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REAL EQUIVARIANT BORDISM FOR ELEMENTARY ABELIAN
2–GROUPS

MORITZ FIRSCHING

(communicated by J. P.C. Greenlees)

Abstract
We give a description of real equivariant bordism for the

group G = Z/2× · · · × Z/2, which is similar to the descrip-
tion of complex equivariant bordism for the group S1 × · · · × S1

given by Hanke in [Han05, Theorem 1].

1. Introduction

Non-equivariantly, the Pontryagin–Thom construction (see the classical paper by
Thom [Tho54]) yields an isomorphism between (non-equivariant) real geometric
bordism N∗ and the groups MO∗ associated to the Thom spectrum. For a com-
pact Lie group G, Conner and Floyd defined equivariant real geometric bordism NG

∗
(see [CF64, Section 19]). The study of an equivariant analogue of the Thom spectrum
and groups associated to it leads to the definition of equivariant homotopic bordism
MOG

∗ . The Pontryagin–Thom map between these groups (see Section 2.4) fails to be
an isomorphism if G is a non-trivial group due to a lack of equivariant transversality.
It’s not known whether the equivariant Pontryagin–Thom map is a monomorphism
for all groups; however for G = Z/2× · · · × Z/2, injectivity was shown by tom Dieck,
see [tD71, Theorem 1].

Sinha investigates N
Z/2
∗ and describes it as a subring of MO

Z/2
∗ , generated by

certain elements that are images of geometric bordism classes under the equivariant

Pontryagin–Thom map, see [Sin02]. He also describes the quotient N
Z/2
∗ –module

MO
Z/2
∗ /N

Z/2
∗ which can be interpreted as transversality obstructions. Instead of the

group Z/2, which Sinha considers, we look more generally at real equivariant bordism
for groups of the form Z/2× · · · × Z/2. Our main result is the following:

Theorem 3.18. For G = Z/2× · · · × Z/2, there is a pullback square

NG
∗

��

// MO∗[e
−1
V , Yd,V ]

��

MOG
∗

// MO∗[eV , e
−1
V , Yd,V ]
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with all maps injective, for certain indeterminates eV , e
−1
V and Yd,V , where V runs

through a complete set J of representatives of isomorphism classes of non-trivial
irreducible representations of G and d > 1.

This theorem is an analogue of a result in complex equivariant bordism for G =
S1 × · · · × S1 proved by Hanke, see [Han05, Theorem 1]. In our proof we follow
Hanke’s argument closely and use the same techniques, most of which have already
been employed in this context in a paper by Sinha, see [Sin01]. The methods of proof
include the use of families of subgroups and the analysis of normal data around fixed
sets. Some considerations become easier in view of the fact that we are considering
a finite group, instead of the compact, but infinite, group S1 × · · · × S1. In order to
define homotopic equivariant bordism, we use, but don’t discuss in much detail, the
notion of complete G–universes and equivariant homotopy and homology theory and
give detailed references instead.

In the next section, we review real equivariant bordism and its basic properties.
Section 3 is occupied with the proof of Theorem 3.18, carefully defining all necessary
maps first. Our article is based on [Fir11] and we strive to give elaborate definitions
and proofs. However when a result can be found already well-documented in the
literature, we refer the reader to it.
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2. Real equivariant bordism

2.1. Geometric real equivariant bordism
Let G be a compact Lie group. Let’s recall the basic notions of geometric real equiv-

ariant bordism, which was described in depth first by Conner and Floyd, see [CF64]
and [Con79].

All manifolds we consider in connection with bordism groups of any kind are
assumed to be smooth and compact. Group actions on these manifolds are required
to be smooth. A singular G–manifold over a pair of G–spaces (X,A) is a G–manifold
M with (possibly empty) boundary together with a G–equivariant map

f : (M,∂M) → (X,A).

