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Abstract. We explore methods for approximating the commute time and Katz score
between a pair of nodes. These methods are based on the approach of matrices, mo-
ments, and quadrature developed in the numerical linear algebra community. They
rely on the Lanczos process and provide upper and lower bounds on an estimate of the
pairwise scores. We also explore methods to approximate the commute times and Katz
scores from a node to all other nodes in the graph. Here, our approach for the commute
times is based on a variation of the conjugate gradient algorithm, and it provides an
estimate of all the diagonals of the inverse of a matrix. Our technique for the Katz
scores is based on exploiting an empirical localization property of the Katz matrix.
We adapt algorithms used for personalized PageRank computing to these Katz scores
and theoretically show that this approach is convergent. We evaluate these methods
on 17 real-world graphs ranging in size from 1000 to 1,000,000 nodes. Our results show
that our pairwise commute-time method and columnwise Katz algorithm both have
attractive theoretical properties and empirical performance.
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1. Introduction

Commute times [Göbel and Jagers 74] and Katz scores [Katz 53] are two topo-
logical measures defined between any pair of vertices in a graph that capture
their relationship due to the link structure. Both of these measures have become
important because of their use in social network analysis as well as applications
such as link prediction [Liben-Nowell and Kleinberg 03], anomalous link detection
[Rattigan and Jensen 05], recommendation [Sarkar and Moore 07], and clustering
[Saerens et al. 04].

For example, in [Liben-Nowell and Kleinberg 03], the authors identify a variety
of topological measures as features for link prediction: the problem of predicting
the likelihood of users/entities forming new connections in the future, given the
current state of the network. The measures they studied fall into two categories—
neighborhood-based measures and path-based measures. The former are cheaper
to compute, yet the latter are more effective at link prediction. Katz scores
were among the most effective path-based measures studied in [Liben-Nowell
and Kleinberg 03], and the commute time also performed well.

Standard algorithms to compute these measures between all pairs of nodes
are often based on direct solution methods and require cubic time and quadratic
space in the number of nodes of the graph. Such algorithms are impractical
for large-scale networks, which may have at least a million vertices and several
million edges. We explore algorithms to compute a targeted subset of scores that
do scale to modern networks.

Katz scores measure the affinity between nodes via a weighted sum of the
number of paths between them. Formally, the Katz score between node i and j

is

Ki,j =
∞∑

�=1

α� paths�(x, y),

where paths�(x, y) denotes the number of paths of length � between i and j

and α < 1 is an attenuation parameter. Now let A be the symmetric adjacency
matrix, corresponding to an undirected and connected graph, and recall that
(A�)i,j is the number of paths between nodes i and j. Then computing the Katz
scores for all pairs of nodes is equivalent to the following computation:

K = αA + α2A2 + · · · = (I − αA)−1 − I .

Hereinafter, we refer to K as the Katz matrix. We shall study this problem only
in the case that I − αA is positive definite. This occurs when α < 1/σmax(A),
where σmax(A) is the largest singular value of A, and also corresponds to the
case that the series expansion converges.
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In order to define the commute time between nodes, we must first define the
hitting time between nodes. Formally, the hitting time from node i to j is the
expected number of steps for a random walk started at i to visit j for the first
time. The commute time is the round-trip time between nodes and is defined as
the sum of hitting times from i to j and from j to i. The hitting time is computed
via first-transition analysis on the random walk transition matrix associated with
a graph. To be precise, let A again be the symmetric adjacency matrix. Let D

be the diagonal matrix of degrees:

Di,j =

{∑
v Ai,v i = j,

0 otherwise.

The random walk transition matrix is given by P = D−1A. Let Hi,j be the
hitting time from node i to node j. Based on the Markovian nature of a random
walk, Hi,j must satisfy

Hi,j = 1 +
∑

v

Hi,vPv,j and Hi,i = 0.

That is, the hitting time between i and j is 1 more than the hitting time between
i and v, weighted by the probability of transitioning between v and j, for all v.
The minimum nonnegative solution H that satisfies this equation is thus the
matrix of hitting times. The commute time between nodes i and j is then

Ci,j = Hi,j + Hj,i .

As a matrix, C = H + H T , and we refer to C as the commute-time matrix. An
equivalent expression follows from exploiting a few relationships with the com-
binatorial graph Laplacian matrix: L = D −A [Fouss et al. 07]. Each element
Ci,j is given by

Ci,j = Vol(G)
(
L†i,i − 2L†i,j + L†j,j

)
,

where Vol(G) is the sum of elements in A and L† is the pseudoinverse of L. The
null space of the combinatorial graph Laplacian has a well-known expression in
terms of the connected components of the graph G. This relationship allows us
to write

L† =
(
L +

1
n
eeT︸ ︷︷ ︸

L̃

)−1
− 1

n
eeT

for connected graphs [Saerens et al. 04], where e is the vector of all 1’s, and n is
the number of nodes in the graph. The commute time between nodes in different
connected components is infinite, and thus we need to consider only connected
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A the symmetric adjacency matrix for a connected undirected graph
D the diagonal matrix of node degrees
n the number of vertices in A

e the vector of all ones
ei a vector of zeros with a 1 in the ith position
L the combinatorial Laplacian matrix of a graph, L = D −A

L̃ the adjusted combinatorial Laplacian, L̃ = L + 1
n
eeT

α the damping parameter in the Katz score
K the Katz matrix, K = (I − αA)−1

C the commute-time matrix
Z a “general” matrix, usually I − αA or L̃

Table 1. Notation.

graphs. We summarize the notation thus far and a few subsequent definitions in
Table 1.

Computing either Katz scores or commute times between all pairs of nodes
involves the inverse of a matrix:

(I − αA)−1 or
(
L +

1
n
eeT

)−1

.

Standard algorithms for a matrix inverse require O(n3) time and O(n2) memory.
Both of these requirements are inappropriate for a large network (see Section 2
for a brief survey of existing alternatives).

Inspired by applications in anomalous link detection and recommendation, we
focus on computing only a single Katz score or commute time and on approx-
imating a column of these matrices. In the former case, our goal is to find the
score for a given pair of nodes, and in the latter, it is to identify the most closely
related nodes for a given node. In our vision, the pairwise algorithms should help
in cases in which random pairwise data are queried, for instance when checking
random network connections, or evaluating user similarity scores as a user ex-
plores a website. For the columnwise algorithms, recommending the most-similar
nodes to a query node or predicting the most likely links to a given query node
are both obvious applications.

One way to compute a single score—what we term the pairwise problem—is
to find the value of a bilinear form

uT Z−1v,

where Z = (I − αA) or Z = L̃. An interesting approach to estimating these
bilinear forms and to deriving computable upper and lower bounds on the
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value arises from the relationship between the Lanczos/Stieltjes procedure and
a quadrature rule [Golub and Meurant 94]. This relationship and the resulting
algorithm for a quadratic form (uT Z−1u) are described in Section 4.1. Prior to
that, and because it will form the basis of a few algorithms that we use, Sec-
tion 3 first reviews the properties of the Lanczos method. We state the pairwise
procedure for commute times and Katz scores in Sections 4.2 and 4.3.

The columnwise problem is to compute, or approximate, a column of the matrix
C or K . A column of the commute-time matrix is

ci = Cei = vol(G)[(ei − ev )T L̃
−1

(ei − ev ) : 1 ≤ v ≤ n].

A difficulty with this computation is that it requires all of the diagonal elements
of L̃

−1
, as well as the solution of the linear system L̃

−1
ei . We can use a property of

the Lanczos procedure and its relationship with the conjugate gradient algorithm
to solve L̃

−1
ei and estimate all of the diagonals of the inverse simultaneously

[Paige and Saunders 75, Chantas et al. 08].
A column of the Katz matrix is Kei , which corresponds to solving a single

linear system:

ki = Kei = (I − αA)−1ei − ei .

Empirically, we observe that the solutions of the Katz linear system are often
localized. That is, there are only a few large elements in the solution vector, and
many negligible elements. See Table 2 for an example of this localization in a
few graphs. In order to capitalize on this phenomenon, we use a generalization
of “push”-style algorithms for personalized PageRank computing [McSherry 05,
Andersen et al. 06, Berkhin 07]. These methods access the adjacency information
for only a limited number of vertices in the graph. In Section 5.2, we explain
the generalization of these methods and the adaptation to Katz scores, and
we utilize the theory of coordinate descent optimization algorithms to establish
convergence. As we argue in that section, these techniques might also be called
“Gauss–Southwell” methods, based on historical precedents.

