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Lower Bounds and Algorithms
for Dominating Sets
in Web Graphs
Colin Cooper, Ralf Klasing, and Michele Zito

Abstract. In this paper we study the size of generalised dominating sets in two graph
processes that are widely used to model aspects of the World Wide Web. On the
one hand, we show that graphs generated this way have fairly large dominating sets
(i.e., linear in the size of the graph). On the other hand, we present efficient strategies
to construct small dominating sets.

The algorithmic results represent an application of a particular analysis technique
which can be used to characterise the asymptotic behaviour of a number of dynamic
processes related to the web.

1. Introduction

In recent years the World Wide Web has grown dramatically. Its current size is
measured in billions of pages [Levene and Wheeldon 01], and pages are added
to it every day. As this graph (nodes correspond to web pages and edges to
links between pages) continues to grow it becomes increasingly important to
study mathematical models that capture its structural properties [Broder et
al. 00, Kumar et al. 00]. Such models can be used to design efficient algorithms
for web applications and may even uncover unforeseen properties of this huge
evolving structure. Several mathematical models for analysing the web have
been proposed (for instance, [Bollobás et al. 01, Cooper and Frieze 03, Kumar
et al. 00]). The (evolution of the) web graph is usually modelled by a (random)
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process in which new vertices appear from time to time. Such vertices may
be linked randomly to the existing structure through some form of preferential
attachment: existing vertices with many neighbours are somewhat more likely
to be linked to the newcomers.

The main focus of research so far has been on capturing empirically observed
features of the web [Barabási and Albert 99, Broder et al. 00]. No attempt has
been made to characterise graph-theoretic substructures of such graphs. We
initiate such an investigation by looking at sets of vertices that, in a sense, cover
all other vertices. More formally, a vertex in a graph dominates all vertices
that are adjacent to it (parallel edges give multiple domination). In the spirit
of Harary and Haynes [Harary and Haynes 00], an h-dominating set for a graph
G = (V,E) is a set S ⊆ V such that each vertex in V \ S is dominated at
least h times by vertices in S. Let γh = γh(G) denote the size of the smallest
h-dominating sets in G. The minimum h-dominating set problem (MhDS) asks
for an h-dominating set of size γh.

Dominating sets play an important role in many practical applications, e.g.,
in the context of distributed computing or mobile ad-hoc networks [Alzoubi et
al. 02, Duckworth and Zito 00, Stojmenovic et al. 02]. The reader is referred to
[Haynes et al. 98a, Haynes et al. 98b] for an in-depth view of the subject. The
typical fundamental task in such applications is to select a subset of nodes in
the network that will “provide” a certain service to all other vertices. For this
to be time-efficient, all other vertices must be directly connected to the selected
nodes, and in order for it to be cost-effective, the number of selected nodes must
be minimal. In relation to web graphs, a dominating set may be used to devise
efficient web searches. For h > 1, an h-dominating set can be considered as a
more fault-tolerant structure. If up to h−1 vertices or edges fail, the domination
property is still maintained (i.e., it is still possible to provide the service).

The MhDS problem is NP-hard [Garey and Johnson 78, Klasing and Lafor-
est 04]; moreover, it is not likely that it may be approximated effectively
[Feige 98]. Polynomial time algorithms exist on special classes of graphs (e.g.,
[Liao and Chang 03]). The M1DS problem has been studied also in random
graphs. In the binomial model G(n, p) [Wieland and Godbole 01] the value of
γ1 can be pinpointed quite precisely, provided that p is not too small compared
to n. In random regular graphs of degree r (see, for example, results in the
configuration model [Zito 01] and references therein), upper and lower bounds
are known on γ1.

In this paper we look at simple and efficient algorithms for building small
h-dominating sets in graphs. The performance guarantees of these algorithms
are analysed under the assumption that the input is a random web graph. We
also analyse the tightness of the performances of such algorithms, by proving
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combinatorial lower bounds on γh, for any fixed h ≥ 1. Such bounds, often
disappointingly weak, offer nevertheless a proof that, most of the time, the sets
returned by the various algorithms are only a constant factor away from an
optimal answer. Finally, we compare the quality of the solutions returned by
(some of) our algorithms with empirical average values of γ1.

The main outcome of this paper can be stated informally by saying that web
graphs have fairly large dominating sets. Hence, a crawler who wants to use
a dominating set to explore the web will need to store a large proportion of
the whole graph. Interestingly, the results in this paper also uncover a(nother)
difference between models of the web based on preferential attachment and more
traditional random graph models. The tendency to choose neighbours of high
degree affects the size of the smallest dominating sets.

Most of our algorithms are on-line in the sense that the decision to add a
particular vertex to the dominating set is taken without total information about
the web graph under consideration and greedy in the sense that decisions, once
taken, are never changed. The algorithms are also quite efficient: only a constant
amount of time is used per update of the dominating set. Such algorithms
are of particular interest in the context of web graphs. As the web graph is
evolving, one wants to decide whether a new vertex is to be added to the already-
existing dominating set without recomputing the existing dominating set and
with minimal computational effort. On-line strategies for the dominating-set
problem have been considered in the past for general graphs [Eidenbenz 02, King
and Tzeng 97]. However, the authors are not aware of any result on on-line
algorithms for this problem in random graphs.

Our results hold asymptotically almost surely (a.a.s.), i.e., with probability
approaching one as the size of the web graph grows to infinity. The algorithmic
results are based on the analysis of a number of (Markovian) random processes.
In each case the properties of the process under consideration lead to the defi-
nition of a (deterministic) continuous function that is very close (in probability)
to the values of the process, as the size of the graph grows. It should be pointed
out at this stage that the proposed analysis methodology is quite general. We
apply it to analyse heuristics for the MhDS problem only, but it could be used
to prove results about other graph parameters such as the independence or the
chromatic number. The method is closely related to the so-called differential
equation method [Wormald 99]. In fact, a version of the main analytical tool
proposed by Wormald can be adapted to work for the processes considered in
this paper. However, the machinery employed in [Wormald 99] is not needed to
analyse the processes considered in this paper. Our results are obtained by prov-
ing the concentration of the various processes of interest around their mean and
by devising a method for getting close estimates on the relevant expectations.
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In Section 2, we review the definitions of the models of web graphs that we will
use. We also state our main result in the context of these models and present
more detailed comments on our general analysis method. In the following section
we consider a very simple algorithm and apply the proposed method to obtain
nontrivial upper bounds on γ1. Refined algorithms are introduced and analysed
in Sections 4 and 5. In Section 6 we discuss generalisations to h > 1. Then, we
turn to lower bounds. In Sections 7 and 8 we present our argument for the lower
bounds stated in Section 2. Finally, we briefly comment on some empirical work
carried out on a sub-class of the graphs considered in this paper.