Two singular n–dimensional G–manifolds, (M1, f1) and (M2, f2), over (X,A) are
bordant if there is an (n+ 1)–dimensional G–manifold W with two G–submanifolds
of codimension 1, ∂0W and ∂1W , and a G–equivariant map

g : (W,∂1W ) → (X,A)

such that ∂W is G–diffeomorphic to ∂0W ∪ ∂1W , ∂0W is G–diffeomorphic to M1 q
M2 with g|∂0W = f1 q f2 and ∂∂0W = ∂0W ∩ ∂1W = ∂∂1W . This gives an equiva-
lence relation on singular G–manifolds over a pair of G–spaces (X,A). By NG

n (X,A)
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we denote the set of such bordism classes. If A is empty we shorten NG
n (X,∅)

to NG
n (X) and if X is a point, we shorten NG

n (pt) to NG
n . The direct sum over

all dimensions NG
∗ (X,A) is called the real equivariant bordism module. Addition is

induced by taking the disjoint union on representative and the NG
n –module struc-

ture is induced by taking the product of representatives. As in the non-equivariant
case (compare [CF64, Section 5]), NG

∗ (−,−) gives a Z–graded equivariant homology
theory, with long exact sequence

· · · // NG
n (A)

i∗ // NG
n (X)

j∗ // NG
n (X,A)

∂ // NG
n−1(A)

// · · · .

2.2. Homotopic real equivariant bordism
In this section we restrict ourselves to a finite abelian group G for simplicity.

Many of the constructions can be carried out for arbitrary compact Lie groups. A
real G–representation is a finite-dimensional real inner product space V together
with a smooth action of G on V through linear isometries. We denote the trivial
n–dimensional representation, i.e., Rn with trivial G–action, by n. Let |V | denote
the dimension of a representation V and SV its one-point compactification. Let J
be a complete set of representatives of equivalence classes of non-trivial irreducible
representations of G. Notice that |J | = |G| − 1 and that there is an isomorphism

R ∼= 1⊕
⊕
V ∈J

V,

where R denotes the regular representation. For the basic notions of representations
of finite abelian groups see for example [Ser77, Sections 1.2 and 3.1]. A complete G–
universe in the sense of [May96, Chapter IX, Section 2] can be given by the countable
direct sum

U := R⊕∞.

Finite G–subspaces of U will be called indexing spaces. By BOG(n) we denote the
Grassmannian of n–dimensional subspaces of U . For the trivial group {e} a com-
plete {e}–universe is given by R⊕∞ and BO{e}(n) is also denoted by BO(n). Gen-
erally, BOG(n) is a classifying space for n–dimensional real G–vector bundles, com-
pare [tD87, Chapter I, Section 9]. Let ξGn be the tautological bundle over BOG(n)
and T (ξGn ) be its Thom space. For two indexing spaces V and W , such that V ⊂ W ,
we denote the orthogonal complement of V in W by W − V . Let π be the product
G–vector bundle with fiber W − V . The classification of the product bundle π × ξGn
yields a G–equivariant map

σV,W : ΣW−V T (ξG|V |) → T (ξG|W |)

by passing to Thom spaces.
For n > 0, the homotopic equivariant real bordism groups are defined in non-

negative degrees as

MOG
n := colim

W∈U
[SW⊕n, T (ξG|W |)]

G = colim
Z∈U
n⊂Z

[SZ , T (ξG|Z|−n)]
G

and in negative degrees as

MOG
−n := colim

W∈U
[SW , T (ξG|W |+n)]

G.



238 MORITZ FIRSCHING

Here [−,−]G denotes G–homotopy classes of G–equivariant maps, and the structure
of an abelian group can be given to the colimit by using the group structures of
homotopy classes of maps from SW for representations W containing copies of the
trivial representation. For V ⊂ W , the map in the colimit is obtained by smashing
with SW−V and then composing with the map σV,W (or with the map σV⊕n,W⊕n in
case of negative degrees respectively).

We can view an indexing space V as a |V |–dimensional G–vector bundle over a
point. Classifying this bundle and passing to Thom spaces gives a map SV → T (ξ|V |).
If we precompose with the inclusion S0 → SV , which is induced by the zero map
0 → V , we obtain an element εV ∈ MOG

−|V |, which is called the Euler class of V .

2.3. Equivariant spectra and (co)homology theories

A more conceptual approach to homotopic real equivariant bordism is via equiv-
ariant spectra. We refer the reader to [May96, Chapters XII and XIII] and [LMS86,
Chapters I, II and X] for the definition of RO(G)–graded equivariant (ring) (pre)-
spectra indexed on a complete G–universe and RO(G)–graded (co)homology theories
and sketch the structures relevant to us.