One of the advantages of Lanczos-based algorithms is that the convergence
is often much faster than a worst-case analysis would suggest. This means that
studying their convergence by empirical means and on real data sets is impor-
tant. We do so for 17 real-world networks in Section 6, ranging in size from
approximately 1000 vertices to 1,000,000 vertices. These experiments highlight
both the strengths and weaknesses of our approaches, and should provide a bal-
anced picture of our algorithms. In particular, our algorithms run in seconds or
milliseconds—significantly faster than many techniques that use preprocessing
to estimate all of the scores simultaneously, which can take minutes.
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Straightforward approaches based on the conjugate gradient technique are
often competitive with our techniques. However, our algorithms have other de-
sirable properties, such as upper and lower bounds on the solution or exploiting
sparsity in the solution vector, which conjugate gradient does not. These exper-
iments also shed light on a recent result from [von Luxburg et al. 10] on the
relationship between commute time and the degree distribution.

Literature directly related to the problems we study and the techniques we
propose is discussed throughout the paper, in context. However, we have isolated
a small set of core related papers and discuss them in the next section.

2. Related Work

This paper is about algorithms for computing commute times and Katz scores
over networks with hundreds of thousands to millions of nodes. Most existing
techniques determine the scores among all pairs of nodes simultaneously [Acar
et al. 09, Wang et al. 07, Sarkar and Moore 07] (discussed below). These meth-
ods tend to involve some preprocessing of the graph using a one-time, rather
expensive, computation. We instead focus on quick estimates of these measures
between a single pair of nodes and between a single node and all other nodes in
the graph. In this vein, a recent paper [Li et al. 10] studies efficient computation
of SimRank [Jeh and Widom 02] for a given pair of nodes.

A highly related paper is [Benzi and Boito 10], in which the authors investi-
gate entries in functions of the adjacency matrix, such as the exponential, using
quadrature-based bounds. A priori upper and lower bounds are obtained by em-
ploying a few Lanczos steps, and the bounds are effectively used to observe the
exponential decay behavior of the exponential of an adjacency matrix.

In [Sarkar and Moore 07], an interesting and efficient approach is proposed for
finding approximate nearest neighbors with respect to a truncated version of the
commute-time measure. In [Spielman and Srivastava 08], the authors develop a
technique for computing the effective resistance of all edges (which is proportional
to commute time) in O(m log n) time. Both of these procedures involve some
preprocessing.

Standard techniques to approximate Katz scores include truncating the series
expansion to paths of length less than �max [Foster et al. 01, Wang et al. 07] and
low-rank approximation [Liben-Nowell and Kleinberg 03, Acar et al. 09]. Only
the former technique, when specialized to compute only a pair or top-k set, has
performance comparable to our algorithms. However, when we tested an adapted
algorithm based on the Neumann series expansion, it required much more work
than the techniques we propose.
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As mentioned in the introduction, both commute times and Katz scores were
studied in [Liben-Nowell and Kleinberg 03] for the task of link prediction, and
were found to be effective. Beyond link prediction, in [Yen et al. 07], the authors
use a commute-time kernel-based approach to detect clusters and show that this
method outperforms other kernel-based clustering algorithms. The authors use
commute time to define a distance measure between nodes, which in turn is used
for defining a so-called intracluster inertia. Intuitively, this inertia measures how
close nodes within a cluster are to each other. The algorithm we propose for
computing the Katz and commute-time scores for a given pair of nodes x, y

extends to the case that one wants to find the aggregate score between a node
x and a set of nodes S. Consequently, this work has applications for finding the
distance between a point and a cluster as well as for finding intracluster inertia.
For applications to recommender systems, the authors of [Sarkar et al. 08] used
their truncated commute-time measure for link prediction over a collaboration
graph and showed that it outperforms personalized PageRank [Page et al. 99].

3. The Lanczos Process

The Lanczos algorithm [Lanczos 50] is a procedure applied to a symmetric ma-
trix that works particularly well when the given matrix is large and sparse. A
sequence of Lanczos iterations can be thought of as “truncated” orthogonal sim-
ilarity transformations. Given an n× n matrix Z , we construct a matrix Q with
orthonormal columns, one at a time, and perform only a small number of steps,
say k, where k � n. The input for the algorithm is the matrix Z , an initial vector
q, and a number of steps k. Upon exit, we have an n× (k + 1) matrix Qk+1 with
orthonormal columns and a (k + 1)× k tridiagonal matrix T k+1,k that satisfy
the relationship

ZQk = Qk+1T k+1,k ,

where Qk is the n× k matrix that contains the first k columns of Qk+1, and
T k+1,k = tri(βi, αi, βi).

What makes the Lanczos procedure attractive is the good approximation prop-
erties that it has for k � n. The matrix T k+1,k is small when k � n, but the
eigenvalues of its k × k upper part—a matrix we will refer to as T k in the subse-
quent section—approximate the extremal eigenvalues of the large n× n matrix
Z . This can be exploited not only for eigenvalue computations but also for solv-
ing a linear system [Lanczos 53, Paige and Saunders 75]. Another attractive
feature is that the matrix Z does not necessarily have to be provided explicitly;
the algorithm uses Z only via matrix–vector products.
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The Lanczos procedure is given in Algorithm 1. For expositional purposes we
define the core of the algorithm as Algorithm 2. We will later incorporate that
part into other algorithms; see Section 4.

4. Pairwise Algorithms

Consider the commute time and Katz score between a single pair of nodes:

Ci,j = Vol(G)(ei − ej )T L†(ei − ej ),
Ki,j = eT

i (I − αA)−1ej − δi,j .

In these expressions, ei and ej are vectors of zeros with a 1 in the ith and jth
positions, respectively, and δi,j is the Kronecker delta function. A straightforward
means of computing them is to solve the linear systems

L̃
−1

y = ei − ej and (I − αA)x = ej .

Then Ci,j = Vol(G)(ei − ej )T y and Ki,j = eT
i x− δi,j . It is possible to compute

the pairwise scores by solving these linear systems. In what follows, we show how
a technique combining the Lanczos iteration and a quadrature rule [Golub and
Meurant 94, Golub and Meurant 97] produces the pairwise commute-time score
or the pairwise Katz score as well as upper and lower bounds on the estimate.

Algorithm 1 Lanczos(Z ,q, k).
1: q1 = q/‖q‖2 , β0 = 0,q0 = 0
2: for j = 1 to k do
3: z = Zqj

4: αj = qT
j z

5: z = z − αj qj − βj−1qj−1
6: βj = ‖z‖2
7: if βj = 0,qj+1 = 0 and quit
8: else qj+1 = z/βj

Algorithm 2 LanczosStep(Z ,q(−) ,q, β(−)).
1: z = Zq
2: α = qT z
3: z = z − αq − β(−)q(−)

4: β = ‖z‖2
5: if β = 0,q(+ ) = 0
6: else q(+ ) = z/β
7: Return (q(+ ) , α, β)
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4.1. Matrices, Moments, and Quadrature

Both of the pairwise computations above are instances of the general problem of
estimating a bilinear form

uT f(Z )v,

where Z is symmetric positive definite (for Katz, this occurs by restricting the
value of α, and for commute times, the adjusted Laplacian L̃ is always positive
definite), and f(x) is an analytic function on the region containing the eigenvalues
of Z . The only function f(x) we use in this paper is f(x) = 1/x, although we
treat the problem more generally for part of this section.

In [Golub and Meurant 94, Golub and Meurant 97], the authors introduced ele-
gant computational techniques for evaluating such bilinear forms. They provided
a solid mathematical framework and a rich collection of possible applications.
These techniques are well known in the numerical linear algebra community, but
they do not seem to have been used in data-mining problems. We adapt this
methodology to the pairwise score problem, and explain how to do so in an effi-
cient manner in a large-scale setting. The algorithm has two main components:
Gauss-type quadrature rules for evaluating definite integrals and the Lanczos
algorithm for partial reduction to symmetric tridiagonal form. In the following
discussion, we treat the case u = v. This form suffices, thanks to the identity

uT f(Z )v =
1
4

[
(u + v)T f(Z )(u + v)− (u− v)T f(Z )(u− v)

]
.