2. Models and Results

The models used in this paper are based on the work of Albert and Barabasi
[Barabási and Albert 99]. A web graph (see also [Cooper and Frieze 03]) can be
defined as an ever-growing structure in which, at each step, new vertices, new
edges, or a combination of these can be added. Decisions on what to add to the
existing graph are made at random based on the values of a number of defining
parameters. The existence of these parameters makes the model very general.
For the purposes of this paper, to avoid cluttering the description of our results,
we prefer to make a drastic simplification. We will consider graphs generated
according to two rather extreme procedures derived from the general model. In
each case the generation process is governed by a single integer parameter m.
The second of these mimics the preferential attachment phenomenon. The first
one, related to more traditional random graph models, is considered mainly for
comparison.

Uar graph process. The initial graph GR,m
0 is a single vertex v0 with m loops

attached to it. For t ≥ 1, let GR,m
t−1 be the graph generated in the first

t − 1 steps of this process. To define GR,m
t , a new vertex vt is generated,

and it is connected to GR,m
t−1 through m (undirected) edges. The neigh-

bours of vt are chosen uniformly at random (uar) with replacement from
{v0, . . . , vt−1}.

Preferential attachment graph process. The initial graph GC,m
0 is a single

vertex v0 withm loops attached to it. For t ≥ 1, graphGC,m
t is defined from

GC,m
t−1 by generating a new vertex vt and connecting it to GC,m

t−1 through
m (undirected) edges. A vertex u ∈ {v0, . . . , vt−1} is connected to vt with
probability |Γ(u)|

2mt (where Γ(u) is the (multi)set of vertices adjacent to u in
GC,m

t−1 ).
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m αR
lo αR

up αC
lo αC

up

1 0.3678 0.5 0.2939 0.3333
2 0.1868 0.3714 0.0286 0.2342
3 0.1488 0.3054 0.0148 0.1777
4 0.1259 0.2634 0.0097 0.1422
5 0.1102 0.2335 0.0066 0.1178
6 0.0987 0.2110 0.0049 0.1000
7 0.0898 0.1932 0.0038 0.0865

Table 1. Numerical bounds for the minimum dominating set problem.

We will often refer to the uar graph process as a random graph process. The
edges have an intrinsic direction that we ignore.

Both models are dynamic, with new vertices and edges continuously increasing
the size of the graph. However, they represent two extreme cases. In the uar
graph process the terminal vertex of an edge is chosen randomly from the set
of available vertices, whereas in the preferential attachment model the terminal
vertex of an edge is chosen with probability proportional to the current degree
of the various vertices.

Let M ∈ {R,C} and m be a positive integer. The results in this paper can be
summarised by saying that for each h ≥ 1 there exist positive real constants αM

lo

and αM
up (dependent on M , m, and h but independent of t) with αM

lo < αM
up < 1

such that αM
lo · t ≤ γh(GM,m

t ) ≤ αM
up · t a.a.s. For h = 1, the values of the

aforementioned constants are reported in Table 1. Bounds for h > 1 are reported
(and briefly commented on) in Section 6. In particular, the upper bounds are
proved by analysing the size of the dominating set returned by a number of simple
polynomial-time algorithms, whereas the lower bounds come from combinatorial
arguments.

The proof of the algorithmic results are based on the fact that natural edge-
exposure martingales can be defined on the graph processes under consideration
[Cooper and Frieze 03]. More precisely, if f(G) is any graph theoretic function
(e.g., the size of the dominating set returned by a particular algorithm), the ran-
dom process defined by setting Z0 = E (f(GM,m

t )) and Zi (for i ∈ {1, . . . ,mt})
to be the expectation of f(GM,m

t ) conditioned on the “exposure” of the first i
edges in the graph process is a martingale. Notice that the space of all graphs
which can be generated according to the given model GM,m

t is partitioned into
classes (or i-blocks) containing all those graphs that coincide with respect to the
first i edge exposures.

In the forthcoming sections we will repeatedly use the following concentration
result (for a proof see, for instance, [Alon et al. 92]).



280 Internet Mathematics

Theorem 2.1. Let c = Z0, . . . , Zn be a martingale with |Zi+1 − Zi| ≤ 1 for
all i ∈ {0, . . . , n− 1}. Then Pr(|Zn − c| > λ

√
n) ≤ 2e−λ2/2.

In all our applications c = E (f(GM,m
t )), n = mt, and λ = O(log t). In

order to apply Theorem 2.1, one needs to prove that |Zi+1 − Zi| ≤ 1. Such
an inequality follows from the smoothness of f (i.e., |f(G) − f(H)| ≤ 1 if G
and H differ with respect to the presence of a single edge) and the ability to
demonstrate the existence of a measure preserving bijection between (i + 1)-
blocks in a same i-block. This is obvious in the random graph process as edges
are inserted independently. In the case of the preferential attachment process,
it is convenient to identify each graph with the projection of a particular type
of configuration, i.e., an ordered collection of mt labelled pairs of points (see
[Bender and Canfield 78]). Let C1 and C2 be two such configurations that are
identical up to the ith pair. Suppose that the (i+ 1)-st pair is {a, b} in C1 and
{a, c} in C2. If C1 never uses point b again, then the image of C1 under the
measure-preserving bijection will be a configuration C ′ identical to C1 except
that pair {a, b} is replaced by pair {a, c}. If b is used in a following pair (say
{d, b}) of C1, then C ′ will have {a, c} instead of {a, b} and {d, c} instead of {d, b},
and so on. A similar construction is presented in [Cooper and Frieze 03].

Finally, we will need the following.

Lemma 2.2. If Zn is a martingale and there exist constants c1, c2 > 0 such that
µn = E (Zn) ∈ [c1n, c2n], then for each fixed integer j > 0, there exist positive
constants K and ε such that |(Zn)j − (µn)j | ≤ Knj−ε a.a.s.

Proof. If Zn is a martingale, then by Theorem 2.1, µn − λ
√
n ≤ Zn ≤ µn + λ

√
n

where without loss of generality we assume λ = o(
√
n). From this we also have,

for each fixed integer j > 0,

(µn)j

(
1 − λ

√
n

µn

)j

≤ (Zn)j ≤ (µn)j

(
1 +

λ
√
n

µn

)j

.

