
Internet Mathematics Vol. 2, No. 3: 333-358

Towards Scaling Fully Personalized
PageRank: Algorithms, Lower
Bounds, and Experiments
Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós

Abstract. Personalized PageRank expresses link-based page quality around user-
selected pages in a similar way as PageRank expresses quality over the entire web.
Existing personalized PageRank algorithms can, however, serve online queries only
for a restricted choice of pages. In this paper we achieve full personalization by a
novel algorithm that precomputes a compact database; using this database, it can
serve online responses to arbitrary user-selected personalization. The algorithm uses
simulated random walks; we prove that for a fixed error probability the size of our
database is linear in the number of web pages. We justify our estimation approach
by asymptotic worst-case lower bounds: we show that on some sets of graphs, exact
personalized PageRank values can only be obtained from a database of size quadratic
in the number of vertices. Furthermore, we evaluate the precision of approximation
experimentally on the Stanford WebBase graph.

1. Introduction

The idea of topic-sensitive or personalized ranking has been present in the lit-
erature since the beginning of the success story of Google’s PageRank [Brin
and Page 98, Page et al. 98] and other hyperlink-based quality measures [Klein-
berg 99, Borodin et al. 01]. Topic sensitivity is either achieved by precomputing
modified measures over the entire web [Haveliwala 02] or by ranking the neigh-
borhood of pages containing the query word [Kleinberg 99]. These methods,

© A K Peters, Ltd.
1542-7951/05 $0.50 per page 333

334 Internet Mathematics

however, work only for restricted cases or when the entire hyperlink structure
fits into the main memory.

In this paper we address the computational issues [Haveliwala 02, Jeh and
Widom 03] of personalized PageRank [Page et al. 98]. Just as all hyperlink
based ranking methods, PageRank is based on the assumption that the existence
of a hyperlink u → v implies that page u votes for the quality of v. Personalized
PageRank (PPR) enters user preferences by assigning more importance to edges
in the neighborhood of certain pages at the user’s selection. Unfortunately the
naive computation of PPR requires a power-iteration algorithm over the entire
web graph, making the procedure infeasible for an online query response service.

Earlier personalized PageRank algorithms restricted personalization to a few
topics [Haveliwala 02], to a subset of popular pages [Jeh and Widom 03], or to
hosts [Kamvar et al. 03a]; see [Haveliwala et al. 03] for an analytical comparison
of these methods. The state of the art Hub Decomposition algorithm [Jeh and
Widom 03] can answer queries for up to some 100,000 personalization pages, an
amount relatively small even compared to the number of categories in the Open
Directory Project [Netscape 05].

In contrast to earlier PPR algorithms, we achieve full personalization: our
method enables online serving of personalization queries for any set of pages.
We introduce a novel, scalable Monte Carlo algorithm that precomputes a com-
pact database. As described in Section 2, the precomputation uses simulated
random walks and stores the ending vertices of the walks in the database. PPR
is estimated online with a few database accesses.

The price that we pay for full personalization is that our algorithm is ran-
domized and less precise than power-iteration-like methods; the formal analysis
of the error probability is discussed in Section 3. We theoretically and experi-
mentally show that we give sufficient information for all possible personalization
pages while adhering to the strong implementation requirements of a large-scale
web search engine.

According to Section 4, some approximation seems to be unavoidable since
exact personalization requires a database as large as Ω(V 2) bits in worst case over
graphs with V vertices. Though no worst-case theorem applies to the web graph
or one particular graph, the theorems show the nonexistence of a general exact
algorithm that computes a linear-sized database on any graph. To achieve full
personalization in future research, one must hence either exploit special features
of the web graph or relax the exact problem to an approximate one as in our
scenario. Of independent interest is another consequence of our lower bounds
that there is indeed a large amount of information in personalized PageRank
vectors since, unlike uniform PageRank, it can hold information of size quadratic
in the number of vertices.

Fogaras et al.: Towards Scaling Fully Personalized PageRank 335

In Section 5 we experimentally analyze the precision of the approximation
on the Stanford WebBase graph and conclude that our randomized approxima-
tion method provides sufficiently good approximation for the top personalized
PageRank scores.

Though our approach might give results of inadequate precision in certain cases
(for example, for pages with large neighborhood), the available personalization
algorithms can be combined to resolve these issues. For example, we can pre-
compute personalization vectors for certain topics by topic-sensitive PR [Haveli-
wala 02] and for popular pages with large neighborhoods by the hub skeleton
algorithm [Jeh and Widom 03], and use our method for those millions of pages
not covered so far. This combination gives adequate precision for most queries
with large flexibility for personalization.

1.1. Related Results

We compare our method with known personalized PageRank approaches as listed
in Table 1 to conclude that our algorithm is the first that can handle online
personalization on arbitrary pages. Earlier methods in contrast either restrict
personalization or perform non-scalable computational steps such as power iter-
ation in query time or quadratic disk usage during the precomputation phase.
The only drawback of our algorithm compared to previous ones is that its ap-
proximation ratio is somewhat worse than that of the power iteration methods.

The first known algorithm [Page et al. 98] (Naive in Table 1) simply takes the
personalization vector as input and performs power iteration at query time. This
approach is clearly infeasible for online queries. One may precompute the power
iterations for a well-selected set of personalization vectors as in the Topic Sensi-
tive PageRank [Haveliwala 02]; however, full personalization in this case requires
t = V precomputed vectors yielding a database of size V 2 for V web pages. The
current size V ≈ 109 − 1010 hence makes full personalization infeasible.

The third algorithm of Table 1, BlockRank [Kamvar et al. 03a], restricts per-
sonalization to hosts. While the algorithm is attractive in that the choice of
personalization is fairly general, a reduced number of power iterations still need
to be performed at query time that makes the algorithm infeasible for online
queries.

The remarkable Hub Decomposition algorithm [Jeh and Widom 03] restricts
the choice of personalization to a set H of top-ranked pages. Full personalization,
however, requires H to be equal to the set of all pages, thus V 2 space is required
again. The algorithm can be extended by the web Skeleton [Jeh and Widom 03]
to lower estimate the personalized PageRank vector of arbitrary pages by taking
into account only the paths that go through the set H. Unfortunately, if H

336 Internet Mathematics

does not overlap the few-step neighborhood of a page, then the lower estimation
provides poor approximation for the personalized PageRank scores.

The dynamic programming approach [Jeh and Widom 03] provides full person-
alization by precomputing and storing sparse, approximate personalized Page-
Rank vectors. The key idea is that in a k-step approximation only vertices
within distance k have nonzero value. However, the rapid expansion of the
k-neighborhoods increases disk requirement close to V 2 after a few iterations,
which limits the usability of this approach. Furthermore, a possible external
memory implementation would require significant additional disk space. The
space requirements of dynamic programming for a single vertex is given by the
average neighborhood size Neighb(k) within distance k as seen in Figure 1. The
average size of the sparse vectors exceeds 1,000 after k ≥ 4 iterations, and on av-
erage 24% of all vertices are reached within k = 15 steps.1 For example the disk
requirement for k = 10 iterations is at least Neighb(k) · V = 1, 075, 740 · 80M ≈
344 Terabytes. Note that the best upper bound of the approximation is still
(1 − c)10 = 0.8510 ≈ 0.20, measured by the L1-norm.