Because Z is symmetric positive definite, it has a unitary spectral decompo-
sition Z = QΛQT , where Q is an orthogonal matrix whose columns are eigen-
vectors of Z with unit 2-norms, and Λ is a diagonal matrix with the eigenvalues
of Z along its diagonal. We use this decomposition only for the derivation that
follows; it is never computed in our algorithm. Given this decomposition, for any
analytic function f ,

uT f(Z )u = uT Qf(Λ)QT u =
n∑

i=1

f(λi)ũ2
i ,

where ũ = QT u. Let λ and λ be values that are respectively lower and higher
than the extremal eigenvalues of Z . The last sum is equivalent to the Stieltjes
integral

uT f(Z )u =
∫ λ

λ

f(λ) dω(λ). (4.1)
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Here ω(λ) is a piecewise constant measure, which is monotonically increasing,
and its values depend directly on the eigenvalues of Z . Let

0 < λ1 ≤ λ2 ≤ · · · ≤ λn

be the eigenvalues of Z . Note that λ < λ1 and λ > λn . Now ω(λ) takes the
following form:

ω(λ) =

⎧⎪⎪⎨
⎪⎪⎩

0, λ < λ1 ,∑i
j=1 ũ2

j , λi ≤ λ < λi+1 ,∑n
j=1 ũ2

j , λn ≤ λ.

The first of Golub and Meurant’s key insights is that we can compute an
approximation for an integral of the form (4.1) using a quadrature rule∫ λ

λ

f(λ) dω(λ) ≈
N∑

j=1

f(ηj )ωj ,

where ηj , ωj are the nodes and weights of a Gaussian quadrature rule. The second
insight is that the Lanczos procedure constructs the quadrature rule itself. Since
we use a quadrature rule, an estimate of the error is readily available; see, for
example, [Davis and Rabinowitz 84]. More importantly, we can use variants of
the Gaussian quadrature to obtain both lower and upper bounds and “trap” the
value of the element of the inverse that we seek between these bounds.

The ability to estimate bounds for the value is powerful and provides effec-
tive stopping criteria for the algorithm—we shall see this in the experiments in
Section 6.2. It is important to note that such componentwise bounds could not
be easily obtained if we were to extract the value of the element from a column
of the inverse, by solving the corresponding linear system, for example. Indeed,
typically for the solution of a linear system, normwise bounds are available, but
obtaining bounds pertaining to the components of the solution is significantly
more challenging, and results of this sort are harder to establish. It should also
be noted that bounds of the sort discussed here cannot be obtained for general
nonsymmetric matrices.

Returning to the procedure, let f(λ) be a function whose (2k + 1)st derivative
has a negative sign for all λ < λ < λ. Note that f(λ) = 1/λ satisfies this condition
because all odd derivatives are negative when λ > 0. As a high-level algorithm,
the Golub–Meurant procedure for estimating bounds

b ≤ uT f(Z )u ≤ b

is given by the following steps:

1. Let σ = ‖u‖2 .
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Algorithm 3 MMQStep [Golub and Meurant 97, Algorithm GQL].
Input: α, β−1 , β, b−1 , c−1 , d−1 , d−1 , d−1

1: b = b−1 +
β 2
−1 c 2

−1
d−1 (αd−1 −β 2

−1 ) ; c = c−1
β−1
d−1

; d = α − β 2
−1

d−1

2: d = α − λ − β 2
−1

d−1
; d = α − λ − β 2

−1
d−1

3: ω = λ + β 2

d
; ω = λ + β 2

d

4: b = b + β 2 c 2

d (ω d−β 2 ) ; b = b + β 2 c 2

d (ω d−β 2 )

Output: (b, b) and (b, c, d, d, d)

2. Compute T k from k steps of the Lanczos procedure applied to Z and
u/σ.

3. Compute T k , which is the matrix T k extended with another row and
column crafted to add the eigenvalue λ to the eigenvalues of T k . This
new matrix is still tridiagonal.

4. Set b = σ2eT
1 f(T k )e1 . This estimate corresponds to a (k + 1)-point

Gauss–Radau rule with a prescribed point of λ.

5. Compute T k , which is the matrix T k extended with another row and
column crafted to add the eigenvalue λ to the eigenvalues of T k . Again,
this new matrix is still tridiagonal.

6. Set b = σ2eT
1 f(T k )e1 . This estimate corresponds to a (k + 1)-point

Gauss–Radau rule with a prescribed point of λ.

Based on the theory of Gauss–Radau quadrature, the fact that these are lower
and upper bounds on the quadratic form uT f(Z )u follows because the sign of
the error term changes when a node is prescribed in this fashion. See [Golub and
Meurant 10, Theorem 6.4] for more information. As k increases, the upper and
lower bounds converge.

While this form of the algorithm is convenient for understanding the high-level
properties and structure of the procedure, it is not computationally efficient. If
f(λ) = 1/λ and if we want to compute a more accurate estimate by increasing
k, then we need to solve two inverse eigenvalue problems (steps 3 and 5), and
solve two linear systems (steps 4 and 6). Each of these steps involves O(k) work
because the matrices involved are tridiagonal. However, a constant-time update
procedure is possible. The set of operations to efficiently update b and b after
a Lanczos step (Algorithm 2) is given by Algorithm 3. Please see [Golub and
Meurant 97] for an explanation of this procedure. Using Algorithms 2 and 3 as
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Algorithm 4 Pairwise score bounds for commute time.
Input: L (Laplacian matrix); i, j (pairwise coordinate); λ, λ (bounds where λ <

λ(L) < λ); τ (stopping tolerance)
Output: κ, κ where κ < (ei − ej )T L†(ei − ej ) < κ

1: (Initialize Lanczos) σ =
√

2,q−1 = 0,q0 = (ei − ej )/σ, β0 = 0
2: (Initialize MMQStep) b0 = 0, c0 = 1, d0 = 1, d0 = 1, d0 = 1
3: for j = 1, . . . do
4: Set (qj , αj , βj ) from LanczosStep(L̃,qj−2 ,qj−1 , βj−1 )
5: Set (b, b) and (bj , cj , dj , dj , dj ) from

MMQStep(αj , βj−1 , βj , bj−1 , cj−1 , dj−1 , dj−1 , dj−1 ).
6: κ = σ2 b; κ = σ2 b
7: if κ − κ < τ , stop

subroutines, it is now straightforward to state the pairwise commute-time and
Katz procedures.

4.2. Pairwise Commute Scores

The bilinear form that we need for estimating a commute time is

b = (ei − ej )T L̃
−1

(ei − ej ).

For this problem, we apply Algorithm 2 to step through the Lanczos process and
then use Algorithm 3 to update the upper and lower bounds on the score. This
combination is explicitly described in Algorithm 4. Note that we do not need to
apply the final correction with 1

n eeT because eT (ei − ej ) = 0.

4.3. Pairwise Katz Scores

The bilinear form that we need to estimate for a Katz score is

b = eT
i (I − αA)−1ej .

Recall that we use the identity

b =
1
4
[
(ei + ej )T (I − αA)−1(ei + ej )︸ ︷︷ ︸

=g

− (ei − ej )T (I − αA)−1(ei − ej )︸ ︷︷ ︸
=h

]
.

In this case, we apply the combination of LanczosStep and MMQStep to estimate
g ≤ g ≤ g and h ≤ h ≤ h. Then 1

4 (g − h) ≤ b ≤ 1
4 (g − h). Algorithm 5 describes

the entire procedure.
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Algorithm 5 Pairwise score bounds for Katz.
Input: A (adjacency matrix); α (the Katz damping factor); i, j (pairwise coordinate);

λ, λ (bounds where λ < λ(I − αA) < λ); τ (stopping tolerance)
Output: ρ, ρ where ρ < (I − αA)−1

i ,j < ρ

1: (Initialize Lanczos for g) σ =
√

2,q−1 = 0,q0 = (ei + ej )/σ, βg
0 = 0

2: (Initialize Lanczos for h) u−1 = 0,u0 = (ei − ej )/σ, βh
0 = 0

3: (Initialize MMQStep for g) bg
0 = 0, cg

0 = 1, dg
0 = 1, d

g

0 = 1, dg
0 = 1

4: (Initialize MMQStep for h) bh
0 = 0, ch

0 = 1, dh
0 = 1, d

h

0 = 1, dh
0 = 1

5: for j = 1, . . . do
6: Set (qj , α

g
j , βg

j ) from LanczosStep((I − αA),qj−2 ,qj−1 , β
f
j−1 )

7: Set (uj , α
h
j , βh

j ) from LanczosStep((I − αA),uj−2 ,uj−1 , β
h
j−1 )

8: Set (g, g) and (bg
j , cg

j , dg
j , d

g

j , dg
j ) from

MMQStep(αg
j , βg

j−1 , β
g
j , bg

j−1 , c
g
j−1 , d

g
j−1 , d

g
j−1 , d

g

j−1 ).