The result now follows (provided that K is chosen big enough), since the as-
sumptions on λ and µn entail that (1 + λ

√
n

µn
)j is at most 1 + j2λ

√
n

µn
, whereas

(1 − λ
√

n
µn

)j is at least 1 − 2jλ
√

n
µn

.

3. Simplest Algorithm

The algorithm presented in this section is a very simple “first attempt” solution
for the problem at hand. Although in many cases it does not lead to a very
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m x

1 0.5
2 0.382
3 0.3177
4 0.2755
5 0.2451
6 0.2219
7 0.2035

Table 2. Numerical values defined in Lemma 3.1.

small dominating set, it represents a natural benchmark for any more refined
heuristic.

Algorithm 1. Before the first step of the algorithm, the graph consists of a
single vertex v0 and S = {v0}. At step t, if the newly generated vertex vt does
not have any neighbours in S (i.e., Γ(vt) ∩ S = ∅), then vt is added to S.

In the forthcoming discussion m is a fixed positive integer. Let Xt denote the
size of the dominating set S computed by Algorithm 1 before vt is added to the
current graph, and let µt = E (Xt). For graphs generated according to the GR,m

t

model, the probability that vt misses the dominating set is (1 − Xt

t )m. Hence,
we can write

µt+1 = µt + E
[(

1 − Xt

t

)m
]
.

Let x = x(m) be the unique solution of the equation x = (1 − x)m in (0, 1).
Table 2 gives the values of x for the first few values of m.

Lemma 3.1. For any 1
2 < ρ < 1 constant, there exists an absolute positive constant

C such that for all t > 0, |µt − xt| ≤ Ctρ a.a.s.

Proof. We claim that the difference |µt − xt| satisfies a recurrence of the form

|µt+1 − x(t+ 1)| ≤ |µt − xt| +O

(√
log t
t

)
.

This can be proved by induction on t. By definition X1 = 1; hence, |µ1 − x| =
1−x. We also have that |µt+1 −x(t+1)| = |µt −xt+E [(1− Xt

t )m]− (1−x)m|.
The difference E [(1 − Xt

t )m] − (1 − x)m can be rewritten as −m
t (µt − xt) +

{E [(1 − Xt

t )m] − 1 +mµt

t − (1 − x)m + 1 −mx}. Hence,
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|µt+1 − x(t+ 1)| =

∣∣∣∣∣
(
1 − m

t

)
(µt − xt)

+
{
E

[(
1 − Xt

t

)m]
− 1 +m

µt

t
− (1 − x)m + 1 −mx

} ∣∣∣∣∣.
To complete the proof, notice that, by Lemma 2.2,

E
[(

1 − Xt

t

)m]
− 1 +m

µt

t
=
(
1 − µt

t

)m

− 1 +m
µt

t
+O

(√
log t
t

)

and the function f(z) = (1− z)m − 1 +mz satisfies |f(z1)− f(z2)| ≤ m|z1 − z2|,
for z1, z2 ∈ [0, 1].

The following theorem is a direct consequence of Lemma 3.1 and the concen-
tration result mentioned in Section 2.

Theorem 3.2. Xt ∼ xt a.a.s.

4. Improved Approximations in the Random Graph Process

Although Algorithm 1 is quite simple, it seems difficult to beat, as a glance at
αR

up in Tables 1 and 2 shows. This is especially true for m = 1 where no improve-
ment could be obtained. For larger values of m, a better way of finding small
dominating sets is obtained by occasionally allowing vertices to be dropped from
S. It is convenient to classify the vertices in the dominating set as permanent
(set P) and replaceable (set R). Thus, S = P ∪ R. Let Pt and Rt denote the
sizes of such sets at time t (set P1 = 0 and R1 = 1).

Algorithm 2. Before the first step of the algorithm, the graph consists of a
single vertex v0 and R = {v0}. After vt is created and connected to m neigh-
bours, if Γ(vt)∩P 
= ∅ then vt is moved to V \ S. Otherwise, vt is added to R if
Γ(vt) ∩ R = ∅, and otherwise vt is added to P and all vertices in Γ(vt) ∩ R are
moved to V \ S.

The expectations πt = E (Pt) and ρt = E (Rt) satisfy

πt+1 = πt + E
[(

1 − Pt

t

)m
]
− E

[(
1 − Pt

t − Rt

t

)m
]
,

ρt+1 = ρt + E
[(

1 − Rt

t − Pt

t

)m
]
−mE

[
Rt

t

(
1 − Pt

t

)m−1
]
.
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Define αR
up as p+ r, where p = p(m) and r = r(m) satisfy

r = (1−p)m−p
1+m(1−p)m−1 ,

p = (1 − p)m − (1 − p− r)m.

Lemma 4.1. For any 1
2 < ρ < 1 constant, there exist absolute positive constants C1

and C2 such that for all t > 0, |πt − pt| ≤ C1t
ρ and |ρt − rt| ≤ C2t

ρ a.a.s.

Proof. The proof is, essentially, a generalisation of that of Lemma 3.1. We present
the argument in some details for πt. At the inductive step,

|πt+1 − p(t+ 1)| =

∣∣∣∣∣πt − pt+ E
[(

1 − Pt

t

)m]
− (1 − p)m

−
{
E

[(
1 − Pt

t
+
Rt

t

)m]
− (1 − p− r)m

} ∣∣∣∣∣.
The proof is completed by decomposing the differences E [(1− Pt

t )m]−(1−p)m

and E [(1− Pt

t − Rt

t )m]− (1− p− r)m into parts that are proportional to either
Pt − πt or πt − pt.

The result about ρt is proved similarly after noticing that r satisfies

r = (1 − p− r)m −mr(1 − p)m−1.

Let X2
t denote the size of the dominating set returned by Algorithm 2 when

run on a random graph process until time t.

Theorem 4.2. X2
t ∼ (p+ r)t a.a.s.

Proof. Theorem 2.1 implies that the sum p+r is a.a.s. very close to |S|
t = Pt

t + Rt

t .
The result follows.

The values of p + r for m ≤ 7 are reported in the column labelled αR
up of

Table 1.

5. Improved Approximations in the Preferential Attachment Process

Algorithm 1, described in Section 3, can be analysed in the preferential attach-
ment model as well. The expected change in the variable Xt can be computed
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by keeping track of the total degree of the dominating set, Dt. In particular, the
following relationships hold:

E (Xt+1) = E (Xt) + E
[(

1 − Dt

2mt

)m
]
,

E (Dt+1) =
(
1 + 1

2t

)
E (Dt) +mE

[(
1 − Dt

2mt

)m
]
.

