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A Coupled Model for the
Indegree and Outdegree
Analysis of the Web
P. Favati, G. Lotti, O. Menchi, and F. Romani

Abstract. We introduce a mixed model for the Web graph that simultaneously describes
the inlink and outlink distributions by taking into account the interconnection of the
two processes. We derive an expression for the steady-state distribution of indegrees
(outdegrees) among vertices with fixed outdegree (indegree) in terms of sums of beta
functions. Experimentation on subsets of the real Web shows that the proposed distri-
butions well reproduce the behavior of the observed data.

1. Introduction

Many models have been suggested to explain the main features of the Web graph
(e.g., see [Barabasi and Albert 99, Barabasi et al. 99, Kleinberg et al. 99]). Among
these, particular interest has been shown in the models that deal with the graph
as a directed graph, allowing one to model both indegree and outdegree distri-
butions. The models most suitable for a description of subsets of the real Web
are those based on mixed rules, including uniform attachment and preferential
attachment strategies [Cooper and Frieze 01, Dorogovtsev et al. 00, Pennock
et al. 02, Kumar et al. 00].
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Most papers aim to show that both indegree and outdegree distributions satisfy
a power law, but accurate observations of subsets of the real Web have shown
that the link distribution corresponding to low degrees fails to fit a power law
with a discrepancy larger for outlinks than for inlinks [Broder et al. 00, Caldarelli
et al. 03]. A better description of either distribution can be given using the beta
function [Favati et al. 08] or one of its asymptotic approximations [Pennock
et al. 02]. The beta function was used earlier by [Simon 55] to describe word-
frequency distributions.

All these models treat either indegrees or outdegrees, but not both simulta-
neously. Since the processes of inlinking and outlinking are two aspects of the
same phenomenon, every pair of independent models cannot describe it com-
pletely. We expect that a single model may be devised to describe the inlink and
outlink distributions together by taking into account the interconnections of the
two processes. Such an integrated model would give more accurate information
on the strategies that govern the evolution of links generation. We present here,
as announced in [Favati et al. 08], a model that allows a full treatment of direct
graphs by dealing simultaneously with both distributions. A similar approach
is followed in [Bollobás et al. 03, Cooper 06], where the indegree and outdegree
distributions are described in terms of the power law.

In contrast to the monodimensional case, a closed form of the solution of the
bidimensional model describing the underlying stochastic process is not avail-
able, i.e., the number of pages with assigned indegree and outdegree cannot be
explicitly given. However, with our approach we succeed in describing the inde-
gree (outdegree) distributions for each fixed value of the outdegree (indegree) in
terms of sums of beta functions depending on interconnected parameters derived
from a unique process of link generation. Analysis of the “cross sections” of the
graph is done also in [Bollobás et al. 03], but only their asymptotic expressions
are given.

Experimentation carried out on real data sets shows that the proposed model
is valid and that the technique used for detecting values of the parameters is ef-
fective. In Section 2 the linking model is introduced, and its steady-state solution
is proposed and analyzed. In Section 3 the data and the techniques used for the
experiments are presented, and the results of the experimentation are discussed.
Conclusions are given in Section 4.

The models mentioned above, including the one we propose, imply a linear
growth of the edges in the number of nodes, i.e., the average node degrees remain
constant over time. Nonlinear models have been considered as well. It is noted
in [Leskovec et al. 05] that in some networks, the average node degrees increase
over time, and the authors developed a model capturing this property. However,
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as noted in [Mitzenmacher 06], at this time this property has not been observed
in the Web graph.

2. The Stochastic Problem

The Web can be represented as a directed graph of pages, connected by links.
Two important indicators are associated with each page: the indegree, that is,
the number of inlinks pointing to that page, and the outdegree, which is the
number of outlinks originating from that page.

We want to examine the Web structure from both the inlink and outlink points
of view. The aim is to find how many pages of the Web have a given indegree or
outdegree. Hence we will examine how the number Xj of pages with indegree j
and the number Yh of pages with outdegree h depend on j and h, respectively.
In order to obtain accurate information on the evolution of links generation,
we perform our analysis by taking into account the interconnection between
the inlink and outlink processes, and introduce the number Zj,h of pages with
indegree j and outdegree h. We assume that any page of interest has at least
one link, so Z0,0 = 0.

