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Smaller Explicit
Superconcentrators
N. Alon and M. Capalbo

Abstract. Using a new recursive technique, we present an explicit construction of an

infinite family of N-superconcentrators of density 44. The most economical previously
known explicit graphs of this type have density around 60.

1. Introduction

For an integer N , an N -superconcentrator ΓN is a directed acyclic graph with a

set X of N inputs (i.e., vertices with indegree 0) and a set Y of N outputs (i.e.,

vertices with outdegree 0), such that, for any subset S of X, and any subset

T of Y satisfying |S| = |T |, there are |S| vertex-disjoint directed paths in ΓN
from S to T . Superconcentrators have many applications in computer science

and in the study of communication networks, see, e.g., [Valiant 76], [Chung 78],

[Pippenger 77], and their references. The explicit construction of sparse graphs

of this type has been an extensively studied problem. Gabber and Galil [Gabber

and Galil 79] presented the first explicit construction of N -superconcentrators

with O(N) edges (about 270N edges). Since then, several researchers ([Alon and

Milman 85], [Buck 86], [Jimbo and Maruoka 87], [Morgenstern 94], and [Alon et

al. 87]) presented constructions of N -superconcentrators using fewer and fewer

directed edges. The most economical construction before the one described in the

present paper has been obtained from the technique presented in [Alon et al. 87],

combined with the Ramanujan graphs constructed in [Lubotzky et al. 88], and

yields a family of N -superconcentrators that have about 60N edges. All of these
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constructions use the same recursive technique, and achieve improvements by

using either better explicit expander constructions, or better analysis of known

expander constructions. The best known lower bound for the number of edges of

an N -superconcentrator is only (5− o(1))N , proved by Lev and Valiant in [Lev
and Valiant 83].

In this paper, we present a construction of a family of N -superconcentrators

ΓN with only 44N + O(1) edges. This is done by introducing a new recursive

technique, and by combining it with appropriate extended double covers of Ra-

manujan expanders. In Section 2, we briefly describe the Ramanujan graphs

needed here, and in Section 3, we give the construction of the graphs ΓN . The

proof of the main result, that each ΓN is indeed an N -superconcentrator, is given

in Section 4.

Our notation is mostly standard. For a graph G = (V (G), E(G)), and for a

set S ⊆ V (G), let NG(S) denote the set of vertices in G that are adjacent in G

to at least one vertex in S. If M is a matching in G, v is a vertex of G, and S

is a subset of vertices of G, we say that M covers v if v is incident with an edge

in M . M saturates S if it covers every vertex of S.

For an undirected graph Λ = (X,E), where X = {x1, ..., xN} is a set of N
vertices, the extended double cover of Λ is the bipartite graph ΛI with parts
Y = {y1, ..., yN} and Z = {z1, ..., zN}, where yιzι is an edge in ΛI if and only if
either ι = ιI, or xιxι is an edge in Λ. Thus, if Λ is loopless and k-regular, then
its extended double cover ΛI is k + 1-regular.
A graph is called Ramanujan if it is d-regular for some d > 2, and the absolute

value of each eigenvalue of its adjacency matrix besides the largest one, is at

most 2
√
d− 1.

For a group G and a subset Σ of G, where π ∈ Σ if and only if π−1 ∈ Σ, the
Cayley graph ΛI on G with respect to Σ is the |Σ|-regular graph whose vertex-set
is G, and whose edge-set is {{ν,πν}| ν ∈ G and π ∈ Σ}. The elements π ∈ Σ
are the generators of ΛI, and Σ is the set of generators of ΛI. If Σ generates G,
then ΛI is connected; otherwise, the components of ΛI are the right cosets of the
subgroup S of G generated by Σ (i.e., the sets of the form {sg|s ∈ S}). If H is a

subgroup of G, the Schreier graph (G;G/H ;Σ) is the graph whose vertices are

the left cosets of H , where sH and sIH are adjacent if there exists a π ∈ Σ such
that πsH = sIH .

