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Cluster Generation and Labeling
for Web Snippets: A Fast,
Accurate Hierarchical Solution
Filippo Geraci, Marco Pellegrini, Marco Maggini, and Fabrizio Sebastiani

Abstract. This paper describes Armil, a meta-search engine that groups the web
snippets returned by auxiliary search engines into disjoint labeled clusters. The cluster
labels generated by Armil provide the user with a compact guide to assessing the rele-
vance of each cluster to his/her information need. Striking the right balance between
running time and cluster well-formedness was a key point in the design of our system.
Both the clustering and the labeling tasks are performed on the fly by processing only
the snippets provided by the auxiliary search engines, and they use no external sources
of knowledge. Clustering is performed by means of a fast version of the furthest-point-
first algorithm for metric k-center clustering. Cluster labeling is achieved by combining
intra-cluster and inter-cluster term extraction based on a variant of the information gain
measure. We have tested the clustering effectiveness of Armil against Vivisimo, the de
facto industrial standard in web snippet clustering, using as benchmark a comprehen-
sive set of snippets obtained from the Open Directory Project hierarchy. According
to two widely accepted “external” metrics of clustering quality, Armil achieves better
performance levels by 10%. We also report the results of a thorough user evaluation
of both the clustering and the cluster labeling algorithms. On a standard desktop PC
(AMD Athlon 1-Ghz Clock with 750 Mbytes RAM), Armil performs clustering and
labeling altogether of up to 200 snippets in less than one second.

1. Introduction

An effective search interface is a fundamental component in a web search engine.
In particular, the quality of presentation of the search results often represents
one of the main keys to the success of such systems. Most search engines present
the results of a user query as a ranked list of web snippets. Ranking algorithms
play a crucial role in this approach, since users usually browse at most the
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ten top-ranked items. Snippet quality is also an important issue, since good-
quality snippets allow the user to determine whether the referred pages match
or not his/her information need. In order to provide a useful hint about the real
content of the page, a web snippet includes both the page title and a short text
fragment, which often displays the query terms in context. Meta-search engines
(MSEs) integrate the items obtained from multiple “auxiliary” search engines,
with the purpose of increasing the coverage of the results. However, without an
accurate design, MSEs might, in principle, worsen the quality of the information-
access experience, since the user is typically confronted with an even larger set
of results (see [Meng et al. 02] for a recent survey of challenges and techniques
related to building meta-search engines). Thus, key issues to be faced by MSEs
concern the exploitation of effective algorithms for merging the ranked lists of
results retrieved by the different auxiliary search engines (while at the same time
removing the duplicates) and the design of advanced user interfaces based on a
structured organization of the results, so as to help the user to focus on the most
relevant subset of results. This latter aspect is usually implemented by grouping
the results into homogeneous groups by means of clustering or categorization
algorithms.

In the context of the World Wide Web, clustering is not only useful for meta-
searching. For example, regular search engines do clustering to some extent
to avoid showing the user too many semantically-equivalent documents in the
first page of results. This activity is close to the classical duplicate or near-
duplicate detection in information retrieval, and one can take advantage of the
fact that duplicates and near duplicate are easy to detect via multiple hashing
or shingling techniques, and these tasks can be carried out, at least in part, in
an offline setting (see, e.g., [Haveliwala et al. 00]). Moreover, in the duplicate
detection activity labeling is not an issue.

This paper describes the Armil system,1 a meta-search engine that organizes
the web snippets retrieved from auxiliary search engines into disjoint clusters
and automatically constructs a title label for each cluster by using only the text
excerpts available in the snippets. Our design efforts were directed towards de-
vising a fast clustering algorithm able to yield good-quality homogeneous groups
and a distillation technique for selecting appropriate and useful labels for the
clusters. The speed of the two algorithms was a key issue in our design, since
the system must organize the results on the fly, thus minimizing the latency be-
tween the issuing of the query and the presentation of the results. Second-level
clustering is also performed automatically at query time (i.e., not on demand)

1An armillary sphere (also known as a spherical astrolabe, armilla, or armil) is a navigation
tool in the form of a model of the celestial sphere, invented by Eratosthenes in 255 BC.
Renaissance scientists and public figures were often portrayed with one hand on an armil,
since it represented the height of wisdom and knowledge (see http://en.wikipedia.org/wiki/
Armillary sphere). The Armil query interface can be freely accessed and used at http://armil.
iit.cnr.it/.
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to minimize latency. In Armil, an equally important role is played by the clus-
tering component and by the labeling component. Clustering is accomplished
by means of an improved version of the furthest-point-first (FPF) algorithm for
k-center clustering. To the best of our knowledge, this algorithm had never been
used in the context of web snippet clustering or text clustering. The genera-
tion of the cluster labels is instead accomplished by means of a combination of
intra-cluster and inter-cluster term extraction, based on a modified version of the
information gain measure. This approach tries to capture the most significant
and discriminative words for each cluster.

One key design feature of Armil is that it relies almost only on the information
returned by the auxiliary search engines, i.e., the snippets; this means that no
substantial external source of information, such as ontologies or morphological
and syntactic linguistic resources, is used. We use just stop-word lists, stemmers,
and language recognition tools. We thus demonstrate that such a lightweight
approach, together with carefully crafted algorithms, is sufficient to provide a
useful and successful clustering-plus-labeling service. Obviously, this assumption
relies on the hypothesis that the quality of the snippets returned by the auxiliary
search engines is satisfactory.

We have tested the clustering effectiveness of Armil against Vivisimo, the de
facto industrial standard in web snippet clustering, using as benchmark a com-
prehensive set of snippets obtained from the Open Directory Project hierarchy.
According to two metrics of clustering quality that are normalized variants of
the Entropy and the Mutual Information [Cover and Thomas 91], Armil achieves
better performance levels by 10%. Note that, since the normalization reduces the
ranges of these measures in the interval [0, 1], an increase of 10% is noteworthy.

We have tested the clustering effectiveness of Armil against variants of the
classical k-means clustering algorithm. Our method outperforms the k-means
clustering algorithm in time-quality trade-offs.

We also report the results of a thorough user evaluation of both the clustering
and the cluster labeling algorithms.

1.1. Outline of the Clustering Algorithm

Clustering and labeling are both essential operations for a web snippet clus-
tering system. However, each such system previously proposed strikes a dif-
ferent balance between these two aspects. Some systems (e.g., [Ferragina and
Gulli 05, Lawrie and Croft 03]) view label extraction as the primary goal and
clustering as a by-product of the label extraction procedure. Other systems (e.g.,
[Kummamuru et al. 04, Zamir et al. 97]) view instead the formation of clusters as
the most important step, and the labeling phase is considered strictly dependent
on the clusters found. We have followed this latter approach. In order to cluster
the snippets in the returned lists, we map them into a vector space endowed
with a distance function, which is a metric; then a modified furthest-point-first
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(M-FPF) algorithm is applied to generate the clusters. The M-FPF algorithm
generates the same clusters of the “standard” FPF algorithm [Gonzalez 85,
Hochbaum and Shmoys 85], but it uses filters based on the triangular inequality
to speed up the computation. As such, M-FPF inherits a very important prop-
erty of the FPF algorithm, i.e., it is within a factor 2 of the optimal solution for
the k-center problem [Gonzalez 85, Hochbaum and Shmoys 85]. In other words,
for any fixed number k, M-FPF produces a k-clustering (i.e., a partition of the
items into k non-overlapping clusters) such that the maximum cluster diame-
ter is at most twice as large as that of the “optimal” k-clustering (i.e., the one
that minimizes such maximum diameter). The competitive property of M-FPF
is even stronger: the approximation factor of 2 cannot be improved with any
polynomial approximation algorithm, unless P = NP [Hsu and Nemhauser 79].
The strength of this formal property has been our main motivation for selecting
M-FPF as the algorithmic backbone for Armil. The second interesting prop-
erty of M-FPF is that it does not compute centroids of clusters. Centroids tend
to be dense vectors, and, as such, their computation and/or update in high-
dimensional space is a computational burden.2 M-FPF relies instead only on
pairwise distance calculations between snippets and as such better exploits the
sparsity of the snippet vector representations.

