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Abstract. In the study of the spectra of power law graphs, there are basically two

competing approaches. One is to prove analogues of Wigner’s semicircle law while

the other predicts that the eigenvalues follow a power law distributions. Although the

semicircle law and the power law have nothing in common, we will show that both

approaches are essentially correct if one considers the appropriate matrices. We will

show that (under certain conditions) the eigenvalues of the (normalized) Laplacian of a

random power law graph follow the semicircle law while the spectrum of the adjacency

matrix of a power law graph obeys the power law. Our results are based on the

analysis of random graphs with given expected degrees and their relations to several

key invariants. Of interest are a number of (new) values for the exponent β where
phase transitions for eigenvalue distributions occur. The spectrum distributions have

direct implications to numerous graph algorithms such as randomized algorithms that

involve rapidly mixing Markov chains, for example.1

1. Introduction

Eigenvalues of graphs are useful for controlling many graph properties and con-

sequently have numerous algorithmic applications including low rank approxi-

mations [Achlioptas and McSherry 01], information retrieval [Kleinberg 99] and

1A short version of this paper without all the proofs has appeared in the Proceedings of
National Academy of Sciences 100:11 (2003), 6313—6318.
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computer vision [Fowlkes et al. 02]. Of particular interest is the study of eigen-

values for graphs with power law degree distributions (i.e., the number of vertices

of degree j is proportional to j−β for some exponent β). It has been observed
by many research groups [Aiello et al. 02, Albert et al. 99, Barabàsi and Albert

99, Faloutsos et al. 99, Jeong et al. 00, Kleinberg et al. 99, Lu 01] that many

realistic massive graphs including Internet graphs, telephone call graphs, and

various social and biological networks have power law degree distributions.

For the classical random graphs based on the Erdős-Rényi’s model, it has been

proved by Füredi and Komlós that the spectrum of the adjacency matrix follows

Wigner’s semicircle law [Füredi and Komlós 81]. Wigner’s theorem [Wigner 58]

and its extensions have long been used for the stochastic treatment of complex

quantum systems that lie beyond the reach of exact methods. The semicircle law

has extensive applications in statistical physics and solid state physics [Crisanti

et al. 93, Guhr et al. 98].

In the 1999 paper by Faloutsos et al. [Faloutsos et al. 99] on Internet topology,

several power law examples of Internet topology are given and the eigenvalues

of the adjacency matrices are plotted which does not follow the semicircle law.

It is conjectured that the eigenvalues of the adjacency matrices have a power

law distribution with its own exponent different from the exponent of the graph.

Farkas et al. [Farkas et al. 01] looked beyond the semicircle law and described a

“triangular-like” shape distribution (also see [Goh et al. 01]). Recently, Mihail

and Papadimitriou [Mihail and Papadimitriou] showed that the eigenvalues of

the adjacency matrix of a power law graphs with exponent β are distributed

according to a power law, for β > 3.

Here we intend to reconcile these two schools of thoughts on eigenvalue distri-

butions. To begin with, there are in fact several ways to associate a matrix to a

graph. The usual adjacency matrix A associated with a (simple) graph has eigen-

values quite sensitive to the maximum degree (which is a local property). The

combinatorial Laplacian D−A with D denoting the diagonal degree matrix is a

major tool for enumerating spanning trees and has numerous applications [Biggs

93, Kirchhoff 47]. Another matrix associated with a graph is the (normalized)

Laplacian L = I−D−1/2AD−1/2 which controls the expansion/isoperimetrical
properties (which are global) and essentially determines the mixing rate of a ran-

dom walk on the graph. The traditional random matrices and random graphs

are regular or almost regular so the spectra of all the above three matrices are

basically the same (with possibly a scaling factor or a linear shift). However,

for graphs with uneven degrees, the above three matrices can have very different

distributions.