To find an adequate model for the function Zj,h , a discrete-time stochastic
process is considered. At any time step a new link (i.e., a new inlink and a new
outlink) is created according to the following criteria:

1. With probability αI , the new link points to a new page, i.e., a page having
zero indegree and outdegree.

2. With probability γI , the new link points to a page chosen at random among
those having zero indegree and nonzero outdegree.

3. With probability 1 − αI − γI , the new link points to a page chosen among
those having nonzero indegree and outdegree, according to the following
rule:

(a) With probability βI , the new link points to a page chosen at random
(this policy is known as uniform attachment).

(b) With probability 1 − βI , the new link points to a page chosen propor-
tionally to its indegree (this policy is known as preferential attachment
and expresses the concept that new links tend to attach themselves to
pages already having more inlinks).

For the outlinks, analogous positions hold with the subscript O replacing the I.
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2.1. The Linking Model

Let Z(t)
j,h be the number of pages having indegree j and outdegree h at time t,

with j, h ≥ 0. The time is increased by one when a link is created, and a page is
counted when at least one link points toward it or away from it. At time t:

1. The number of pages is n(t) =
∑

j,h≥0 Z
(t)
j,h .

2. The number of pages with j inlinks is X(t)
j =

∑
h≥0 Z

(t)
j,h .

3. The number of pages with h outlinks is Y (t)
h =

∑
j≥0 Z

(t)
j,h .

4. The number of links is

t =
∑
j≥1

jX
(t)
j =

∑
h≥1

hY
(t)
h . (2.1)

We assume that initially t = 1, Z(1)
0,0 = 0, Z(1)

1,0 = Z
(1)
0,1 = 1, and that Z(t)

0,0 = 0
for any t. Since only one link is created at any time step, we assume also that
Z

(t)
j,h = 0 for j, h > t. When a new link is created, it points to a page having

indegree j and outdegree h with probability p(t)
I (j, h), and it exits from a page

having indegree j and outdegree h with probability p(t)
O (j, h).

These probabilities are given by two terms: the first term, according to the
uniform attachment policy (a), is proportional to Z(t)

j,h , while the second term,
according to the preferential attachment policy (b), is proportional to the number
of all existing links pointing to pages having indegree j (or exiting from pages
having outdegree h). In the case of zero indegree or of zero outdegree, only the
first term is present. Hence we have for j > 0,

p
(t)
I (j, h) = (1 − αI − γI)

[
βI

nI(t)
Z

(t)
j,h +

1 − βI

t
jZ

(t)
j,h

]
, (2.2)

and for j = 0, h > 0,

p
(t)
I (0, h) =

γI

mI(t)
Z

(t)
0,h , (2.3)

where nI(t) and mI(t) are the number of pages having nonzero indegree and zero
indegree respectively, and

p
(t)
O (j, h) = (1 − αO − γO)

[
βO

nO(t)
Z

(t)
j,h +

1 − βO

t
hZ

(t)
j,h

]
, (2.4)

and for j > 0, h = 0,

p
(t)
O (j, 0) =

γO

mO(t)
Z

(t)
j,0 , (2.5)
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where nO(t) and mO(t) are the numbers of pages having nonzero outdegree and
zero outdegree respectively.

Initial positions are

p
(t)
I (0, 0) = αI , p

(t)
O (0, 0) = αO .

It can easily be seen that
t∑

h=1

p
(t)
I (0, h) = γI ,

t∑
j=1

t∑
h=0

p
(t)
I (j, h) = 1 − αI − γI ,

t∑
j=1

p
(t)
O (j, 0) = γO ,

t∑
j=0

t∑
h=1

p
(t)
O (j, h) = 1 − αO − γO .

Hence
t∑

j,h=0

p
(t)
I (j, h) =

t∑
j,h=0

p
(t)
O (j, h) = 1.

The expected value of the variation of Z(t+1)
j,h with respect to Z(t)

j,h is given by

E[Z(t+1)
j,h − Z

(t)
j,h

]
= p

(t)
I (j − 1, h) − p

(t)
I (j, h) + p

(t)
O (j, h− 1) − p

(t)
O (j, h). (2.6)

The equation holds also for j = 0 and h = 0, provided that

p
(t)
I (−1, h) = p

(t)
O (j,−1) = 0.