2. An Auxiliary Construction

We need an infinite series of explicit 9-regular Ramanujan graphs Λ1, ...,Λl,Λl+1,...

such that Λl+1 has exactly twice as many vertices as Λl. The construction in
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[Morgenstern 94] gives us 9-regular Ramanujan graphs, but not in the sizes

that we need. Thus, we present the following modification shown to us by A.

Lubotzky.

Theorem 2.1. (A. Lubotzky [Lubotzky 02]) There exists an explicit family of 9-
regular Ramanujan graphs on k × 2l−1 vertices, where k = 64 × 65 × 63 =
262, 080, and l = 0, 1, 2, . . . .

Proof. We first construct an explicit family HI of 9-regular Ramanujan graphs on
k × 218l−18 vertices, for each integer l. Then we construct H from HI.
To construct HI, let g(x) be an irreducible polynomial of degree 2 in F8[x],

where F8 denotes the field on 8 elements. For each nonnegative integer l,

the graph ΛIl ∈ HI is the Cayley graph on Hl = PGL2(Kl) where Kl =

F8[x]/g
l(x)F8[x] with respect to the set Σl of generators, specified below. The

number of vertices of this graph is k × 218l−18, where k is as above. To see
this, note that K1 is the finite field with 64 elements, and there are precisely

(642− 1)(642− 64) two-by-two invertible matrices over it. This is, therefore, the
number of ways to choose the entries of an invertible two-by-two matrix over

Kl modulo g(x). Knowing these, there are 8
(2l−2)4 ways to choose the actual

entries, and this way, we obtain all the invertible matrices over Kl. Since Kl

contains 82l−82l−2 elements which are not divisible by g(x), this implies that the
cardinality of PGL2(Kl) is (64

2 − 1)(642 − 64)8(2l−2)4/(82l − 82l−2) = k218l−18.
To specify Σl, first fix a γ in F8 such that the resulting polynomial q(x) =

x2+x+γ is irreducible in F8[x]. Next, let βl be a root of q(x) in F8[x]/g
l(x)F8[x]

= Kl. The proof of existence of such a root is given in the following proposition.

Proposition 2.2. Let q(x) = x2 + x + γ be an irreducible polynomial in F8[x], and

let g(x) be any other irreducible polynomial of degree 2 in F8[x]. Then for each

positive integer l, there is a root βl of q(x) in the ring Kl = F8[x]/g
l(x)F8[x].

Furthermore, we can find such a βl efficiently.

Proof. Observe, first, that as K1 = F8[x]/g(x)F8[x] is the unique finite field with

82 = 64 elements, it contains the roots of every irreducible polynomial of degree

2 over F8, and hence, contains a root β1 of q(x) in the field K1.

To complete the proof of Proposition 2.2, apply induction on l. Let l be

any positive integer. We assume that there exists a root βl of q(x) in Kl, or

equivalently, there exists a βl ∈ F8[x] such that q(βl) ≡ 0 mod gl(x). Now let
βl+1 be the element in F8[x] such that βl+1 = βl + r(x)g

l(x), where r(x) = r is
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a polynomial of degree at most 1 in F8[x] to be determined later. Then

q(βl+1) = q(βl) + r(x)g
l(x) + r2(x)g2l(x). (2.1)

But if l is positive, then 2l ≥ l+ 1. Also, as q(βl) ≡ 0 mod gl(x), it follows that
q(βl) ≡ r̃(x)gl(x) mod gl+1(x) for some r̃(x) in F8[x] of degree at most 1. Set
r(x) = r̃(x) to conclude that q(βl+1) ≡ 0 mod gl+1(x). Obviously, this proof

yields an efficient algorithm as well.

Let Σl be the following 9-element subset of Hl.