The basic dynamic programming method can be extended with a pruning
strategy that eliminates some of the nonzero entries from the approximation
vectors. However, it is nontrivial to upper bound the error caused by the pruning
steps, since the small error caused by a pruning step is distributed to many
other approximation vectors in subsequent steps; we refer the reader to our
follow-up work [Sarlós et al. 05] for further details. Certain pruning strategies
may also increase the precomputation time. For example, a major drawback of
selecting the top ranks after each iteration is that it requires extra computational
efforts such as keeping the intermediate results in priority queues. In contrast,
our fingerprint-based method tends to eliminate low ranks inherently, and the
amount of error caused by the limited storage capacity can be upper bounded
formally.

Now, we briefly review some algorithms that solve the scalability issue by
fingerprinting or sampling for applications that are different from personalized
web search. For example, [Palmer et al. 02] applies probabilistic counting to
estimate the neighborhood function of the Internet graph, [Cohen 97] estimates
the size of transitive closure for massive graphs occurring in databases, and
[Fogaras and Rácz 04, Fogaras and Rácz 05] approximates link-based similarity
scores by fingerprints. Apart from graph algorithms, [Broder 97] estimates the
resemblance and containment of textual documents with fingerprinting.

1The neighborhood function was computed by combining the size estimation method of [Co-
hen 97] with our external memory algorithm discussed in [Fogaras and Rácz 05].

Fogaras et al.: Towards Scaling Fully Personalized PageRank 337

M
et

h
o
d

P
er

so
n
a
li
za

ti
o
n

L
im

it
s

o
f
sc

a
la

b
il
it
y

P
o
st

it
iv

e
a
sp

ec
ts

N
eg

a
ti
v
e

a
sp

ec
ts

N
a
iv

e
[P

a
g
e

et
a
l.

9
8
]

a
n
y

p
a
g
e

p
o
w

er
it
er

a
ti
o
n

in
q
u
er

y
ti
m

e
in

fe
a
si

b
le

to
se

rv
e

o
n
li
n
e

p
er

so
n
a
li
za

ti
o
n

T
o
p
ic

-S
en

si
ti
v
e

P
a
g
eR

a
n
k

[H
a
v
el

i-
w

a
la

0
2
]

re
st

ri
ct

ed
to

li
n
ea

r
co

m
-

b
in

a
ti
o
n

o
f

t
to

p
ic

s,
e.

g
.,

t
=

1
6

t
·V

d
is

k
sp

a
ce

re
q
u
ir

ed
d
is

tr
ib

u
te

d
co

m
p
u
ti
n
g

B
lo

ck
R

a
n
k

[K
a
m

-
v
a
r

et
a
l.

0
3
a
]

re
st

ri
ct

ed
to

p
er

so
n
a
li
ze

o
n

h
o
st

s
p
o
w

er
it
er

a
ti
o
n

in
q
u
er

y
ti
m

e
re

d
u
ce

d
n
u
m

b
er

o
f
p
o
w

er
it
er

a
ti
o
n
s,

d
is

tr
ib

u
te

d
co

m
p
u
ti
n
g

in
fe

a
si

b
le

to
se

rv
e

o
n
li
n
e

p
er

so
n
a
li
za

ti
o
n

H
u
b

D
ec

o
m

-
p
o
si

ti
o
n

[J
eh

a
n
d

W
id

o
m

0
3
]

re
st

ri
ct

ed
to

p
er

so
n
a
li
ze

o
n

th
e

to
p

H
ra

n
k
ed

p
a
g
es

,
p
ra

ct
ic

a
ll
y

H
≤

1
0
0
K

H
2

d
is

k
sp

a
ce

re
q
u
ir

ed
,

H
p
a
rt

ia
l

v
ec

to
rs

a
g
g
re

-
g
a
te

d
in

q
u
er

y
ti
m

e

co
m

p
a
ct

en
co

d
in

g
o
f

H
p
er

so
n
a
li
ze

d
P

R
v
ec

to
rs

B
a
si

c
D

y
n
a
m

ic
P

ro
g
ra

m
m

in
g

[J
eh

a
n
d

W
id

o
m

0
3
]

a
n
y

p
a
g
e

V
·N

ei
g
h
b
(k

)
d
is

k
sp

a
ce

re
q
u
ir

ed
fo

r
k

it
er

a
ti
o
n
s,

w
h
er

e
N

ei
g
h
b
(k

)
g
ro

w
s

fa
st

in
k

in
fe

a
si

b
le

to
p
er

fo
rm

m
o
re

th
a
n

k
=

3
,4

it
er

-
a
ti
o
n
s

w
it
h
in

re
a
so

n
a
b
le

d
is

k
si

ze

F
in

g
er

p
ri

n
t

(t
h
is

p
a
p
er

)
a
n
y

p
a
g
e

n
o

li
m

it
a
ti
o
n

li
n
ea

r-
si

ze
(N

·V
)
d
is

k
re

-
q
u
ir

ed
,

d
is

tr
ib

u
te

d
co

m
-

p
u
ta

ti
o
n

lo
w

er
p
re

ci
si

o
n

a
p
p
ro

x
i-

m
a
ti
o
n

Ta
bl

e
1.

A
n
a
ly

ti
ca

l
co

m
p
a
ri

so
n

o
f
p
er

so
n
a
li
ze

d
P
a
g
eR

a
n
k

a
lg

o
ri

th
m

s.
V

d
en

o
te

s
th

e
n
u
m

b
er

o
f
a
ll

p
a
g
es

.

338 Internet Mathematics

Neighb(k)

Distance k

1614121086420

1e+08

1e+07

1e+06

100000

10000

1000

100

10

Figure 1. The neighborhood function measured on the Stanford WebBase graph
of 80M pages.

Random walks were used earlier to compute various web statistics, mostly
focused on sampling the web (uniformly or according to static PR) [Henzinger
et al. 00, Rusmevichientong et al. 01, Bar-Yossef et al. 00, Henzinger et al. 99a]
but also for calculating page decay [Bar-Yossef et al. 04] and similarity values
[Fogaras and Rácz 04, Fogaras and Rácz 05].

The lower bounds of Section 4 show that precise PPR requires a significantly
larger database than Monte Carlo estimation does. Analogous results with sim-
ilar communication complexity arguments were proved in [Henzinger et al. 99b]
for the space complexity of several data stream graph algorithms.

1.2. Preliminaries

In this section we introduce notation and recall definitions and basic facts about
PageRank. Let V denote the set of web pages and V = |V| the number of pages.
The directed graph with vertex set V and edges corresponding to the hyperlinks
will be referred to as the web graph. Let A denote the adjacency matrix of the
web graph with normalized rows and c ∈ (0, 1) the teleportation probability. In
addition, let �r be the so-called preference vector inducing a probability distri-
bution over V. PageRank vector �p is defined as the solution of the following
equation [Page et al. 98]:

�p = (1 − c) · �pA + c · �r .

If �r is uniform over V, then �p is referred to as the global PageRank vector. For
nonuniform �r the solution �p will be referred to as the personalized PageRank
vector of �r, denoted by PPV(�r). In the special case when for some page u the

Fogaras et al.: Towards Scaling Fully Personalized PageRank 339

uth coordinate of �r is 1 and all other coordinates are 0, the PPV will be referred
to as the individual PageRank vector of u denoted by PPV(u). We will also refer
to this vector as the personalized PageRank vector of u. Furthermore, the vth
coordinate of PPV(u) will be denoted by PPV(u, v).