The model (2.6) is one of the many versions of mixed models (see, for example,
[Cooper and Frieze 01, Dorogovtsev et al. 00, Pennock et al. 02]). The novelty
consists in considering each link simultaneously as an inlink and an outlink and,
to this purpose, in describing the behavior of Z(t)

j,h , instead of that of X(t)
j or Y (t)

h

separately.
The probability of generating a page with one inlink is αI and with one out-

link is αO. The probability of transferring a page from the set of pages with
zero indegree (respectively outdegree) to the set of pages with nonzero indegree
(respectively outdegree) is γI (respectively γO). Hence the expected values of the
variation of the different page numbers are

E[n(t+ 1) − n(t)
]

= αI + αO ,

E[nI(t+ 1) − nI(t)
]

= αI + γI ,

E[nO(t+ 1) − nO(t)
]

= αO + γO , (2.7)
E[mI(t+ 1) −mI(t)

]
= αO − γI ,

E[mO(t+ 1) −mO(t)
]

= αI − γO .
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2.2. The Steady-State Solution

To find the steady-state distribution of the stochastic process, we replace the
expected values in (2.6) by their actual values, obtaining the difference equation

Z
(t+1)
j,h − Z

(t)
j,h = p

(t)
I (j − 1, h) − p

(t)
I (j, h) + p

(t)
O (j, h− 1) − p

(t)
O (j, h). (2.8)

By applying this equation recursively, we can see how Z
(t)
j,h evolves as t increases.

From (2.7) we obtain

n(t+ 1) = n(t) + αI + αO , n(1) = 2,

and for t→ ∞ we have

n(t) ∼ (αI + αO)t,

meaning that the ratio n(t)/t, i.e., the average number of links per page, is
asymptotically equal to the constant αI + αO. Analogously, we have

nI(t) ∼ (αI + γI)t, nO(t) ∼ (αO + γO)t,
mI(t) ∼ (αO − γI)t, mO(t) ∼ (αI − γO)t.

By setting

µI =
(1 − αI − γI)βI

αI + γI
, µO =

(1 − αO − γO)βO

αO + γO
,

νI = (1 − αI − γI)(1 − βI), νO = (1 − αO − γO)(1 − βO),

ηI =
γI

αO − γI
, ηO =

γO

αI − γO
,

we get from (2.2) to (2.5), for (j, h) �= (0, 0),

p
(t)
I (j, h) ∼ 1

t
π

(j )
I Z

(t)
j,h and p

(t)
O (j, h) ∼ 1

t
π

(h)
O Z

(t)
j,h ,

where

π
(j )
I =

{
ηI , for j = 0,
µI + νIj, for j > 0,

and

π
(h)
O =

{
ηO , for h = 0,
µO + νOh, for h > 0.

To find the steady-state solution of our model, we use these quantities in (2.8)
and let (2.8) hold also for j, h > t+ 1. We get

Z
(t+1)
j,h − Z

(t)
j,h =

1
t

[
π

(j−1)
I Z

(t)
j−1,h − π

(j )
I Z

(t)
j,h + π

(h−1)
O Z

(t)
j,h−1 − π

(h)
O Z

(t)
j,h

]
.
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This equation holds also on the boundary if we set

π
(−1)
I = π

(−1)
O = 0,

i.e., for j �= 1 we set

Z
(t+1)
j,0 − Z

(t)
j,0 =

1
t

[
π

(j−1)
I Z

(t)
j−1,0 − π

(j )
I Z

(t)
j,0 − π

(0)
O Z

(t)
j,h

]
,

and for h �= 1 we set

Z
(t+1)
0,h − Z

(t)
0,h =

1
t

[
− π

(0)
I Z

(t)
0,h + π

(h−1)
O Z

(t)
0,h−1 − π

(h)
O Z

(t)
0,h

]
,

where for j = 1 the term π
(j−1)
I Z

(t)
j−1,0 is replaced by αI , and for h = 1 the term

π
(h−1)
O Z

(t)
0,h−1 is replaced by αO.

The steady-state solution Z
(t)
j,h satisfies these equations for any t, and hence

we assume it to be of the form Z
(t)
j,h = tcj,h , where cj,h , for (j, h) �= (1, 0) and

(j, h) �= (0, 1), satisfies

sj,hcj,h = π
(j−1)
I cj−1,h + π

(h−1)
O cj,h−1 , (2.9)

where

sj,h = 1 + π
(j )
I + π

(h)
O ,

and initial conditions are given by

s1,0c1,0 = αI , s0,1c0,1 = αO . (2.10)

Note that c0,0 is not defined through Z(t)
0,0 .