Thom spaces of appropriate Grassmannians and suspension maps described in
the previous section constitute an equivariant prespectrum indexed on the universe
U . The spectrification of this prespectrum is called real equivariant Thom spectrum
MOG and yields an RO(G)–graded homology theory associated to it, which is called
homotopic real equivariant bordism. It turns out that it’s sufficient to consider inte-
ger gradings instead of RO(G), in view of periodicity isomorphisms (see [May96,
Chapter XV, Section 2, p. 157]). This leads to the ad hoc definition of homotopic real
equivariant bordism we have given above.

2.4. The equivariant Pontryagin–Thom map

We give a short description of the Pontryagin–Thom map. For every k ∈ N we con-
struct a map PT: NG

k → MOG
k as follows. Given an element [M ] in NG

k represented
by a k–dimensional G–manifold M , choose a G–representation Z, and an embedding
of M in Z. (The fact that this is possible is the Mostow-Palais theorem, see [Mos57]
and [Pal57]. A proof is also given by Wasserman [Was69, §1]). A tubular neighbor-
hood N of the image of M in Z is diffeomorphic to the total space E(ν) of the normal
bundle ν; compare [CF64, Chapter 3, Section 22]. We define a map

t : SZ → Tν

by sending N , viewed as a subset of SZ , to E(ν) viewed as a subset of Tν via the
diffeomorphism and send everything else, that is SZ −N , to the base point of Tν.
The classification of the normal bundle gives a map Tf : Tν → T (ξG|Z|−k) by passing

to Thom spaces and hence we get a homotopy class [Tf ◦ t] ∈ [SZ , T (ξG|Z|−k)]
G, which

represents an element in the colimit MOG
k . This element is defined to be PT([M ]).

This generalization of the classical Pontryagin–Thom construction is due to tom
Dieck, [tD71, §1]. Also compare [BH72, §3] and [Han05, p. 681].

Theorem 2.1. The above construction is well defined and a group homomorphism.
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It induces a ring homomorphism and a homomorphism of N∗–modules

PT: NG
∗ → MOG

∗ .

Furthermore the construction induces a natural transformation of Z–graded equivari-
ant homology theories PT: NG

∗ (−) → MOG
∗ (−).

One major ingredient for the proof of Theorem 3.18 is the observation that the
equivariant Pontryagin–Thom map is injective for certain groups. For a pair of G–
spaces (X,A) with “good local properties”, i.e., such that excision can be applied,
the following has been shown by tom Dieck.

Theorem 2.2 (see [tD71, Theorem 2]). For G = Z/2× · · · × Z/2, the Pontryagin–
Thom map PT: NG

∗ (X,A) → MOG
∗ (X,A) is a monomorphism.

For non-trivial G it can be seen that the Euler classes εV for G–representations V
without trivial summand are non-trivial elements in MOG

−|V |, see [May96, Chapter

XV, Lemma 3.1]. Hence the Pontryagin–Thom map is not surjective, since it’s a
graded map and NG

∗ has no elements of negative degree by definition.

2.5. Families of subgroups
It’s useful to consider geometric bordism groups with restricted isotropy. We review

concepts of [CF66, Sections 5 and 6] and [May96, Chapter XV, Section 3]. All
subgroups considered in this section are required to be closed. A family of subgroups
F of G is a set of subgroups of G that is closed under conjugation and closed under
taking subgroups. The family of all subgroups in G is

A := {H ⊂ G |H closed subgroup in G}

and the family of all proper subgroups in G is

P := {H ⊂ G |H 6= G closed subgroup in G}.

Let F ′ ⊂ F be a pair of families of subgroups of G. An F–manifold is defined to be a
G–manifold M such that all isotropy groups of M are in F and an (F ,F ′)–manifold
is an F–manifold such that ∂M is an F ′–manifold. With suitable bordisms we then
define groups NG

∗ [F ,F ′] of bordism classes of (F ,F ′)–manifolds. To define a similar
concept in homotopic bordism, we consider certain types of universal spaces. Let
F be a family of subgroups. There is a space EF called a universal F–space of G,
which is unique up to G–homotopy, with the following properties: (EF)H is (non-
equivariantly) contractible forH ∈ F and it’s empty forH /∈ F . Given an F–manifold
M , there is one and, up to homotopy, only one G–equivariant map M → EF . For
more on this space see [tD72, Satz 1], [tD87, Chapter I, Theorem (6.6)] and [May96,
p. 45]. With these universal F–spaces we make the following identification:

NG
∗ [F ,F ′] ∼= NG

∗ (EF , EF ′).