Theorem 1.1. (Linearity.) [Haveliwala 02] For any preference vectors �r1, �r2 and positive
constants α1, α2 with α1 + α2 = 1, the following equality holds:

PPV(α1 · �r1 + α2 · �r2) = α1 · PPV(�r1) + α2 · PPV(�r2).

Linearity is a fundamental tool for scalable online personalization, since if PPV
is available for some preference vectors, then PPV can be easily computed for
any combination of the preference vectors. Particularly, for full personalization
it suffices to compute individual PPV(u) for all u ∈ V, and the individual PPVs
can be combined online for any small subset of pages. Therefore, in the rest
of this paper, we investigate algorithms to make all individual PPVs available
online.

The following statement will play a central role in our PPV estimations. The
theorem provides an alternate probabilistic characterization of individual Page-
Rank scores.2

Theorem 1.2. [Jeh and Widom 03, Fogaras 03] Suppose that a number L is chosen
at random with probability Pr{L = i} = c(1 − c)i for i = 0, 1, 2, Consider
a random walk starting from some page u and taking L steps. Then, for the vth
coordinate PPV(u, v) of vector PPV(u),

PPV(u, v) = Pr{the random walk ends at page v}.

2. Personalized PageRank Algorithm

In this section we will present a new Monte Carlo algorithm to compute approxi-
mate values of personalized PageRank utilizing the probabilistic characterization
of PPR from Section 1. We will compute approximations of each of the Page-
Rank vectors personalized on a single page; therefore, by the linearity theorem
we achieve full personalization.

2Notice that this characterization slightly differs from the random surfer formulation of
PageRank [Page et al. 98].

340 Internet Mathematics

Definition 2.1. (Fingerprint path.) A fingerprint path of a vertex u is a random walk
starting from u; the length of the walk is of geometric distribution of parameter
c, i.e., after each step the walk takes a further step with probability 1 − c and
ends with probability c.

Definition 2.2. (Fingerprint.) A fingerprint of a vertex u is the ending vertex of a
fingerprint path of u.

By Theorem 1.2 the fingerprint of page u, as a random variable, has the
distribution of the personalized PageRank vector of u. For each page u we
will calculate N independent fingerprints by simulating N independent random
walks starting from u and approximate PPV(u) with the empirical distribution
of the ending vertices of these random walks. These fingerprints will constitute
the index database, thus the size of the database is N · V . The output ranking
will be computed at query time from the fingerprints of pages with positive
personalization weights using the linearity theorem.

To increase the precision of the approximation of PPV(u), we will use
the fingerprints that were generated for the neighbors of u, as described in
Section 2.3.

The challenging problem is how to scale the indexing, i.e., how to generate
N independent random walks for each vertex of the web graph. We assume
that the edge set can only be accessed as a data stream, sorted by the source
pages, and we will count the database scans and total I/O size as the efficiency
measure of our algorithms. Though with the latest compression techniques [Boldi
and Vigna 04] the entire web graph may fit into main memory, we still have a
significant computational overhead for decompression in case of random access.
Under such assumption it is infeasible to generate the random walks one-by-one,
as it would require random access to the edge structure.

We will consider two computational environments here: a single computer
with constant random access memory in the case of the external memory model
and a distributed system with tens to thousands of medium capacity computers
[Dean and Ghemawat 04]. Both algorithms use techniques similar to those of
the respective I/O efficient algorithms computing PageRank [Chen et al. 02].

Since the task is to generate N independent fingerprints, the single computer
solution can be trivially parallelized to make use of a large cluster of machines,
too. (Commercial web search engines have up to thousands of machines at their
disposal.) Also, the distributed algorithm can be emulated on a single machine,
which may be more efficient than the external memory approach depending on
the graph structure.

Fogaras et al.: Towards Scaling Fully Personalized PageRank 341

Algorithm 1 (Indexing (external memory method).)
N is the required number of fingerprints for each vertex. The array Paths holds pairs
of vertices (u, v) for each partial fingerprint in the calculation, interpreted as (Path-
Start,PathEnd). The teleportation probability of PPR is c. The array Fingerprint[u]
stores the fingerprints computed for a vertex u.

for each web page u do
for i := 1 to N do

append the pair (u, u) to array Paths /*start N fingerprint paths from node u:
initially, PathStart=PathEnd= u*/

Fingerprint[u] := ∅
while Paths �= ∅ do

sort Paths by PathEnd /*use an external memory sort*/
for all (u, v) in Paths do /*simultaneous scan of the edge set and Paths*/

w := a random out-neighbor of v
if random() < c then /*with probability c this fingerprint path ends here*/

add w to Fingerprint[u]
delete the current element (u, v) from Paths

else /*with probability 1 − c the path continues*/
update the current element (u, v) of Paths to (u, w)

2.1. External Memory Indexing

We will incrementally generate the entire set of random walks simultaneously.
Assume that the first k vertices of all the random walks of length at least k

are already generated. At any time it is enough to store the starting and the
current vertices of the fingerprint path, as we will eventually drop all the nodes
on the path except the starting and the ending nodes. Sort these pairs by the
ending vertices. Then, by simultaneously scanning through the edge set and
this sorted set, we can have access to the neighborhoods of the current ending
vertices. Thus, each partial fingerprint path can be extended by a next vertex
chosen from the out-neighbors of the ending vertex uniformly at random. For
each partial fingerprint path we also toss a biased coin to determine if it has
reached its final length with probability c or has to advance to the next round
with probability 1 − c. This algorithm is formalized as Algorithm 1.

The number of I/O operations that the external memory sorting takes is
D logM D, where D is the database size and M is the available main memory.
Thus, the expected I/O requirement of the sorting parts can be upper bounded
by

∞∑
k=0

(1 − c)kNV logM ((1 − c)kNV) =
1
c
NV logM (NV) − Θ(NV)

342 Internet Mathematics

using the fact that after k rounds the expected size of the Paths array is
(1 − c)kNV . Recall that V and N denote the numbers of vertices and fin-
gerprints, respectively.

We need a sort on the whole index database to avoid random-access writes to
the Fingerprint arrays. Also, upon updating the PathEnd variables, we do not
write the unsorted Paths array to disk, but pass it directly to the next sorting
stage. Thus, the total I/O is at most 1

cNV logM NV plus the necessary edge
scans.

Unfortunately, this algorithm apparently requires as many edge scans as the
length of the longest fingerprint path, which can be very large: Pr{the longest
fingerprint is shorter than L} = (1 − (1 − c)L)N ·V . Thus, instead of scanning
the edges in the final stages of the algorithm, we will change strategy when the
Paths array has become sufficiently small. Assume that a partial fingerprint
path has its current vertex at v. Then upon this condition the distribution of
the end of this path is identical to the distribution of the end of any fingerprint
of v. Thus, to finish the partial fingerprint, we can retrieve an already finished
fingerprint of v. Although this decreases the number of available fingerprints for
v, this results in only a very slight loss of precision.3

Another approach to this problem is to truncate the paths at a given length
L and approximate the ending distribution with the static PageRank vector, as
described in Section 2.3.

2.2. Distributed Index Computing

In the distributed computing model we will invert the previous approach, and
instead of sorting the path ends to match the edge set, we will partition the edge
set of the graph in such a way that each participating computer can hold its
part of the edges in main memory. So, at any time if a partial fingerprint with
current ending vertex v requires a random out-edge of v, it can ask the respec-
tive computer to generate one. This will require no disk access, only network
transfer.

More precisely, each participating computer will have several queues holding
(PathStart, PathEnd) pairs: one large input queue and for each computer one
small output queue preferably with the size of a network packet.