The steady-state distributions xj and yh corresponding to X(t)
j and Y

(t)
h are

given by

X
(t)
j = txj , with xj =

∑
h≥0

cj,h ,

Y
(t)
h = tyh , with yh =

∑
j≥0

cj,h ,

and still satisfy (2.1). Hence∑
j≥1

jxj =
∑
h≥1

hyh = 1.
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2.3. Properties of the Solution

To analyze the steady-state solution, we make use of the properties of the beta
complete function B(a, b), which satisfies the recurrence relation

(a+ b− 1)B(a, b) = (a− 1)B(a− 1, b). (2.11)

In the following, the first argument of the beta function will be expressed by the
addition of a constant part plus an integer variable part, as, for example,

B(a+ j, b), with j ≥ 0.

We define the corresponding normalized function

BN (a+ j, b) =
B(a+ j, b)
B(a, b)

,

which starts from zero with value one.
We are particularly interested in asymptotic approximations. For j → ∞ we

use the notation a(j) ≈ b(j) to indicate that limj→∞ a(j)/b(j) is a constant. In
the case of the beta function, the following asymptotic approximation for j → ∞
holds:

BN (a+ j, b) ≈ (a+ j)−b with lim
j→∞

BN (a+ j, b)
(a+ j)−b

= Γ(b). (2.12)

Lemma 2.1. The difference equation

(ρ+ j)zj = (σ + j − 1)zj−1 , with j ≥ 1 + j̃,

where ρ and σ are independent of j, has the solution

zj = zj̃
B(σ + j, 1 + ρ− σ)
B(σ + j̃, 1 + ρ− σ)

.

The asymptotic approximation for j → ∞ is

zj ≈ (σ + j)1+ρ−σ .

Proof. Setting a = σ + j, b = 1 + ρ− σ, we see from (2.11) that B(σ + j, 1 + ρ− σ)
satisfies the equation. The initial condition for j = j̃ sets the right normalization
value. The asymptotic approximation is obtained from (2.12).

As we will see, the steady-state solution can be expressed as a combination of
linearly independent beta functions. To get information on the behavior of the
function cj,h , we examine its cross sections, i.e., we fix a value of h and let j
vary, and vice versa.
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Theorem 2.2. On the boundary the steady-state solution is

cj,0 =
αI

µI
BN

(
µI

νI
+ j, 1 +

1 + ηO

νI

)
, with j ≥ 1, (2.13)

c0,h =
αO

µO
BN

(
µO

νO
+ h, 1 +

1 + ηI

νO

)
, with h ≥ 1. (2.14)

The asymptotic approximations for j and h→ ∞ are

cj,0 ≈
(
µI

νI
+ j

)−(1+(1+ηO )/ν I )

, c0,h ≈
(
µO

νO
+ h

)−(1+(1+η I )/νO )

.

Proof. To get cj,0 we apply Lemma 2.1 to the difference equation (2.9) with h = 0,
divided by νI . For j̃ = 1 this equation is(

1 + µI + ηO

νI
+ j

)
cj,0 =

(
µI

νI
+ j − 1

)
cj−1,0 , j ≥ 2.

The solution is

cj,0 = c1,0
B
(
µ I
ν I

+ j, 1 + 1+ηO
ν I

)
B
(
µ I
ν I

+ 1, 1 + 1+ηO
ν I

) , j ≥ 1. (2.15)

From (2.10) we have

c1,0 =
αI

1 + µI + νI + ηO
, (2.16)

and from (2.11) we have

B

(
µI

νI
+ 1, 1 +

1 + ηO

νI

)
=
µIB

(
µ I
ν I
, 1 + 1+ηO

ν I

)
1 + µI + νI + ηO

. (2.17)

By substituting (2.16) and (2.17) into (2.15) we get (2.13). The proof for c0,h is
analogous.

Theorem 2.3. Let νI �= 0, νO �= 0, ηO �= µO + νO i, and ηI �= µI + νIi for all integers
i. The cross sections of cj,h are as follows:

(a) For a fixed h,

cj,h =
h∑
i=0

a
(h)
i BN

(
µI

νI
+ j, 1 +

1 + π
(i)
O

νI

)
, (2.18)



446 Internet Mathematics

where

a
(0)
0 =

αI

µI
, a

(h)
0 =

a
(h−1)
0 π

(h−1)
O

µO + νOh− ηO
,

a
(h)
i =

a
(h−1)
i π

(h−1)
O

(h− i)νO
, for i = 1, . . . , h− 1,

a
(h)
h = c0,h −

h−1∑
i=0

a
(h)
i .