1.2. Outline of the Cluster Labeling Algorithm

The cluster-labeling phase aims at extracting from the set of snippets assigned to
each cluster a sequence of words highly descriptive of the corresponding group of
items. The quality of the label depends on its well-formedness (i.e., whether the
text is syntactically and semantically plausible), on its descriptive power (i.e.,
how well it describes what is contained in the cluster), and on its discriminative
power (i.e., how well it differentiates what is contained in the cluster with respect
to what is contained in other clusters).3 The possibility to extract good labels
directly from the available snippets is strongly dependent on their quality and,
obviously, on the homogeneity of the produced clusters. In order to pursue a
good trade-off between descriptive and discriminative power, we select candidate
words for each cluster by means of IGm, a modified version of the Information
Gain measure [Cover and Thomas 91]. For each cluster, IGm allows the selec-
tion of those words that are the most representative of its contents and are the
least representative of the contents of the other clusters. Finally, in order to

2The clustering literature also discusses the notion of a cluster “medoid”; similarly to a
centroid, a cluster medoid plays the role of cluster representative, but typically has a sparse
representation. Unfortunately, the methods proposed in the literature for finding high-quality
medoids are not compatible with the real-time nature of the envisioned online web service
[Zhang et al. 96]. In this paper we will give a fast and effective medoid searching technique.

3These requirements are akin to some of the desirable properties advocated in [Kummamuru
et al. 04] for taxonomic trees, in particular, property 3 (Sibling nodes distinctiveness) and
property 4 (Node label predictiveness) [Kummamuru et al. 04, page 660].
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construct plausible labels, rather than simply using the list of the top-scoring
words (i.e., the ones that maximize IGm), the system looks within the titles of the
returned webpages for the substring that best matches the selected top-scoring
words.

Once each cluster has been assigned a set of descriptive and discriminative
keywords (we call such set of keywords the cluster signatures), all the clusters
that share the same signature are merged. This reduces the arbitrariness inherent
in the choice of their number k, that is fixed a priori independently of the query.

1.3. Outline of the Paper

The paper is organized as follows. In Section 2 we review related work on tech-
niques for the automatic reorganization of search results. Section 3 introduces
the data representation adopted within Armil and sketches the properties of the
M-FPF clustering algorithm and of the cluster labeling algorithm. In Section 4
the architecture of Armil is described in detail. The results of the system eval-
uation are reported in Sections 5, 6, 7, and 8. Finally, in Section 9 conclusions
and prospective future research are discussed.

2. Previous Work

Tools for clustering web snippets have received attention in the research com-
munity. In the past, this approach has had both critics [Kural et al. 99, Kural
et al. 93] and supporters [Tombros et al. 02], but the proliferation of commercial
web services such as Copernic, Dogpile, Groxis, iBoogie, Kartoo, Mooter, and
Vivisimo seems to confirm the potential validity of the approach. Academic re-
search prototypes are also available, such as Grouper [Zamir and Etzioni 98, Za-
mir et al. 97], EigenCluster [Cheng et al. 03], Shoc [Zhang and Dong 04], and
SnakeT [Ferragina and Gulli 05]. Generally, details of the algorithms underlying
commercial web services are not in the public domain.

Maarek et al. give a precise characterization of the challenges inherent in web
snippet clustering and propose an algorithm based on complete-link hierarchical
agglomerative clustering that is quadratic in the number n of snippets. They
introduce a technique called “lexical affinity” whereby the co-occurrence of words
influences the similarity metric [Maarek et al. 00].

Zeng et al. tackle the problem of detecting good cluster names as preliminary
to the formation of the clusters, using a supervised learning approach [Zeng
et al. 04]. Note that the methods considered in our paper are instead all unsu-
pervised, thus requiring no labeled data.

The EigenCluster [Cheng et al. 03], Lingo [Osinski and Weiss 04], and Shoc
[Zhang and Dong 04] systems all tackle web snippet clustering by performing
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a singular value decomposition (SVD) of the term-document incidence matrix4;
the problem with this approach is that SVD is extremely time-consuming, hence
problematic when applied to a large number of snippets. By testing a number of
queries on Eigencluster, we have observed that, when operating on many snip-
pets (roughly 400), a reasonable response time (under one second) is attained by
limiting the number of generated clusters to a number between five and ten and
by avoiding a clustering decision for over 50% of the data. Zamir and Etzioni pro-
pose a web snippet clustering mechanism (Suffix Tree Clustering (STC)), based
on suffix arrays [Zamir and Etzioni 98, Zamir et al. 97] and experimentally com-
pare STC with algorithms such as k-means, single-pass k-means [MacQueen 67],
Backshot and Fractionation [Cutting et al. 92], and Group Average Hierarchical
Agglomerative Clustering (GAHAC). They test the systems on a benchmark ob-
tained by issuing ten queries to the Metacrawler meta-search engine, retaining
the top-ranked 200 snippets for each query, and manually tagging the snippets
by relevance to the queries. They then compute the quality of the clustering
obtained by the tested systems by ordering the generated clusters according to
precision, and by equating the effectiveness of the system with the average pre-
cision of the highest-precision clusters that collectively contain 10% of the input
documents. This methodology had been advocated [Hearst and Pedersen 96]
and is based on the assumption that the users will anyway be able to spot the
clusters most relevant to their query. Average precision as computed with this
method ranges from 0.2 to 0.4 for all the algorithms tested (STC coming out
on top in terms of both effectiveness and efficiency). Interestingly, the authors
show that very similar results are attained when full documents are used instead
of their snippets, thus validating the snippet-based clustering approach.

Strehl et al. experiment with four similarity measures (cosine similarity, Eu-
clidean distance, Pearson correlation, and extended Jaccard) in combination
with five algorithms (k-means, self-organizing maps, random clustering, min-cut
hyper-graph partitioning, and min-cut weighted graph partitioning). Two data
sets were used, one formed by 2340 documents pre-classified in 20 categories
from the news repository of Yahoo!, the second formed by 966 documents pre-
classified in ten categories from the Business Directory of Yahoo!. Overall quality
is measured in terms of normalized mutual information. For a specific cluster-
ing, also the quality of the single clusters in terms of single cluster purity and
single cluster entropy are given. The comparisons are made only in terms of out-
put quality, computing time not being considered relevant in this setting. The
highest-quality results are obtained via cosine similarity and Jaccard distance
combined with min-cut graph partitioning [Strehl et al. 00]. Our experiments
have confirmed that for snippets better results are obtained using variants of
Jaccard distance, with respect to standard tf-idf and cosine similarity.

4At the time of this writing, the Eigencluster system is available online at http://eigencluster.
csail.mit.edu/.
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Lawrie and Croft view the clustering/labeling problem as that of generating
multilevel summaries of the set of documents (in this case the web snippets re-
turned by a search engine). The technique is based on first building offline a
statistical model of the background language (e.g., the statistical distribution of
words in a large corpus of the English language) and on subsequently extract-
ing “topical terms” from the documents, where “topicality” is measured by the
contribution of a term to the Kullback-Leibler (KL) divergence score of the doc-
ument collection relative to the background language. Intuitively, this formula
measures how important this term is in measuring the distance of the collection
of documents from the distribution of the background language. Additionally,
the “predictiveness” of each term is measured. Intuitively, predictiveness mea-
sures how close a term appears (within a given window size) to other terms. In
the summaries, terms of high topicality and high predictiveness are preferred.
The proposed method is shown to be superior (by using the KL-divergence) to
a naive summarizer that just selects the terms with highest tf · idf score in the
document set [Lawrie and Croft 03].