9: Set (h, h) and (bh
j , ch

j , dh
j , d

h

j , dh
j ) from

MMQStep(αh
j , βh

j−1 , β
h
j , bh

j−1 , c
h
j−1 , d

h
j−1 , d

h
j−1 , d

h

j−1 ).
10: ρ = σ2/4(g − h); ρ = σ2/4(g − h)
11: if ρ − ρ < τ , stop

5. Columnwise Algorithms

Whereas the last section used a single procedure to derive two algorithms, in
this section, we investigate two different procedures: one for commute time and
a different procedure for Katz scores. The reason behind this difference is that, as
mentioned in the introduction, computing a column of the commute-time matrix
cannot be stated as the solution of a single linear system

ci = Cei = vol(G)
[
(ei − ev )T L̃

−1
(ei − ev ) : 1 ≤ v ≤ n

]
.

Computing this column requires all of the diagonal elements of the inverse. In
contrast, a column of the Katz matrix is just the solution of a linear system

ki = Kei = (I − αA)−1ei − ei .

For this computation, we exploit an empirical localization property of these
columns.

5.1. Columnwise Commute Times

A straightforward way to compute an entire column of the commute-time matrix
would require solving n separate linear systems: one to get both L̃

−1
ei and L̃

−1
i,i ,

and the other n− 1 to get L̃
−1
j,j for i �= j. Neither solving each system indepen-

dently nor using a multiple right-hand side algorithm [O’Leary 80] will easily
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yield an efficient procedure. Both of these approaches generate far too much ex-
traneous information. In fact, the only information we need are the solution of a
linear system, as well as the diagonal elements of the pseudoinverse. Thus, any
procedure to compute or estimate diag(L†) provides a practical algorithm.

One such procedure arises again from the Lanczos method. It was originally
described in [Paige and Saunders 75], and is explained in more detail in [Chantas
et al. 08]. Suppose we want to compute diag(L̃

−1
). If the Lanczos algorithm runs

to completion in exact arithmetic, then we have

L̃ = QTQT and L̃
−1

= QT−1QT .

Let T = RRT be a Cholesky factorization of T . If we substitute this factor-
ization into the expression for the inverse, then L̃

−1
= VR−T R−1V T . Now let

W = VR−T . Note that L̃
−1

= WW T . As a notational convenience, let wk be
the kth column of W . Consequently,

diag(E−1) =
n∑

k=1

wk ◦wk ,

where wk ◦wk is the Hadamard (elementwise) product [wk ◦wk ]i = w2
k,i . If we

implement CG based on the Lanczos algorithm as explained in [Paige and Saun-
ders 75], then the vector wk is computed as part of the standard algorithm and
is available at no additional cost. This idea is implemented in the cgLanczos.m

code [Saunders 07], which we use in our experiments. Please see [Chantas et
al. 08] for a detailed account of this derivation including the diagonal estimate.

Based on advice from the author of the cgLanczos code, we added local re-
orthogonalization to the Lanczos procedure. This addition requires a few extra
vectors of memory, but ensures greater orthogonality in the computed Lanczos
vectors qk . Also, based on advice from the author, we use the following precon-
ditioned linear system:

D−1/2L̃D−1/2y = D−1/2ei .

If f is the estimate of the diagonals of (D−1/2L̃D−1/2)−1 , then D−1f is the es-
timate of the diagonals of L̃

−1
. Using this preconditioned formulation, the algo-

rithm converges much more quickly than without preconditioning. In summary,
this approach to estimate the columnwise commute times ci is as follows:

1. Solve D−1/2L̃D−1/2y = D−1/2ei using cgLanczos.m to get both y and
f ≈ diag

(
(D−1/2L̃D−1/2)−1

)
.

2. Set x = D−1/2y − 1
n e ≈ L†ei .
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3. Set g = D−1f − 1
n e ≈ diag(L†).

4. Output ci ≈ g + xie− 2x.

We refrain from stating this as a formal algorithm because the majority of the
work is in the cgLanczos.m routine.

5.2. Columnwise Katz Scores

In this section, we show how to adapt techniques for rapid personalized PageRank
computation [McSherry 05, Andersen et al. 06, Berkhin 07] to the problem of
computing a column of the Katz matrix. Recall that such a column is given by
the solution of a single linear system:

ki = Kei = (I − αA)−1ei − ei .

The algorithms for personalized PageRank exploit the graph structure by ac-
cessing the edges of individual vertices, instead of accessing the graph via a
matrix–vector product. They are “local” because they access the adjacency in-
formation of only a small set of vertices and need not explore the majority of the
graph. Such a property is useful when the solution of a linear system is localized
on a small set of elements.

Localization is a term with a number of interpretations. Here, we use it to mean
that the vector becomes sparse after small elements are rounded to 0. A nice way
of measuring this property is to look at the participation ratios [Farkas et al 01].
Let k be a column of the Katz matrix. Then the participation ratio of k is

p =

(∑
j k2

j

)2

∑
j k4

j

.

This ratio measures the number of effective nonzeros of the vector. If k is a
uniform vector, then p = n, the size of the vector. If k has only a single element,
then p = 1, the number of states occupied. For a series of graphs we describe
more formally in Section 6.1, we show the statistics of some participation ratios
in Table 2. We pick columns of the matrix in two ways: (i) randomly and
(ii) from the degree distribution to ensure we choose both high-, medium-,
and low-degree vertices. See Section 6.7 for a more formal description about
how we pick columns; we use the “hard alpha” value of Katz described in the
experiments section. The results show that number of effective nonzeros is
always less than 10,000, even when the graph has 1,000,000 vertices. Usually, it
is even smaller. Our forthcoming algorithms exploit this property.

The basis of these personalized PageRank algorithms is a variant on the
Richardson stationary method for solving a linear system [Varga 62]. Given a
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Participation Ratios

Graph Vertices Avg. Deg. Min Mean Median Max

tapir 1024 5.6 4.2 12.0 11.8 35.8
stanford-cs-sym 2759 7.4 1.0 26.3 23.5 274.1
ca-GrQc 4158 6.5 1.0 27.4 34.0 84.2
wiki-Vote 7066 28.5 1.2 248.8 291.6 342.6
ca-HepTh 8638 5.7 1.0 23.5 29.8 82.1
ca-HepPh 11204 21.0 1.0 160.7 256.1 268.5
Stanford3 11586 98.1 1.1 1509.5 1657.8 1706.4
ca-AstroPh 17903 22.0 1.0 167.5 219.2 290.8
ca-CondMat 21363 8.5 1.0 71.0 85.6 204.6
email-Enron 33696 10.7 1.0 203.0 262.5 598.6
soc-Epinions1 75877 10.7 1.0 299.2 455.6 526.0
soc-Slashdot0811 77360 12.1 1.0 320.4 453.3 495.8
arxiv 86376 12.0 1.0 121.1 137.9 508.6
dblp 93156 3.8 1.0 50.0 25.2 258.9
email-EuAll 224832 3.0 1.0 237.7 276.7 7743.7
flickr2 513969 12.4 1.0 592.3 1104.9 1414.9
hollywood-2009 1069126 105.3 2.0 1696.0 2433.8 3796.0

Table 2. Participation ratios for Katz scores. These results demonstrate that the
columns of the Katz matrix are highly localized. In the worst case, there are only
a few thousand large elements in a vector, compared with the graph size of a few
hundred thousand vertices.

linear system Zx = b, the Richardson iteration is

x(k+1) = x(k) + r(k) ,

where r(k) = b− Zx(k) is the residual vector at the kth iteration. While up-
dating x(k+1) is a linear-time operation, computing the next residual requires
another matrix–vector product. To take advantage of the graph structure, the
personalized PageRank algorithms [McSherry 05, Andersen et al. 06, Berkhin 07]
propose the following change: do not update x(k+1) with the entire residual, and
instead change only a single component of x. Formally, x(k+1) = x(k) + r