(b) For a fixed j,

cj,h =
j∑

i=0

b
(j )
i BN

(
µO

νO
+ h, 1 +

1 + π
(i)
I

νO

)
, (2.19)

where

b
(0)
0 =

αO

µO
, b

(j )
0 =

b
(j−1)
0 π

(j−1)
I

µI + νIj − ηI
,

b
(j )
i =

b
(j−1)
i π

(j−1)
I

(j − i)νI
, for i = 1, . . . , j − 1,

b
(j )
j = cj,0 −

j−1∑
i=0

b
(j )
i .

(c) The asymptotic approximations for j and h→ ∞ are

for a fixed h : cj,h ≈
(
µI

νI
+ j

)−(1+(1+eO )/ν I )

, (2.20)

for a fixed j : cj,h ≈
(
µO

νO
+ h

)−(1+(1+eI )/νO )

,

where

eI = min{ηI , µI + νI}, eO = min{ηO , µO + νO}.

Proof. (a) Let h be fixed. For h = 0, expression (2.18) follows immediately from
Theorem 2.2. For h ≥ 1 we proceed by induction. For simplicity’s sake in this
proof we use the notation

g(j, i) := BN

(
µI

νI
+ j, 1 +

1 + π
(i)
O

νI

)
.
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Applying (2.11), we have

sj,ig(j, i) = π
(j−1)
I g(j − 1, i). (2.21)

We verify by direct substitution that (2.18) satisfies (2.9). In fact, replacing
(2.18) in the left-hand side of (2.9) gives

L =
h∑
i=0

a
(h)
i sj,hg(j, i),

and in the right-hand side gives

R =
h∑
i=0

a
(h)
i π

(j−1)
I g(j − 1, i) +

h−1∑
i=0

a
(h−1)
i π

(h−1)
O g(j, i).

Replacing g(j − 1, i) in R by means of (2.21), we have

L−R =
h−1∑
i=0

(
a

(h)
i sj,h − a

(h)
i sj,i − a

(h−1)
i π

(h−1)
O

)
g(j, i).

Hence L = R if

a
(h)
i =

a
(h−1)
i π

(h−1)
O

sj,h − sj,i
, for i = 0, . . . , h− 1,

where sj,h − sj,i = µO + νOh− ηO if i = 0 and sj,h − sj,i = (h− i)νO if i ≥ 1.
The coefficient a(h)

h is found by imposing that

cj,h

∣∣∣
j=0

= c0,h ,

and since all the normalized beta functions of (2.18) are equal to 1, it follows
that

a
(h)
h = c0,h −

h−1∑
i=0

a
(h)
i .

(b) The proof for cj,h with a fixed j is analogous.
(c) The dominant term of (2.18) is either the first one or the second one,

according as ηO < µO + νO or ηO > µO + νO. In practice, the dominant term is
always

BN

(
µI

νI
+ j, 1 +

1 + eO

νI

)
, with eO = min{ηO , µO + νO}.

Then the asymptotic approximation appears to be independent of h, and anal-
ogously for the asymptotic approximation with a fixed j.
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Remark 2.4. Theorem 2.3 expresses cj,h for a fixed h as a linear combination of the
h+ 1 functions

BN

(
µI

νI
+ j, 1 +

1 + ηO

νI

)
and

BN

(
µI

νI
+ j, 1 +

1 + µO + νO i

νI

)
, for i = 1, . . . , h,

which are linearly independent under the hypothesis that ηO �= µO + νO i for all
i ≤ h. If this condition is violated, i.e., ηO = µO + νO i for an index i ≤ h, then
we must complete the basis by replacing BN (µ I

ν I
+ j, 1 + 1+ηO

ν I
) with a different

function that still satisfies (2.9) and is linearly independent of all the other
functions of the basis. For example, if h = 1 and µO + νO = ηO, it can be shown
by direct substitution that such a function has the form

BN

(
µI

νI
+ j, 1 +

1 + ηO

νI

)
φ(j),

where

φ(j) = φ(j − 1) +
1
sj,0

, with φ(0) = 0.