This leads to the the definition

MOG
∗ [F ,F ′] := MOG

∗ (EF , EF ′).

The long exact sequence of the pair (EF , EF ′) for NG
∗ (−,−) gives

· · · // NG
∗ [F ′]

iN // NG
∗ [F ]

jN // NG
∗ [F ,F ′]

∂N // NG
∗−1[F ′] // · · · .



240 MORITZ FIRSCHING

We call this the Conner–Floyd exact sequence and it has a geometric interpretation:
The map ∂ is actually induced by taking boundaries of singular (F ,F ′)–manifolds.
For real homotopical equivariant bordism MOG

∗ (−) we call the corresponding long
exact sequence the tom Dieck exact sequence:

· · · // MOG
∗ [F ′]

iMO // MOG
∗ [F ]

jMO // MOG
∗ [F ,F ′]

∂MO // MOG
∗−1[F ′] // · · · .

3. The case G = Z/2× · · · × Z/2
From now on we set G = (Z/2)l for some l > 0 and fix a complete set J of repre-

sentatives of isomorphism classes of non-trivial irreducible G–representations.

3.1. Map from homotopic bordism
First we define certain indexing tools. The free abelian group ZJ can be considered

to be an additive subgroup of the real representation ring RO(G). We set

AO∗(G) := Z[ZJ ].

This is a graded ring; the grading is induced by the virtual dimension of elements in
ZJ ⊂ RO(G). We have an isomorphism

AO∗(G) ∼= Z[eV , e−1
V ]V ∈J ,

for indeterminates eV of degree −|V | and e−1
V of degree |V | with the obvious relations.

It is induced by

ZJ 3
∑
V ∈J

αV V 7→
∏
V ∈J

e−αV

V .

Compare the analogous complex definitions in [Han05, p.683].
Let’s consider the fixed set of the equivariant Thom space.

Lemma 3.1 (compare [Sin01, Proposition 4.7] and [tD70a, Lemma 2.1]). We have
the following homotopy equivalence:

(T (ξGn ))G '
∨

W∈RO+(G)
|W |=n

T (ξ|WG|) ∧

(∏
V ∈J

BO(νV (W ))

)
+

,

where RO+(G) is a set of G–representations, containing one from every isomorphism
class. It can be viewed as a subset of RO(G). The number of times V appears as a
direct summand of W is denoted by νV (W ).

Proof. The space (BOG(n))G classifies n–dimensional G–vector bundles E over a
base space X with trivial G–action. Such an E decomposes into V –isotypical sub-
bundles as follows:

E ∼=
⊕

V ∈J∪{1}

EV ⊗R V.

This is a well-known result; Segal gives a proof in [Seg68, Proposition 2], and for G a
finite group Oliver [Oli96, Appendix] also gives a proof. The base X decomposes into
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a disjoint union of subspaces XW over which E has constant fiber W . The restriction
of E to XW is classified by a map to∏

V ∈J∪{1}

BO(νV (W )) = BO(|WG|)×
∏
V ∈J

BO(νV (W )),

where the map to the factor BO(νV (W )) is a classifying map of EV . The universal
bundle over this space is the product ξ|WG| × ξ, where ξ|WG| is the |WG|–dimensional
universal bundle and ξ is a G–vector bundle without trivial direct summand in the
fiber, so E(ξ)G is the zero section

∏
V ∈J BO(νV (W )). Taking all these classifying

spaces together we get

(BOG(n))G '
∐

W∈RO+(G)

(
BO(|WG|)×

∏
V ∈J

BO(νV (W ))

)

and passing to Thom spaces gives

(T (ξGn ))G '
∨

W∈RO+(G)
|W |=n

T (ξ|WG|) ∧

(∏
V ∈J

BO(νV (W ))

)
+

.

We want to define a ring homomorphism φMO : MOG
∗ → MO∗[eV , e

−1
V , YV,d] and

start with a map which is essentially the restriction to fixed sets. To be more precise,
we pass from the Thom spectrumMOG to its geometric fixed sets spectrum ΦGMOG.
For detailed definitions see [May96, Chapter XVI, Section 3] (also compare [LMS86,
Chapter II §9 and Chapter I §3] and [Sin01, Definition 4.3]).