The computation starts with each computer filling their own input queue with
N copies of the initial partial fingerprints (u, u), for each vertex u belonging
to the respective computer in the vertex partition. Then, in the input queue

3Furthermore, we can be prepared for this event: the distribution of these v vertices will
be close to the static PageRank vector, thus we can start with generating somewhat more
fingerprints for the vertices with high PR values.

Fogaras et al.: Towards Scaling Fully Personalized PageRank 343

Algorithm 2 (Indexing (distributed computing method).)
The algorithm of one participating computer. Each computer is responsible for a part of the
vertex set, keeping the out-edges of those vertices in main memory. For a vertex v, part(v) is
the index of the computer that has the out-edges of v. The queues hold pairs of vertices (u, v),
interpreted as (PathStart, PathEnd).

for u with part(u) = current computer do
for i := 1 to N do

insert pair (u, u) into InQueue /*start N fingerprint paths from node u: initially,
PathStart=PathEnd= u*/

while at least one queue is not empty do /*some of the fingerprints are still being calcu-
lated*/

get an element (u, v) from InQueue/*if empty, wait until an element arrives*/
w := a random out-neighbor of v/*prolong the path; we have the out-edges of v in
memory*/
if random() < c then /*with probability c this fingerprint path ends here*/

add w to the fingerprints of u
else /*with probability 1 − c the path continues*/

o := part(w) /*the index of the computer responsible for continuing the path*/
insert pair (u, w) into the InQueue of computer o

transmit the finished fingerprints to the proper computers for collecting and sorting.

processing loop, a participating computer takes the next input pair, generates a
random out-edge from PathEnd, decides whether the fingerprint ends there, and,
if it does not, places the pair in the output queue determined by the next vertex
just generated. If an output queue reaches the size of a network packet’s size, it
is flushed and transferred to the input queue of the destination computer. Notice
that either we have to store the partition index for those v vertices that have
edges pointing to the current computer’s graph or part(v) has to be computable
from v, for example, by renumbering the vertices according to the partition.
For the sake of simplicity, the output queue management is omitted from the
pseudocode shown as Algorithm 2.

The total size of all the input and output queues equals the size of the Paths
array in the previous approach after the respective number of iterations. The
expected network transfer can be upper bounded by

∑∞
n=0(1 − c)nNV = 1

cNV

if every fingerprint path needs to change computer in each step.
In the case of the web graph, we can significantly reduce the amount of network

transfer with a suitable partition of the vertices. The key idea is to keep each
domain on a single computer, since the majority of the links are intra-domain
links as reported in [Kamvar et al. 03a, Eiron and McCurley 03].

We can further extend this heuristic partition to balance the computational
and network load among the participating computers in the network. One should
use a partition of the pages such that the amount of global PageRank is dis-
tributed uniformly across the computers. The reason is that the expected value

344 Internet Mathematics

of the total InQueue hits of a computer is proportional to the total PageRank
score of vertices belonging to that computer. Thus, when such a partition is
being used, the total switching capacity of the network is challenged, not the
capacity of the individual network links.

2.3. Query

The basic query algorithm is as follows: to calculate PPV(u), we load the ending
vertices of the fingerprints for u from the index database, calculate the empirical
distribution over the vertices, multiply it with 1− c, and add c weight to vertex
u. This requires one database access (disk seek).

To reach a precision beyond the number of fingerprints saved in the database,
we can use the recursive property of PPV, which is also referred to as the de-
composition theorem in [Jeh and Widom 03]:

PPV(u) = c�u +(1 − c)
1

|O(u)|
∑

v∈O(u)

PPV(v),

where �u denotes the measure concentrated at vertex u (i.e., the unit vector of
u) and O(u) is the set of out-neighbors of u.

This gives us the following algorithm: upon a query u we load the fingerprints
for u, the set of out-neighbors O(u), and the fingerprints for the vertices of
O(u). From this set of fingerprints, we use the above equation to approximate
PPV(u) using a higher amount of samples, thus achieving higher precision. This
is a tradeoff between query time (database accesses) and precision: with |O(u)|
database accesses we can approximate the vector from |O(u)| · N samples. We
can iterate this recursion if we want to have even more samples. We mention
that such query-time iterations are analogous to the basic dynamic programming
algorithm of [Jeh and Widom 03]. The main difference is that in our case the
iterations are used to increase the number of fingerprints rather than the maximal
length of the paths taken into account as in [Jeh and Widom 03].

The increased precision is essential in approximating the PPV of a page with
large neighborhood, as from N samples at most N pages will have positive
approximated PPR values. Fortunately, this set is likely to contain the pages
with the highest PPR scores. Using the samples of the neighboring vertices will
give more adequate result, as it will be formally analyzed in the next section.

We could also use the expander property of the web graph: after not so many
random steps, the distribution of the current vertex will be close to the static
PageRank vector. Instead of allowing very long fingerprint paths, we could
combine the PR vector with coefficient (1 − c)L+1 to the approximation and
drop all fingerprints longer than L. This would also solve the problem of the

Fogaras et al.: Towards Scaling Fully Personalized PageRank 345

approximated individual PPR vectors having many zeros (in those vertices that
have no fingerprints ending there). The indexing algorithms would benefit from
this truncation, too.

There is a further interesting consequence of the recursive property. If it is
known in advance that we want to personalize over a fixed (maybe large) set of
pages, we can introduce an artificial node into the graph with the respective set
of neighbors to generate fingerprints for that combination.

3. How Many Fingerprints Are Needed?

In this section we will discuss the convergence of our estimates and analyze the
required amount of fingerprints for proper precision.

It is clear by the law of large numbers that as the number of fingerprints
N → ∞, the estimate P̂PV(u) converges to the actual personalized PageRank
vector PPV(u). To show that the rate of convergence is exponential, recall that
each fingerprint of u ends at v with probability PPV(u, v), where PPV(u, v)
denotes the vth coordinate of PPV(u). Therefore, N · P̂PV(u, v), the number of
fingerprints of u that ends at v, has binomial distribution with parameters N and
PPV(u, v). Then, Chernoff’s inequality yields the following bound on the error
of over-estimating PPV(u, v) and the same bound holds for under-estimation:

Pr{P̂PV(u, v) > (1 + δ) PPV(u, v)}
= Pr{N P̂PV(u, v) > N(1 + δ) PPV(u, v)}
≤ e−N ·PPV(u,v)·δ2/4.

Actually, for applications the exact values are not necessary. We only need
the ordering defined by the approximation to match fairly closely the ordering
defined by the personalized PageRank values. In this sense we have exponential
convergence, too.

Theorem 3.1. For any vertices u, v, w consider PPV(u) and assume that

PPV(u, v) > PPV(u,w).

Then the probability of interchanging v and w in the approximate ranking tends
to zero exponentially in the number of fingerprints used.

Theorem 3.2. For any ε, δ > 0 there exists an N0 such that for any N ≥ N0 number
of fingerprints, for any graph, and any vertices u, v, w such that PPV(u, v) −
PPV(u,w) > δ, the inequality Pr{P̂PV(u, v) < P̂PV(u,w)} < ε holds.