In this paper, we will consider random graphs with a general given expected

degree distribution and we examine the spectra for both the adjacency matrix
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and the Laplacian. We will first establish bounds for eigenvalues for graphs with

a general degree distribution from which the results on random power law graphs

then follow. Here is a summary of our results:

1. The largest eigenvalue of the adjacency matrix of a random graph with a

given expected degree sequence is determined by m, the maximum degree,

and d̃, the weighted average of the squares of the expected degrees. We

show that the largest eigenvalue of the adjacency matrix is almost surely

(1+ o(1))max{d̃,√m} provided some minor conditions are satisfied. In
addition, suppose that the kth largest expected degree mk is significantly

larger than d̃2. Then the kth largest eigenvalue of the adjacency matrix is

almost surely (1+o(1))
√
mk.

2. For a random power law graph with exponent β > 2.5, the largest eigen-

value of a random power law graph is almost surely (1+o(1))
√
m where m

is the maximum degree. Moreover, the k largest eigenvalues of a random

power law graph with exponent β have power law distribution with expo-

nent 2β−1 if the maximum degree is sufficiently large and k is bounded

above by a function depending on β,m, and d, the average degree. When

2 < β < 2.5, the largest eigenvalue is heavily concentrated at cm3−β for
some constant c depending on β and the average degree.

3. We will show that the eigenvalues of the Laplacian satisfy the semicircle

law under the condition that the minimum expected degree is relatively

large (( the square root of the expected average degree). This condition

contains the basic case when all degrees are equal (the Erdös-Rényi model).

If we weaken the condition on the minimum expected degree, we can still

have the following strong bound for the eigenvalues of the Laplacian which

implies strong expansion rates for rapidly mixing,

max
i W=0

|1−λi| ≤ (1+o(1)) 4√
w̄
+
g(n) log2n

wmin
,

where w̄ is the expected average degree, wmin is the minimum expected

degree, and g(n) is any slow growing function of n.

In applications, it usually suffices to have the λis (i > 0) bounded away from

zero. Our result shows that (under some mild conditions) these eigenvalues are

actually very close to 1.

The rest of the paper has two parts. In Section 2, we present our model and

the results concerning the spectrum of the adjacency matrix. Section 3 deals

with the Laplacian.
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2. The Spectra of the Adjacency Matrix

2.1. The Random Graph Model

The primary model for classical random graphs is the Erdős-Rényi model Gp, in
which each edge is independently chosen with the probability p for some given

p > 0 (see [Erdős and Rényi 59]). In such random graphs the degrees (the number

of neighbors) of vertices all have the same expected value. Here we consider the

following extended random graph model for a general degree distribution.

For a sequence w = (w1,w2, . . . ,wn), we consider random graphs G(w) in

which edges are independently assigned to each pair of vertices (i, j) with prob-

ability wiwjρ, where ρ =
1

n
i=1wi

. Notice that we allow loops in our model (for

computational convenience) but their presence does not play any essential role.

It is easy to verify that the expected degree of i is wi.

To this end, we assume that maxiw
2
i <
�

kwk, so that pij ≤ 1 for all i and
j. This assumption insures that the sequence wi is graphical (in the sense that

it satisfies the necessary and sufficient condition for a sequence to be realized

by a graph [Erdős and Gallai 61]) except that we do not require the wis to be

integers). We will use di to denote the actual degree of vi in a random graph G

in G(w) where the weight wi denotes the expected degree.

For a subset S of vertices, the volume Vol(S) is defined as the sum of weights

in S and vol(S) is the sum of the (actual) degrees of vertices in S. That is,

Vol(S) =
�

i∈Swi and vol(S) =
�

i∈S di. In particular, we have Vol(G) =
�

iwi,

and we denote ρ = 1
Vol(G) . The induced subgraph on S is a random graph G(w

I)
where the weight sequence is given by wIi = wiVol(S)ρ for all i ∈ S. The expected
average degree is w̄ =

�n
i=1wi/n = 1/(ρn). The second order average degree of

G(wI) is d̃ = i∈Sw
2
i

n
i=1wi

=
�

i∈Sw
2
i ρ. The maximum expected degree is denoted

by m.

The classical random graph G(n,p) can be viewed as a special case of G(w) by

taking w to be (pn,pn, . . . ,pn). In this special case, we have d̃ = w̄ = m = np.

It is well known that the largest eigenvalue of the adjacency matrix of G(n,p) is

almost surely (1+o(1))np provided that np( logn.