We consider the classifying space BO(n) and define

BO := colim
n

BO(n).

The space BO carries an H–space structure that arises from classifying the product
of bundles. We set

B := BO×|J|.

Compare [tD70a, §2] for the complex analogue BU ; notice that since G is finite, we
don’t need to consider a proper subset of BO×|J|.

Proposition 3.2 (compare [Sin01, Theorem 4.9]). There is an equivalence of ring
spectra

ΦGMOG ' IRO(G) ∧MO ∧B+

with

IRO(G) :=
∨

W∈RO(G)
|W |=0

S|WG|.

Here S|WG| denotes a suspended sphere spectrum and |WG| denotes the (possibly
negative) virtual dimension of W ′G −W ′′G if W is represented by W ′ −W ′′. Note
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that IRO(G) carries the structure of a ring spectrum induced by the isomorphism

S|WG| ∧ S|V G| → S|(W⊕V )G|

for elements W,V ∈ RO(G), |W | = |V | = 0.

The proof of the analogous complex case [Sin01, Theorem 4.9] can be translated
word-by-word; the essential ingredient is the description of the equivariant Thom
space of Lemma 3.1.

Proposition 3.3 (compare [Han05, p. 684]). There is an isomorphism of graded
rings

(IRO(G) ∧MO ∧B+)∗
∼= // MO∗(B)⊗AO∗(G) .

Proof. The spectrum IRO(G) ∧MO ∧B+ can be viewed as a wedge of suspended
copies of MO ∧B+. For such a copy indexed by an element W − U ∈ RO(G) of
virtual dimension zero with W = WG ⊕ (WG)⊥ and U = UG ⊕ (UG)⊥ we identify

(S(W−U)G ∧MO ∧B+)∗ with

MO∗(B)⊗ (e(WG)⊥ · e−1
(UG)⊥

) ⊂ MO∗(B)⊗AO∗(G).

This induces the desired isomorphism.

Proposition 3.4 (compare [Sin01, Theorem 4.10]). There is an isomorphism of
graded rings

MO∗(B)⊗AO∗(G) ∼= MO∗[eV , e
−1
V , Yd,V ],

where V runs through J and d > 1. Here the degree of the eV ’s is 1, the degree of the
e−1
V ’s is −1 and the degree of the Yd,V ’s is d.

Proof. Since J is finite we have the isomorphism of the Künneth formula

MO∗(
∏
V ∈J

BO) ∼=
V ∈J⊗
MO∗

MO∗(BO).

Conner and Floyd used the Atiyah–Hirzebruch spectral sequence to calculate
MO∗(−), see [CF64, Theorem 8.3, Theorem 17.1]. For MO∗(BO) we obtain

MO∗(BO) ∼= MO∗[Xi]16i,

where each generator Xi has degree i, (compare [Koc96, Propositions 2.3.7 and
2.4.3]). With the identification AO∗(G) ∼= Z[eV , e−1

V ]V ∈J we get an isomorphism

MO∗(B)⊗AO∗(G) ∼= MO∗[eV , e
−1
V , Xi,V ]V ∈J,16i

∼= MO∗[eV , e
−1
V , Xd−|V |,V · e−1

V ]
V ∈J,1+|V |6d

.
(?)

Definition 3.5. For a G–representation V ∈ J and 1 + |V | 6 d we set

Yd,V := Xd−|V |,V · e−1
V .
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We identify Yd,V with the image of

Xd−|V | ⊗ e−1
V ∈ MOd−|V |(BO)⊗AO|V |(G)

under the inclusion of BO as V –th factor in B viewed, via the isomorphism (?), as
an element in MO∗[eV , e

−1
V , Xi,V ]. Notice that Yd,V is defined in such a way that

its dimension is d, and that all representations in J have dimension one. With this
definition we get the desired isomorphism

MO∗(B)⊗AO∗(G) ∼= MO∗[eV , e
−1
V , Yd,V ]V ∈J,d>1.

