Ω1)T0 + g16e

i(2ω2−Ω1)T0 + g17e
i(2ω2+Ω2)T0

+ g18e
i(2ω2−Ω2)T0 + g19 + cc (46)

u13(T0, Tn) = h1e
iω1T0 + h2e

3iω1T0 + h3e
i(ω1+ω2)T0 + h4e

i(ω1−ω2)T0 + h5e
i(ω1+2ω2)T0

+ h6e
i(ω1−2ω2)T0 + h7e

i(ω1+3ω2)T0 + h8e
i(ω1−3ω2)T0 + h9e

i(ω1+4ω2)T0

+ h10e
i(ω1−4ω2)T0 + h11e

i(ω1+5ω2)T0 + h12e
i(ω1−5ω2)T0

+ h13e
i(ω1+Ω1)T0 + h14e

i(ω1−Ω1)T0 + h15e
i(ω1+Ω2)T0 + h16e

i(ω1−Ω2)T0

+ h17e
i(Ω1+(ω1+ω2))T0 + h18e

i(Ω1−(ω1+ω2))T0 + h19e
i(Ω2+(ω1+ω2))T0

+ h20e
i(Ω2−(ω1+ω2))T0 + h21e

i(Ω1+(ω1−ω2))T0 + h22e
i(Ω1−(ω1−ω2))T0

+ h23e
i(Ω2+(ω1−ω2))T0 + h24e

i(Ω2−(ω1−ω2))T0 + h25e
i(Ω1+(ω1+2ω2))T0

+ h26e
i(Ω1−(ω1+2ω2))T0 + h27e

i(Ω2+(ω1+2ω2))T0 + h28e
i(Ω2−(ω1+2ω2))T0

+ h29e
i(Ω1+(ω1−2ω2))T0 + h30e

i(Ω1−(ω1−2ω2))T0 + h31e
i(Ω2+(ω1−2ω2))T0

+ h32e
i(Ω2−(ω1−2ω2))T0 + h33e

i(3ω1+ω2)T0 + h34e
i(3ω1−ω2)T0 + cc

(47)

u23(T0, Tn) = k1e
iω2T0 + k2e

2iω2T0 + k3e
3iω2T0 + k4e

4iω2T0 + k5e
5iω2T0 + k6e

6iω2T0

+ k7e
7iω2T0 + k8e

iω1T0 + k9e
2iω1T0 + k10e

3iω1T0 + k11e
4iω1T0

+ k12e
i(2ω1+ω2)T0 + k13e

i(2ω1−ω2)T0 + k14e
i(2ω1+2ω2)T0

+ k15e
i(2ω1−2ω2)T0 + k16e

i(2ω1+3ω2)T0 + k17e
i(2ω1−3ω2)T0

+ k18e
i(2ω1+4ω2)T0 + k19e

i(2ω1−4ω2)T0 + k20e
iΩ1T0 + k21e

iΩ2T0

+ k22e
2iΩ1T0 + k23e

2iΩ2T0 + k24e
i(Ω1+Ω2)T0 + k25e

i(Ω2−Ω1)T0

+ k26e
i(Ω1+2ω1)T0 + k27e

i(Ω1−2ω1)T0 + k28e
i(Ω2+2ω1)T0

+ k29e
i(Ω2−2ω1)T0 + k30e

i(Ω1+ω2)T0 + k31e
i(Ω1−ω2)T0

+ k32e
i(Ω2+ω2)T0 + k33e

i(Ω2−ω2)T0 + k34e
i(Ω1+2ω2)T0

+ k35e
i(Ω1−2ω2)T0 + k36e

i(Ω2+2ω2)T0 + k37e
i(Ω2−2ω2)T0

+ k38e
i(Ω1+3ω2)T0 + k39e

i(Ω1−3ω2)T0 + k40e
i(Ω2+3ω2)T0

+ k41e
i(Ω2−3ω2)T0 + k42e

i(Ω1+4ω2)T0 + k43e
i(Ω1−4ω2)T0

+ k44e
i(Ω2+4ω2)T0 + k45e

i(Ω2−4ω2)T0 + k46e
i(2Ω1+ω2)T0

+ k47e
i(2Ω1−ω2)T0 + k48e

i(2Ω2+ω2)T0 + k49e
i(2Ω2−ω2)T0

+ k50e
i(ω2+(Ω1+Ω2))T0 + k51e

i(ω2−(Ω1+Ω2))T0 + k52e
i(ω2+(Ω1−Ω2))T0

+ k53e
i(ω2−(Ω1−Ω2))T0 + k54e

i(Ω1+(2ω1+ω2))T0 + k55e
i(Ω1−(2ω1+ω2))T0

+ k56e
i(Ω2+(2ω1+ω2))T0 + k57e

i(Ω2−(2ω1+ω2))T0 + k58e
i(Ω1+(2ω1−ω2))T0
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+ k59e
i(Ω1−(2ω1−ω2))T0 + k60e

i(Ω2+(2ω1−ω2))T0 + k61e
i(Ω2−(2ω1−ω2))T0

+ k62e
i(4ω1+ω2)T0 + k63e

i(4ω1−ω2)T0 + k64 + cc (48)

where A0, B0, Ci, Fm, gn, hs, kl: (i = 1, 2, . . . , 9), (m = 1, 2, . . . , 11), (n =
1, 2, . . . , 19), (s = 1, 2, . . . , 34) and (l = 1, 2, . . . , 64) are complex functions in Tn.
From the above analysis the general solutions of u1 and u2 are:

u1 = u10 + εu11 + ε2u12 + ε3u13 + O(ε4) (49)

u2 = u20 + εu21 + ε2u22 + ε3u23 + O(ε4) (50)

From the above solutions many resonance cases are shown in Table 4.