(k)
j ej ,

where ej is a vector of all zeros except for a single 1 in the jth position, and r
(k)
j

is the jth component of the residual vector. Now, computing the next residual
involves accessing a single column of the matrix Z :

r(k+1) = b− Zx(k+1) = b− Z (x(k) + r
(k)
j ej ) = r(k) + r

(k)
j Zej .
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Algorithm 6 Columnwise Katz scores (via the Gauss–Southwell algorithm).
Input: A (the adjacency matrix), α (the Katz damping factor), i (the desired column),

τ (a stopping tolerance).
Output: x (an approximate solution of (I − αA)−1ei )
1: Set x = 0, r = 0
2: Let H be a heap over the non-zero entries of r larger than τ .
3: Set ri = 1, update H
4: while H is not empty do
5: Set j as the index of the largest element in H
6: if rj < τ then quit.
7: η = rj

8: xj ← xj + η
9: rj ← 0, remove j from H

10: for u where Aj,u > 0 do
11: ru ← ru + αη
12: if ru > τ then insert j in H or update H.
13: xi ← xi − 1

Suppose that r, x, and Zej are sparse. Then this update introduces only a
small number of new nonzeros into both x and the new residual r. If Z = (I −
αA), as in the case of Katz, then each column is sparse, and thus keeping the
solution and residual sparse is a natural choice for graph algorithms in which the
solution x is localized (i.e., many components of x can be rounded to 0 without
dramatically changing the solution). By choosing the element j based on the
largest entry in the sparse residual vector (maintained in a heap), this algorithm
often finds a good approximation to the largest entries of the solution vector
x while exploring only a small subset of the graph. The resulting procedure
is presented in Algorithm 6. For reasons that will become clear below, we call
this procedure the Gauss–Southwell algorithm. While experimenting with this
method, we found that sorting the heap by D−1r instead of r yielded convergence
with fewer total edges explored, mirroring the results in [Andersen et al. 06].
We use this version in all of our experiments, although we state all the formal
convergence results for the simple choice of residual r.

Let dmax be the maximum degree of a node in the graph. Then each iteration
takes O(dmax log n) time. We analyze the convergence of this algorithm for Katz
scores in two stages. In the first case, when α < 1/dmax, the convergence theory
of this method for personalized PageRank also shows that it converges for Katz
scores. This fortunate occurrence results from the equivalence of Katz scores and
the general formulation of PageRank adopted by [McSherry 05] in this setting. In
the second case, when α < 1/σmax(A), then (I − αA) is still symmetric positive
definite, and the Richardson algorithm converges. To show convergence in this
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case, we will utilize an equivalence between this algorithm and a coordinate
descent method.

For completeness, we prove a precise convergence result when α < 1/dmax. The
key observations here is that the residual r is always nonnegative and that the
sum of the residual (eT r) is monotonically decreasing. To show convergence, we
need to bound this sum by a function that converges to 0.

Consider the algorithm applied to (I − αA)x = ei . From step k to step k + 1,
the algorithm sets

x(k+1) = x(k) + ηej , r(k+1) = r(k) + η(I − αA)ej .

First note that α < 1/dmax implies r
(k+1)
i ≥ 0 given r

(k)
i ≥ 0. This bound now

implies that x(k+1)
i ≥ 0 when x(k)

i ≥ 0. Since these conditions hold for the initial
conditions x(0) = 0 and r(0) = eq , they remain true throughout the iteration.
Consequently, we can use the sum of r(k) as the 1-norm of this vector; that is,
eT r(k+1) = ‖r(k+1)‖1 . It is now straightforward to analyze the convergence of
this sum:

eT r(k+1) = eT r(k) − η + αηeT Aei .

At this point, we need the bound that η = r
(k)
j ≥ (1/n)eT r(k) , which follows

immediately from the fact that r
(k)
j is the largest element in r(k) . Also, eT Aei ≤

dmax. Thus, we draw the following conclusion:

Remark 5.1. If α < 1/dmax, then the 1-norm of the residual in the Gauss–Southwell
iteration applied to the Katz linear system satisfies∥∥∥r(k+1)

∥∥∥
1
≤

(
1− 1− αdmax

n

)∥∥∥r(k)
∥∥∥

1
≤

(
1− 1− αdmax

n

)k

.

In the second case, when 1/dmax < α < 1/σmax(A), then the Gauss–Southwell
iteration in Algorithm 6 still converges. However, the result is more intricate
than in the previous case because the sum of the residual does not converge
monotonically. As we shall see, treating this linear system as an optimization
problem provides a way to handle this case.

Let Z be symmetric positive definite. We first show that the Gauss–Southwell
algorithm is a coordinate descent method for the convex problem

minimize 1
2 x

T Zx− xT b = f(x).

The gradient of this problem is Zx− b; hence a stationary point is the solution
of the linear system and the global minimizer. In this framework, the Richardson
method is a gradient descent method. If g(k) is the gradient at step k, g(k) =
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Zx(k) − b, then

x(k+1) = x(k) − g

is exactly the Richardson step.
Now consider a standard coordinate descent method. Such methods usually

minimize the function in the jth coordinate exactly. Formally, they find

x(k+1) = x(k) + γ(k)ej ,

where

γ(k) = argminγ f(x(k) + γej ).

Solving this system produces the choice

γ(k) =
bj − (Zej )T x(k)

Zj,j
.

Note that in terms of the optimization problem, the Gauss–Southwell algorithm
generates

γ
(k)
S = r

(k)
j = (bj − zT

j x(k)).

The two methods are equivalent if the diagonals of A are 1. Consequently, we
have the following result.

Lemma 5.2. The Gauss–Southwell method for Zx = b with Zi,i = 1 is equivalent to
a coordinate gradient descent method for the function f(x) = (1/2)xT Zx− xT b.

To produce a convergent algorithm, we must now specify how to choose the
descent direction j.

Theorem 5.3. Let Z be symmetric positive definite with Zi,i = 1. Then the Gauss–
Southwell method for Zx = b and j(k) = argmaxi

∣∣r(k)
i

∣∣ or with j(k) chosen cycli-
cally (j(1) = 1, j(k+1) = j(k) + 1 mod n) is convergent.

Proof. This result follows from the convergence of the coordinate descent method
[Luo and Tseng 92, Theorem 2.1] with these two update rules. The first is also
known as the Gauss–Southwell rule.

This proof demonstrates that as long as Ai,i = 0 for all the diagonal entries
of the adjacency matrix, then Algorithm 6 will converge when (I − αA) is pos-
itive definite, that is, when α < 1/σmax(A). We term this algorithm a Gauss–
Southwell procedure because the choice of j in the algorithm is given by the
Gauss–Southwell rule.
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6. Experimental Results

The previous sections showed three algorithms based on the Lanczos method, and
showed the theoretical convergence of the columnwise Katz algorithm. In this
section, we investigate these algorithms numerically. Algorithms based on the
Lanczos method, in general, are arguably best studied empirically because their
worst-case convergence properties are often conservative. These experiments are
designed to shed light on two key questions:

1. How do these iterative algorithms converge to the exact solution?

2. Are the techniques faster than a conjugate gradient-based algorithm?

Note that columnwise commute-time measure is a special case for reasons we
discuss below, and we investigate the accuracy of our procedure only for that
problem.

Experimental settings. We implemented our methods in Matlab and Matlab mex
codes. All computations and timings were done in Linux on a desktop computer
with a Core i7-960 processor (4 core, 2.8 GHz) with 24 GB of memory. As
mentioned in the introduction, all of the experimental code is available from our
website.

We first describe the data used in the experiments. These data were also used
in the experiment about localization in the Katz scores from the previous section.

6.1. Data

We use three publicly available sources and three graphs we collected ourselves.
The majority of the data comes from the SNAP collection [Leskovec 10], of which
we use ca-GrQc, ca-HepTh, ca-CondMat, ca-AstroPh, email-Enron, email-EuAll
[Leskovec et al. 07], wiki-Vote [Leskovec et al. 10], soc-Epinions1 [Richardson et
al. 03], and soc-Slashdot0811 [Leskovec et al. 09]. Besides these, the graph tapir
is from [Gilbert and Teng 02], the graph Stanford3 is from [Traud et al. 11], and
both graphs stanford-cs [Hirai et al. 00] and hollywood-2009 [Boldi et al. 11]
are distributed via the webgraph framework [Boldi and Vigna 04]. The graph
stanford-cs is actually a subset of the webbase-2001 graph [Hirai et al. 00],
restricted to pages in the domain cs.stanford.edu. All graphs are symmetrized
(if nonsymmetric) and stripped of any self-loops, edge weights, and extraneous
connected components.