Not surprisingly, an analysis similar to the one described in the previous sec-
tions implies that such an algorithm returns dominating sets of size xt in GC,m

t .
However, in the model based on preferential attachment we can improve on this
by pushing high degree vertices in the dominating set. The natural way to ac-
complish this would be, for any newly generated uncovered vertex, to select a
neighbour of maximum degree and add it to S. Unfortunately such algorithm is
not easy to analyse because in the graph processes that we consider there may
be few vertices of rather large degree (this is a consequence of the power law
distribution of vertex degrees [Barabási and Albert 99, Cooper 02]). However
a draconian version of this heuristic can be analysed. The following algorithm
takes as input an additional integer parameter k > 0.

Algorithm 3. Before the first step of the algorithm, the graph consists of a
single isolated vertex v0 and S = {v0}. After vt is created and connected to m
neighbours, let Z be the set of all neighbours of vt in V \ S of degree km+ 1. If
Z 
= ∅, then all vertices in Z are added to S. Otherwise, if vt is not dominated
by some element of S, then a vertex of maximum degree in Γ(vt) is added to the
dominating set.

Notice that after each vt is generated and connected to GC,m
t−1 , all vertices with

degree that has become larger than km are moved inside S. The analysis of
the evolution of |S| is based again on the definition of a random process that
describes the algorithm dynamics and on the proof that such a process behaves
in a predictable way for large t.

Let n = (k − 1)m + 1. For each i ∈ {0, . . . , n − 1} and t > 0, define Y i
t =

|Vm+i \ S| in GC,m
t−1 (Vi is the set of vertices of degree i) before vt is added to

the graph. Let Y n
t denote the total degree inside S (i.e., Y n

t =
∑

v∈S |Γ(v)|) and
Xt the size of the dominating set before vt is added to the graph. The state of
the system, at each step t, is modelled by the (random) vector (Y 0

t , . . . , Y
n
t ,Xt).

Notice that, for each t > 0, the variation in each of the variables is at most m.
Also, Y n

t +
∑(k−1)m

i=0 (m + i)Y i
t = 2mt, and at each step t ≥ 1, when vt

is created, the probability that it hits a vertex of degree m + i, for i ∈ {0, . . . ,
(k − 1)m} (respectively, the dominating set for i = n) in any one of the m
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trials available to it is approximately (omitting o(1) factors, for t large) equal to
Pi = ((m+i−1)(1−δi,n)+1)Y i

t

2mt (where δi,n = 1 if i = n and zero otherwise).
For d ∈ {0, . . . , n−1} (respectively, d = n), let Ed denote the event “vt missed

S and the maximum degree in Γ(vt) is m + d” (respectively, “vt did not miss
S”). The expected change to Y i

t , conditioned to the process history up to time t,
can be computed by further conditioning on the family of events (Ed)d∈{0,...,n}.
We can write such a quantity as

n∑
d=0

E (Y i
t+1 − Y i

t | Ed)Pr(Ed).

For t large, the probability in the expression above is approximately χd =
(Sd

0 )m − (Sd−1
0 )m (the notation Sb

a stands for Pa + . . . + Pb, with Sb
a ≡ 0 if

a > b). Furthermore, we can approximate E (Y i
t+1 − Y i

t | Ed) by the expression

∑
C(h0, . . . , hd, 0, . . . , 0)

m!
h0! h1! . . . hd!

d∏
i=0

Phi
i

1
χd
,

where C has n+ 1 arguments, the righmost n− d of which are zero, the sum is
over all possible ordered tuples of values h0, . . . , hd such that

∑d
i=0 hi = m and

hd > 0, and C(h0, . . . , hd, 0, . . . , 0) contains

• a term for the addition of vt to GC,m
t−1 ,

• a term φi,d for the change to Y i
t due to the handling of the chosen vertex

of maximum degree m+d in Γ(vt) (for d = n this is just one of the vertices
hitting S), and

• a term ψi,s for the change to Y i
t due to the handling of a vertex accounted

for by Y s
t in Γ(vt), for s ≤ d.

The first of these is simply δi,0. We also have

φi,d = δd,n × δi,d + (1 − δd,n) × {(m+ d+ 1)δi,n − δi,d}
(if d = n (i.e., if vt hits the dominating set), then one is added to Y n

t , and
otherwise Y d

t is decreased and m+ d+ 1 units are added to Y n
t ), and

ψi,s = δs,n × δi,s + (1 − δs,n) × {((m+ s)δs,n−1 + 1)δi,s+1 − δi,s}
(if s = n, then Y n

t is increased by one, if s = n − 1 the newly created vertex of
degree n must be added to S, and finally, in any other case the vertex that has
been hit is moved from Vm+s to Vm+s+1). Therefore,

C(h0, . . . , hd, 0, . . . , 0) = δi,0 + φi,d + (hd − 1)ψi,d +
d−1∑
s=0

hsψi,s.
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Doing all the sums, for each i ∈ {0, . . . , n}, the expected change to Y i
t is approx-

imately equal to

δi,0+
n∑

d=0

{
χdφi,d + ψi,d

[
mPd(Sd

0 )m−1 − χd

]
+
m[χd − Pd(Sd

0 )m−1]
Sd−1

0

d−1∑
s=0

ψi,sPs

}
.

Also, E (Xt+1 −Xt) is approximately equal to

kmE (Y n−1
t )

2t
+ E

[(
1 − Y n

t

2mt
− kY n−1

t

2t

)m
]
.

For each positive integer m, let x be the value kmyn−1 + (1 − yn

2m − kyn−1

2 )m,
where yi, for i ∈ {0, . . . , n}, satisfy

yi =
[
E (Y i

t+1) − E (Y i
t )
] ∣∣

Y i=yit,i∈{0,...,n}

and the parameter k can be chosen arbitrarily (larger values of k give slightly
smaller values of x). The main result about Algorithm 3 is the following theorem,
the proof of which is a consequence of the argument above and Theorem 2.1.

Theorem 5.1. Xt ∼ xt, a.a.s.

For each m ≤ 7, values of k ≤ 20 give the values of x reported in Table 1 in
the column labelled αC

up.

6. Generalisations

The algorithms presented in the previous sections generalise naturally to larger
values of h. We present here the generalisation of Algorithm 2 for finding an
h-dominating set in the random graph process and of Algorithm 3 for the pref-
erential attachment process. We then briefly sketch the analysis of the first
heuristic and comment on the numerical results presented in Table 3.