Σl =
1 ε+ δβl

(ε+ δβl + δ)x 1
|δ, ε ∈ F8; ε2 + εδ + δ2γ = 1 . (2.2)

It is easy to check that Σl has 9 elements and that each element of it is of order

2 in PGL2(Kl). This completes the description of all graphs Λ
I
l ∈ HI. By the

proof in [Morgenstern 94], each Λl ∈ HI is Ramanujan.
To construct H from HI, we do the following. Let ϕ be the following mapping

π =
a11 a12
a21 a22

)→ aI11 aI12
aI21 aI22

(2.3)

from Hl+1 to Hl, where a
I
ij = aij mod g

l(x) for each i, j ∈ {1, 2}. Then ϕ is

a surjective mapping and a group homomorphism, and the kernel of ϕ is H I,
where

H I =
1 + gl(x)s(x) gl(x)r(x)

t(x)gl(x) 1
|r(x), s(x), t(x) ∈ F8[x]/g(x)F8[x] .

(2.4)

H I is a group, and is isomorphic to F 182 , where addition in F 182 corresponds to

multiplication in H I. Thus, for each positive integer c ≤ 18, there is a subgroup
H Ic of H with 2c elements. Also, if π and πI are distinct elements in Σl+1, then
ϕ(π) W= ϕ(πI), as shown in the following claim.

Claim 2.3. Let Σl+1 and ϕ be as above. If π and πI are distinct elements in Σl+1,
then ϕ(π) W= ϕ(πI).

Proof. For any two polynomials s(x), t(x) ∈ F8[x], say that t(x) is a multiple
of s(x) if t(x) = r(x)s(x), for some polynomial r(x) ∈ F8[x]. Let π and πI be
two distinct elements in Σl+1 and suppose that ϕ(π) = ϕ(πI). Then for some
δ, 6 ∈ F8, where at least one is nonzero, 6 + δβl+1 is a multiple of g

l(x). We

may assume that δ is nonzero, and by dividing, if needed, that δ = 1. Hence,
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βl+1 + 6 is a multiple of gl(x). Now let us write q(x) = (x + 6)x + r(x), where

r(x) is a polynomial in F8[x] that has degree at most 1. Because q is irreducible

in F8[x], r(x) is not a multiple of x + 6. However, then r(βl+1) is a multiple of

gl(x) because q(βl+1) is a multiple of g
l(x) (by the definition of βl+1) and so

is βl+1 + 6. But since r(x) is not a multiple of x + 6, this implies that 6I is a
multiple of gl(x) for some nonzero 6I ∈ F8, which is impossible.

By the above discussion, it follows that for each positive integer c ≤ 18, the
Schreier graph (Hl+1;Hl+1/H

I
c;Σl+1) is 9-regular, Ramanujan, and has k×218l−c

vertices. The construction of a 9-regular Ramanujan graph Λl on k× 2l vertices
for each l ≥ 0 follows.

3. Explicit Superconcentrators

Here, we construct an infinite family of N -superconcentrators with 44N +O(1)

edges for each N of the form k × 2l, and each nonnegative integer l. Let Γk be
any explicit k-superconcentrator from [Alon et al. 87] or [Jimbo and Maruoka

87] (since k = O(1), the exact size of Γk does not really matter). We next present

the construction of ΓN for each N of the form k× 2l, and each positive integer l.

3.1. The Construction of ΓN

Let X and Y be disjoint sets of N vertices each. The input and output sets of

ΓN are X and Y , respectively. Let X I = {xI1, ..., xIN} and Y I = {yI1, ..., yIN} be
disjoint sets of N vertices each.

The edges in ΓN between X and X I form the extended double cover ΛX of a

9-regular Ramanujan graph (explicitly constructed in Theorem 2.1), where each

edge is directed from X to X I. Similarly, the edges in ΓN from Y I to Y form the

extended double cover ΛY of a 9-regular Ramanujan graph, where each edge is

directed from Y I to Y . In addition, for each ι ∈ {1, .., N/2}, the arcs (xI
ι+N/2, y

I
ι),

(xI
ι+N/2, x

I
ι), (x

I
ι, y
I
ι+N/2), and (y

I
ι, y
I
ι+N/2) are in ΓN .

Put X II = {xIι ∈ X I|ι ∈ {1, ..., N/2}}, and Y II = {yIι ∈ Y I| ι ∈ {1, ..., N/2}}.
The remaining edges of ΓN form a digraph with input set X II and output set
Y II, which is isomorphic to ΓN/2, and is vertex-disjoint from X, Y , Y I \Y II, and
X I \X II.
The rest of this paper is devoted to proving the following theorem.