Kammamuru et al. propose a classification of web snippet clustering algorithms
into monothetic (in which the assignment of a snippet to a cluster is based on
a single dominant feature) and polythetic (in which several features concur in
determining the assignment of a snippet to a cluster). The rationale for proposing
a monothetic algorithm is that the single discriminating feature is a natural label
candidate. The authors propose such an algorithm (a type of greedy cover) in
which the snippets are seen as sets of words and the next term is chosen so as
to maximize the number of newly covered sets while minimizing the hits with
already covered sets. The paper reports empirical evaluations and user studies
over two classes of queries, “ambiguous” and “popular.” The users were asked to
compare three clustering algorithms over the set of queries and, for each query,
were asked to answer six questions of a rather general nature on the generated
hierarchy (not on the single clusters) [Kummamuru et al. 04].

Ferragina and Gulli propose a method for hierarchically clustering web snip-
pets and produce a hierarchical labeling based on constructing a sequence of la-
beled and weighted bipartite graphs representing the individual snippets on one
side and a set of labels (and corresponding clusters) on the other side. Data from
the Open Directory Project (ODP)5 is used in an offline and query-independent
way to generate predefined weights that are associated online to the words of the
snippets returned by the queries. Data is collected from 16 search engines as a
result of 77 queries chosen for their popularity among Lycos and Google users
in 2004. The snippets are then clustered, and the labels are manually tagged as
relevant or not relevant to the cluster to which they have been associated. The
clusters are ordered in terms of their weight, and quality is measured in terms
of the number of relevant labels among the first n labels, for n ∈ {3, 5, 7, 10}

5http://www.dmoz.org/
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[Ferragina and Gulli 05]. Note that in this work the emphasis is on the quality
of the labels rather than on that of the clusters (although the two concepts are
certainly related), and that the ground truth is defined “a posteriori,” after the
queries are processed.

3. The Clustering Algorithm and the Labeling Algorithm

We now describe in detail the methods used by Armil for web snippet clustering
and cluster labeling.

3.1. The Distance Function

Each snippet is turned into a “bag of words” after removing stop words and
performing stemming. In [Geraci et al. 06b] we report experiments using, as a
distance function, (a) the cosine distance measure (i.e., the complement to 1 of
the cosine similarity function) applied to vectors of terms weighted by tf · idf ,6

and (b) a slight modification of the standard Jaccard distance, which we call
weighted Jaccard distance (WJD); in those experiments, (b) has performed at
the same level of accuracy as (a) but has proven much faster to compute.

In this journal version we improve on the preliminary results of [Geraci et al. 06b]
by using the generalized Jaccard distance described in [Charikar 02]. Given two
“bag-of-words” snippet vectors s1 = (s1

1, ...s
h
1 ) and s2 = (s1

2, ...s
h
2 ), the general-

ized Jaccard distance (GJD) is

D(s1, s2) = 1−
∑

i min(si
1, s

i
2)∑

i max(si
1, s

i
2)

.

The term weights si
a consist of “weighted term frequencies,” obtained as weighted

sums of the numbers of occurrences of the term in the snippet, where we take
advantage of the structure of the snippets by weighting different parts of the
snippet (page title, text fragment, URL) differently; more precisely, weight 3 is
assigned to a term occurring in the page title, weight 1 to a term occurring in the
text fragment, and weight 0 is assigned to a term occurring in the URL (since,
in previous experiments we had run, the text of the URL had proven to give no
contribution in terms of cluster quality). Note that, when using unit weights only,
the generalized Jaccard distance coincides with the standard Jaccard distance.
In [Charikar 02] it is proved that GJD is a metric.

6The acronym tf · idf stands for term frequency and inverse document frequency. It is a
standard technique for assigning real vectors to documents belonging to a set of documents
(corpus) based on the number of times a term appears in a document and on the number of
documents of the corpus containing that term (see, e.g., [Baeza-Yates and Ribeiro-Neto 99,
page 29]).
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3.2. The Clustering Algorithm

We approach the problem of clustering web snippets as that of finding a solution
to the classic k-center problem:

Problem 3.1. Given a set S of points in a metric space M endowed with a metric
distance function D, and given a desired number k of resulting clusters, partition
S into non-overlapping clusters C1, . . . , Ck and determine their “centers” μ1,
. . . , μk ∈ M so that the radius maxj maxx∈Cj D(x, μj) of the widest cluster is
minimized.

The k-center problem can be solved approximately using the furthest-point-
first (FPF) algorithm [Gonzalez 85, Hochbaum and Shmoys 85], which we now
describe. Given a set S of n points, FPF builds a sequence T1 ⊂ . . . ⊂ Tk = T
of k sets of “centers” (with Ti = {μ1, . . . , μi} ⊂ S) in the following way:

1. At the end of iteration i− 1, FPF holds the mapping μ defined for every
point pj ∈ S \ Ti−1 as

μ(pj) = arg min
µs

D(pj , μs),

i.e., the center in Ti−1 closest to pj ; μ(pj) is called the leader of pj . Note
that this mapping is established in the first iteration in time O(n).

2. At iteration i, among all points pj , FPF picks

μi = arg max
pj

D(pj , μ(pj)),

i.e., the point for which the distance to its leader is maximum, and makes
it a new center, i.e., adds it to Ti−1, thus obtaining Ti. This selection costs
O(n).

3. Compute the distance of μi to any point in S \Ti, and update the mapping
μ if needed. Thus, μ is now correct for the beginning of iteration i + 1.
This update phase costs O(n).

The final set of centers T = {μ1, . . . , μk} defines the resulting k-clustering,
since each center μi implicitly identifies a cluster Ci as the set of data points
whose leader is μi. Note that T1 is initialized to contain a single point chosen
at random from S; this random choice is due to the fact that, in practice, both
the effectiveness and the efficiency of the algorithm can be seen experimentally
to be rather insensitive to this choice.

Most of the computation is actually devoted to computing distances and up-
dating the auxiliary mapping μ: this takes O(n) time per iteration, so the total
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computational cost of the algorithm is O(nk). Here we define an improved ver-
sion of this algorithm that exploits the triangular inequality in order to filter
out useless distance computations. This modified algorithm (M-FPF), which we
now describe, works in any metric space, hence in any vector space.7

Consider, in the FPF algorithm, any center μx ∈ Ti and its associated set
of closest points N(μx) = {pj ∈ S \ Ti | μ(pj) = μx}. We store N(μx) as a
ranked list, in order of decreasing distance from μx. When a new center μy is
added to Ti, in order to identify its associated set of closest points N(μy) we
scan every N(μx) in decreasing order of distance, and stop scanning when, for a
point pj ∈ N(μx), it is the case that D(pj , μx) ≤ 1

2D(μy, μx). By the triangular
inequality, any point pj that satisfies this condition cannot be closer to μy than
to μx. This rule filters out from the scan points whose leader cannot possibly
be μy, thus significantly speeding up the identification of leaders. Note that all
distances between centers in Ti must be available; this implies an added O(k2)
cost for computing and maintaining these distances, which is anyhow dominated
by the term O(nk). The gain is that, in practice, fewer than n points need to
be scanned at each iteration.