Algorithm 4. A vertex in the h-dominating set can be either permanent (set
P), meaning that it will never be removed from the set, or i-removable (set
Ri), meaning that it is dominated i ∈ {0, . . . , h − 1} times by other permanent
vertices.

Before the first step of the algorithm, the graph consists of a single vertex v0
and R0 = {v0}. After vt is created and connected to m neighbours, vt is added
to R0 if Γ(vt) ∩ (P ∪ ⋃

i Ri) = ∅; otherwise, if Γ(vt) ∩ P = ∅, vt is added to
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P, any vertex in Γ(vt) ∩ Ri for i < h − 1 is moved to Ri+1, and any vertex in
Γ(vt) ∩Rh−1 is moved to V \ S.

The process in Algorithm 4 can be modelled by h sequences of random vari-
ables: Ri

t for i ∈ {0, . . . , h− 1} with Ri
t = |Ri| in the graph GR,m

t−1 just before vt

is added to it, and Pt = |P|. The expected changes in these variables satisfy

E (Pt+1) = E (Pt) + E
[(

1 − Pt

t

)m
]
− E

[(
1 − Pt

t −∑
i

Ri
t

t

)m]
,

E (Ri
t+1) = E (Ri

t) + E
[(

1 − Pt

t −∑
i

Ri
t

t

)m]
δi,0

+ mE
[(

Ri−1
t

t (1−δi,0) − Ri
t

t

) (
1− Pt

t

)m−1
]
.

Therefore, we have Pt ∼ pt where p satisfies

p = (1 − p)m −
{

1 − [(1 − p)m − p]
[
1 −

(
m(1−p)m−1

1+m(1−p)m−1

)h
]
− p

}m

and Ri
t ∼ rit where r0 = (1−p)m−p

1+m(1−p)m−1 and ri = m(1−p)m−1

1+m(1−p)m−1 r
i−1. The values

reported in Table 3 below are given by p+
∑h−1

i=0 r
i.

Algorithm 5. Before the first step of the algorithm, the graph consists of a
single vertex v0 and S = {v0}. After vt is created and connected tom neighbours,

m h = 2 h = 3 h = 4 h = 5

2 0.4484
3 0.368 0.3836
4 0.3162 0.3307 0.332
5 0.2795 0.2929 0.2944 0.2931
6 0.2517 0.2641 0.2658 0.2647
7 0.2298 0.2413 0.2431 0.2422

Algorithm 4

m h = 2 h = 3 h = 4 h = 5

2 0.5
3 0.4075 0.6
4 0.3359 0.4852 0.6663
5 0.282 0.4073 0.5423 0.7036
6 0.2428 0.3523 0.4613 0.5862
7 0.2132 0.3066 0.4035 0.5056

Algorithm 5

Table 3. Upper bounds on γh/t, for h > 1.
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the set Z of all newly generated vertices of degree more than km are added to
S. If vt is dominated h−x times by elements of S, then the x vertices of highest
degree in Γ(vt) \ Z are added to the dominating set.

7. Tightness of the Algorithmic Results

An interesting and simple argument can be used to complement the algorithmic
results presented in the previous sections. The argument is based on the following
result.

Lemma 7.1. Let S be an h-dominating set in a graph G = (V,E). If the total degree
of the vertices in S is at least d, then |S| ≥ ∑

i>i0
|Vi|, where i0 is the largest

index i for which
∑

j>i j|Vj | ≥ d.

Proof. Let i0 be defined as in the statement of the result. If ∆ = maxv∈V |Γ(v)|,
then the set Vi0 ∪ . . .∪V∆ is the smallest set of vertices in G with total degree at
least d (any other vertex in G would have smaller degree, and therefore it would
contribute less to the total degree).

m h = 2 h = 3 h = 4 h = 5

2 0.1317
3 0.1001 0.178
4 0.0687 0.1342 0.1678
5 0.0649 0.0935 0.1346 0.1938
6 0.0535 0.0849 0.1155 0.1573
7 0.0406 0.0692 0.1033 0.1349

uar process

m h = 2 h = 3 h = 4 h = 5

2 0.0545
3 0.0316 0.0351
4 0.023 0.0333 0.0246
5 0.0183 0.0284 0.0302 0.0183
6 0.0141 0.0233 0.0299 0.0269
7 0.0113 0.0203 0.0271 0.0283

preferential attachment process

Table 4. Lower bounds on γh/t, for h > 1.
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The total degree of an h-dominating set in GM,m
t must be at least h(t−|S|) ≥

ht(1 − αM
up). Hence, a lower bound on the size of any dominating set in a web

graph is obtained by using information on the proportional degree sequence.
Bollobas et al. [Bollobás et al. 01] (see also Cooper [Cooper 02]) proved that

for a random graph built using a model equivalent to our preferential attachment
process, |Vi| = tni +O(

√
t log t) a.a.s. for any i ≥ m, where

ni =
2m(m+ 1)
i(i+ 1)(i+ 2)

.

In the same paper (p. 288) it is possible to find a result about GR,m
t . In the uar

graph process, for any i ≥ m,

ni =
1

m+ 1

(
m

m+ 1

)i−m

.

Again it is possible to prove that |Vi| is concentrated around nit.
For m ≥ 2, the lower bounds given for GC,m

t in Table 1 are obtained using
Lemma 7.1 and the approximations above for |Vi| in each case. Bounds for h > 1
are in Table 4.

For the uar graph process GR,m
t , we can produce better a.a.s. lower bounds

using the Markov inequality. The method is explained in Section 7.1. For m ≥ 2,
these are the lower bounds given for GR,m

t in Table 1.

7.1. Existential Lower Bounds for the Uar Process

For simplicity we present the argument for h = 1 (i.e., dominating sets) only.

Lemma 7.2. There exists a function f(x, y) : IR → IR such that, for each positive
integer m, there exists a positive real number d = d(m), defined by f(m, d) = 1,
such that a.a.s. there is no dominating set in GR,m

t of size at most dt.
The values of d for the first few values of m are given in the following table:

m 1 2 3 4 5 6 7

d(m) 0.26894 0.18683 0.14881 0.12591 0.11027 0.09876 0.08986

Proof. In the proof we assume that the t vertices in GR,m
t are labelled 1, 2, . . . , t.

The argument is as follows:

(i) Let S∗ = [s] = {1, . . . , s}, and let |S| = s. Then,

Pr(S dom. S) ≤ Pr(S∗ dom. S∗),

where dom. is an abbreviation of “dominates.”
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(ii) For s ≤ dt, the expected number of dominating sets of size s is at most

(
t
s

)
Pr(S∗ dom. S∗) → 0.