Theorem 3.1. ΓN has 44N +O(1) edges, and is an N-superconcentrator, with input

set X and output set Y .
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4. The Proof of Theorem 3.1

Proof. By construction, the number of edges f(N) of ΓN satisfies f(N) = (2 ·10+
2)N + f(N/2), implying the claim about the number of edges of ΓN .

To prove the main part of Theorem 3.1, we use induction; that is, we assume

that ΓN/2 is anN/2-superconcentrator, and show that ΓN is anN -superconcentrator.

Let S be any subset of X, and let T be any subset of Y such that |S| = |T |. We
first show that:

(A) there is a set P of vertex-disjoint directed paths in ΓN in X ∪X I ∪ Y ∪ Y I
such that

(i) each vertex in S ∪ T is an endpoint of exactly one P ∈ P , and
(ii) each P ∈ P is either (a) from S to T , (b) from S to X II, or (c) from Y II to

T .

Then (A), together with our inductive hypothesis that ΓN/2 is an

N/2-superconcentrator, implies that ΓN is an N -superconcentrator.

We next show the existence of such a P. We make the following claim.

Lemma 4.1. Let S be any subset of X, and let T be any subset of Y where |S| = |T |.
Suppose there exist matchings M∗S ⊂ ΛX and M∗T ⊂ ΛY such that both M∗S and
M∗T have |S| = |T | edges, and M∗S and M∗T satisfy properties (1) and (2), stated
below.

(1) M∗S saturates S, and M
∗
T saturates T .

(2) Let ι be an arbitrary integer in {1, 2, ..., N/2}. Then if M∗S covers both
xIι and xIι+N/2, then M

∗
T covers at least one vertex of {yIι, yIι+N/2}. Sim-

ilarly, if M∗T covers both yIι and yIι+N/2, then M
∗
S covers at least one of

{xIι, xIι+N/2}.

Then there exists a collection P of vertex-disjoint paths in ΓN in X∪X I∪Y I∪Y
that satisfies (A).

Proof. Let X IS be the set of vertices xI ∈ X I that are covered by an edge in M∗S ,
and let Y IT be the set of vertices y

I ∈ Y I that are covered by an edge in M∗T . For
each ι ∈ {1, 2, ..., N/2}, let Wι be the set of 4 vertices x

I
ι, x

I
ι+N/2, y

I
ι, y
I
ι+N/2.

Because M∗S and M
∗
T satisfy (1), to prove Lemma 4.1, it suffices to prove the

following statement.

For each Wι, there exists a collection Pι of vertex-disjoint directed paths P
(some of which may be of length 0) in ΓN [Wι] such that:
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(iI) each vertex in (X IS ∪X IT ) ∩Wι is the endpoint of exactly one P ∈ Pι,

(iiI) each Pι ∈ Pι is either (a) from X IS to X
II, (b) from Y II to Y IT , or (c) from

X IS to X
I
T ;

then P = ∪ιPι.
The existence of such Pι is easy to prove by exhaustive search, since Wι has

only 4 vertices. Indeed, one can easily check that unless either X IT ∩Wι has 2

vertices and X IS ∩Wι none, or X
I
S ∩Wι has 2 vertices and X

I
T ∩Wι none, there

does exist such a Pι. But because M∗S and M∗T satisfy (2), we are assured that
neither of these can happen, and so Lemma 4.1 follows.

With Lemma 4.1 in mind, we devote the rest of this section to proving the

following proposition.

Proposition 4.2. Let S be any subset of X, and let T be any subset of Y where

|S| = |T |. Then there exist matchings M∗S ⊂ ΛX and M∗T ⊂ ΛY with |S| = |T |
edges each that satisfy (1) and (2) of Lemma 4.1.

Proof. We first prove Lemma 4.3 stated below, and then use it to establish

Proposition 4.2.

Lemma 4.3. Let S and T be as in Proposition 4.2. Then there exist matchings MS

and MT , and a subset I of {1, ..., N} that satisfy the following properties.