346 Internet Mathematics

Proof. We prove both theorems together. Consider a fingerprint of u and let Z

be the following random variable: Z = 1, if the fingerprint ends in v, Z = −1
if the fingerprint ends in w, and Z = 0 otherwise. Then EZ = PPV(u, v) −
PPV(u,w) > 0. Estimating the PPV values from N fingerprints the event of
interchanging v and w in the rankings is equivalent to taking N independent Zi

variables and having
∑N

i=1 Zi < 0. This can be upper bounded using Bernstein’s
inequality and the fact that Var(Z) = PPV(u, v) + PPV(u,w) − (PPV(u, v) −
PPV(u,w))2 ≤ PPV(u, v) + PPV(u,w):

Pr{ 1
N

∑N
i=1 Zi < 0} ≤ e−N

(EZ)2

2 Var(Z)+4/3EZ

≤ e−N
(PPV(u,v)−PPV(u,w))2

10/3 PPV(u,v)+2/3 PPV(u,w)

≤ e−0.3N(PPV(u,v)−PPV(u,w))2

From the above inequality both theorems follow.

The first theorem shows that even a modest amount of fingerprints are enough
to distinguish between the high, medium and low ranked pages according to
the personalized PageRank scores. However, the order of the low ranked pages
will usually not follow the PPR closely. This is not surprising, and actually a
significant problem of PageRank itself, as [Lempel and Moran 05] showed that
PageRank is unstable around the low ranked pages, in the sense that with small
perturbation of the graph a very low ranked page can jump in the ranking order
somewhere to the middle.

The second statement has an important theoretical consequence. When we
investigate the asymptotic growth of database size as a function of the graph
size, the number of fingerprints remains constant for fixed ε and δ.

4. Worst-Case Lower Bounds for PPR Database Size

In this section we will prove several worst-case lower bounds on the complexity
of personalized PageRank problem. The lower bounds suggest that the exact
computation and storage of all personalized PageRank vectors is infeasible for
massive graphs. Notice that the theorems cannot be applied to one specific input
such as the web graph. The theorems show that for achieving full personalization
the web-search community should either utilize some specific properties of the
web graph or relax the exact problem to an approximate one as in our scenario.

In particular, we will prove that the necessary index database size of a fully
personalized PageRank algorithm computing exact scores must be at least Ω(V 2)
bits in the worst case, and if it personalizes only for H nodes, the size of the

Fogaras et al.: Towards Scaling Fully Personalized PageRank 347

database is at least Ω(H · V). If we allow some small error probability and
approximation, then the lower bound for full personalization is linear in V , which
is achieved by our algorithm of Section 2.

More precisely, we will consider two-phase algorithms. In the first phase the
algorithm has access to the graph and has to compute an index database. In the
second phase the algorithm gets a query of arbitrary vertices u, v (and w), and
it has to answer based on the index database, i.e., the algorithm cannot access
the graph during query time. An f(V) worst-case lower bound on the database
size holds if for any two-phase algorithm there exists a graph on V vertices such
that the algorithm builds a database of size f(V) in the first phase.

In the two-phase model, we will consider the following types of queries:

(1) Exact: Calculate PPV(u, v), the vth element of the personalized PageRank
vector of u.

(2) Approximate: Estimate PPV(u, v) with a P̂PV(u, v) such that for fixed
ε, δ > 0

Pr{|P̂PV(u, v) − PPV(u, v)| < δ} ≥ 1 − ε.

(3) Positivity: Decide whether PPV(u, v) is positive with error probability at
most ε.

(4) Comparison: Decide in which order v and w are in the personalized rank of
u with error probability at most ε.

(5) ε–δ comparison: For fixed ε, δ > 0 decide the comparison problem with error
probability at most ε if |PPV(u, v) − PPV(u,w)| > δ holds.

Our tool towards the lower bounds will be the asymmetric communication
complexity game bit-vector probing [Henzinger et al. 99b]: there are two players A

and B. Player A has an m-bit vector x, player B has a number y ∈ {1, 2, . . . ,m},
and their task is to compute the function f(x, y) = xy, i.e., the output is the yth
bit of the input vector. To compute the proper output, they have to commu-
nicate, and communication is restricted in the direction A → B. The one-way
communication complexity [Kushilevitz and Nisan 97] of this function is the re-
quired bits of transfer in the worst case for the best protocol.

Theorem 4.1. [Henzinger et al. 99b] Any protocol that outputs the correct answer
to the bit-vector probing problem with probability at least 1+γ

2 must transmit at
least γm bits in the worst case.

348 Internet Mathematics

Now we are ready to prove our lower bounds. In all our theorems we assume
that personalization is calculated for H vertices and that there are V vertices in
total. Notice that in the case of full personalization H = V holds.

Theorem 4.2. Any algorithm solving the positivity problem (3) must use an index
database of size Ω((1 − 2ε)HV) bits in the worst case.

Proof. Set 1+γ
2 = 1 − ε. We give a communication protocol for the bit-vector

probing problem. Given an input bit-vector x, we will create a graph that
“codes” the bits of this vector. Player A will create a PPV database on this
graph and transmit this database to B. Then, Player B will use the positivity
query algorithm for some vertices (depending on the requested number y) such
that the answer to the positivity query will be the yth bit of the input vector
x. Thus, if the algorithm solves the PPV indexing and positivity query with
error probability ε, then this protocol solves the bit-vector probing problem with
probability 1+γ

2 , so the transferred index database’s size is at least γm.
For the H ≤ V/2 case consider the following graph: let u1, . . . , uH denote the

vertices whose personalization is calculated. Add v1, v2, . . . , vn more vertices to
the graph, where n = V − H. Let the input vector’s size be m = H · n. In our
graph each vertex vj has a loop, and for each 1 ≤ i ≤ H and 1 ≤ j ≤ n, the
edge (ui, vj) is in the graph iff bit (i − 1)n + j is set in the input vector.

For any number 1 ≤ y ≤ m, let y = (i − 1)n + j; the personalized PageRank
value PPV(ui, vj) is positive iff edge (ui, vj) was in the graph, thus iff bit y was
set in the input vector. If H ≤ V/2, the theorem follows since n = V −H = Ω(V)
holds, implying that m = H · n = Ω(H · V) bits are “coded.”

Otherwise, if H > V/2, the same construction proves the statement with
setting H = V/2.

Corollary 4.3. Any algorithm solving the exact PPV problem (1) must have an index
database of size Ω(H · V) bits in the worst case.

Theorem 4.4. Any algorithm solving the approximation problem (2) needs an index
database of Ω(1−2ε

δ H) bits on a graph with V = H + Ω(1
δ) vertices in the worst

case. If V = H + O(1
δ), then the index database requires Ω((1 − 2ε)HV).

Proof. We will modify the construction of Theorem 4.2 for the approximation
problem. We have to achieve that when a bit is set in the input graph, then the
queried PPV(ui, vj) value should be at least 2δ, so that the approximation will
decide the positivity problem, too. If there are k edges incident to vertex ui in
the constructed graph, then each target vertex vj has weight PPV(ui, vj) = 1−c

k .

Fogaras et al.: Towards Scaling Fully Personalized PageRank 349

For this to be over 2δ, we can have at most n = 1−c
2δ possible v1, . . . , vn vertices.

With 1+γ
2 = 1 − ε, the first statement of the theorem follows.

For the second statement the original construction suffices.

This radical drop in the storage complexity is not surprising, as our approx-
imation algorithm achieves this bound (up to a logarithmic factor): for fixed
ε, δ we can calculate the necessary number of fingerprints N , and then for each
vertex in the personalization, we store exactly N fingerprints, independently of
the graph’s size.

Theorem 4.5. Any algorithm solving the comparison problem (4) requires an index
database of Ω((1 − 2ε)HV) bits in the worst case.