Thus, Marvov inequality implies that a.a.s. there is no dominating set S of size
at most dt.

Proof of (i). We regard the m out-edges (e1, . . . , em) of any vertex as labelled and
ordered so that all t vertex graphs G have the same probability in the uar graph
process; i.e., Pr(G) = 1/((t− 1)!)m. (Vertex v0 has m loops.)

Given a partition (S,S) of [t] with |S| = s, let u be the smallest element
u = vi ∈ S such that the next vertex is v = vi+1 ∈ S in the natural ordering
1, 2, . . . , t. If u does not exist, then S = S∗.

We swap u and v to get the partition (S ′,S ′) where S ′ = S − v + u and
S ′ = S − u+ v. We prove that

Pr(S dom. S) ≤ Pr(S ′ dom. S ′).

We do this by showing that for every graph G ∈ {S dom. S} for which the swap
destroys the dominance property, i.e., G 
∈ {S ′ dom. S ′} (G is good but goes bad
on swapping), there is a unique bad graph H = H(G) (H 
∈ {S dom. S}) that
becomes good on swapping (H ∈ {S ′ dom. S ′}). Thus, the set of good graphs
is of nondecreasing size (and hence probability) on swapping.

More formally, let G(t) = GR,m
t denote the space of uar graph processes after

the tth vertex has been added. Let S be the distinguished set. Let GG denote
the subset of G that is good for both S and S ′ (i.e., GG = {G : S dom. S}∩{G :
S ′ dom. S ′}) and similarly GB,BG, and GB, so that GB is the set of graphs that
are good for S but not S ′, etc. Thus, GG,GB,BG, and GB are a partition of G.
We define a one-to-one map φ : G → G such that φ(GB) ⊆ BG. It follows that

|{G : S dom. S}| = |GG| + |GB|
= |GG| + |φ(GB)|
≤ |GG| + |BG| = |{G : S ′ dom. S ′}|.

With some abuse of notation, we associate out(x), the sequence of out-edges
of vertex x, with the multi-set of terminal vertices, and similarly for in(x) (the
sequence of in-edges of x ordered naturally) with their initial vertices.

Construction of φ. Let [t] = (1, 2, . . . , u − 1, u, v, v + 1, . . . , t) where u, v are
the swap pair. Consider the graph G. Let i(x) = in(x)∩ [v+1, . . . , n] and o(x) =
out(x) ∩ [1, . . . , v]. Let i′(u) = i(v) and i′(v) = i(u).
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Case that there is no edge (v, u). Let o′(u) = o(v) and o′(v) = o(u). Construct
φ(G) = H(G) from G by replacing i(x), o(x) by i′(x), o′(x), x = u, v. The graph
H is uniquely associated with G, as we can reconstruct G from H.

Case that there are edges (v, u). Let the (v, u) edges be {ek, k ∈ K} where K
indexes their occurrences in (e1, . . . , em). Let {fk} be the out-edges of u with the
same index set. Let o′(u) = o(v)−{ek}+{fk}, and let o′(v) = o(u)+{ek}−{fk}.
Thus, v keeps its out-edges to u, and u keeps its out-edges with the same labels.

If there is no (v, u) edge and G ∈ GB, then H was bad but becomes good (i.e.,
H ∈ BG). For, in H, u (now in the dominating set) has the v edges from G, and
v (no longer in the dominating set) got the u edges from G.

If there is a (v, u) edge and G ∈ GB, then u dominates v after the swap,
just as v dominated u before. The in-edges have been swapped over to preserve
any dominance that v made with them (now made by u). The edge set {fk}
was not necessary for G to be good, as v dominated u and u did not dominate
anybody. If v dominated anybody else with o(v)−{ek}, then u still does it with
o′(u) = o(v) − {ek} + {fk}. Thus, H is good.

Proof of (ii). Let S∗ = [s]. We have that

Pr(∃ dominating set S, |S| = s) ≤ (
t
s

)
Pr(S∗ dom. S∗).

Let s = dt. Then
(

t
s

) ≤ (
1

dd(1−d)(1−d)

)t

, and

Pr(S∗ dom. S∗) =
∏t−1

v=s

(
1 − (

1 − s
v

)m)
= exp

(∑t−1
s log

(
1 − (

1 − s
v

)m))
= exp

(
(1 + o(1))

∫ t

s+1
log

(
1 − (

1 − s
v

)m)
dv
)

= exp
(
(1 + o(1)) dt

∫ 1

d
x−2 log (1 − (1 − x)m) dx

)
.

To obtain (m, d) as given, we compute the largest d such that(
1

dd(1−d)(1−d)

)
exp

(
d
∫ 1

d
x−2 log (1 − (1 − x)m) dx

)
< 1.

7.2. Lower bounds for the preferential attachment process.

Lemma 7.3. There exists a function f(x, y) : IR → IR such that, for each positive
integer m, there exists a positive real number d = d(m), defined by f(m, d) = 1,
such that a.a.s. there is no dominating set in GC,m

t of size at most dt.
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The values of d for the first few values of m are given in the following table:

m 1 2 3 4 5 6 7

d(m) 0.17379 0.10098 0.07099 0.05443 0.04391 0.03663 0.03130

Proof. The argument is the same as the one used for the uar graph process; i.e.,
we prove that for any set S of size s, Pr(S dom. S) ≤ Pr(S∗ dom. S∗) where
S∗ = [s] = {1, . . . , s}. As before, we do this by moving the vertices of the
dominating set S downward. Now, however, in the case where there is a (v, u)
edge, swapping edges between the vertices u and v can alter the probability of
the graphs, i.e., Pr(G) 
= Pr(φ(G)), and some care is needed to overcome this
problem. In order to get a precise value for Pr(G), we work in the scale-free
model of Bollobas and Riordan. A full description of the model can be found
in [Bollobás et al. 01]. The scale-free model differs slightly from our preferential
attachment model in that loops are allowed. We consider the case m = 1, as the
general case is easily derived from this. We have

Pr(vt chooses u) =

⎧⎨
⎩

deg(u,t−1)
2t−1 u 
= vt

1
2t−1 otherwise

where deg(v, t) is the degree of vertex v at the end of step t. For fixed t = n, the
scale-free model is formulated as a configuration model on the edge endpoints,
labelled 1, . . . , 2n. A pairing P of the endpoints describes the set of edges, and
an edge is completed at step k in the linear order 1, . . . , 2n if the larger point in
the pairing is k. Given a point k, the left partial pairing L is the partial pairing
on 1, . . . , k, and the right partial pairing R is the partial pairing on k+1, . . . , 2n,
both of which may have some completed edges. A further matching of unpaired
points between the partial pairings completes P. See [Bollobás et al. 01] for more
details.