(1) Each edge in MS is incident with a vertex in S, and each edge in MT is

incident with a vertex in T .

(2) Let X II denote the subset of X
I of the form {xIι|ι ∈ I}, and let Y II denote

the subset of Y I of the form {yIι|ι ∈ I}. Then MS saturates X
I
I and MT

saturates Y II .

(3) Let α be the number between 0 and 1 such that |S| = |T | = α|N |. If α
satisfies 1/4 ≤ α ≤ 1/2, then |I| is at least (α− 1/4)N . If α is larger than
1/2, then |I| is at least (α− (1− α)/2)N .

The proof of Lemma 4.3 uses the following lemma.

Lemma 4.4. Let Λ̄ be the extended double cover of a 9-regular Ramanujan graph

with N vertices, and let X and Y denote its parts, where |X| = |Y | = N . Let S
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be a subset of X, and let α be such that |S| = αN . Then the following hold.

If α ≤ 1/4, then |NΛ̄(S)| is at least 2|S|.
If 1/4 ≤ α ≤ 1/2, then |NΛ̄(S)| is at least |S|+N/4.
If 1/2 ≤ α, then |NΛ̄(S)| is at least |S|+ (1− α)N/2.

Proof. Lemma 4.4 is proved using the technique in [Alon et al. 87]. We proceed
with the proof. The following lemma is a restatement of Theorem 2.1 in [Alon

et al. 87].

Lemma 4.5. Let G = (V,E) be a d-regular graph on N vertices, and suppose that

the second largest eigenvalue of the adjacency matrix of G is at most λ. Define

a = d−λ
2d , b =

1+2a
4a . Let S ⊂ V be a set of vertices of G, and let W = NG(S)−S

be the set of all neighbors of S that lie outside S. Put |S| = αN and |W | = wN .
Then

w2 − 2(1− 2α− b)w − 4α(1− α) ≥ 0. (4.1)

Note that if G is as in Lemma 4.5, and H is the extended double cover of

G, then for every set of vertices S ⊂ X satisfying |S| = αN and |NH(S)| =
(α+w)N , the inequality (4.1) holds. In Lemma 4.4, we start with a 9-regular Ra-

manujan graph on N vertices. As it is Ramanujan, its second largest eigenvalue

is at most 2
√
8. Therefore, in the notation of Lemma 4.5, a = 9−2√8

18 = 0.18573

and b = 1+2a
4a = 1.846038. Let S and W be as in Lemma 4.5; suppose |S| = αN

and |W | = wN . Substituting in (4.1), we get
w2 + (1.6920754 + 4α)w − 4α(1− α) ≥ 0. (4.2)

Therefore, in order to complete the proof of Lemma 4.4, it suffices to prove the

following.

Lemma 4.6. Let α and w be two reals in [0, 1] and suppose (4.2) holds. Then:

(i) If α ≤ 1/4, then w ≥ α.

(ii) If 1/4 ≤ α ≤ 1/2, then w ≥ 1/4.
(iii) If α ≥ 1/2, then w ≥ 1−α

2 .

Proof. For every fixed α ∈ [0, 1] the left-hand side of (4.2), which is
f(w) = w2 + (1.6920754 + 4α)w − 4α(1− α),
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is a strictly increasing function of w for w ∈ [0, 1]. Therefore, it suffices to prove
the following:

(i’) If 0 ≤ α ≤ 1/4, then

f(α) = α2 + (1.6920754 + 4α)α− 4α(1− α) ≤ 0. (4.3)

(ii’) If 1/4 ≤ α ≤ 1/2, then

f(1/4) = 1/16 + (1.6920754 + 4α)1/4− 4 · α(1− α) ≤ 0. (4.4)

(iii’) If 1/2 ≤ α ≤ 1, then

f(
1− α
2

) = (
1− α

2
)2 + (1.6920754 + 4α)

1− α
2
− 4α(1− α) ≤ 0. (4.5)

These inequalities can be checked routinely. The left-hand side of (4.3) is non-

positive for all α ∈ [0, 0.2564] (and hence for all α ∈ [0, 1/4]); the left-hand
side of (4.4) is nonpositive for all α ∈ [0.236314, 0.51368] (and hence for all
α ∈ [1/4, 1/2]); and the left-hand side of (4.5) is nonpositive for all α ∈ [0.4872, 1]
(and hence for all α ∈ [1/2, 1]). This completes the proof, and hence implies the
assertion of Lemma 4.4 as well.