DBLP. We extracted the DBLP coauthors graph from a recent snapshot (2005–
2008) of the DBLP database. We considered only nodes (authors) that have at
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least three publications in the snapshot. There is an undirected edge between
two authors if they have coauthored a paper. From the resulting set of nodes,
we randomly chose a sample of 100,000 nodes, extracted the largest connected
component, and discarded any weights on the edges.

arXiv. This data set contains another coauthorship graph extracted by a snapshot
(1990–2000) of arXiv, which is an e-print service owned, operated, and funded
by Cornell University, and which contains bibliographies in many fields including
computer science and physics. This graph is much denser than DBLP. Again, we
extracted the largest connected component of this graph and worked only with
that subset.

Flickr contacts. Flickr is a popular online community for sharing photos, with mil-
lions of users. The node set represents users, and the directed edges are between
contacts. We start with a crawl extracted from Flickr in May 2006. This crawl
began with a single user and continued until the total personalized PageRank on
the set of uncrawled nodes was less than 0.0001. The result of the crawl was a
graph with 820,878 nodes and 9,837,214 edges. In order to create a subgraph suit-
able for our experimentation we performed the following steps. First, we created
a graph from Flickr by taking all the contact relationships that were reciprocal,
and second, we again took the largest connected component. (This network is
now available from the University of Florida sparse matrix collection [Davis and
Hu 10]).

Table 3 presents some elementary statistics about these graphs. We also
include the time to compute the truncated singular value decomposition for
the first 200 singular values and vectors using the ARPACK library [Lehoucq
et al. 97] in Matlab’s svds routine. This time reflects the work it would take
to use the standard low-rank preprocessing algorithm for Katz scores on the
network [Liben-Nowell and Kleinberg 03].

6.2. Pairwise Commute Scores

From this data, we now study the performance of our algorithm for pairwise
commute scores, and compare it against solving the linear system L̃x = (ei − ej )
using the conjugate gradient method (CG). At each step of CG, we use the
approximation (ei − ej )T x(k) , where x(k) is the kth iterate. The convergence
check in CG was that either the pairwise element value changed by less than the
tolerance, checked by taking a relative difference between steps, or the 2-norm
of the residual fell below the tolerance.



94 Internet Mathematics

Avg. Max SVD
Graph Nodes Edges Deg. Deg. ‖A‖2 (sec.)

tapir 1024 2846 5.56 24 6.9078 2.2
stanford-cs 2759 10270 7.44 303 39.8213 8.9
ca-GrQc 4158 13422 6.46 81 45.6166 16.2
ca-HepTh 8638 24806 5.74 65 31.0348 31.5
ca-CondMat 21363 91286 8.55 279 37.8897 78.6
wiki-Vote 7066 100736 28.51 1065 138.1502 28.5
ca-HepPh 11204 117619 21.00 491 244.9349 49.5
dblp 93156 178145 3.82 260 33.6180 391.0
email-Enron 33696 180811 10.73 1383 118.4177 119.5
ca-AstroPh 17903 196972 22.00 504 94.4296 62.3
email-EuAll 224832 339925 3.02 7636 102.5365 935.3
soc-Epinions1 75877 405739 10.69 3044 184.1751 324.6
soc-Slashdot0811 77360 469180 12.13 2539 131.3418 359.1
arxiv 86376 517563 11.98 1253 99.3319 241.2
Stanford3 11586 568309 98.10 1172 212.4606 48.8
flickr2 513969 3190452 12.41 4369 663.3587 3418.7
hollywood-2009 1069126 56306653 105.33 11467 2246.5596 5998.9

Table 3. The networks studied in the experiments. The first five columns are
self-explanatory. The last two columns show the largest singular value of the
network, which is also the matrix 2-norm, and the time taken to compute the
largest 200 singular values and vectors.

The first figure we present shows the result of running Algorithm 4 on a single
pairwise commute-time problem for a few graphs (Figure 1). The upper row of
figures shows the actual bounds themselves. The bottom row of figures shows
the relative error that would result from using the bounds as an approximate
solution. We show the same results for CG. The exact solution was computed
using MINRES [Paige and Saunders 75] to solve the same system as CG to a
tolerance of 10−10 . For all of the graphs, we used λ = 10−4 and λ = ‖L̃‖1 . Again
using ARPACK, we verified that the smallest eigenvalue of each of the Laplacian
matrices was larger than λ. We chose the vertices for the pair from among the
high-degree vertices for no particular reason. Both Algorithm 4 and CG used a
tolerance of 10−4 .

In the figure, the upper bounds and lower bounds “trap” the solution from
above and below. These bounds converge smoothly to the final solution. For
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these experiments, the lower bound has smaller error, and also, this error tracks
the performance of CG quite closely. This behavior is expected in cases in
which the largest eigenvalue of the matrix is well separated from the remain-
ing eigenvalues—a fact that holds for the Laplacians of our graphs; see [Mihail
and Papadimitriou 02] and [Chung et al. 03] for some theoretical justification.
When this happens, the Lanczos procedure underlying both our technique and
CG quickly produces an accurate estimate of the true largest eigenvalue, which in
turn eliminates any effect due to our initial overestimate of the largest eigenvalue.
(Recall from Algorithm 4 that the estimate of λ is present in the computation
of the lower bound bj .)

Here, the conjugate gradient method suffers two problems. First, because it
does not provide bounds on the score, it is not possible to terminate it until the
residual is small. Thus, the conjugate gradient method requires more iterations
than our pairwise algorithm. Note, however, that this result is simply a matter of
detecting when to stop—both conjugate gradient and our lower bound produce
similar relative errors for the same work. Second, the relative error for conju-
gate gradient displays erratic behavior. Such behavior is not unexpected, because
conjugate gradient optimizes the A-norm of the error and it is not guaranteed
to provide smooth convergence for an element of the solution. These oscillations
make early termination of the CG algorithm problematic, whereas no such is-
sues occur for the upper and lower bounds from our algorithm. We speculate
that the seemingly smooth convergence behavior that we observe for the up-
per and lower bound estimates may be rooted in the convergence behavior of
the largest Ritz value of the tridiagonal matrix associated with Lanczos, but a
better understanding of this issue will require further exploration.

6.3. Pairwise Katz Scores

We next show the same type of figure but for the pairwise Katz scores instead;
see Figure 2. We use a value of α that makes I − αA nearly indefinite. Such a
value produces the slowest convergence in our experience. The particular value
we use is α = 1/(‖A‖2 + 1), which we call “hard alpha” in some of the figure
titles. For all of the graphs, we again used λ = 10−4 and λ = ‖L̃‖1 . This value of
λ is smaller than the smallest eigenvalue of I − αA for all the graphs. Also, the
vertex pairs are the same as those used for Figure 1.

For pairwise Katz scores, the baseline approach involves solving the linear
system (I − αA)x = ej , again using the conjugate gradient method (CG). At
each step of CG, we use the approximation eT

i x(k) , where x(k) is the kth iterate.
We use the same convergence check as in the CG baseline for commute time.
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For these problems, we also evaluated techniques based on the Neumann series
for I − αA, but those took over 100 times as many iterations as CG or our
pairwise approach. The Neumann series is the same algorithm used in [Wang
et al. 07] but customized for the linear system, not matrix inverse, which is a
more appropriate comparison for the pairwise case. Finally, the exact solution
was again computed using MINRES [Paige and Saunders 75] to solve the same
system as CG to a tolerance of 10−14 .

A distinct difference from the commute-time results is that both the lower and
upper bounds converge similarly and have similar errors. This occurs because of
the symmetry in the upper and lower bounds that results from using the MMQ
algorithm twice on the form

1
4

[
(ei + ej )T (I − αA)−1(ei + ej )− (ei − ej )T (I − αA)−1(ei − ej )

]
.

In comparison with the conjugate gradient method, our pairwise algorithm is
slower to converge. While the conjugate gradient method appears to outperform
our pairwise algorithms here, recall that it does not provide any approximation
guarantees. Also, the two matrix–vector products in Algorithm 5 can easily be
merged into a single “combined” matrix–vector product algorithm. As we discuss
further in the conclusion, such an implementation would reduce the difference in
running time between the two methods.