As usual, let i′(x), x = u, v, be the (modified) in-degree (or associated set of
in-edges) of vertex x. Thus, i′(x) is the in-degree except that i′(u) does not
include the edge (v, u) if it exists. Let i′(u) = a1 and i′(v) = a2. Thus, the
in-degree of u is a1 + 1 if (v, u) exists and a1 if not. Let G(a1, a2) be a graph
with these in-degrees at u and v, respectively. To save on notation, we let ai be
the multi-set of distinguished in-edges as well as the set size. Writing G(a2, a1)
means that the in-edges of u and v other than (v, u) have been swapped, and
φ(G(a1, a2)) means that the out-edges other than (v, u) and its corresponding
labelled edge(s) at u have also been swapped. We use a1 + a2 for set union,
preserving multiplicity. The meaning will always be clear from the context.
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Let u = xk be the kth vertex, and so v = xk+1. Suppose that xk, the kth
right endpoint, has label 2k + s + a1 + 1 and the (k + 1)th right endpoint has
label 2(k + 1) + s+ a1 + a2 in the linear order. If there is no edge (v, u), let the
(k− 1)th right endpoint have label 2(k− 1) + s+ 2, and if there is a (v, u) edge,
let it have label 2(k − 1) + s + 1. Thus, vertex u has in-degree a1 in the first
case and a1 + 1 in the second case. In either case vertex v has in-degree a2, and
there are s unpaired labels in the left partial pairing of vertex xk−1.

For t even, let Φ(t) denote the number of pairings of t points, and thus Φ(t) =
t!/((t/2)!2t/2). We can write down the probability of the graph G(a1, a2) in the
two cases as follows: Pr(G(a1, a2)) = FLFR,L/Φ(2n) where FL is the number of
left partial pairings of 2(k + 1) + s + a1 + a2 labels and FR,L is the number of
completions with the right partial pairing on 2n− (2(k+1)+ s+a1 +a2) labels.
In either case

FR,L =
(

2n− (2(k + 1) + s+ a1 + a2)
s+ a1 + a2

)
(s+a1+a2)!Φ(2(n−((k+1)+s+a1+a2))).

(7.1)
If there is no (v, u) edge, then

FL = (2k + s− 1)(2k + s− 2)(2k + s− 3)
(

2k + s− 4
s

)
Φ(2(k − 2)), (7.2)

and if there is a (v, u) edge, then

FL = (2k + s− 2)(2k + s− 3)(a1 + 1)
(

2k + s− 4
s

)
Φ(2(k − 2)). (7.3)

The first two terms on the right are for xk−1, xk = u, completing a pairing, and
the third is for xk+1 = v. We then choose s points for the left-right pairing and
pair the remaining points on the left.

From the above expressions we see that if there is no edge (v, u) in G, then
expressions (7.1) and (7.2) are unchanged on swapping and Pr(G) = Pr(φ(G)).
If there is an edge (v, u), then

Pr(G(a1, a2)) = c(a1 + 1), (7.4)

Pr(φ(G(a1, a2))) = Pr(G(a2, a1)) = c(a2 + 1), (7.5)

where c is given above. We see that if a2 < a1 we cannot use the uar proof
without modification.

Recall that GB is the set of graphs that are good for S (S dominates S) but
bad for S′ = S + u− v (S′ does not dominate S′). Our approach is to partition
GB into sets C that have the property Pr(C) ≤ Pr(φ(C)). In preparation for
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this we let σ = �n/ log n� and let

BI = {G : ∃i ≥ σ such that G has at least 2 edges (xi+1, xi)},

BII =

{
G : ∃j > i ≥ σ such that G has an edge (xi+1, xi)

and at least 2 edges (xj , xi+1)

}
.

Based on the almost sure maximum degree of vertex x at step n of (n/x)1/2c log3 n

(see, e.g., [Bollobás et al. 01] and [Cooper 02]) for all x ≥ σ, we see that
Pr(BI) = O(log n/n) and that Pr(BII) = O(log6 n/n). To take advantage
of this, we note that

Pr(S dom. S) ≤ Pr(S ∪ [σ] dom. S \ [σ]).

Thus, we need only consider swaps on [σ + 1, . . . , n] as [σ] is always in the
dominating set.

Let

Au = {G ∈ GB : ∃(v, u) edge in G} ∩ (BI ∪BII),

let

Bu = GB ∩ (BI ∪BII),

and let

Cu = {G ∈ GB : no edge (v, u)}.
The proof for C follows directly from the uar case as Pr(G) = Pr(φ(G)). Also,
Pr(∪uBu) = O(log6 n/n). The proof for A is simplified by the event BI as there
is exactly one (v, u) edge to consider.

For G(a1, a2) ∈ A, we define the minimal graph G(α1, α2) of G as follows: Let
a2 = α2 + β2 where every edge of α2 is necessary for S to dominate S in G.
Thus, if e ∈ α2, then G(a1, α2 − e) does not satisfy S dominates S but G(a1, α2)
does. It is quite possible that α2 = ∅, e.g., only out(v) dominates something or
v dominates itself. Let α1 = a1 + β2. Every G(a1, a2) has at least one minimal
graph. We form the set

G(a1, a2) = {G(α1 − I, α2 + I) : I ⊆ α1}.
Thus, G(a1, a2) = {G(α1, α2), . . . , G(a1, a2), . . . , G(∅, α1 + α2)}. We claim the
following:

(i) Given G(a1, a2) ∈ A, then G(α1, α2) is unique.

(ii) G(a1, a2) ⊆ A.
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(iii) If G(a, b), G(a′, b′) are distinct minimal graphs, then

G(a, b) ∩ G(a′, b′) = ∅.

(iv) The sets G(α1, α2) partition A.