We now use Lemma 4.4 together with Menger’s Theorem to prove the existence

of I,MS and MT that satisfy (1)—(3) of Lemma 4.3, and then this lemma will

follow. Let U I = {uI1, ..., uIN} and V I = {vI1, ..., vIN} be disjoint sets, each of N
vertices. Let GI be the following graph on S ∪ U I ∪ V I ∪ T . Every edge in GI is
either directed from S to U I, or from U I to V I, or from V I to T .

• G[S ∪X I] is isomorphic to ΛX [S ∪X I]; (x, uIι) in an edge in GI if and only
if (x, xIι) is in ΓN (and x ∈ S).

• GI[U I ∪ V I] is a matching; (uIι, vIι ) is an edge in GI if and only if ι = ιI.

• G[Y I ∪ T ] is isomorphic to ΛY [Y I ∪ T ]; (vIι, y) is an edge in GI if and only
if (yIι, y) is an edge in ΓN (and y ∈ T ).

Note that the maximum possible number of vertex-disjoint paths from S to T

is the maximum possible cardinality of I in Lemma 4.3. By Menger’s Theorem,

we have the following fact:

(M) The maximum possible size of I is equal to the minimum possible cardi-

nality of a set of vertices C that separates S and T in GI.



160 Internet Mathematics

Let C be a minimum size separating set, and let a, b, c, d ∈ [0, 1] satisfy |C ∩S|
= aN ; |C∩U I|= bN ; |C∩V I|= cN ; and |C∩T |= dN . Thus, |C|= (a+b+c+d)N .
Consider two possible cases.

Case 1: 1/4 ≤ α ≤ 1/2. Then we may assume that both a and d are no larger
than α − 1/4, or equivalently, that S \ C and T \ C have at least N/4 vertices

each, or we are done by (M). By Lemma 4.4, there are at least |S|− aN +N/4

= (α−a+1/4)N vertices in U I that are adjacent to at least one vertex in S \C,
and at least |S|−d+N/4 = (α−d+1/4)N vertices in V I that are adjacent to at
least one vertex in T \C. Thus, there are at least (2α− d− a− 1/2)N indices ι

such that both uIι is adjacent to a vertex in S \C, and vIι is adjacent to a vertex
in T \C. Therefore, |C ∩ (U I ∪ V I)| must be at least (2α− a− d− 1/2)N , which
implies that |C| must be at least (2α − 1/2)N . Thus, by (M), the assertion of
Lemma 4.3 follows.

Case 2: 1/2 ≤ α. Then we may assume by (M) that both α − a and α − d are
at least (1 − α)/2, or equivalently, that S \ C and T \ C both have at least

(1 − α)/2 vertices. By Lemma 4.4, there are at least |S| − aN + (1 − α)N/2 =

(α − a + (1 − α)/2)N vertices in U I that are adjacent to at least one vertex in
S\C, and at least (α−d+(1−α)/2)N vertices in V I that are adjacent to at least
one vertex in T \C. Hence, C ∩ (U I ∪U I) must be at least (α− a− d)N , which
implies that |C| must be at least αN . The assertion of Lemma 4.3 follows.

We now use Lemma 4.3 to complete the proof of Proposition 4.2. We prove

that there exist matchings M∗S ⊂ ΛX and M∗T ⊂ ΛY with |S| = |T | edges each
that satisfy (1) of Lemma 4.1, and that satisfy (A) and (B), stated below.

(A) M∗S saturates X
I
I , and M

∗
T saturates Y

I
I .

(B) Let ι be an arbitrary integer in {1, ..., N/2} such that neither ι nor ι+N/2
is in I. ThenM∗S covers at most one of x

I
ι, x
I
ι+N/2, and M

∗
T covers at most

one of yIι, y
I
ι+N/2.