The asymptotic notation is used under the assumption that n, the number of

vertices, tends to infinity. All logarithms have the natural base.

2.2. The Spectra of the Adjacency Matrix of Random Graphs with Given Degree Distribution

For random graphs with given expected degrees w1,w2, . . . ,wn, there are two easy

lower bounds for the largest eigenvalue ,A, of the adjacency matrix A, namely,
(1+o(1))d̃ and (1+o(1))

√
m.
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In [Chung et al. 03], the present authors proved that the maximum of the

above two lower bounds is essentially an upper bound.

Theorem 2.1. If d̃ >
√
m logn, then the largest eigenvalue of a random graph in

G(w) is almost surely (1+o(1))d̃.

Theorem 2.2. If
√
m > d̃ log2n, then almost surely the largest eigenvalue of a

random graph in G(w) is (1+o(1))
√
m.

If the kth largest expected degree mk satisfies
√
mk > d̃ log2n and m2

k (
md̃, then almost surely the largest k eigenvalues of a random graph in G(w) is

(1+o(1))
√
mk.

Theorem 2.3. The largest eigenvalue of a random graph in G(w) is almost surely

at most

7
0
logn ·max{√m,d̃}.

We remark that the largest eigenvalue ,A, of the adjacency matrix of a random
graph is almost surely (1+o(1))

√
m if

√
m is greater than d̃ by a factor of log2n,

and ,A, is almost surely (1+o(1))d̃ if √m is smaller than d̃ by a factor of logn.

In other words, ,A, is (asymptotically) the maximum of
√
m and d̃ if the two

values of
√
m and d̃ are far apart (by a power of logn). One might be tempted

to conjecture that

,A, = (1+o(1))max{√m,d̃}.
This, however, is not true as shown by a counterexample given in [Chung et al.

03].

We also note that with a more careful analysis the factor of logn in Theorem

2.1 can be replaced by (logn)1/2+6 and the factor of log2n can be replaced by

(logn)3/2+6 for any positive 6 provided that n is sufficiently large. We remark

that the constant “7” in Theorem 2.3 can be improved. We made no effort to

get the best constant coefficient here.

2.3. The Eigenvalues of the Adjacency Matrix of Power Law Graphs

In this section, we consider random graphs with power law degree distribution

with exponent β. We want to show that the largest eigenvalue of the adjacency

matrix of a random power law graph is almost surely approximately the square

root of the maximum degree m if β > 2.5, and is almost surely approximately

cm3−β if 2 < β < 2.5. A phase transition occurs at β = 2.5. This result for
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power law graphs is an immediate consequence of a general result for eigenvalues

of random graphs with arbitrary degree sequences.

We choose the degree sequence w = (w1,w2, . . . ,wn) satisfying wi = ci−
1

β−1

for i0 ≤ i ≤ n+ i0. Here c is determined by the average degree and i0 depends
on the maximum degree m, namely, c = β−2

β−1dn
1

β−1 , i0 = n( d(β−2)m(β−1))
β−1. It is

easy to verify that the number of vertices of degree k is proportional to k−β .
The second order average degree d̃ can be computed as follows:

d̃ =


d (β−2)2
(β−1)(β−3) (1+o(1)) if β > 3.
1
2d ln

2m
d (1+o(1)). if β = 3.

d (β−2)2
(β−1)(3−β) (

(β−1)m
d(β−2) )

3−β(1+o(1)). if 2< β< 3.

We remark that for β > 3, the second order average degree is independent of

the maximum degree. Consequently, the power law graphs with β > 3 are much

easier to deal with. However, many massive graphs are power law graphs with

2 < β < 3, in particular, Internet graphs [Kleinberg et al. 99] have exponents

between 2.1 and 2.4 while the Hollywood graph [Barabàsi and Albert 99] has

exponent β ∼ 2.3. In these cases, it is d̃ which determines the first eigenvalue.
The following theorem is a consequence of Theorems 2.1 and 2.2. When β > 2.5,

we have

λi ≈ √mi ∝ (i+ i0−1)−1/((2β−1)−1),
for λi sufficiently large. These large eigenvalues follow the power law distribu-

tion with exponent 2β−1. (The exponent is different from one in Mihail and

Papadimitriou’s paper [Mihail and Papadimitriou] because they use a different

definition for power law.)