Definition 3.6. We combine the results of Propositions 3.2 to 3.4 to define a map

φMO : MOG
∗ → MO∗[eV , e

−1
V , Yd,V ]

as follows:

MOG
∗

restriction

to fixed sets
// ΦGMOG

∗
∼=

Proposition 3.2
// (IRO(G) ∧MO ∧B+)∗

∼=
Proposition 3.3

// MO∗(B)⊗AO∗(G)
∼=

Proposition 3.4
// MO∗[eV , e

−1
V , Yd,V ],

where the first map is given by restriction to fixed points. Not including the last
isomorphism we get a map

φ̃MO : MOG
∗ → MO∗(B)⊗AO∗(G).

3.2. Localization
The reason for naming the indeterminates eV is explained in the lemma below,

which can be proved by chasing through the definition of the map φMO and the
Euler classes εV .

Lemma 3.7 (compare [Han05, p. 685]). For a non-trivial irreducible representation
V and the corresponding Euler class εV ∈ MOG

∗ we have

φMO(εV ) = eV ∈ MO∗[eV , e
−1
V , Yd,V ].

Notice that φMO(εV ) is invertible in MO∗[eV , e
−1
V , Yd,V ].

We give an alternative description of φMO. The key steps are the following two
results by tom Dieck. Also compare the complex version of the following proposi-
tion [Sin01, Corollary 5.2].

Proposition 3.8 (see [tD71, Theorem 1(b)]). Let S be the set of Euler classes of
non-trivial irreducible representations in MOG

∗ . Then the localization map into the
ring of quotients λ : MOG

∗ → S−1MOG
∗ is injective.

The map φ̃MO sends all elements of S to units, since the image φMO(εV ) = eV of
an Euler class εV is a unit in MO∗[eV , e

−1
V , Yd,V ] by Lemma 3.7. Hence the universal

property of localization gives rise to a unique map

Φ̃MO : S−1MOG
∗ → MO∗(B)⊗AO∗(B)

such that Φ̃MO ◦ λ = φ̃MO. We cite the following result without proof.
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Proposition 3.9 (see [tD71, p. 217] and [tD70b, Hilfssatz 2]). The map

Φ̃MO : S−1MOG
∗ → MO∗(B)⊗AO∗(B)

is an isomorphism.

Complex versions of the propositions are [tD70a, Theorem 3.1] and [Sin01, Corol-
lary 4.15]. For G = Z/2 the corresponding statement is [Sin02, Corollary 3.19]. Fit-
ting it all together and composing with the isomorphism of Proposition 3.4 gives the
following commutative diagram:

MOG
∗

λ //

φ̃MO

''PPPPPPPPPPPP

φMO

++

S−1MOG
∗

Φ̃MO

��

ΦMO

uu

MO∗(B)⊗AO∗(G)

Proposition 3.4 ∼=
��

MO∗[eV , e
−1
V , Yd,V ]

Corollary 3.10. We have ΦMO ◦ λ = φMO and φMO is a monomorphism.

3.3. Map from geometric bordism

Next we want to construct a map

φN : NG
∗ → MO∗[e

−1
V , Yd,V ].

See [Han05, Proposition 3] for the analogous construction in the complex case. Let
Mn be a manifold representing an element [M ] ∈ NG

∗ and let F ⊂ MG be a connected
component of the fixed set of M . Then F is embedded in M . The normal bundle νMF
of F in M is a real G–vector bundle of dimension m and only the zero vector is fixed
by the G–action on each fiber. This bundle decomposes as follows:

νMF =

|J|⊕
k=1

Ek ⊗R Vk

for real vector bundles Ek and irreducible G–representations Vk. Notice that for the
groups we consider |J | = 2l − 1. Define

bF := bF ⊗ (e
−|E1|
V1

· · · · · e−|E|J||
V|J|

) ∈ MOn−m(B)⊗AOm(G),

where bF ∈ MOn−m(B) is represented by a map F → B with Vk–th component the
classifying map for Ek. Altogether we get the following map:

φ̃N : NG
∗ → MO∗(B)⊗AO∗(G)

[M ] 7→
∑

F⊂MG

bF ∈ (M(B)⊗AO(G))n.

Compare tom Dieck’s description of the map in [tD71, Section 5]. Composing with
the isomorphism of Proposition 3.4 we get a map φN : NG

∗ → MO∗[eV , e
−1
V , Yd,V ].
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As we will show next, its image is contained in MO∗[e
−1
V , Yd,V ]. The element bF ∈

MOn−k(B) is represented by a map F → BO(|E1|)× · · · ×BO(|E|J||), so bF lies in

MO∗(

|J|∏
k=1

BO(|Ek|)) ∼=
16k6|J|⊗
MO∗

MO∗(BO(|Ek|))

∼=
16k6|J|⊗
MO∗

MO∗[X1, . . . , X|Ek|] ⊂
16k6|J|⊗
MO∗

MO∗[Xd,Vk
]d>0.