Then M∗S and M
∗
T will satisfy (2) of Lemma 4.1 as well, and Proposition

4.2 will follow.

Now let MS , MT , and I satisfy (1)—(3) of Lemma 4.3, and let X
I
I and Y

I
I

be as in (2) of Lemma 4.3. To show that there existM∗S andM
∗
T as needed,

let GIS be the graph ΛX [S ∪X I]. Next, let GS be the graph formed from
G by identifying xIι with x

I
ι+N/2 if and only if neither the integer ι nor

ι+N/2 is in I. Construct GT in an analogous fashion. Thus, matchings

in GS and GT that saturate both S and X
I
I simultaneously, and T and Y

I
I

simultaneously, respectively, correspond to matchings in ΛX and ΛY with
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|S| edges each that satisfy both (1) of Lemma 4.1 and (A) and (B), and
thus, (2) of Lemma 4.1. Hence, to finish the proof of Proposition 4.2, it

suffices to prove that:

(C) There exist matchings in GS and GT that saturate both S and X
I
I simul-

taneously, and T and Y II simultaneously, respectively.

This is done next. We first show a statement that seems a priori weaker

than (C), namely:

(D) There exist matchings in GS and GT that saturate S and T , respectively,

and there exist (a possibly different set of) matchings in GS and GT that

saturate X II and Y
I
I , respectively.

We claim that (D) implies (C). Indeed, suppose M1 is a matching in Λ̂X that

saturates S and M2 a matching that saturates X
I
I . Let C be a component of the

union M1 ∪M2, and let P be the set of edges of M1 ∪M2 incident to a vertex

in C. It is not difficult to check that there is a subset SC of edges of P that is a

matching, and that saturates C ∩ (X II ∪ S). The union ∪CSC , where C ranges

over the components of M1 ∪M2, is a matching that covers every vertex of X
I
I

and S. A similar statement holds in GT . Thus, (D) implies (C).

Having shown that (D) implies (C), we now prove (D). Since MS , MT , and

I satisfy (1) and (2) of Lemma 4.3, there exist matchings in GS and GT that

saturate X II and Y
I
I , respectively. Therefore, to prove (D), all we need to show

now is that there exist matchings in GS and GT that saturate S and T , respec-

tively. We do this next, using the fact that I satisfies (3) of Lemma 4.3 as well.

By Hall’s Theorem, there exist such matchings if, for each subset S0 of S, and

each subset T0 of T , |NGS
(S0)| ≥ |S0|, and |NGT

(T0)| ≥ |T0|. But we note that

|NGS
(S0)| ≥ |NGS

(S0) ∩X II |+ |NGS
(S0) ∩ (X I \X II)|/2. (4.6)

We now consider 2 cases.

Case 1: α ≤ 1/2, where |S| = αN , as before. The case when |S0| is no larger
than N/4 can be handled easily using Lemma 4.4. If |S0| is at least N/4, then
by Lemma 4.4, |NGS

(S0)| is at least |S0|+N/4. Also, |I| is at least (α− 1/4)N
because I satisfies (3) of Lemma 4.3. So |NGS

(S0) ∩X II | ≥ |S0|−N/4, because
at most N/4 vertices in S are not matched by MS to a vertex in X

I
I (as MS and

I satisfy (1) and (2) of Lemma 4.3). Together, these imply that |NGS
(S0)| ≥

|S0|. Similarly, |NGT
(T0)| ≥ |T0|. This implies (D) for the case α ≤ 1/2.

Case 2: α ≥ 1/2. Then we may assume that |S0| ≥ (1 − α)|N |/2. By Lemma
4.4, we see that |NGS

(S0)| is at least |S0| + (1 − α)N/2. Also, |I| is at least
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(α − (1 − α)/2)N because I satisfies (3) of Lemma 4.3. So |NGS
(S0) ∩ X II | ≥

|S0| − (1 − α)N/2 because at most (1 − α)N/2 vertices in S are not matched

by MS to a vertex in X
I
I (because MS and I satisfy (1) and (2) of Lemma 4.3).