Proof. We will modify the graph of Theorem 4.2 so that the existence of the
specific edge can be queried using the comparison problem. To achieve this, we
will introduce a third set of vertices w1, . . . , wn in the graph construction, such
that wj is the complement of vj : A puts the edge (ui, wj) in the graph iff (ui, vj)
was not an edge, which means bit (i − 1)n + j was not set in the input vector.

Then, upon query for bit y = (i − 1)n + j, consider PPV(ui). In this vector
exactly one of vj , wj will have positive weight (depending on the input bit xy),
thus the comparison query PPV(ui, vj) > PPV(ui, wj) will yield the required
output for the bit-vector probing problem.

Corollary 4.6. Any algorithm solving the ε–δ comparison problem (5) needs an index
database of Ω(1−2ε

δ H) bits on a graph with V = H + Ω(1
δ) vertices in the worst

case. If V = H +O(1
δ), then the index database needs Ω((1− 2ε)HV) bits in the

worst case.

Proof. Modifying the proof of Theorem 4.5 according to the proof of Theorem 4.4
yields the necessary results.

5. Experiments

In this section we present experiments that compare our approximate PPR scores
to exact PPR scores computed by the personalized PageRank algorithm of Jeh
and Widom [Jeh and Widom 03]. Our evaluation is based on the web graph of 80
million pages crawled in 2001 by the Stanford WebBase Project [Hirai et al. 00].
We also validated the tendencies presented on a 31 million page web graph of

350 Internet Mathematics

the .de domain created using the Polybot crawler [Suel and Shkapenyuk 02] in
April 2004.

In the experiments we personalize on a single page u chosen uniformly at
random from all vertices with nonzero out-degree. The experiments were carried
out with 1,000 independently-chosen personalization nodes, and the results were
averaged.

To compare the exact and approximate PPR scores for a given personalization
page u, we measure the difference between top score lists of exact PPV(u) and
approximate P̂PV(u) vectors. The length k of the compared top lists is in the
range 10 to 1,000.

As our primary application area is query-result ranking, we chose measures
that compare the ordering returned by the approximate PPR method to the
ordering specified by the exact PPR scores. In Section 5.1 we describe these
measures that numerically evaluate the similarity of the top k lists. In Section 5.2
we present our experimental results.

5.1. Comparison of Ranking Algorithms

The problem of comparing the top k lists of different ranking algorithms has
been extensively studied by the web-search community for measuring the speed
of convergence in PageRank computations [Kamvar et al. 03b], the distortion
of PageRank encodings [Haveliwala 03], and the quality of rank-aggregation
methods [Fagin et al. 03b, Fagin et al. 04, Fagin et al. 03a, Dwork et al. 01].

In our scenario the exact PPR scores provide the ground truth ranking and
the following three methods evaluate the similarity of the approximate scores to
the exact scores.

Let Tu
k denote the set of pages having the k highest personalized PageRank

values in the vector PPV (u) personalized to a single page u. We approximate
this set by T̂u

k , the set of pages having the k highest approximated scores in
vector P̂PV(u) computed by our Monte Carlo algorithm.

The first two measures determine the overall quality of the approximated top-k
set T̂u

k , so they are insensitive to the ranking of the elements within T̂u
k . Relative

aggregated goodness [Singitham et al. 04] measures how well the approximate
top-k set performs in finding a set of pages with high aggregated personalized
PageRank. Thus, relative aggregated goodness calculates the sum of exact PPR
values in the approximate set compared to the maximum value achievable (by
using the exact top-k set Tu

k):

RAG(k, u) =

∑
v∈�T u

k
PPV(u, v)∑

v∈T u
k

PPV(u, v)
.

Fogaras et al.: Towards Scaling Fully Personalized PageRank 351

We also measure the precision of returning the top-k set in the classical infor-
mation retrieval terminology (note that as the sizes of the sets are fixed, precision
coincides with recall):

Prec(k, u) =
|T̂u

k ∩ Tu
k |

k
.

The third measure, Kendall’s τ , compares the exact ranking with the approx-
imate ranking in the top-k set. Note that the tail of approximate PPR ranking
contains a large number of ties (nodes with equal approximated scores) that
may have a significant effect on rank comparison. Versions of Kendall’s τ with
different tie breaking rules appear in the literature; we use the original definition
as, e.g., in [Kendall 55] that we review next. Consider the pairs of vertices v, w.
A pair is concordant if both rankings strictly order this pair and agree on the
ordering, discordant if both rankings strictly order but disagree on the order-
ing of the pair, e-tie if the exact ranking does not order the pair, and a-tie if
the approximate ranking does not order the pair. Denote the number of these
pairs by C,D,Ue, and Ua, respectively. The total number of possible pairs is
M = n(n−1)

2 , where n = |Tu
k ∪ T̂u

k |. Then, Kendall’s τ is defined as

τ(k, u) =
C − D√

(M − Ue)(M − Ua)
.

The range of Kendall’s τ is [−1, 1], thus we linearly rescaled it onto [0, 1] to fit
the other measures on the diagrams. To restrict the computation to the top k

elements, the following procedure was used: we took the union of the exact and
the approximated top-k sets Tu

k ∪ T̂u
k . For the exact ordering, all nodes that were

outside Tu
k were considered to be tied and ranked strictly smaller than any node

in Tu
k . Similarly, for the approximate ordering, all nodes that were outside the

approximate top-k set T̂u
k were considered to be tied and ranked strictly smaller

than any node in T̂u
k .

5.2. Results

We conducted experiments on a single AMD Opteron 2.0 Ghz machine with 4
GB of RAM under Linux OS. We used an elementary compression (much simpler
and faster than [Boldi and Vigna 04]) to store the Stanford WebBase graph in
1.6 GB of main memory. The computation of 1,000 approximated personalized
PageRank vectors took 1.1 seconds (for N = 1, 000 fingerprints truncated at
length L = 12). The exact PPR values were calculated using the algorithm by
Jeh and Widom [Jeh and Widom 03] with a precision of 10−8 in L1 norm. The
default parameters were the number of fingerprints N = 1, 000 with one level of
recursive evaluation (see Section 2.3) and the maximal path length L = 12.

352 Internet Mathematics

τ

Number N of fingerprints

100001000100

1

0.9995

0.999

0.9985

0.998

0.9975

0.997

τ

Number N of fingerprints

100001000100

1

0.95

0.9

0.85

0.8

0.75

0.7

Figure 2. Effect of the number of fingerprints on Kendall’s τ restricted to pairs
with a PPR difference of at least δ = 0.01 (left) and δ = 0.001 (right).

τ
Prec

RAG

100001000100

1

0.95

0.9

0.85

0.8

0.75

0.7

τ
Prec

RAG

100001000100

1

0.9

0.8

0.7

0.6

0.5

0.4

Figure 3. Effect of the number of fingerprints on various measures of goodness
with (left) or without (right) recursive evaluation.

In our first experiments, depicted in Figure 2, we demonstrate the exponential
convergence of Theorems 3.1 and 3.2. We calculated Kendall’s τ restricted to
pairs that have a difference at least δ in their exact PPR scores. We displayed
the effect of the number of fingerprints on this restricted τ for δ = 0.01 and
δ = 0.001. It can be clearly seen that a modest amount of fingerprints suffices to
properly order the pages with at least δ difference in their personalized PageRank
values.