6.4. Relative Matrix–Vector Products in Pairwise Algorithms

Thus far, we have detailed a few experiments describing how the pairwise al-
gorithms converge. In these cases, we compared against the conjugate gradient
algorithm for a single pair of vertices on each graph. In this experiment, we ex-
amine the number of matrix–vector products that each algorithm requires for a
much larger set of vertex pairs. Let us first describe how we picked the vertices
for the pairwise comparison. There were two types of vertex pairs chosen: purely
random, and degree-correlated. The purely random choices are simple: pick a
random permutation of the vertex numbers; then use pairs of vertices from this
ordering. The degree-correlated pairs were picked by first sorting the vertices
by degree in decreasing order, then picking the 1st, 2nd, 3rd, 4th, 5th, 10th,
20th, 30th, 40th, 50th, 100th . . . vertices from this ordering, and finally, using all
vertex pairs in this subset. Note that for commute time, we used only the 1st,
5th, 10th, 50th, 100th . . . vertices to reduce the total computation time. For the
pairwise commute times, we used 20 random pairs and used 100 random pairs
for pairwise Katz scores.

In Figure 3, we show the matrix–vector performance ratio between our pair-
wise algorithms and conjugate gradient. Let kcg be the number of matrix–vector
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products until CG converges to a tolerance of 10−4 (as in previous experiments),
and let kalg be the number of matrix–vector products until our algorithm con-
verges. The performance ratio is

kcg − kalg

kcg
,

which has a value of 0 when the two algorithms take the same number of matrix–
vector products, the value 1 when our algorithm takes zero matrix–vector prod-
ucts, and the value −1 (or −2) when our algorithm takes two (or three) times as
many matrix–vector products as CG. We display the results as a box plot of the
results from all trials. There was no systematic difference in the results between
the two types of vertex pairs (random or degree correlated).

These results show that the small sample in the previous section is fairly rep-
resentative of the overall performance difference. In general, our commute-time
algorithm uses fewer matrix–vector products than conjugate gradient. We sus-
pect that this result is due to the ability to stop early as explained in Section 6.2.
And as also observed in Section 6.3, our pairwise Katz algorithm tends to take
two to three times as many matrix–vector products as conjugate gradient. These
results again used the same “hard alpha” value.

6.5. Columnwise Commute Times

Our next set of results concerns the precision of our approximation to the column-
wise commute-time scores. Because the output of our columnwise commute-time
algorithm is based on a coarse approximation of the diagonal elements of the
inverse, we do not expect these scores to converge to their exact values as we
increase the work in the algorithm. Consequently, we study the results in terms
of the precision at k measure. Recall that the motivation for studying these col-
umnwise measures is not to get the column scores precisely correct, but rather
to identify the closest nodes to a given query or target node. That is, we are
most interested in the smallest elements of a column of the commute-time ma-
trix. Given a target node i, let Salg

k be the k closest nodes to i in terms of our
algorithm. Also, let S∗k be the k closest nodes to i in terms of the exact commute
time. (See below for how we compute this set.) The precision at k measure is

|S∗k ∩ Salg
k |/k.

In words, this formula computes the fraction of the true set of k nodes that our
algorithm identifies.

We ran the algorithm from Section 5.1 with a tolerance of 10−16 to evaluate the
maximum accuracy possible with this approach. We choose two sets of 50 target
nodes. The first set was picked uniformly at random, the second set was picked
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based on the same degree-sequence sampling mentioned in the last section. For
values of k between 5 and 100, we show a box plot of the precision at k scores for
four networks in Figure 4. In the same figure, we also show the result of using the
heuristic Ci,j ≈ 1

Di , i
+ 1

Dj , j
suggested by [von Luxburg et al. 10]. This heuristic

is called “inverse degree” in the figure, because it shows that the set S∗k should
look like the set of k nodes with highest degree or smallest inverse degree.

These results show that our approach for estimating a column of the commute-
time matrix provides only partial information about the true set. However, these
experiments reinforce the theoretical discussion in [von Luxburg et al. 10] that
commute time provides little information beyond the degree distribution. Con-
sequently, the results from our algorithm may provide more useful information
in practice, although such a conclusion would require us to formalize the nature
of the approximation error in this algorithm and involve a rather different kind
of study.

Exact commute times. Computing commute times is challenging. As part of a separate
project, the third author of this paper wrote a program to compute the exact
eigenvalue decomposition of a combinatorial graph Laplacian in a distributed
computing environment using the MPI and the ScaLAPACK libraries [Blackford
et al. 96]. This program ignores the sparsity in the matrix and treats the problem
as a dense matrix. We adapted this software to compute the pseudoinverse of
the graph Laplacian as well as the commute times. We were able to run this
code on graphs up to 100,000 nodes using approximately 10 to 20 nodes of a
larger supercomputer. (The details varied by graph, and are not relevant for this
paper.) For graphs with fewer than 20,000 nodes, the same program will compute
all commute times on the previously mentioned desktop computer. Thus, we
computed the exact commute times for all graphs except email-euAll, flickr2,
and hollywood-2009.

6.6. Columnwise Katz Scores

We now come to evaluate the local algorithm for Katz scores. As with the pairwise
algorithms, we first study the empirical convergence of the algorithm. However,
the evaluation for the convergence here is rather different. Recall again that the
point of the columnwise algorithms is to find the most closely related nodes. For
Katz scores, these are the largest elements in a column (whereas for commute
time, they were the smallest elements in the column). Thus, we again evaluate
each algorithm in terms of the precision at k for the top-k set generated by our
algorithms and the exact top-k set produced by solving the linear system. Natu-
ral alternatives are other iterative methods and specialized direct methods that
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exploit sparsity. The latter—including approaches such as truncated commute
time [Sarkar and Moore 07]—are beyond the scope of this work, since they re-
quire a different computational treatment in terms of caching and parallelization.
Thus, we again use conjugate gradient (CG) as our point of comparison. The ex-
act solution is computed by solving (I − αA)ki = ei , again using the MINRES
method, to a tolerance of 10−12 .

We also look at the Kendall-τ correlation coefficient between our algorithm’s
results and the exact top-k set. This experiment will let us evaluate whether the
algorithm is ordering the true set of top-k results correctly. Let xalg

k ∗ be the scores
from our algorithm on the exact top-k set, and let x∗k ∗ be the true top-k scores.
The τ coefficients are computed between xalg

k ∗ and x∗k ∗ .
Both the precision at k and the Kendall-τ measures should tend to 1 as we

increase the work in our algorithm. Indeed, this is what we observe in Figure 5.
For these figures, we pick a vertex with a fairly large degree and run Algorithm
6 with the “hard alpha” value mentioned in previous sections. As the algorithm
runs, we track work with respect to the number of effective matrix–vector prod-
ucts. An effective matrix–vector product corresponds to our algorithm examining
the same number of edges as a matrix–vector product. For example, suppose the
algorithm accesses a total of 80 neighbors in a graph with 16 edges. Then this
instance corresponds to 2.5 effective matrix–vector products. The idea is that
the amount of work in one effective matrix–vector product is about the same as
the amount of work in one iteration of CG. Hence, we can compare algorithms
on this ground. As evident from the legend in each figure, we look at precision at
k for four values of k, namely 10, 25, 100, 1000, and also the Kendall-τ for these
same values. While all of the measures should tend to 1 as we increase work,
some of the exact top-k results contain tied values. Our algorithm has trouble
capturing precisely tied values, and the effect is that our Kendall-τ score does
not always tend to 1 exactly.

For comparison, we show results from the conjugate gradient method for the
top-25 set after 2, 5, 10, 15, 25, and 50 matrix–vector products. In these results,
the top-25 set has nearly converged after the equivalent of a single matrix–vector
product, which is equivalent to just one iteration of the CG algorithm. The CG
algorithm does not provide any useful information until it converges. Our top-k
algorithm produces useful partial information with much less work.

6.7. Running Time

Finally, we show the empirical running time of our implementations in Tables 4
and 5. Table 4 describes the running time of the two pairwise algorithms. We
show the 25th, 50th, and 75th percentiles of the time taken to compute the
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Figure 5. Convergence results for our columnwise Katz algorithm in terms of the
precision of the top-k set (left) and the ordering of the true top-k set (right). See
Section 6.6 for the discussion (color figure available online).
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Pairwise Katz Pairwise commute
running time (sec.) running time (sec.)