3.3. Using Medoids

Motivated by the aim of attaining high-quality clusters efficiently, we have found
that we can improve upon a direct application of the M-FPF algorithm by adopt-
ing the strategy described below. The M-FPF is applied not to the whole set
but only to a random sample of size

√
nk of the input points (this sample size

is suggested in [Indyk 99]). Afterwards, the remaining points are associated to
the closest (according to the generalized Jaccard distance) center. We obtain
improvements in quality by making an iterative update of the “center” when a
new point is associated to a cluster. Within a cluster Ci we find the point ai

furthest from μi and the point bi furthest from ai (intuitively, this is a good
approximation to a diametral pair). The medoid mi is the point in Ci that has
the minimum value of the function

|D(ai, x)−D(bi, x)| + |D(ai, x) + D(bi, x)|,

over all x ∈ Ci.8 When we add a new point p to Ci, we check if the new point
should belong to the approximate diametral pair (ai, bi), that is, if the distances
D(ai, p) or D(p, bi) are larger than D(ai, bi), and if so we update the approximate
diametral pair and mi accordingly. The association of the remaining points is
done with respect to the medoids rather than the centers. The application of M-
FPF on a sample plus the iterative recomputation of medoids gave us a clustering
of better quality than simply using M-PFP on the whole input set.

7We recall that any vector space is also a metric space, but not vice versa.
8This formula mimics in a discrete setting the task of finding the cluster point closest to

the median point to the segment (ai, bi) in an Euclidean space.
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3.4. The Candidate Words Selection Algorithm

We select candidate terms for labeling the generated clusters through a modified
version of the information gain function [Cover and Thomas 91, Yang and Peder-
sen 97]. Let x be a document taken uniformly at random in the set of documents
D; P (t) is the probability that x contains term t, and P (c) is the probability that
x is in category c. The complementary events are denoted P (t̄) = 1− P (t) and
P (c̄) = 1 − P (c); P (t, c) is the probability that x is in category c and contains
term t, P (t̄, c̄) is the probability that x does not contain t and is not in category
c, P (t, c̄) is the probability that x contains t but is not in category c, and P (t̄, c)
is the probability that x does not contain t and is in category c. Clearly, these
events being mutually disjoint, it holds that P (t, c)+P (t̄, c̄)+P (t, c̄)+P (t̄, c) = 1.
The information gain [Cover and Thomas 91, Yang and Pedersen 97] is the con-
tribution of the four terms:

IG(t, c) =
∑

a∈{t,t̄}

∑
b∈{c,c̄}

P (a, b) log
P (a, b)

P (a)P (b)
.

Intuitively, IG measures the amount of information that each argument con-
tains about the other; when t and c are independent, IG(t, c) = 0. This func-
tion is often used for feature selection in text classification, where, if IG(t, c) is
high, the presence or absence of a term t is deemed to be highly indicative of
the membership or non-membership in a category c of the document contain-
ing it. In the text classification context, the rationale of including in the sum,
aside from the factor that represents the “positive correlation” between the ar-
guments (i.e., the factor P (t, c) log P (t,c)

P (t)P (c) + P (t̄, c̄) log P (t̄,c̄)
P (t̄)P (c̄) ), also the factor

that represents their “negative correlation” (i.e., the factor P (t̄, c) log P (t̄,c)
P (t̄)P (c) +

P (t, c̄) log P (t,c̄)
P (t)P (c̄) ); is that, if this latter factor has a high value, this means that

the absence (respectively presence) of t is highly indicative of the membership
(respectively non-membership) of the document in c. That is, the term is useful
anyway, although in a “negative” sense.

However, in our context we are interested in terms that positively describe the
contents of a cluster and are thus only interested in positive correlation:

IGm(t, c) = P (t, c) log
P (t, c)

P (t)P (c)
+ P (t̄, c̄) log

P (t̄, c̄)
P (t̄)P (c̄)

.

The keywords selected via IGm will not be shown directly to the user but will
form the input to the label-generation phase described in Section 4.
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4. Overview of the System

We discuss here in more detail the architecture of Armil. Overall the computa-
tion flow is a pipeline consisting of (a) data collection and cleaning, (b) first-level
clustering, (c) candidate word extraction for labeling, (d) second-level clustering,
and (e) cluster labeling. Let us review these steps in order.

(1) Querying one or more search engines. The user of Armil issues a query string that
is re-directed by Armil to the selected search engines (at the moment the user
can select Google and/or Yahoo!). As a result Armil obtains a list (or several
lists) of snippets describing webpages that the search engines deem relevant to
the query. An important system design issue is deciding the type and number
of snippet sources to be used as auxiliary search engines. It is well known that
the probability of relevance of a snippet to the user information need quickly
decays with the rank of the snippet in the list returned by the search engine.
Therefore the need of avoiding low-quality snippets suggests the use of many
sources each supplying a low number of high-quality snippets (here, high-quality
snippet implies both relevance of the snippet to the query and representativeness
of the snippet with respect to the associated document). On the other hand,
increasing the number of snippet sources raises the pragmatic issue of handling
several concurrent threads, the need to detect and handle more duplicates, and
the need for a more complex handling of the composite ranking by merging
several snippet lists (both globally and within each cluster separately). Since we
consider Armil a “proof-of-concept” prototype rather than a full-blown service,
we have chosen only two (high-quality) sources, Google and Yahoo!. We limit
the total number of snippets to be collected to 200 (80 from Yahoo! and 120
from Google; these numbers optimize the total waiting time). We produce the
initial composite ranking of the merged snippet list by a very simple method:
by alternatively picking snippets from each source list.

(2) Cleaning and filtering. Snippets that are too short or have little informative content
(i.e., small number of well-formed words) or are in non-Latin alphabets are fil-
tered out. The input is then filtered by removing non-alphabetic symbols, digits,
HTML tags, stop words, and the query terms. The latter are removed since they
are likely to be present in every snippet and thus are going to be useless for the
purpose of discriminating different contexts. On the other hand query terms are
very significant for the user, so they are re-introduced in the label-generation
phase (7) described below. We then identify the prevalent language of each
snippet, which allows us to choose the appropriate stop word list and stemming
algorithm. Currently we use the ccTLD (country code top level domain) of the
URL to decide on the prevalent language of a snippet. For the purpose of the
experiments we only distinguish between English and Italian. For snippets of
English webpages, we use Porter’s stemming algorithm, while for Italian ones
we use a simple rule-based stemmer we developed in-house. Currently, no other
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languages are supported. More advanced language discovery techniques are well
known in the literature, and we plan to apply them in the near future; however,
it should be noticed that, given the online requirements, methods too expensive
in terms of computational effort should be avoided.

(3) First-level clustering. We build a flat k-clustering representing the first level of the
cluster hierarchy, using the M-FPF algorithm with medoids and the generalized
Jaccard distance as described in Section 3. An important issue is deciding the
number k of clusters to create. Currently, this number is fixed to 30, but it is
clear that the number of clusters should depend on the query and on the number
of snippets found. A general rule is difficult to find, also because the “optimal”
number of clusters to be displayed is a function of the goals and preferences of the
user. Also, while techniques for automatically determining such optimal numbers
do exist [Milligan and Cooper 85], their computational cost is incompatible with
the real-time nature of our application. Therefore, besides providing a default
value, we allow the user to increase or decrease the value of k to his/her liking.
Clusters that contain only one snippet are probably outliers of some sort, and
we thus merge them under a single cluster labeled “Other topics.”