Figure 3 demonstrates the effects of the number of fingerprints and the re-
cursive evaluation on the approximate ranking quality (without the previous
restriction). The recursion was carried out for a single level of neighbors, which
helped to reduce the number of fingerprints (thus the storage requirements) for
the same ranking precision by an order of magnitude.

Fogaras et al.: Towards Scaling Fully Personalized PageRank 353

Kendall’s τ

Precision

Relative Aggregated Goodness

Truncation length L

50454035302520151050

1

0.9

0.8

0.7

0.6

0.5

Figure 4. Effect of the path length/truncation on various measures of goodness.

Kendall’s τ

Precision

Relative Aggregated Goodness

Size of top list k

500450400350300250200150100500

1

0.9

0.8

0.7

0.6

0.5

Figure 5. Effect of the size k of the top set taken on various measures of goodness.

Figure 4 shows the effect of truncating the fingerprints at a maximum path
length. It can be seen that paths over length 12 have small influence on the
approximation quality, thus the computation costs can be reduced by truncating
them.

Finally, Figures 5 and 6 (Figure 6 for N=10,000 fingerprints) indicate that as
the top-list size k increases, the task of approximating the top-k set becomes

354 Internet Mathematics

Kendall’s τ

Precision

Relative Aggregated Goodness

Size of top list k

1600014000120001000080006000400020000

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Figure 6. Effect of the size k of the top set taken on various measures of goodness.

more and more difficult. This is mainly due to the fact that among lower ranked
pages there is a smaller personalized PageRank difference, which is harder to
capture using approximation (especially Monte Carlo) methods.

6. Conclusions and Open Problems

In this paper we introduced a new algorithm for calculating personalized Page-
Rank scores. Our method is a randomized approximation algorithm based on
simulated random walks on the web graph. It can provide full personalization
with a linear space index such that the error probability converges to zero expo-
nentially with increasing index size. The index database can be computed even
on the scale of the entire web, thus making the algorithms feasible for commercial
web search engines.

We justified this relaxation of the personalized PageRank problem to approx-
imate versions by proving quadratic lower bounds for the full personalization
problems. For the estimated PPR problem our algorithm is space-optimal up to
a logarithmic factor.

The experiments on 80M pages showed that using no more than N = 1, 000
fingerprints suffices for proper precision approximation.

An important future work is to combine and evaluate the available methods
for computing personalized PageRank.

Acknowledgements. We wish to acknowledge András Benczúr and Katalin Friedl for several
discussions and comments on this research. We thank Paul-Alexandru Chirita for giving

Fogaras et al.: Towards Scaling Fully Personalized PageRank 355

us his implementation [Chirita et al. 04] of the Jeh-Widom Personalized PageRank
algorithm [Jeh and Widom 03] and Boldi et al. [Boldi et al. 04] for their fast Kendall’s
τ code. We would like to thank the Stanford WebBase project [Hirai et al. 00] and
Torsten Suel [Suel and Shkapenyuk 02] for providing us with web graphs. Furthermore,
we are grateful to Glen Jeh for encouraging us to consider Monte Carlo PPR algorithms
and the anonymous referee for the valuable comments on this manuscript.

Our research was supported by grants OTKA T 42481, T 42559, T 42706, and
T 44733 of the Hungarian National Science Fund and NKFP-2/0017/2002 project Data
Riddle.

References

[Bar-Yossef et al. 00] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and
D. Weitz. “Approximating Aggregate Queries about Web Pages via Random
Walks.” In Proceedings of the 26th International Conference on Very Large Data
Bases, pp. 535–544. San Francisco: Morgan Kaufmann Publishers Inc., 2000.

[Bar-Yossef et al. 04] Z. Bar-Yossef, A. Z. Broder, R. Kumar, and A. Tomkins. “Sic
transit gloria telae: Towards an Understanding of the Web’s Decay.” In Proceedings
of the 13th International Conference on World Wide Web, pp. 328–337. New York:
ACM Press, 2004.

[Boldi and Vigna 04] P. Boldi and S. Vigna. “The Webgraph Framework I: Compres-
sion Techniques.” In Proceedings of the 13th International Conference on World
Wide Web, pp. 595–602. New York: ACM Press, 2004.

[Boldi et al. 04] P. Boldi, M. Santini, and S. Vigna. “Do Your Worst to Make the Best:
Paradoxical Effects in PageRank Incremental Computations.” In Algorithms and
Models for the Web-Graph: Third International Workshop, WAW 2004, Rome,
Italy, October 16, 2004, Proceedings, pp. 168–180, Lecture Notes in Computer
Science 3243. Berlin: Springer, 2004.

[Borodin et al. 01] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas. “Find-
ing Authorities and Hubs from Link Structures on the World Wide Web.” In Pro-
ceedings of the 10th International Conference on World Wide Web, pp. 415–429.
New York: ACM Press, 2001.

[Brin and Page 98] S. Brin and L. Page. “The Anatomy of a Large-Scale Hypertextual
Web Search Engine.” Computer Networks and ISDN Systems 30:1–7 (1998), 107–
117.

[Broder 97] A. Z. Broder. “On the Resemblance and Containment of Documents.” In
Proceedings of the Compression and Complexity of Sequences 1997, pp. 21–29. Los
Alamitos, CA: IEEE Computer Society, 1997.

[Chen et al. 02] Y.-Y. Chen, Q. Gan, and T. Suel. “I/O-Efficient Techniques for Com-
puting PageRank.” In Proceedings of the 11th International Conference on Infor-
mation and Knowledge Management, pp. 549–557. New York: ACM Press, 2002.

[Chirita et al. 04] Paul-Alexandru Chirita, D. Olmedilla, and W. Nejdl. “PROS: A
Personalized Ranking Platform for Web Search.” In Adaptive Hypermedia and

356 Internet Mathematics

Adaptive Web-Based Systems: Third International Conference, AH 2004, Eind-
hoven, The Netherlands, August 23–26, 2004, Proceedings, pp. 34–43, Lecture
Notes in Computer Science 3137. Berlin: Springer, 2004.

[Cohen 97] E. Cohen. “Size-Estimation Framework with Applications to Transitive
Closure and Reachability.” J. Comput. Syst. Sci. 55:3 (1997), 441–453.

[Dean and Ghemawat 04] J. Dean and S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters.” In Proceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI), pp. 137–150. San Francisco:
USENIX Association, 2004.

[Dwork et al. 01] C. Dwork, S. R. Kumar, M. Naor, and D. Sivakumar. “Rank Aggre-
gation Methods for the Web.” In Proceedings of the 10th International Conference
on World Wide Web, pp. 613–622. New York: ACM Press, 2001.

[Eiron and McCurley 03] N. Eiron and K. S. McCurley. “Locality, Hierarchy, and
Bidirectionality in the Web.” Presented at Second Workshop on Algorithms
and Models for the Web-Graph (WAW 2003). Available from World Wide Web
(http://mccurley.org/papers/graph.pdf), 2003.

[Fagin et al. 03a] R. Fagin, R. Kumar, K. McCurley, J. Novak, D. Sivakumar, J. Tom-
lin, and D. Williamson. “Searching the Workplace Web.” In Proceedings of the
12th International Conference on World Wide Web Conference, pp. 366–375. New
York: ACM Press, 2003.