The cases ηI = µI + νIi and ηO = µO + νO i for some i are highly improbable
(actually, they have never been found in experiments with real Web subsets).
For this reason, they are not taken into consideration.

The inlink and outlink distributions, in contrast to the components of the
steady-state solutions, can be expressed in a simple way in terms of beta func-
tions.

Theorem 2.5. The functions xj and yh satisfy the difference equations(
1 + π

(j )
I

)
xj = π

(j−1)
I xj−1 , with

(
1 + π

(1)
I

)
x1 = αI + γI , (2.22)(

1 + π
(h)
O

)
yh = π

(h−1)
O yh−1 , with

(
1 + π

(1)
O

)
y1 = αO + γO . (2.23)

The solutions of these equations are

xj =
αI + γI

µI
BN

(
µI

νI
+ j, 1 +

1
νI

)
, with j ≥ 1, (2.24)

yh =
αO + γO

µO
BN

(
µO

νO
+ h, 1 +

1
νO

)
, with h ≥ 1, (2.25)
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and their asymptotic approximations for j and h→ ∞ are

xj ≈
(
µI

νI
+ j

)−(1+1/ν I )

, (2.26)

yh ≈
(
µO

νO
+ h

)−(1+1/νO )

. (2.27)

Proof. By summing (2.9) on h we get for any integer n ≥ 2,

(
1 + π

(j )
I

) n∑
h=0

cj,h

= π
(j−1)
I

n∑
h=0

cj−1,h +
n∑

h=1

π
(h−1)
O cj,h−1 −

n∑
h=0

π
(h)
O cj,h

= π
(j−1)
I

n∑
h=0

cj−1,h − π
(n)
O cj,n .

Equation (2.22) follows, since limn→∞ ncj,n = 0. The initial position is found in
a similar way using formula (2.10) and noticing that

ηI

∑
h≥1

c0,h = ηI(αO − γI) = γI .

The proof of (2.23) is analogous. To find the explicit and the asymptotic expres-
sions of the solutions, Lemma 2.1 is exploited, as was already done in the proof
of Theorem 2.2.

Remark 2.6. Theorem 2.5 shows that while the overall linking distribution Z
(t)
j,h

is described by a coupled model, solutions (2.24) and (2.25) for the indegree
and outdegree distributions depend on the inlink and outlink parameters in a
disjointed way.

3. Real Web Experimentation

We are interested in verifying, by means of experiments, how the proposed model
gives an appropriate description of the page distribution as a function of the
number of inlinks and outlinks. For this purpose we fit data obtained from real
Web subsets. These data were collected by a crawler that visited the Web begin-
ning with a predetermined list of URLs and downloaded the URLs of the pages
it encountered. The process was repeated recursively until a certain depth was
reached. Note that the data were inevitably influenced by the different policies
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implemented for crawling and by the limitation of the search. Moreover, since the
pages with indegree zero could not be reached by the crawler, the corresponding
data are not available in real Web subsets. Further, we must take into account
that we are trying to approximate an intrinsically irregular discrete process with
a continuous estimate.

To validate our model we conduct our experiments on the three data sets
it-2004, sk-2005, and uk-2005, which are freely available from the WebGraph
homepage [Boldi and Vigna 04].1 These data sets were obtained from a crawl
performed by UbiCrawler [Boldi et al. 04] on the .it domain in 2004, the .sk

domain in 2005, and the .uk domain in 2005. The it-2004 graph contains 41.3
Mpages and 1.15 Glinks. The sk-2005 graph contains 50.6 Mpages and 1.95
Glinks. The uk-2005 graph contains 39.5 Mpages and 936 Mlinks.

For each subset of the real Web, we consider a sparse representation of the
degree distribution

W = {(j, h,Wj,h ), (j, h) ∈ Q
}
,

where Wj,h is the number of pages having indegree j and outdegree h and Q

is the set of pairs of indices corresponding to nonzero values of Wj,h . As an
example, in Figure 9 (upper) the degree distribution W of the sk-2005 graph is
plotted on a log-log scale. Each point represents a triple (j, h,Wj,h ) ∈W . The
log-log scale is usually employed in the graphic representation of Web data that
span many different orders of magnitude.