Let G(a1, a2) have two distinct minimal graphs G(α1, α2) and G(α′
1, α

′
2); thus,

α2 
= ∅. Since α2 is minimal, there is some edge e = (x, v) ∈ α2 such that v is
the only vertex of S dominating x. Thus, α′

2 must also have an edge e′ = (x, v)
for v to dominate x. The event BII that (v, u) exists and that distinct parallel
edges e, e′ to v also exist has been excluded from A, so α′

2 = α2.
We next prove that if G(a1, a2) ∈ A, then G(α1, α2) ∈ A. Since G(a1, a2) ∈

GB, there exists a vertex x uniquely dominated by v. Suppose that x > v so
that α2 
= ∅ and that a1 does not include an edge from x. Also, β2 = a2 − α2

does not include an edge from x, as there are no parallel edges. Thus, there is no
edge from x in α1 = a1 +β2, so S′ = S−v+u cannot dominate x and G(α1, α2)
is bad for S′.

The rest of the claims follow in a similar manner. Finally, we claim that

Pr(G(α1, α2)) ≤ Pr(φ(G(α1, α2))). (7.6)

Note that Pr(φ(G(b1, b2))) = Pr(G(b2, b1)) as the out-edge swaps of u and v

are measure preserving (see (7.1) and (7.2)). It also follows from (7.1) and (7.2)
that if there is no (v, u) edge, then Pr(G(b1, b2)) = Pr(G(b2, b1)). If there is a
(v, u) edge, then from (7.3), (7.4), and (7.5),

Pr(G(b1, b2)) = c(b1 + 1), Pr(G(b2, b1)) = c(b2 + 1).

As G(α1, α2) = {G(α1, α2), . . . , G(α1 − I, α2 + I), . . . , G(∅, α1 + α2)}, we have

Pr(G(α1, α2)) = c

α1∑
j=0

(
α1

j

)
(j + 1)

= c
(
2α1 + α12α1−1

)
,

whereas φ(G(α1, α2)) has the same probability as {G(α2, α1), . . . , G(α2 +I, α1−
I), . . . , G(α1 + α2, ∅)}, and thus

Pr(φ(G(α1, α2))) = c

α1∑
j=0

(
α1

j

)
(α2 + α1 − j + 1)

= c
(
(α1 + α2 + 1)2α1 − α12α1−1

)
.
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Thus,

Pr(φ(G(α1, α2))) − Pr(G(α1, α2)) = cα22α1 ≥ 0,

as required by (7.6).
Finally, we explain the generalization of this proof to scale-free graphs of out-

degreem ≥ 2. The scale-free model treats vertex x as a sequence (x(1), . . . , x(m))
of sub-vertices of degree 1 arising from m consecutive right endpoints of edges in
the linear order 1, . . . , 2mn. Let the (v, u) edge in question be ei = (v(i), u(j)).
We swap the edges of v(i) and u(j) except ei and the corresponding out-edge fj

of u(j). The other sub-vertices are paired cyclically v(i + k) with u(j + k) for
swapping.

Let GS = {Gm
t } be the space of scale-free graphs of out-degree m. The

space GS is very close to the space of preferential attachment processes GC =
{GC,m

t } described in this paper. In either model, on addition of the out-edges
ej , j = 1, . . . ,m, of vertex vt, the terminal vertex for the edge ej is chosen
by selecting a random end-point of a random edge in a designated set. In the
scale-free model, all existing edges and half edges are included in the choice. In
the preferential attachment graph process, only out-edges of previously added
vertices v1, . . . , vt−1 are included. Thus, in the scale-free model,

Pr(ej chooses from out(v1, . . . , vt−1)) = 2m(t−1)
2m(t−1)+2(j−1)+1 , j = 1, . . . ,m.

Thus, in the scale-free model, the subset C of preferential attachment graphs
GC has probability

Pr(C) ≥
t∏

s=2

(
1 − 1

s− 1

)m

= Ω(t−m),

and conditional probability of graphs in C is the correct measure for GC . The
existential lower bounds (derived below) for the smallest dominating set in the
scale-free model have probability of the form

Pr(there exists a dominating set S of size |S| ≤ dt) = O(ct),

for c < 1 constant. We conclude that the results are valid for the preferential
attachment model.

Let S∗ = [dt]; then,

Pr(S∗ dom. S∗) ≤
n∏

v=dn+1

(
1 −

(
1 − deg(S∗, v − 1)

2m(v − 1)

)m)
,
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and deg(S∗, v) = 2mdt(v/dt)1/2(1 + o(1)) almost surely for d > 0 constant (see
[Bollobás et al. 01]). Thus

Pr(S∗ dom. S∗) = exp

(
t∑

dt+1

log(1 − (1 − (dt/v)1/2(1 + o(1)))m)

)
.

Let x = (dt/v)1/2. Choosing d such that

1
dd(1 − d)1−d

exp
(

2d
∫ 1

√
d

x−3 log(1 − (1 − x)m) dx < 1
)

gives the required lower bound. Values of (m, d) are given in the table in
Lemma 7.3.

8. Trees

For m = 1 the graph processes under consideration generate a connected graph
without cycles. Such a structural property can be exploited to obtain improved
lower bounds on γ1. Without loss of generality, any vertex in such graphs that
has at least one neighbour u ∈ V1 must be part of a minimum-size dominating
set. The number of such vertices is precisely t−|V1|−|I|, where |I| is the number
of vertices that have no neighbour in V1. The cardinality of I can be estimated in
both models via either a martingale argument similar to those used in previous
sections or through the technique exploited in [Cooper 02] to estimate |Vi|. The
lower bounds in Table 1 for m = 1 come from this argument.

We end this section reporting on some simple empirical results that help put
the mathematical analysis performed so far into context. It is well known [Cock-
ayne et al. 75] that minimum-size dominating sets can be found efficiently in
trees. We implemented Cockayne et al.’s algorithm and tested its performance.
For different values of t, we repeatedly ran the two graph processes up to time
t and then applied Cockayne’s algorithm. Table 5 reports the average val-
ues that we obtained. The least square approximation lines over the full set
of data that we collected are (coefficients rounded to the sixth decimal place)
y = 0.374509x−0.214185 for the random graph case and y = 0.294294x+0.32284
for the preferential attachment case. These results indicate that our algorithms
are able to get better results for graphs generated according to the preferential
attachment graph process (αC

up = 0.3333) than for graphs generated by the uar
process (αR

up = 0.5). We leave the finding of improved algorithms, especially in
the random graph process, or indeed better lower bounds in either models as an
interesting open problem of this work.
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t γ1(GR
1,t)/t γ1(GC

1,t)/t
10000 3745.053 2943.157
20000 7489.3 5887.301
30000 11233.68 8829.288
40000 14980.384 11772.175
50000 18725.448 14714.073
. . .
100000 37451.20312 29424.216

Table 5. Average values obtained over 1000 experiments for each value of t.
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