Theorem 2.4.

1. For β ≥ 3 and m > d2 log3+6n, almost surely the largest eigenvalue of the

random power law graph G is (1+o(1))
√
m.

2. For 2.5 < β < 3 and m > d
β−2
β−2.5 log

3
β−2.5 n, almost surely the largest

eigenvalue of the random power law graph G is (1+o(1))
√
m.

3. For 2 < β < 2.5 and m > log
3

2.5−β n, almost surely the largest eigenvalue

is (1+o(1))d̃.

4. For k < ( d
m logn )

β−1n and β > 2.5, almost surely the k largest eigenvalues
of the random power law graph G with exponent β have power law distrib-

ution with exponent 2β−1, provided that m is large enough (satisfying the

inequalities in 1, 2).
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3. The Spectrum of the Laplacian

Suppose G is a graph that does not contain any isolated vertices. The Laplacian

L is defined to be the matrix L = I−D−1/2AD−1/2 where I is the identity
matrix, A is the adjacency matrix of G, and D denotes the diagonal degree

matrix. The eigenvalues of L are all nonnegative between 0 and 2 (see [Chung

97]). We denote the eigenvalues of L by 0 = λ0 ≤ λ1 ≤ . . .λn−1. For each i, let
φi denote an orthonormal eigenvectors associated with λi. We can write L as

L =
3
i

λiPi ,

where Pi denotes the i-projection into the eigenspace associated with eigenvalue

λi. We consider

M = I−L−P0
=
3
i W=0
(1−λi)Pi.

For any positive integer k, we have

Trace(M2k) =
3
iW=0
(1−λi)2k.

Lemma 3.1. For any positive integer k, we have

max
i W=0

|1−λi| ≤ ,M, ≤ (Trace(M2k)1/(2k).

The matrix M can be written as

M = D−1/2AD−1/2−P0
= D−1/2AD−1/2−φ∗0φ0
= D−1/2AD−1/2− 1

vol(G)
D1/2KD1/2,

where φ0 is regarded as a row vector (
0
d1/vol(G), . . . ,

0
dn/vol(G)), φ

∗
0 is the

transpose of φ0, and K is the all 1s matrix.

Let W denote the diagonal matrix with the (i, i)-entry having value wi, the

expected degree of the ith vertex. We will approximate M by

C = W−1/2AW−1/2− 1

Vol(G)
W 1/2KW 1/2

= W−1/2AW−1/2−χ∗χ,
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where χ is a row vector (
√
w1ρ, . . . ,

√
wnρ). We note that ,χ∗χ−φ∗φ, is strongly

concentrated at 0 for random graphs with given expected degree wi. C can be

seen as the expectation of M and we shall consider the spectrum of C carefully.

3.1. A Sharp Bound for Random Graphs with Relatively Large Minimum Expected Degree

In this section, we consider the case when the minimum of the expected degrees

is not too small compared to the mean. In this case, we are able to prove a sharp

bound on the largest eigenvalue of C.

Theorem 3.2. For a random graph with given expected degrees w1, . . . ,wn where

wmin (
√
w̄ log3n, we have almost surely

,C, = (1+o(1)) 2√
w̄
.

Proof. We rely on Wigner’s high moment method. For any positive integer k and
any symmetric matrix C

Trace(C2k) = λ1(C)
2k+ · · ·+λn(C)2k,

which implies

E(λ1(C)
2k) ≤ E(Trace(C2k)),

where λ1 is the eigenvalue with maximum absolute value: |λ1| = ,C,.
If we can bound E(Trace(C2k)) from above, then we have an upper bound for

E(λ1(C)
2k). The latter would imply an upper bound (almost surely) on |λ1(C)|

via Markov’s inequality, provided that k is sufficiently large.