(4) Snippets re-ranking. A cluster small enough that the list of its snippets fits in
the screen does not require a sophisticated order of presentation. However,
in general, users are greatly facilitated if the snippets of a cluster are listed
in order of their likely importance to the user. Our strategy is to identify a
geometric “inner core” of each cluster and geometric “outliers.” In order to
achieve this aim, we apply the M-FPF algorithm within each cluster as follows.
Since M-PFP is incremental in the parameter k, we increment k up to a value
for which it happens that the largest obtained cluster has less then half of the
point of the input cluster. This specific group forms the“inner core”: all other
points are termed “outliers.” The points in the“core” are shown in the listing
before the “‘outliers.” Within core and outliers points we use a relative ranking
obtained by a linear combination of the native ranking generated by the auxiliary
search engines. Note that this computation is done only to decide the order of
presentation of the snippets at the first level. It should not be confused with the
second-level clustering described below.

(5) Candidate words selection. For each cluster we need to determine a set of candidate
words to appear in its label; these will hereafter be referred to as candidates. For
this purpose, for each word that occurs in the cluster, we sum the weights, as
defined in Section 3, of all its occurrences in the cluster and pre-select the ten
words with the highest score in each cluster.

We refer to this as the local candidate selection, since it is done independently
for each cluster. For each of the ten selected terms, we compute IGm, as ex-
plained in Section 3.4. The three terms in each cluster with the highest score are
chosen as candidates. We refer to this as global candidate selection, because the
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computation of IGm for a term in a cluster is dependent also on the contents of
the other clusters. Global selection has the purpose of obtaining different labels
for different clusters. At the end of this procedure, if two clusters have the same
signature, we merge them, since this is an indication that the target number of
clusters k may have been too high for this particular query.9

(6) Second-level clustering. Although the clustering algorithm could in principle be
iterated recursively in each cluster up to an arbitrary number of levels, we limit
our algorithm to only two levels, since this is likely to be the maximum depth
a user is willing to explore in searching for an answer to his/her information
needs.10 Second-level clustering is applied to first-level clusters of size larger
than a predetermined threshold (at the moment this is fixed to ten snippets,
excluding duplicates). For second-level clustering we adopt a different approach,
since metric-based clustering applied at the second level tends to detect a single
large “inner core” cluster and several small “outlier” clusters.11 The second-
level part of the hierarchy is generated based on the candidate words found for
each cluster during the first-level candidate word selection. Calling K the set of
three candidate words of a generic cluster, we consider all its subsets as possible
signatures for second level clusters. A snippet x is assigned to a signature s if
and only if all the signature elements are in x and no candidate in K \ s is in x.
If a signature is assigned too few snippets (e.g., one) it is considered as an outlier
and it is not shown to the user in the second level. Also, if most of the snippets
at the first level end up associated to a single signature, then the second-level
clusters are not shown to the user since the second-level subdivision would not
be any more useful than the first-level subdivision.12

(7) Labeling. Many early clustering systems would use lists of keywords as the
output to show to the user. In order to offer a more syntactically pleasant label,
we decide to give as output well-formed phrases or parts of phrases as it is
becoming standard in more recent systems (e.g., [Ferragina and Gulli 05]). We
use the candidate keywords just as a basis for generating well-formed phrases
that will be shown to the user as real cluster labels.13 Given the title of the
webpage contained in the snippet, considered as a sequence of words (this time
including stop words), we consider all its contiguous subsequences and we give
each subsequence a cumulative score as follows: candidates are given a high
positive score (its IGm score), query words a low positive score (set at 0.1),

9More precisely, we consider the two original clusters with the same signature as second-
level clusters, and we produce for each a different second-level label based on the non-signature
keywords of those clusters.

10Vivisimo, for example, uses a two-level hierarchy.
11We exploited this phenomenon in the snippet re-ranking step (4).
12Since second-level clustering is based on first-level candidate words, here we departs slightly

from the overall idea of separating clustering and labeling.
13For example, “meaning life” and “meaning of life” hold the same information but the latter

is a grammatically well-formed phrase.
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and all other words have a negative score (set at −0.2). For labeling a cluster,
among all its snippets we select the shortest substring of a snippet title among
those having the highest score. This computation can be done efficiently using
a dynamic programming approach. The choice of positive and negative weights
is to ensure the balance of two conflicting goals: include most of the candidates
but few of the non-candidate connecting words in a label.

(8) Exploiting duplicates. Since Armil collects data from several search engines, it is
possible that the same URL (maybe with a different snippet fragment of text)
is present in duplicate. We consider this fact as an indication of the importance
of the URL. Therefore, duplicates are accounted for in determining weights and
distances. Since clustering is based on title and text, it is possible that the same
URL ends up in different clusters, for which it is equally relevant. However, if
duplicate snippets appear in the same cluster, they are listed only once with an
indication of the two sources. Thus, duplicate removal is done just before the
presentation to the user.

(9) User Interface. The user interface is important for the success of a web-based
service. We have adopted a scheme common to many search engines and meta-
search engines (e.g., Vivisimo), in which the data are shown in ranked list format
in the main frame while the list of cluster labels are presented on the left frame
as a navigation tree. The interface also allows the user to select the number of
clusters, by increasing or decreasing the default value of 30.

5. Anecdotal Evidence

In this section we report an analysis of the output of the system on selected
queries. In particular, we highlight some very high quality clusters obtained.
These results were obtained in November 2005.

5.1. Query: Armstrong

The query “armstrong” returns 174 snippets organized in 28 clusters, with a
clustering time of 0.94 seconds (see Figure 1). Cluster 2, labeled “Armstrong
Ceilings,” contains 12 snippets, among which five are relative to a company man-
ufacturing ceilings and floors, four to companies manufacturing other hardware
equipment (e.g., molds, pumps, tools), and one to companies manufacturing
medical equipment. Cluster 3, labeled “Lance Armstrong Foundation,” contains
14 snippets, of which 12 are related to the sport champion. Cluster 4, labeled
“Louis Jazz,” contains 20 snippets all related to the well-known jazz musician
and are mostly in English, while Cluster 6, with the same label, contains 12
snippets of which nine are relative to the same musician but mostly in Italian
and three are relative to other musicians named Armstrong. Cluster 12, labeled
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armstrong (29)
armstrong air conditioning and heating (6)
armstrong ceilings (12)
lance armstrong foundation (14)
Louis Jazz (20)
steam traps humidification systems (6)
Louis Jazz (12)
italia (13)
salt lake city bed and (5)
armstrong county (4)
at law with main law (7)
guide to the papers of (6)
neil armstrong (7)
of the village cheese company (4)
armstrong biography (9)
george (4)
armstrong (2)
armstrong williams (8)
edwin howard armstrong (6)
chain market research and consulting (3)
sport primi piani ciclismo (7)
armstrong harbourtown records (4)
armstrong sul sito (4)
grande ciclismo tour de france (4)
joe armstrong sics (3)
armstrong clan society one hundred (1)
activity based costing (2)
willkommen bei armstrong (2)
tim armstrong (2)
Other topics (2)

Figure 1. Labels generated by Armil for the query “armstrong.”

“Neil Armstrong,” has seven snippets of which six are related to the well-known
astronaut. Cluster 19, labeled “George,” contains four snippets, two of which
are related to the life of General George Armstrong Custer. Cluster 18, labeled
“Edwin Howard Armstrong,” contains six snippets, three of which are devoted
to Edwin Howard Armstrong, the inventor of the frequency modulation radio
broadcasting technique.

5.2. Query: Madonna

After adjusting manually the default to 20 clusters, the query “madonna” returns
175 snippets organized in 19 clusters in 0.88 seconds (see Figure 2). Cluster 4,
labeled “santuario della madonna del divino,” contains nine snippets, of which
six are relative to holy shrines. Cluster 5, labeled “su louise veronica madonna
ciccone,” contains 11 snippets, all of them high-quality sites devoted to the
well-known popstar. Cluster 7, labeled “Madonna di Campiglio,” contains 13
snippets, of which 11 are related to the Italian ski resort. Cluster 10, labeled
“music,” contains 51 snippets, most of which related to the popstar.