From the set W we derive four subsets:

1. the set U1 = {(j,Wj,0), j ∈ Q1}, where Q1 is the subset of indices j corre-
sponding to pages with indegree j and outdegree 0;

2. the set U2 = {(W1,h , h), h ∈ Q2}, where Q2 is the subset of indices h corre-
sponding to pages with indegree 1 and outdegree h;

3. the set U3 = {(j, Sj ), j ∈ Q3}, where Sj =
∑

h Wj,h and Q3 is the subset of
indices j such that at least one page with indegree j exists;

4. the set U4 = {(h, Th ), h ∈ Q4}, where Th =
∑

j Wj,h and Q4 is the subset
of indices h such that at least one page with outdegree h exists.

Note that the subset U2 refers to pages with indegree 1 instead of indegree 0,
due to the fact that the data corresponding to pages with indegree 0 are not
available. The sets U3 and U4 represent the inlink and the outlink distributions,
which are of primary interest in our investigation.

1 See http://law.dsi.unimi.it.
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Figure 1. Sets U1 (black dots) and U3 (gray dots) for sk-2005.

In Figures 1 and 2, the four sets U1–U4 are plotted for sk-2005. These plots
have a characteristic shape, with a thin head and a large tail, due to the presence
of noise, more evident in the data with higher indices. It is self-evident that the
shapes of inlinks and outlinks are different and that while the power law can
be an acceptable approximation to the inlink distribution, this is absolutely not
true for the outlink distribution.

When fitting Web data, to avoid having the different orders of magnitude affect
the result, a logarithmic fit is routinely performed. Hence the following problem

Figure 2. Sets U2 (black dots) and U4 (gray dots) for sk-2005.



452 Internet Mathematics

is addressed: find the values of the parameters of the model that minimize the
objective function

ψ =
∑
j∈Q 1

(
log(tcj,0) − logWj,0

)2 +
∑
h∈Q 2

(
log(tc1,h) − logW1,h

)2
+
∑
j∈Q 3

(
log(txj ) − logSj

)2 +
∑
h∈Q 4

(
log(tyh) − log Th

)2
,

where the functions cj,0 , c1,h , xj , and yh are of the form given in (2.13), (2.19),
(2.24), and (2.25), respectively. The parameters of the model are then αI , βI , γI ,
αO, βO, γO, all in the interval (0, 1), and the time t > 0.

The steady-state solution S(t)
j of the model is a deterministic, continuous, and

monotonic function, while the real Web data consist of integer spread points.
The most straightforward interpretation that gets these two facts to agree is to
look at S(t)

j as the expected value of an integer random variable.
A cursory glance at the plots shows that the lower parts of the graphs have

a more compact and regular shape, while the upper parts appear to be more
spread out. This observation suggests fitting the lower envelope of the data to
approximate the lower edge of the cloud and to consider an additive correction
modeled by a suitable probability distribution (in [Favati et al. 08], a geometric
distribution is experimentally shown to match the real Web data).

We then substitute the sets U1 to U4 by the corresponding lower envelopes to
make the fit. In this way, the number of data in the tail is reduced, thus balancing
the weight of the head and tail.

Table 1 shows the values of the parameters found by applying the fitting
procedure to the above data sets.

Using the parameter values given in Table 1, we can derive the values of the
parameters that characterize the asymptotic approximations (2.26) and (2.27) of
the indegree and outdegree distributions given in Theorem 2.5 for the considered

Data set αI βI γI αO βO γO t

it-2004 0.002 0.022 0.017 0.052 0.723 0.001 1.37 × 109

sk-2005 0.005 0.023 0.008 0.036 0.780 0.002 1.83 × 109

uk-2005 0.002 0.030 0.016 0.048 0.833 0.001 1.34 × 109

Table 1. Values of the inlink and outlink parameters and of the time.
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Data set σI ρI σO ρO

it-2004 1.18 1.04 49.8 3.81
sk-2005 1.90 1.04 92.4 4.71
uk-2005 1.74 1.05 104. 6.30

Table 2. Values of the parameters of the asymptotic approximations for the
indegree and outdegree distributions.

real data sets. These asymptotic approximations are rewritten as

xj ≈
(
σI + j

)−(1+ρI ) , (3.1)

yh ≈ (σO + h
)−(1+ρO )

, (3.2)

and the values of the parameters σI , ρI , σO, ρO so obtained are listed in Table 2.
From direct inspection of the tables we note the following:

1. The values of βI are much smaller than those of βO, meaning that the pref-
erential attachment is the dominant policy in the inlink distribution, while
the outlink distribution is significantly ruled by the uniform attachment.