Let us now take a closer look at Trace(C2k). This is a sum where a typical

term is ci1i2ci2i3 . . . ci2k−1i2kci2ki1 . In other words, each term corresponds to

a closed walk of length 2k (containing 2k, not necessarily different, edges) of

the complete graph Kn on {1, . . . ,n} (Kn has a loop at every vertex). On the

other hand, the entries cij of C are independent random variables with mean

zero. Thus, the expectation of a term is nonzero if and only if each edge of

Kn appears in the walk at least twice. To this end, we call such a walk a good

walk. Consider a closed good walk which uses l different edges e1, . . . ,el with

corresponding multiplicities m1, . . . ,ml ( the mhs are positive integers at least

2 summing up to 2k). The (expected) contribution of the term defined by this

walk in E(Trace(C2k) is
l�

h=1

E(cmh
eh
). (3.1)
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In order to compute E(cmij ), let us first describe the distribution of cij : cij =
1√
wiwj

−√wiwjρ = qij√
wiwj

with probability pij = wiwjρ and cij = −√wiwjρ =
− pij√

wiwj
with probability qij = 1−pij . This implies that for any m ≥ 2

|E(cmij )| ≤
qmij pij+(−pij)mqij

(wiwj)m/2
≤ pij
(wiwj)m/2

=
ρ

(wiwj)m/2−1
≤ ρ

wm−2min

. (3.2)

Here we used the fact that qmij pij+(−pij)mqij ≤ pij in the first inequality (the
reader can consider this fact an easy exercise) and the definition pij = wiwjρ in

the second equality.

Let Wl,k denote the set of closed good walks on Kn of length 2k using exactly

l+1 different vertices. Notice that each walk inWl,k must have at least l different

edges. By (3.1) and (3.2), the contribution of a term corresponding to such a

walk toward E(Trace(C2k)) is at most

ρl

w2k−2lmin

.

It follows that

E(Trace(C2k)) ≤
k3
l=0

|Wl,k| ρl

w2k−2lmin

. (3.3)

In order to bound the last sum, we need the following result of Füredi and

Komlós [Füredi and Komlós 81].

Lemma 3.3. For all l < n,

|Wl,k| ≤ n(n−1) . . . (n− l)
w
2k

2l

Ww
2l

l

W
1

l+1
(l+1)4(k−l). (3.4)

In order to prove our theorem, it is more convenient to use the following cleaner

bound, which is a direct corollary of (3.4)

|Wl,k| ≤ nl+14l
w
2k

2l

W
(l+1)4(k−l). (3.5)

Substituting (3.5) into (3.3) yields

E(Trace(C2k)) ≤
k3
l=0

ρl

w2k−2lmin

nl+14l
w
2k

2l

W
(l+1)4(k−l) =

k3
l=0

sl,k. (3.6)

Now fix k = g(n) logn, where g(n) tends to infinity (with n) arbitrarily slowly.

With this k and the assumption about the degree sequence, the last sum in (3.6)
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is dominated by its highest term. To see this, let us consider the ratio sk,k/sl,k
for some l ≤ k−1:

sk,k
sl,k

=
((4ρn)w2min)

k−lD
2k
2l

i
(l+1)4(k−l)

≥ ((4ρn)w
2
min)

k−l

2k2(k−l)k4(k−l)
≥ 1
2

p4ρnw2min
k6

Qk−l
,

where in the first inequality we used the simple fact that
D
2k
2l

i ≤ (2k)2(k−l)

2(k−l)! ≤
2k2(k−l). With a proper choice of g(n), the assumption wmin = Ω(log3n)

√
w̄

guarantees that
4ρnw2min

k6 = Ω(1), where Ω(1) tends to infinity with n. This

implies sk,k/sl,k ≥ (Ω(1))k−l. Consequently,

E(Trace(C2k)) ≤
k3
l=0

sl,k ≤ (1+o(1))sk,k = (1+o(1))ρknk+14k

= (1+o(1))n(4ρn)k.

Since E(λ1(C)
2k) ≤ E(Trace(C2k)) and ρn = 1

w̄ , we have

E(λ1(C)
2k) ≤ (1+o(1))n( 2√

w̄
)2k. (3.7)

By (3.7) and Markov’s equality

P
p
|λ1(C)| ≥ (1+6) 2√

w̄

Q
= P

p
λ1(C)

2k ≥ (1+6)2k( 2√
w̄
)2k
Q

≤ E(λ1(C)
k)

(1+6)2k( 2√
w̄
)2k
≤
(1+o(1))n( 2√

w̄
)2k

(1+6)2k( 2√
w̄
)2k

=
(1+o(1))n

(1+6)2k
.