5.3. Query: Allergy

The query “allergy” returns 100 snippets organized in 27 clusters in 0.94 seconds
(see Figure 3). Cluster 3, labeled “Asthma,” contains eight snippets, of which six
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madonna (19)
madonnaweb (1)
madonnashots (6)
madonna tickets madonna concerts (4)
santuario della madonna del divino (9)
su louise veronica madonna ciccone (11)
album (22)
madonna di campiglio (13)
madonna online (11)
madonna university (2)
music (51)
madonna news (23)
pictures picture gallery pics picture (8)
black madonna shrine (6)
pictures biography discography screensavers
videos (3)
umbria madonna delle grazie farmhouse (4)
madonna dreams interpreting dreams of (2)
madonna (3)
madonna paperdoll heaven (2)
Other topics (2)

Figure 2. Labels generated by Armil for the query “madonna.”

related to asthma and allergies. Cluster 5, labeled “Allergy Journal,” contains
four snippets, all of which relate to periodic medical publications. Cluster 6,
labeled “guide to allergies and allergy,” contains seven snippets, of which at
least five offer general advise on allergy treatments. Cluster 11, labeled “food
allergy,” contains five snippets, all of which related to food allergies.

allergy (27)
aaaai american academy of allergy (3)
hon allergy glossary a (2)
asthma (8)
allergy the basics (4)
allergy journal (4)
guide to allergies and allergy (7)
allergy discussion group (2)
information symptoms medication products
treatment (5)
vaccini allergie da acaro vaccino (2)
food allergy (5)
allergy and asthma faq (5)
current allergy and clinical immunology (5)
allergy clinic diagnosis and treatment (5)
allergy sinusitis ws tichenor (1)
institute of allergy and infectious (2)
hour local news allergy forecast (3)
allergy hot list (4)
latex allergy (3)
products allergy bedding austin air (4)
society for allergy and clinical (7)
allergy magazine (2)
allergy society of south africa (2)
agency index of food recalls (3)
publication allergy (2)
allergy and immunology internet(2)
food allergy news(2)
Other topics (13)

Figure 3. Labels generated by Armil for the query “allergy.”
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6. Experimental Evaluation of the Clustering Algorithm

We have performed experiments aimed at assessing the performance of the clus-
tering algorithm underlying Armil.

Assessing the quality of a clustering with respect to a pre-classified collection
of items (ground truth) is a well-known problem in information retrieval and
objective testing methodologies based on information-theoretic principles have
been established. We will compare Armil against the state-of-the-art commercial
system Vivisimo and against the classical clustering algorithm k-means (several
variants thereof).

6.1. The Baseline

As a baseline against which to compare the clustering capabilities of Armil, we
have chosen Vivisimo.14 Vivisimo is considered an industrial standard in terms
of clustering quality and user satisfaction, and in 2001 and 2002 it won the “best
meta-search award” assigned annually by the online magazine SearchEngineWatch.com.
Vivisimo thus represents a particularly difficult baseline, and it is not known if
its clustering quality only depends on an extremely good clustering algorithm,
or rather on the use of external knowledge or custom-developed resources. To
the best of our knowledge, this is the first published experiment comparing on
an objective basis (see below) the clustering quality of an academic prototype
and Vivisimo. Vivisimo’s advanced searching feature allows a restriction of the
considered auxiliary search engines to a subset of a range of possible auxiliary
search engines. For the purpose of our experiment, we restrict our source of
snippets to the ODP directory.

Visivimo’s clustering search engine has been the focus of research in the
field of Human Computer Interface and Information systems (see, e.g., [Spink
et al. 05, Koshman et al. 05]), with an emphasis on understanding user behavior
by analyzing query logs.

6.2. Measuring Clustering Quality

Following a consolidated practice, in this paper we measure the effectiveness of
a clustering system by the degree to which it is able to “correctly” re-classify a
set of pre-classified snippets into exactly the same categories without knowing
the original category assignment. In other words, given a set C = {c1, . . . , ck}
of categories and a set Θ of n snippets pre-classified under C, the “ideal” term
clustering algorithm is the one that, when asked to cluster Θ into k groups,
produces a grouping C′ = {c′1, . . . , c′k} such that, for each snippet sj ∈ Θ, sj ∈ ci

if and only if sj ∈ c′i. The original labeling is thus viewed as the latent, hidden
structure that the clustering system must discover.

14http://vivisimo.com/
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The measure we use is normalized mutual information (see, e.g., [Strehl 02,
Cover and Thomas 91, Meila 03, page 110]):

NMI(C, C′) =
2

log |C||C′|
∑
c∈C

∑
c′∈C′

P (c, c′) · log
P (c, c′)

P (c) · P (c′)
,

where P (c) represents the probability that a randomly selected snippet sj belongs
to c and P (c, c′) represents the probability that a randomly selected snippet sj

belongs to both c and c′. The normalization, achieved by the 2
log |C||C′| factor, is

necessary in order to account for the fact that the cardinalities of C and C′ are
in general different [Cover and Thomas 91].

Higher values of NMI mean better clustering quality. The clustering produced
by Vivisimo has partially overlapping clusters (in our experiments Vivisimo as-
signed roughly 27% of the snippets to more than one cluster), but NMI is
designed for non-overlapping clustering. Therefore, in measuring NMI we elim-
inate from the ground truth, from the clustering produced by Vivisimo, and from
that produced by Armil, the snippets that are present in multiple copies.

However, in order to also consider the ability of the two systems to “correctly”
duplicate snippets across overlapping clusters, we have also computed the nor-
malized complementary entropy [Strehl 02, Cover and Thomas 91, page 108],
in which we have changed the normalization factor so as to take overlapping
clusters into account. The entropy of a cluster c′l ∈ C′ is

E(c′l, C) =
|C|∑
k=1

−|c
′
l ∩ ck|
|ck| log

|c′l ∩ ck|
|ck| .

The normalized complementary entropy of c′l is

NCE(c′l, C) = 1− E(c′l, C)
log |C| .

The values of NCE range in the interval [0, 1], and a greater value implies better
quality of c′l. The complementary normalized entropy of C′ is the weighted
average of the contributions of the single clusters in C′. Let n′ =

∑|C′|
l∈1 |c′l| be

the sum of the cardinalities of the clusters of C′. Note that when clusters may
overlap, it holds that n′ ≥ n. Thus,

NCE(C′, C) =
|C′|∑
l∈1

|c′l|
n′ NCE(c′l, C).

The NCE values reported in Table 1 are thus obtained on the full set of snippets
returned by Vivisimo.
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6.3. Establishing the Ground Truth

The ephemeral nature of the web is amplified by the fact that search engines have
at best a partial view of the available pages relevant to a given query. Moreover
search engines must produce a ranking of the retrieved relevant pages and display
only the pages of highest relevance. Thus, establishing a “ground truth” in a con-
text of the full web is problematic. Following [Haveliwala et al. 02], we have made
a series of experiments using as input the snippets resulting from queries issued
to the Open Directory Project. The ODP is a searchable web-based directory
consisting of a collection of a few million webpages (as of today, ODP claims to
index 5.1M webpages) pre-classified into more than 590K categories by a group
of volunteer human experts. The classification induced by the ODP labeling
scheme gives us an objective “ground truth” against which we can compare the
clustering quality of Vivisimo and Armil. In ODP, documents are organized ac-
cording to a hierarchical ontology. For any snippet we obtain a label for its class
by considering only the first two levels of the path on the ODP category tree.
For example, if a document belongs to class “Games/Puzzles/Anagrams” and
another document belongs to class “Games/Puzzles/Crosswords,” we consider
both of them to belong to class “Games/Puzzles.” This coarsification is needed
in order to balance the number of classes and the number of snippets returned
by a query.