Together, these imply that |NGS
(S0)| ≥ |S0|. Similarly, |NGT

(T0)| ≥ |T0|. This
implies (D) for the case when α ≥ 1/2 as well, and hence (D) follows.
As we have shown, (D) implies (C), which implies Proposition 4.2 by the

discussion preceding the statement of (C).

Proposition 4.2 and Lemma 4.1 imply Theorem 3.1.
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Note Added in Proof

The construction described here can be slightly modified to yield an explicit con-

struction of an infinite family of N-superconcentrators of density 40. Since the ba-
sic idea and analysis are similar to our treatment here, but the details are signifi-

cantly more complicated, we refer the interested reader to http://www.dimacs.rutgers.

edu/˜mcapalbo for the detailed proof, and only sketch here the modified construction.

As in the original construction, the modified one starts with 4 pairwise disjoint sets

of vertices X,X , Y, Y , each of cardinality N . The edges between X and X , and

those between Y and Y , are double covers of the 9-regular Ramanujan graph de-
scribed explicitly in Section 2. Note that these are double covers, and not extended

double covers, that is, we do not include the edges xιxι and yιyι. In addition, we fix
a generator π of our Ramanujan graph, and recall that its order is 2. The vertices of
X,X are numbered in such a way that for every ι between 1 and N/2, the genera-
tor π maps xι to xι+N/2 and xι to xι+N/2, and similarly for the vertices yi, yi. The
rest of the construction is identical to the description given in Section 3. The num-

ber of edges f(N) of the graph with N inputs and N outputs constructed this way

clearly satisfies f(N) = (2 · 9 + 2)N + f(N/2), implying that f(N) = 40N + O(1).
The detailed proof that this graph is indeed an N-superconcentrator can be found at
http://www.dimacs.rutgers.edu/~mcapalbo.

References

[Alon et al. 87] N. Alon, Z. Galil, and V.D. Milman. “Better Expanders and Super-

concentrators.” J. Algorithms 8 (1987), 337—347.



Alon and Capalbo: Smaller Explicit Superconcentrators 163

[Alon and Milman 85] N. Alon and V.D. Milman. “λ1, Isoperimetric Inequalities for
Graphs and Superconcentrators.” J. Combinatorial Theory B 38 (1985), 77—88.

[Buck 86] M. Buck. “Expanders and Diffusers. SIAM J. Algebraic and Disc. Meth. 7

(1986), 282—304.

[Chung 78] F. R. K. Chung. “On Concentrators, Superconcentrators, Generalizers and

Nonblocking Networks.” Bell System Tech. J. 58 (1978), 1765—1777.

[Gabber and Galil 79] O. Gabber and Z. Galil. “Explicit Construction of Linear-Sized

Superconcentrators.” FOCS (1979), 364—370.

[Jimbo and Maruoka 87] A. Jimbo and A. Maruoka. “Expanders Obtained from Affine

Transformations.” Combinatorica 7 (1987), 343—345.

[Lev and Valiant 83] G. Lev and L. G. Valiant. “Size Bounds for Superconcentrators.”

Theoret. Comput. Sci. 22 (1983), 233—251.

[Lubotzky 02] A. Lubotzky. Personal communication, 2002.

[Lubotzky et al. 88] A. Lubotzky, R. Phillips, and P. Sarnak. “Ramanujan Graphs.

Combinatorica 8 (1988), 261—277.

[Morgenstern 94] M. Morgenstern. “Existence and Explicit Construction of q+1-

Regular Ramanujan Graphs for Every Prime Power q.” J. Combinatorial Theory

B 62 (1994), 44—62.

[Pippenger 77] N. Pippenger. “Superconcentrators.” SIAM J. Comput. 6 (1977), 298—

304.

[Valiant 76] L. G. Valiant. “Graph Theoretic Properties in Computational Complex-

ity.” J. Comput. System Sci. 13 (1976), 278—285.

N. Alon, Department of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel

(nogaa@post.tau.ac.il)

M. Capalbo, Institute for Advanced Study, Princeton, NJ 08540 (mrc@ias.edu)

Received March 10, 2003; accepted March 26, 2003.