2. The values of γO are very small, meaning that a page born without outlinks
acquires new outlinks with low probability. This fact has been already noted
in [Bollobás et al. 03], where these pages are referred to as pages that purely
provide content. As a consequence, with high probability, a new outlink is
created either together with a new page or leaving a page already having
outlinks. Moreover, a small γO implies that 1 + eO is nearly equal to 1,
i.e., the exponent in the asymptotic approximation (2.20) is close to the
exponent −(1 + ρI) of (3.1), meaning that all the cross sections, for a fixed
h, have decay behavior very similar to that of the indegree distribution.

3. The values of αI are smaller than γI , meaning that the probability of point-
ing to a new page is lower than that of pointing to an already existing page
with outdegree greater than zero and zero indegree.

4. Since the values of σI are small with respect to even low indegree values j,
the asymptotic approximation (3.1) is close to a power law, confirming that
the power law gives an acceptable description of the indegree distribution.
In fact, in this case the log-log plot of the lower envelope of the data is
nearly rectilinear (see Figure 3). The same conclusion does not hold for the
asymptotic approximation (3.2) of the outdegree distribution, because the
values of σO are not negligible with respect to low outdegree values of h.
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Figure 3. Fitting function xj given in (2.24) (black solid line) for the indegree
distribution (gray dots) of sk-2005.

In this case the log-log plot of the lower envelope of the data is concave
downward, and the larger the σO value, the wider the initial region of slow
decrease (see Figure 4). The values of ρI agree with the measures generally
accepted, while the values of ρO are not comparable with those given in the
literature, since the fit on the whole region cannot have the exponent of a
power law.

Comments 1, 2, and 3 are straightforward and agree with what is generally
presented in the literature, providing an implicit validation of the model.

Figure 4. Fitting function yh given in (2.25) (black solid line) for the outdegree
distribution (gray dots) of sk-2005.
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Figure 5. Fitting function cj,0 given in (2.13) (black solid line) for the set U1

(cross section of the degree distribution at the fixed outdegree value h = 0) of
sk-2005 (gray dots).

Figures 3 and 4 show how well (2.24) and (2.25), with the values of the param-
eters given in Table 1, approximate the real indegree and outdegree distributions
for sk-2005.

Figures 5–8 show how well the cross sections of the real degree distribution
are fitted by the cross sections of the steady-state solution. Figures 5 and 7 refer

Figure 6. Fitting function c1 ,h given in (2.19) (black solid line) for the set U2

(cross section of the degree distribution at the fixed indegree value j = 1) of
sk-2005 (gray dots).
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Figure 7. Fitting function cj,50 given in (2.18) (black solid line) for the cross
section of the degree distribution at the fixed outdegree value h = 50 of sk-2005
(gray dots).

to the indegree distribution at the values h = 0 (i.e., the set U1) and h = 50 of
the outdegree. Figures 6 and 8 refer to the outdegree distribution at the values
j = 1 (i.e., the set U2) and j = 50 of the indegree.

Finally, Figure 9 shows 3D log-log graphs of the degree distribution of sk-2005
and of the corresponding solution Z

(t)
j,h = tcj,h generated using the model (2.9)

with the values of the parameters given in Table 1.

Figure 8. Fitting function c50 ,h given in (2.19) (black solid line) for the cross
section of the degree distribution at the fixed indegree value j = 50 of sk-2005
(gray dots).
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Figure 9. Degree distribution Wj,h of sk-2005 (upper) and the corresponding
solution Z

(t)
j,h = tcj,h generated using the model (2.9) (lower).

4. Conclusions

A coupled model for the Web graph that simultaneously describes the inlink
and outlink distributions, by taking into account the interconnection of the two
processes, has been proposed. This bidimensional model is a refined version of
the monodimensional model presented in [Favati et al. 08].
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In contrast to the monodimensional case, a closed form of the steady-state
solution of the bidimensional model is not available. The asymptotic expressions
of the steady-state indegree (outdegree) distributions for each fixed value of the
outdegree (indegree) have already been given in the literature. With our ap-
proach, these distributions can be explicitly expressed as sums of beta functions,
whose parameters depend on a unique process of link generation.

A fit procedure has been proposed to compute the parameters αI , βI , γI , αO,
βO, γO, and t of the model for real Web data sets. Experimentation has shown
that the proposed distributions well reproduce the behavior of the observed
data.
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