Queries are submitted to Vivisimo, asking it to retrieve pages only from ODP.
This is done to ensure that Vivisimo and Armil operate on the same set of
snippets, hence to ensure full comparability of the results. The resulting set of
snippets is parsed and given as input to Armil. Since Vivisimo does not report
the ODP category to which a snippet belongs, for each snippet we perform a
query to ODP in order to establish its ODP category.

6.4. Outcome of the Comparative Experiment

The queries used in this experiment are the last 30 of those reported in Table 5
(the first five have been excluded since too few related snippets are present in
ODP). On average, ODP returned 41.2 categories for each query. In Table 1
we report the NMI and NCE values obtained by Vivisimo and Armil on these
data. Vivisimo produced by default about 40 clusters; therefore, we have run
Armil with a target of 40 clusters (thus with a choice close to that of Vivisimo
and to the actual average number of ODP categories per query) and with 30
(this number is the default used in the user evaluation).

Vivisimo Armil(40) Armil(30)

NCE 0.667 0.735 (+10.1%) 0.683 (+2.3%)

NMI 0.400 0.442 (+10.5%) 0.406 (+1.5%)

Table 1. Results of the comparative evaluation.
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The experiments indicate a substantial improvement of about 10% in terms of
cluster quality of Armil (40) with respect to Vivisimo.15 This improvement is an
important result since, “[T]he scientific literature offers several solutions to the
web-snippet clustering problem, but unfortunately the attainable performance
is far from the one achieved by Vivisimo” [Ferragina and Gulli 05]. It should
be noted moreover that Vivisimo uses a proprietary algorithm, not in the public
domain, which might make extensive use of external knowledge. In contrast our
algorithm is open and disclosed to the research community.

7. Comparison of Armil and k-means

7.1. The k-means Algorithm and Its Variants

The set of experiments in this section compare our variant of the furthest-point-
first algorithm for k-center clustering with three recently proposed, fast variants
of k-means.

The k-means algorithm (see [Forgy 65, Lloyd 82]) can be seen as an iterative
cluster quality booster. It takes as input a rough k-clustering (or, more precisely,
k candidate centroids) and produces as output another k-clustering, hopefully of
better quality. It has been shown [Selim and Ismail 84] that by using the sum of
squared Euclidean distances as objective function,16 the procedure converges to
a local minimum for the objective function within a finite number of iterations.

The main building blocks of k-means are (a) the generation of the initial k can-
didate centroids, (b) the main iteration loop, and (c) the termination condition.
In the main iteration loop, given a set of k centroids, each input point is associ-
ated to its closest centroid, and the collection of points associated to a centroid is
considered a cluster. For each cluster, a new centroid that is a (weighted) linear
combination of the points belonging to the cluster is recomputed, and a new
iteration starts.17 Several termination conditions are possible: e.g., the loop can
be terminated after a predetermined number of iterations or when the variation
that the centroids have undergone in the last iteration is below a predetermined
threshold.

15For the sake of replicating the experiments, all the search results have been cached and
are available upon request.

16More precisely, this corresponds to partitioning S, at every iteration, into non-overlapping
clusters C1, . . . , Ck and determining their centroids µ1, . . . , µk ∈ V so that the sum of the
squares of the inter-cluster point-to-center distances∑

j

∑
x∈Cj

(D(x, µj))
2

is minimized.
17Note that k-means is defined on vector spaces but not in general on metric spaces, since

in metric spaces linear combinations of points may not be points themselves.
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Given the importance of this algorithm, there is a vast literature that dis-
cusses its shortcomings and possible improvements to the basic framework. In
particular, one well-known shortcoming is that some clusters may become empty
during the computation. To overcome this problem, following [Phillips 02] we
adopt the “ISODATA” technique that, when a cluster becomes empty, splits one
of the “largest” clusters so as to keep the number of clusters unchanged.

It is well known, and our experiments confirm this, that the quality of the
initialization (i.e., the choice of the initial k centroids) has a deep impact on the
resulting accuracy. Several methods for initializing k-means have been compared
[Peña et al. 99]. As our baselines we have chosen the three such methods that
are most amply cited in the literature while being at the same time relatively
simple; we have ruled out more advanced and complex initializations since the
possible boost in quality would be paid immediately in terms of computational
cost, thus bringing about too slow an algorithm for our intended application.

7.2. Algorithms, Baselines, and Variants

The four algorithms we compare in our experiments are the clustering algorithm
in Armil and three recently proposed, fast variants of k-means (RC, RP, MQ)
[Phillips 02]. More in detail:

KC This is our k-center algorithm with triangular inequality filtering, as de-
scribed in Section 3.

RP This is k-means (as described in Section 7.1) with an initialization based on
random perturbation: for each dimension dj of the space, the distribution
of the projections on dj of the data points is computed, along with its
mean μj and its standard deviation σj ; the k initial centroids are obtained
through k perturbations, driven by the μj ’s and σj ’s, of the centroid of all
data points [Peña et al. 99].

MQ This is MacQueen’s variant of k-means: the initial centroids are randomly
chosen among the input points, the remaining points are assigned one
at a time to the nearest centroid, and each such assignment causes the
immediate recomputation of the centroid involved [MacQueen 67].

RC This is again k-means where the initial centroids are randomly chosen
among the input points and the remaining points are assigned to the closest
centroid [Forgy 65].

7.3. Experimental Results

Since web snippet clustering is used as an online support to web browsing, real-
time response is a critical parameter. A clustering phase that introduces a delay
comparable to the time needed for just downloading the snippets, thus in fact
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doubling the user waiting time, is not acceptable for most users. For this reason,
instead of using a fixed number of iterations as the termination condition of the
k-means algorithm, we opt for a fixed time deadline (five seconds, in our exper-
iments), and we halt the clustering algorithms at the end of the first iteration
that has run over the deadline.

In Table 2 we report clustering time and output quality of several variants
of k-center and k-means on a sample of 12 queries subdivided, according to
the method of [Di Giacomo et al. 05], in three broad families: ambiguous queries
(armstrong, jaguar, mandrake, java), generic queries (health, language, machine,
music, clusters), and specific queries (mickey mouse, olympic games, steven spiel-
berg). In Table 2, for each query group we indicate averages of the number n
of snippets found, the number k of ODP classes to which they are associated,
and the time τ (in seconds) used to build the vectorial representations. For each
query group and each algorithm, we indicate the time used for clustering and

Algorithm NCE NMI Time (sec.)

Query group = “ambiguous ∪ generic ∪ specific”
avg(n) = 157.4 avgODP (k) = 36.9 avg(τ ) = 0.729

MQ 0.70 0.47 5.59

PTS 0.69 0.45 5.76

RP 0.64 0.41 26.12

KC 0.70 0.47 0.77

Query group = “ambiguous”
avg(n) = 165 avgODP (k) = 38.75 avg(τ ) = 0.695

MQ 0.70 0.45 5.77

PTS 0.67 0.42 6.0

RP 0.63 0.38 33.3

KC 0.69 0.44 0.70

Query group = “specific”
avg(n) = 107.3 avgODP (k) = 26 avg(τ ) = 0.509

MQ 0.77 0.52 5.46

PTS 0.77 0.52 5.32

RP 0.71 0.46 18.47

KC 0.76 0.50 0.71

Query group = “generic”
avg(n) = 181.4 avgODP (k) = 42 avg(τ ) = 0.889

MQ 0.67 0.46 5.51

PTS 0.65 0.44 5.7

RP 0.61 0.40 24.92

KC 0.67 0.47 0.86

Table 2. Time/quality results of web snippet clustering for ODP snippets with
Armil and variants of k-means.
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the quality of the outcome.18 The main conclusion of these experiments is that
comparable levels of quality are achieved by Armil and k-means, but Armil is
five to ten times faster.