Since k = Ω(logn), we can find an 6 = 6(n) tending to 0 with n so that n
(1+6)2k

=

o(1). This implies that almost surely |λ1(C)| ≤ (1+o(1)) 2√
w̄
, as desired. The

lower bound on |λ1(C)| follows from the semicircle law proved in the next section.

3.2. The Semicircle Law

We show that if the minimum expected degree is relatively large, then the eigen-

values of C satisfy the semicircle law with respect to the circle of radius r = 2√
w̄

centered at 0. LetW be an absolute continuous distribution function with (semi-

circle) density w(x) = 2
π

√
1−x2 for |x| ≤ 1 and w(x) = 0 for |x| > 1. For the

purpose of normalization, consider Cnor = (
2√
w̄
)−1C. Let N(x) be the number

of eigenvalues of Cnor less than x and Wn(x) = n
−1N(x).
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Theorem 3.4. For random graphs with a degree sequence satisfying wmin (
√
w̄,

Wn(x) tends to W (x) in probability as n tends to infinity.

Remark 3.5. The assumption here is weaker than that of Theorem 3.2, due to the

fact that we only need to consider moments of constant order.

Proof. As convergence in probability is entailed by the convergence of moments,
to prove this theorem, we need to show that for any fixed s, the sth moment of

Wn(x) (with n tending to infinity) is asymptotically the sth moment of W (x).

The sth moment of Wn(x) equals
1
n
E(Trace(Csnor)). For s even, s = 2k, the sth

moment of Wx is
(2k)!

22kk!(k+1)! (see [Wigner 58]). For s odd, the sth moment of

Wx is 0 by symmetry.

In order to verify Theorem 3.2, we need to show that for any fixed k

1

n
E(Trace(C2knor)) = (1+o(1))

(2k)!

22kk!(k+1)!
, (3.8)

and
1

n
E(Trace(C2k+1nor )) = o(1). (3.9)

We first consider (3.8). Let us go back to (3.3). Now we need to use the more

accurate estimate of |Wl,k| given in (3.4), instead of the weaker but cleaner one
in (3.5). Define sIl,k =

ρl

w2k−2lmin

n(n−1) . . .(n− l)D2k2liD2ll i 1
l+1 (l+1)

4(k−l). One can

check, with a more tedious computation, that the sum
�k
l=0 s

I
l,k is still dominated

by the last term, namely

k3
l=0

sIl,k = (1+o(1))s
I
k,k.

It follows thatE(Trace(C2k)) ≤ (1+o(1))sIk,k. On the other hand, E(Trace(C2k)) ≥
|Wk,k|ρk. Now comes the important point, for l = k, |Wl,k| is not only upper
bounded by, but in fact equals, the right-hand side of (3.4). Therefore,

E(Trace(C2k)) = (1+o(1))sIk,k.

It follows that

E(Trace(Cnor2k)) = (1+o(1))(
2√
w̄
)−2ksIk,k = (1+o(1))n

(2k)!

22kk!(k+1)!
,

which implies (3.8).

Now we turn to (3.9). Consider a term in Trace(C2k+1). If the closed walk

corresponding to this term has at least k+1 different edges, then there should be



268 Internet Mathematics

an edge with multiplicity one, and the expectation of the term is 0. Therefore,

we only have to look at terms whose walks have at most k different edges (and

at most k+1 different vertices). It is easy to see that the number of closed good

walks of length 2k+1 with exactly l+1 different vertices is at most O(nl+1).

The constant in O depends on k and l (recall that now k is a constant), but for

the current task we do not need to estimate this constant. The contribution of

a term corresponding to a walk with at most l+1 different edges is bounded by

ρl

w2k+1−2lmin

.