Table 4.

No. Type of Resonances Case
1 trivial resonance Ω1

∼= Ω2
∼= ω1

∼= ω2 = 0
2 primary resonance ω2

∼= ω1, ω2
∼= Ω1, ω2

∼= Ω2

3 sub-harmonic resonances Ω1
∼= nω2, Ω2

∼= nω2, ω2
∼= mω1, Ω1

∼= 2ω1,
n = 2, 3, 4, 5 and m = 2, 3, 4

4 super-harmonic resonances ω2 = ω1/2, ω2 = 2ω1/3, ω2 = 2ω1/5,
Ω1

∼= ω2/2, Ω2
∼= ω2/2

5 combination resonances ±ω2
∼= ±Ω1 ± Ω2, ±ω2

∼= (±Ω1 ± Ω2)/2,
±Ω1

∼= ±ω2 ± 2ω1, ±Ω2
∼= ±ω2 ± 2ω1,

±Ω1
∼= ±2(ω2 ± ω1), ±Ω2

∼= 2(±ω2 ± ω1)
6 simultaneous resonance any combination of the two resonance cases

are classified as simultaneous resonance

Following the same procedure as in part 2, we get

σ1 = −3βa2
2

8ω2
±

√
F 2

1 − 4a2
2ζ

2
2ω4

2

Fig. 9 (a)–(d) show the effects of the non-linear parameter β, the natural fre-
quency ω2, the damping coefficient ζ2, and the excitation amplitudes F1 on the
steady state amplitude “a2”. Fig. 9 (a) shows that the positive and negative values
of β, produce either hard or soft spring respectively as the curve is either bent to
the left or the right, leading to the appearance of the jump phenomenon. Fig. 9 (b)
indicates that the steady state amplitude is a monotonic increasing function in ω2

also for the decreasing natural frequency ω2, the curve is bent to the left leading to
the occurrence of the jump phenomena. Fig. 9 (c) shows that the curve is bent to the
left, leading to the occurrence of the jump phenomena and the effect of increasing
or decreasing ζ2 is insignificant indicating the occurrence of saturation phenomena.
Fig. 9 (d) shows that the steady state amplitude is a monotonic increasing function
in the excitation amplitude F1.
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(a) Effects of non-linear parameter β (b) Effects of natural frequency ω2

(c) Effects of damping coefficient ζ (d) Effects of excitation amplitude F1

Fig. 9.

Fig. 10 illustrates the response for the system with active controller at primary
resonance where Ω1

∼= ω2 and internal resonance where ω2 = 2ω1. The effectiveness
of the absorber Ea is about 8.

Fig. 10. System behavior with active controller at primary resonance where Ω1
∼= ω2

and internal resonance where ω2 = 2ω1. ζ2 = 0.05, ω2 = 5, α = 0.1, β = 0.2,

ζ1 = 0.05, F1 = 1, F2 = 0.005, Ω1 = 5, Ω2 = 8, ω1 = 2.5, g12 = 20, g11 = 18.
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4. Conclusions

The main system of non-linear differential equation representing the vibration
of an aircraft wing subjected to multi-excitation force is considered and solved
using the method of multiple scale perturbation. Two main strategies are used.
They are passive and active control methods. A tuned mass absorber is applied
to the system at simultaneous primary resonance (passive control) and the same
system is considered with 1:2 internal resonance controller (active control). The
analytical solution is derived up to the fourth order approximation and its stability
is obtained and studied applying frequency response functions. From the above
study the following conclusion can be deduced.

(i) For the main system:
1. The steady state amplitudes is monotonic increasing function to the max-

imum excitation amplitude F1.
2. The effects on steady state amplitudes is insignificant for increasing or

decreasing values of ζ. The curve is bent to the right, leading to the
occurrence of the jump phenomena.

3. The positive and negative values of β, produce either hard or soft spring
respectively as the curve is either bent to the right or the left, leading to
the appearance of the jump phenomenon.

4. For the small values of natural frequency the curve is bent to the right
leading to the appearance of the jump phenomenon.

(ii) For passive control
1. The steady state amplitudes is monotonic increasing functions to the

maximum excitation amplitude F1.
2. The steady state amplitude insignificant for increasing or decreasing val-

ues of ζ1. The curve is bent to the right, leading to the occurrence of the
jump phenomena.

3. The positive and negative values of β, produce either hard or soft spring
respectively as the curve is either bent to the right or the left, leading to
the appearance of the jump phenomenon.

4. For the small values of natural frequency the curve is bent to the right
leading to the appearance of the jump phenomenon.

5. The effectiveness of the absorber is about Ea = 125 at primary resonance
where Ω1 = ω and internal resonance ω = ω1.

(iii) For active control
1. The steady state amplitudes is monotonic increasing function to the max-

imum excitation amplitude F1.
2. The steady state amplitudes is insignificant for increasing or decreasing

value of ζ2. The curve is bent to the left, leading to the occurrence of the
jump phenomena.
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3. The positive and negative values of β, produce either hard or soft spring
respectively as the curve is either bent to the left or the right, leading to
the appearance of the jump phenomenon and vice versa at active control.

4. For the small values of natural frequency the curve is bent to the left
leading to the appearance of the jump phenomenon.

5. The effectiveness of the absorber is reduce to about Ea = 8 at primary
resonance Ω1 = ω2 and internal resonance ω2 = 2ω1.

It is worth to mention that passive control if possible has the priority over the
active control from both the economical and stability problems point if view.
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