[Fagin et al. 03b] R. Fagin, R. Kumar, and D. Sivakumar. “Comparing Top k Lists.”
In Proceedings of the Fourteenth ACM-SIAM Symposium on Discrete Algorithms,
pp. 26–36, Philadelphia: SIAM, 2003. Full version in SIAM Journal on Discrete
Mathematics 17:1 (2003), 134–160

[Fagin et al. 04] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee.
“Comparing and Aggregating Rankings with Ties.” In Proceedings of the 23rd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pp. 47–58. New York: ACM Press, 2004.

[Fogaras 03] D. Fogaras. “Where to Start Browsing the Web?” In Innovative In-
ternet Community Systems: Third International Workshop IICS 2003, Leipzig,
Germany, June 19–21, 2003, Revised Papers , pp. 65–79, Lecture Notes in Com-
puter Science 2877. Berlin: Springer, 2003.

[Fogaras and Rácz 04] D. Fogaras and B. Rácz. “A Scalable Randomized Method to
Compute Link-Based Similarity Rank on the Web Graph.” In Current Trends
in Database Technology—EDBT 2004 Workshops: EDBT 2004 Workshops PhD,
Data X, PIM, P2P&DB, and ClustWeb, Heraklion, Crete, Greece, March 14–18,
2004, Revised Selected Papers, edited by W. Lindner et al., pp. 557–565, Lecture
Notes in Computer Science 3268. Berlin: Springer, 2004.

[Fogaras and Rácz 05] D. Fogaras and B. Rácz. “Scaling Link-Based Similarity
Search.” In Proceedings of the 14th International Conferece on World Wide Web,
pp. 641–650. New York: ACM Press, 2005.

[Haveliwala 02] T. H. Haveliwala. “Topic-Sensitive PageRank.” In Proceedings of the
11th International Conference on World Wide Web, pp. 517–526. New York: ACM
Press, 2002.

Fogaras et al.: Towards Scaling Fully Personalized PageRank 357

[Haveliwala 03] T. H. Haveliwala. “Efficient Encodings for Document Ranking Vec-
tors.” In Proceedings of the International Conference on Internet Computing, IC
’03, Las Vegas, Nevada, USA, June 23–26, 2003, Vol. 1, pp. 3–9. Las Vegas:
CSREA Press, 2003.

[Haveliwala et al. 03] T. H. Haveliwala, S. Kamvar, and G. Jeh. “An Analytical Com-
parison of Approaches to Personalizing PageRank.” Technical report, Stanford
University, 2003.

[Henzinger et al. 99a] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork.
“Measuring Index Quality Using Random Walks on the Web.” Computer Networks
31:11–16 (1999), 1291–1303.

[Henzinger et al. 99b] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. “Comput-
ing on Data Streams.” In External Memory Algorithms, edited by J. M. Abello
and J. S. Vitter, pp. 107–118. Providence, RI: American Mathematical Society,
1999.

[Henzinger et al. 00] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork.
“On Near-Uniform URL Sampling.” In Proceedings of the Ninth International
World Wide Web Conference, pp. 295–308. Amsterdam: North-Holland Publish-
ing Co., 2000.

[Hirai et al. 00] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke. “WebBase:
A Repository of Web Pages.” In Proceedings of the Ninth International World
Wide Web Conference, pp. 277–293. Amsterdam: North-Holland Publishing Co.,
2000.

[Jeh and Widom 03] G. Jeh and J. Widom. “Scaling Personalized Web Search.” In
Proceedings of the 12th International Conference World Wide Web, pp. 271–279.
New York: ACM Press, 2003.

[Kamvar et al. 03a] S. Kamvar, T. H. Haveliwala, C. Manning, and G. Golub. “Ex-
ploiting the Block Structure of the Web for Computing PageRank.” Technical
report, Stanford University, 2003.

[Kamvar et al. 03b] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub.
“Extrapolation Methods for Accelerating PageRank Computations.” In Proceed-
ings of the 12th International Conference on World Wide Web, pp. 261–270. New
York: ACM Press, 2003.

[Kendall 55] M. G. Kendall. Rank Correlation Methods. New York: Hafner Publishing
Co., 1955.

[Kleinberg 99] J. Kleinberg. “Authoritative Sources in a Hyperlinked Environment.”
Journal of the ACM 46:5 (1999), 604–632.

[Kushilevitz and Nisan 97] E. Kushilevitz and N. Nisan. Communication Complexity.
Cambridge, UK: Cambridge University Press, 1997.

[Lempel and Moran 05] R. Lempel and S. Moran. “Rank Stability and Rank Simi-
larity of Link-Based Web Ranking Algorithms in Authority-Connected Graphs.”
Information Retrieval 8:2 (2005), 245–264.

[Netscape 05] Netscape Communication Corporation. “dmoz Open Directory Project.”
Available from World Wide Web (http://www.dmoz.org), 2005.

358 Internet Mathematics

[Page et al. 98] L. Page, S. Brin, R. Motwani, and T. Winograd. “The PageRank
Citation Ranking: Bringing Order to the Web.” Technical report, Stanford Digital
Library Technologies Project, 1998.

[Palmer et al. 02] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. “ANF: A Fast and
Scalable Tool for Data Mining in Massive Graphs.” In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 81–90. New York: ACM Press, 2002.

[Rusmevichientong et al. 01] P. Rusmevichientong, D. M. Pennock, S. Lawrence, and
C. L. Giles. “Methods for Sampling Pages Uniformly from the World Wide Web.”
In Using Uncertainty Within Computation: Papers from the AAAI Fall Sympo-
sium, pp. 121–128. Menlo Park, CA: AAAI Press, 2001.

[Sarlós et al. 05] T. Sarlós, András A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz.
“To Randomize or Not To Randomize: Space Optimal Summaries for Hyper-
link Analysis.” Technical Report, MTA SZTAKI, November 2005. Available from
World Wide Web (http://www.ilab.sztaki.hu/websearch/Publications/).

[Singitham et al. 04] P. K. C. Singitham, M. S. Mahabhashyam, and P. Raghavan.
“Efficiency-Quality Tradeoffs for Vector Score Aggregation.” In Proceedings of the
Thirtieth International Conference on Very Large Data Bases, pp. 624–635. San
Francisco: Morgan Kaufmann, 2004.

[Suel and Shkapenyuk 02] T. Suel and V. Shkapenyuk. “Design and Implementation of
a High-Performance Distributed Web Crawler.” In Proceedings of the 18th IEEE
International Conference on Data Engineering, pp. 357–368. Los Alamitos, CA:
IEEE Computer Society, 2002.

Dániel Fogaras, Informatics Laboratory, MTA SZTAKI (Computer and Automation
Research Institute of the Hungarian Academy of Sciences), Lágymányosi u. 11.,
Budapest, H-1111, Hungary (fd+im@cs.bme.hu)

Balázs Rácz, Informatics Laboratory, MTA SZTAKI (Computer and Automation Re-
search Institute of the Hungarian Academy of Sciences), Lágymányosi u. 11., Budapest,
H-1111, Hungary (bracz+p91@math.bme.hu)

Károly Csalogány, Informatics Laboratory, MTA SZTAKI (Computer and Automa-
tion Research Institute of the Hungarian Academy of Sciences), Lágymányosi u. 11.,
Budapest, H-1111, Hungary (cskaresz@ilab.sztaki.hu)

Tamás Sarlós, Informatics Laboratory, MTA SZTAKI (Computer and Automation Re-
search Institute of the Hungarian Academy of Sciences), Lágymányosi u. 11., Budapest,
H-1111, Hungary (stamas@ilab.sztaki.hu)

Received November 1, 2004; accepted August 31, 2005.