Graph Avg. Verts. Deg. 25% Median 75% 25% Median 75%

tapir 1024 5.6 0.0 0.0 0.0 0.0 0.0 0.1
stanford-cs 2759 7.4 0.0 0.0 0.0 0.1 0.2 0.2
ca-GrQc 4158 6.5 0.0 0.0 0.0 0.1 0.1 0.1
wiki-Vote 7066 28.5 0.0 0.0 0.0 0.2 0.2 0.2
ca-HepTh 8638 5.7 0.0 0.0 0.0 0.1 0.2 0.2
ca-HepPh 11204 21.0 0.0 0.0 0.0 0.4 0.4 0.4
Stanford3 11586 98.1 0.2 0.2 0.2 0.6 0.7 0.7
ca-AstroPh 17903 22.0 0.1 0.1 0.1 0.5 0.5 0.7
ca-CondMat 21363 8.5 0.0 0.0 0.1 0.4 0.5 0.5
email-Enron 33696 10.7 0.1 0.1 0.1 1.1 1.2 1.3
soc-Epinions1 75877 10.7 0.2 0.2 0.2 2.8 3.2 3.7
soc-Slashdot0811 77360 12.1 0.2 0.2 0.2 2.6 2.8 3.4
arxiv 86376 12.0 0.2 0.3 0.3 4.8 6.0 6.5
dblp 93156 3.8 0.1 0.1 0.2 3.0 3.2 3.4
email-EuAll 224832 3.0 0.3 0.4 0.4 11.2 14.2 17.2
flickr2 513969 12.4 1.3 1.7 1.8 54.8 60.0 69.8
hollywood-2009 1069126 105.3 16.5 17.0 17.4 199.2 246.0 272.5

Table 4. Running time of the pairwise algorithms. The “0.0” second entries are
rounded down for display. These are really just less than 0.1 seconds. The three
columns for each type of problem show the 25th, 50th, and 75th percentiles of
the wall-clock time to compute the results in Figure 3.

results from Figure 3. Our implementation is not optimized, and so these results
indicate the current real-world performance of the algorithms.

Table 5 describes the running time of the columnwise Katz algorithm. Here,
we picked columns of the matrix to approximate in two ways: (i) randomly, and
(ii) to sample the entire degree distribution. As in previous experiments, we took
the 1st, 2nd, 3rd, 4th, 5th, 10th, 20th . . . vertices from the set of vertices sorted
in order of decreasing degree. For each column picked in this manner, we ran
Algorithm 6 and recorded the wall clock time. The 25th, 50th, and 75th
percentiles of these times are shown in the table for each of the two sets of
vertices.
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Random columns Degree columns
running time (sec.) running time (sec.)

Graph Avg. Verts. Deg. 25% Median 75% 25% Median 75%

tapir 1024 5.6 0.0 0.0 0.0 0.0 0.0 0.0
stanford-cs-sym 2759 7.4 0.0 0.0 0.0 0.0 0.0 0.0
ca-GrQc 4158 6.5 0.0 0.0 0.0 0.0 0.0 0.0
wiki-Vote 7066 28.5 0.0 0.0 0.4 0.4 0.4 0.4
ca-HepTh 8638 5.7 0.0 0.0 0.0 0.0 0.0 0.0
ca-HepPh 11204 21.0 0.0 0.0 0.0 1.1 1.1 1.1
Stanford3 11586 98.1 0.0 0.0 1.7 1.8 1.9 1.9
ca-AstroPh 17903 22.0 0.0 0.0 0.0 0.6 0.7 0.9
ca-CondMat 21363 8.5 0.0 0.0 0.0 0.1 0.1 0.1
email-Enron 33696 10.7 0.0 0.0 0.0 0.9 1.0 1.1
soc-Epinions1 75877 10.7 0.0 0.0 0.0 3.7 4.1 4.5
soc-Slashdot0811 77360 12.1 0.0 0.0 0.0 2.4 2.8 3.7
arxiv 86376 12.0 0.0 0.0 0.0 0.0 0.6 0.7
dblp 93156 3.8 0.0 0.0 0.0 0.0 0.0 0.0
email-EuAll 224832 3.0 0.0 0.0 0.0 1.1 1.7 2.5
flickr2 513969 12.4 0.0 0.0 0.0 11.5 52.6 55.5
hollywood-2009 1069126 105.3 0.0 0.0 0.0 0.3 0.4 0.4

Table 5. Running time of the columnwise Katz algorithm. The “0.0” second
entries are rounded down for display. These are really just less than 0.1 seconds.
The three columns show the 25th, 50th, and 75th percentiles of the wall-clock
time of the experiments described in Section 6.7.

For this algorithm, the degree of the target node has a considerable impact
on the algorithm running time. This effect is particularly evident in the flickr2
data. The randomly chosen columns are found almost instantly, whereas the
degree sampled columns take considerably longer. A potential explanation for
this behavior is that starting at a vertex with a large degree will dramatically
increase the residual at the first step. If these new vertices also have a large
degree, then this effect will multiply, and the residual will rise for a long time
before converging. Even in the cases in which the algorithm took a long time to
converge, it explored only a small fraction of the graph (usually about 10% of
the vertices), and so it retained its locality property. This property suggests that
optimizing our implementation could reduce these running times.
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7. Conclusion and Discussion

The goal of this manuscript is to estimate commute times and Katz scores in a
rapid fashion. Let us summarize our contributions and experimental findings.

For the pairwise commute-time problem, we have implemented Algorithm 4,
based on the relationship between the Lanczos process and a quadrature rule
(Section 4.1). This algorithm uses a similar mechanism to that of conjugate
gradient (CG). It outperforms the latter in terms of total matrix–vector products,
because it provides upper and lower bounds that allow for early termination,
whereas CG does not provide an easy way of detecting convergence for a specific
pairwise score.

For the pairwise Katz problem, we have proposed Algorithm 5, also based on
the same quadrature theory. This algorithm involves two simultaneous Lanczos
iterations. In practice, this means more work per iteration than a simple approach
based on CG. A careful implementation of Algorithm 5 would merge the two
Lanczos processes into a “joint process” and perform the matrix–vector products
simultaneously. In our tests of this idea, we have found that the combined matrix–
vector product took only 1.5 times as long as a single matrix–vector product.

For the columnwise commute-time problem, we have investigated a variation
of the conjugate gradient method that also provides an estimate of the diagonals
of the matrix inverse. We have found that these estimates were fairly crude ap-
proximations of the commute-time scores. We have also investigated whether the
degree-based heuristic from [von Luxburg et al. 10] provides better information.
It indeed seems to perform better, which suggests that the smallest elements of
a column of the commute-time matrix may not be a useful set of related nodes.

For the columnwise Katz algorithm, we have proposed Algorithm 6 based on
the techniques used for personalized PageRank computing. The idea with these
techniques is to exploit sparsity in the solution vector itself to derive faster
algorithms. We have shown that this algorithm converges in two cases: Result
5.1, where we established a precise convergence result, and Theorem 5.3, where
we established only asymptotic convergence.

We believe that these results paint a useful picture of the strengths and lim-
itations of our algorithms. In the spirit of reproducible research, we make our
data, computational codes, and figure-plotting codes available for others.1

Here are a few possible directions for future work:

1 Available at http://cs.purdue.edu/homes/dgleich/codes/fast-katz-2011.
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Alternatives for pairwise Katz. First, there are alternatives to using the identity

uT f(Z )v =
1
4
(u + v)T f(Z )(u + v)− 1

4
(u− v)T f(Z )(u− v)

in the u �= v case. The first alternative is based on the nonsymmetric Lanczos
process [Golub and Meurant 10]. This approach still requires two matrix–vector
products per iteration, but it directly estimates the bilinear form and also pro-
vides upper and lower bounds. A concern with the nonsymmetric Lanczos process
is that it is possible to encounter degeneracies in the recurrence relationships that
stop the process short of convergence. Another alternative is based on the block
Lanczos process [Golub and Meurant 10]. However, this process does not yet
offer upper and lower bounds.

A theoretical basis for the localization of Katz scores. The inspiration for the columnwise
Katz algorithm was the highly successful personalized PageRank algorithms.
The localization of these personalized PageRank vectors was made precise in
a theorem from [Andersen et al. 06] that related the personalized PageRank
vector to cuts in the graph. In brief, if there is a good cut close to a vertex,
then the personalized PageRank vector will be localized on a few vertices. An
interesting question is whether Katz matrices enjoy a similar property. We hope
to investigate this question in the future.
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