Note that in these experiments we ask our system to partition the snippets
into exactly k = 30 clusters, which is the default of Armil. Notice that this
number is reasonably close to the average number of classes found in ODP for
the test queries.

8. User Evaluation of the Cluster Labeling Algorithm

Assessing “objectively” the quality of a cluster labeling method is a difficult
problem, for which no established methodology has gained a wide acceptance.
For this reason a user study is the standard testing methodology. We have set up
a user evaluation of the cluster labeling component of Armil in order to have an
independent and measurable assessment of its performance. We performed the
study on 22 volunteer master students, doctoral students and post-doctorates in
computer science at our departments (University of Siena, University of Pisa, and
IIT-CNR). The volunteers all have a working knowledge of the English language.

The user interface of Armil has been modified to show clusters one-by-one and
proceed only when the currently shown cluster has been evaluated. The queries
are supplied to the evaluators in a round robin fashion from a list of 35 predefined
queries (the queries are listed in Table 5). For each query the user must first say
whether the query is meaningful to him/her; an evaluator is allowed to evaluate
only queries meaningful to him/her. For each cluster we propose three questions

1. Is the label syntactically well-formed?

2. Can you guess the content of the cluster from the label?

3. After inspecting the cluster, do you retrospectively consider the cluster as
well described by the label?

The evaluator must choose one of three possible answers (Yes, Sort-of, No), and
his/her answer is automatically recorded in a database. Question 1 is aimed at
assessing the gracefulness of the label produced. Question 2 is aimed at assessing
the quality of the label as an instrument predictive of the cluster content. Ques-
tion 3 is aimed at assessing the correspondence of the label with the content of
the cluster. Note that the user cannot inspect the content of the cluster before
answering Questions 1 and 2.

18For the sake of replicating the experiments, all the search results have been cached and
are available at http://psp1.iit.cnr.it/∼mcsoft/fpf/fpf.html.
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8.1. Selection of the Queries

Similarly to [Ferragina and Gulli 05, Kummamuru et al. 04], we have randomly
selected 35 of the most popular queries submitted to Google in 2004 and 2005.19

From the selection we have removed queries (such as, e.g., “Spongebob” and
“Hilary Duff”) that, referring to someone or something of regional interest only,
were unlikely to be meaningful to our evaluators. The selected queries are listed
in Table 5.

8.2. Discussion of the Results

Each of the 35 queries has been evaluated by two different evaluators, for a total
of 70 query evaluations and 1584 cluster evaluations. The results are displayed
in Table 3.

Yes Sort-of No

Question 1 60.5% 25.5% 14.0%
Question 2 50.0% 32.0% 18.0%
Question 3 47.0% 38.5% 14.5%

Table 3. Results of user evaluation.

Summing the very positive and the mildly positive answers, we can conclude
that, in this experiment, 86.0% of the labels are syntactically acceptable, 82.0%
of the labels are predictive, and 85.5% of the clusters are sufficiently well de-
scribed by their label. By checking the percentages of “No” answers, we can
notice that sometimes labels considered non-predictive are nonetheless consid-
ered well-descriptive of the cluster; we interpret this fact as due to the discovery
of meanings of the query string previously unknown to the evaluator.

The correlation matrices in Table 4 show more precisely the correlation be-
tween syntax, predictiveness, and representativeness of the labels. Entries in the
top part give the percentage over all answers, and entries in the bottom part
give percentage over rows.

The data in Table 4 (top) show that there is a strong correlation between
syntactic form and predictivity of the labels, as shown by the fact that in a high
percentage of cases the same answer was returned to Questions 1 and 2.

The middle and bottom parts of Table 4 confirm that while for the positive
or mildly positive answers (Yes, Sort-of) there is a strong correlation between
the answers returned to the different questions, it is often the case that a label
considered not predictive of the content of the cluster can still be found, after
inspection of the cluster, to be representative of the content of the cluster.

19http://www.google.com/press/zeitgeist.html
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2. Yes 2. Sort-of 2. No

1. Yes 42.67% 12.81% 5.11%
1. Sort-of 5.74% 15.27% 4.41%
1. No 1.64% 3.78% 8.52%

1. Yes 70.41% 21.14% 8.43%
1. Sort-of 22.58% 60.04% 17.36%
1. No 11.76% 27.14% 61.08%

3. Yes 3. Sort-of 3. No

2. Yes 33.52% 12.81% 3.72%
2. Sort-of 11.36% 16.85% 3.66%
2. No 2.14% 8.90% 7.00%

2. Yes 66.96% 25.59% 7.44%
2. Sort-of 35.64% 52.87% 11.48%
2. No 11.88% 49.30% 38.81%

3. Yes 3. Sort-of 3. No

1. Yes 35.98% 18.93% 5.68%
1. Sort-of 8.64% 12.81% 3.97%
1. No 2.39% 6.81% 4.73%

1. Yes 59.37% 31.25% 9.37%
1. Sort-of 33.99% 50.37% 15.63%
1. No 17.19% 48.86% 33.93%

Table 4. Correlation tables of Questions 1 and 2 (top), 2 and 3 (middle), 1 and 3
(bottom).

skype winmx nintendo revolution
pamela anderson twin towers wallpaper firefox

ipod tsunami tour de france weather
matrix mp3 new orleans notre dame
games britney spears chat CNN
iraq james bond harry potter simpsons

south park baseball ebay madonna
star wars tiger airbus oscars
london pink floyd armstrong spiderman

Table 5. Queries used in the user evaluation.

8.3. Running Times

Our system runs on an AMD Athlon (1-Ghz Clock) processor with 750-MB
RAM and operating system FreeBSD 4.11 - STABLE. The code was developed
in Python V. 2.4.1. Excluding the time needed to download the snippets from
the auxiliary search engines, the 35 queries have been clustered and labeled in
0.72 seconds on average; the slowest query took 0.92 seconds.
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9. Conclusions and Future Work

Why is Armil not “yet another clustering search engine”? The debate on how to
improve the performance of search engines is at the core of the current research
in the area of web studies, and we believe that so far only the surface of the vein
has been uncovered. The main philosophy of the system/experiments we have
proposed follows these lines:

1. Principled algorithmic choices are made whenever possible.

2. Clustering is clearly decoupled from labeling.

3. Attention is paid to the trade-off between response time and quality while
limiting the response time within limits acceptable by the user.

4. A comparative study of Armil and Vivisimo has been performed in order
to assess the quality of Armil’s clustering phase by means of effectiveness
measures commonly used in clustering studies.

5. A user study has been set up in order to obtain an indication of user
satisfaction with the produced cluster labeling.

6. No use of external sources of knowledge is made.

Further research is needed in two main areas. First, we plan to assess to what
extent a modicum of external knowledge can improve the system’s performance
without speed penalties. An example of one possible such improvement is the
use of extractors of noun phrases in parsing the snippets. Second, it is possible
to introduce in the current pipeline (input snippets are clustered, candidates
are extracted, then labels are generated) of the architecture a feedback loop
by considering the extracted candidates/labels as predefined categories, thus
examining which snippets in different clusters are closer to the generated labels.
Snippets close to the label of cluster Cx but in a different cluster Cy could be
shown on the screen as related also to Cx. This would give the benefits of soft
clustering without much computational overload. Finally, methods for detecting
automatically the desired number of clusters will be studied.
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