Thus |E(Trace(C2k+1))| is upper bounded by
k3
l=0

c
ρl

w2k+1−2lmin

nl+1, (3.10)

for some constant c. To compute the (2k+1)th moment of Wn(x), we need

to multiply E(Trace(C2k+1)) by the normalizing factor 1
n (

1
2
√
nρ )

2k+1. It follows

from (3.10) that the absolute value of the (2k+1)th moment of Wn(x) is upper

bounded by

k3
l=0

1

n
(
1

2
√
nρ
)2k+1

ρl

w2k+1−2lmin

nl+1 ≤
k3
l=0

(
1

2
√
nρwmin

)2k+1−2l. (3.11)

Under the assumption of the theorem 1
2
√
nρwmin

= o(1). Thus, the last sum in

(3.11) is o(1), completing the proof.

3.3. An Upper Bound on the Spectral Norm of the Laplacian

In this section, we assume that wmin ( log2n and we will show the following.

Theorem 3.6. For a random graph with given expected degrees, if the minimal

expected degree wmin satisfies wmin ( log2n, then almost surely the eigenvalues

of the Laplacian L satisfy

max
iW=0

|1−λi| ≤ (1+o(1)) 4√
w̄
+
g(n) log2n

wmin
,

where w̄ =
n
i=1wi
n is the average expected degree and g(n) is a function tending

to infinity (with n) arbitrarily slowly.

To prove Theorem 3.6, we recall that eigenvalues of the Laplacian satisfy

max
iW=0

|1−λi| = ,M,,
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where M = D−1/2AD−1/2− 1
vol(G)D

1/2KD1/2. We rewrite M as follows:

M = B+C+R+S where bi,j = (ai,j−wiwjρ)( 10
didj

− 1√
wiwj

)

ri,j = ρ
wiwj−didj0

didj

si,j = (
1

Vol(G)
− 1

vol(G)
)
0
didj

and C is as defined in the previous section. Clearly,

,M, ≤ ,B,+,C,+,R,+,S,.

It suffices to establish upper bounds for the norms of B,C, E, and F sepa-

rately. To do so, we will use the following concentration inequality for a sum of

independent random variables (see [Chung and Lu 02a, McDiarmid 98]).

Let Xi (1 ≤ i ≤ n) be independent random variables satisfying |Xi| ≤M . Let
X =

�
iXi. Then we have

P(|X−E(X)| > a) ≤ e− a2

2(V ar(X)+Ma/3) . (3.12)

For each fixed i, we consider the degree di as a sum of random indicator

variables di =
�

j aij . Since V ar(dj) ≤ wj , we then have

P(|di−wi| > a) ≤ e−a2/(wi+a/3). (3.13)

By the assumption that wmin ( log2n , we have almost surely

|di−wi| < 6wi (3.14)

for all i where 6 is any fixed (small) positive value.

Similarly, by considering the volume vol(G) as vol(G) =
�
i

�
j aij , we have

almost surely

|vol(G)−Vol(G)| < 2
0
Vol(G)g(n) (3.15)

for any slow growing function g(n).

We will use the following lemma which will be proved later.

Lemma 3.7. Suppose that wmin ( logn. Almost surely the vector χ with χ(i) =

(di−wi)/√wi satisfies
,χ,2 ≤ (1+o(1))n.



270 Internet Mathematics

Proof of Theorem 3.6. To establish an upper bound for ,C,, we follow the proof of
Theorem 3.2. The following inequality can be derived from (3.6).

E(Trace(C2k)) ≤
k3
l=0

ρl

w2k−2lmin

nl+14l
w
2k

2l

W
(l+1)4(k−l)

≤
k3
l=0

ρl

w2k−2lmin

nl+14l
w
2k

2l

W
(k+1)4(k−l)

≤ (1+o(1))n(
2√
w̄
+
(k+1)2

wmin
)2k.

By choosing k =
0
g(n) logn, we have

(E(Trace(C2k)))1/(2k) ≤ n1/(2k)( 2√
w̄
+
g(n) log2n

wmin
).

Thus, by similar arguments, almost surely we have

,C, ≤ 2√
w̄
+
g(n) log2n

wmin
.

To bound ,R,, we have almost surely

,R, = max
,y,=1

�y,RyX

≤ max
,y,=1

ρ
3
ij

yiyj
di(dj−wj)+(di−wi)wj0

didj

≤ ρ max
,y,=1

3
i

0
diyi
3
j

(dj−wj)yj0
dj

+
3
i

di−wi)yi√
di

3
j

wjyj0
dj


≤ ρ max

,y,=1

(
3
i

di)
1/2,y, ·

3
j

(dj−wj)2
dj

1/2 ,y,
+

X3
i

(di−wi)2
di

~1/2
,y, ·(

3
j

w2j
dj
)1/2,y,


≤ (2+o(1))

√
ρn

= (1+o(1))
2√
w̄

by using (3.12), Lemma 3.7, and the Cauchy-Schwartz inequality.
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To bound ,S,, we have

,S, = max
,y,=1

�y,SyX = max
,y,=1

3
ij

|yiyj( 1

Vol(G)
− 1

vol(G)
)|0didj

≤ (
1

Vol(G)
− 1

vol(G)
)| max
,y,=1

3
ij

|yi
0
di||yj

0
dj |

≤ 2
0
Vol(G) logn

vol(G)Vol(G)
(
3
i

|yi
0
di|)2

= o(
0
ρ logn,y,2) = o( 1√

w̄
)

almost surely by using (3.15).

It remains to bound ,B,. We note that

bij = (aij−wiwjρ)( 10
didj

− 1√
wiwj

)

= cij

√
wiwj−

0
didj0

didj
.

Thus, we have

,B, = max
,y,=1

�y,ByX

≤ max
,y,=1

3
ij

yiyjcij

√
di(
0
dj−√wj)+(

√
di−√wi)√wj0

didj
.

We define yIi = yi(
√
di−√wi)/

√
di and y

II
i = yi

√
wi/
√
di. Then we have almost

surely

,B, ≤ max
,y,=1

�y,CyIX+�yI,CyIIX
≤ max

,y,=1
,C,,yI,+,C,,yI,,yII,

≤ o(,C,)
since ,yI,2 =�i y

2
i (
√
di−√wi)2/di = o(

�
i y
2) = o(1) and ,yII, = (1+o(1)),y,.

Together we have

max
i W=0

|1−λi| ≤ ,M,
≤ ,B,+,C,+,R,+,S,

≤ (1+o(1))(
4√
w̄
+
g(n) log2n

wmin
).

The proof is complete.
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Proof of Lemma 3.7. Let Xi = (di−wi)2, X =
�n

i=1
1
wi
Xi, and xij = aij−wiwjρ.

We have

E(Xi) = Var(di) = E(

n3
j=1

x2ij) < wi

E(X2
i ) = E((di−wi)4) = E((

n3
j=1

xij)
4)

=

n3
j=1

E(x4ij)+6
3

j1=j2, W=j3=j4
E(xij1xij2xij3xij4)

≤ wi+6w
2
i

since E(xij) = 0. For i W= j, we have

E(XiXj) = E(di−wi)2(dj−wj)2

= E((

n3
k=1

xik)
2)((

n3
l=1

xil)
2)

= E(Xi)E(Xj)+E(x
4
ij)−(E(x2ij))2

≤ wiwj+wiwjρ.

Thus,

Var(Xi) ≤ wi+5w
2
i ,

coVar(Xi,Xj) ≤ wiwjρ.

Therefore,

E(X) =

n3
i=1

1

wi
E(Xi) < n

Var(X) =

n3
i=1

1

w2i
Var(Xi)+2

n3
i<j

1

wiwj
coVar(Xi,Xj)

≤ (5+
1

wmin
+
1

w̄
)n

= (5+o(1))n.

Using the Chebyshev inequality, we have

P(|X−E(X)| > a) ≤ a2

Var(X)
.
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By choosing a =
√
n g(n), where g(n) is an arbitrarily slow growing function,

almost surely, we have X = (1+o(1))n. Thus, we have almost surely

,χ,2 ≤ (1+o(1))n

as desired.
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[Erdős and Rényi 59] P. Erdős and A. Rényi. “On Random Graphs. I.” Publ. Math.

Debrecen 6 (1959), 290—291.

[Faloutsos et al. 99] M. Faloutsos, P. Faloutsos, and C. Faloutsos. “On Power-Law Re-

lationships of the Internet Topology.” Comput. Commun. Rev. 29 (1999), 251—263.
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