In fact every element in MO∗(BO(|Ek|)) can be written as a sum of monomials with
at most |Ek| factors Xd,Vj . (Compare the classical calculations in [CF64, Theorem
8.3] and [Koc96, Propositions 2.4.3 and 2.3.7].) By definition of the Yd,V ’s we have
Xd,V = Yd+|V |,V · eV and this asserts that eVk

appears at most |Ek| times as factor

in bF and hence appears in non-negative degree (i.e., with non-positive exponent) in
bF . It follows that the sum bF lies in MO∗[e

−1
V , Yd,V ] and hence so does φN([M ]).

Next we show how φMO corresponds to φN.

Definition 3.11 (compare [tD70a, p. 354]). The inverse of the H–space B struc-
ture gives a map −−1 : B → B. This induces a map ν : MO∗(B) → MO∗(B), which
has order 2. Together with the isomorphism of Proposition 3.4, ν induces a map
ι : MO∗[eV , e

−1
V , Yd,V ] → MO∗[eV , e

−1
V , Yd,V ], such that the following diagram com-

mutes:

MO∗(B)⊗AO(G)

ν⊗id

��

∼= // MO∗[eV , e
−1
V , Yd,V ]

ι

��

MO∗(B)⊗AO(G)
∼= // MO∗[eV , e

−1
V , Yd,V ].

Remark 3.12. Notice that for the complex analogue of a slight generalization of our
Lemma 3.7, namely the statement

ι ◦ φMU ◦Ψ([P (Cd ⊕ V )]) = YV,d + e−d
V ∗ ,

in the notation used there [Han05, p. 685], an analogous map ι is used. However,
since

(ν ⊗ id)(1⊗ eV ) = ν(1)⊗ eV = 1⊗ eV ,

we have ι ◦ φMO(εV ) = eV = φMO(εV ). (In general ι ◦ φMO 6= φMO.)

Lemma 3.13. The following diagram commutes:

NG
∗

φ̃N //

PT

��

MO∗(B)⊗AO∗(G)

MOG
∗

φ̃MO // MO∗(B)⊗AO∗(G).

ν⊗id

OO

A detailed proof of the analogous complex result that translates immediately to
the real case is given by tom Dieck [tD70a, Proposition 4.1].
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3.4. Bordism with respect to families of subgroups
Proposition 3.14 (compare [Han05, Proposition 4]). There is an isomorphism

κN : NG
∗ [A,P] → MO∗[e

−1
V , Yd,V ]

such that the following diagram commutes:

MO∗[e
−1
V , Yd,V ]

NG
∗ [A]

jN
//

φN

33ffffffffffffffffffffffffff
NG

∗ [A,P]

κN

77ooooooooooo
.

The map jN comes from the Conner–Floyd exact sequence (see Section 2.5).

Proof. The isomorphism κN is constructed as follows. A manifold N that represents
an element [N ] ∈ NG

n [A,P] is bordant to every closed tubular neighborhood of its
fixed set M := NG, which lies in the interior of N , since there are no fixed points
on the boundary. This can be seen by a straithening-the-angle argument and then
giving the bordism explicitly as explained in [CF66, Lemma (5.2)]. From here one
proceeds exactly as in the definition of the map φN (see Section 3.3), which ensures
the commutativity of the diagram immediately. To see that κN is an isomorphism we
give an inverse

κ−1
N : MO∗[e

−1
V , Yd,V ] → NG

∗ [A,P].

The element e−1
V is sent to the class of the disc bundle of V viewed as a bundle over a

point. Since V does not contain the trivial representation its unit disc bundle D(V )
has boundary S(V ) without fixed points. Then κN sends this bundle back to e−1

V ,
since we have the decomposition R⊗R V → ∗ and the class of the map ∗ → BO(1)
classifying R gives 1 ∈ MO∗(B), so

κN([V → ∗]) = 1⊗ e
−|R|
V = e−1

V .

On Yd,V the inverse κ−1
N is constructed as follows: Let Ed−|V | denote the line bun-

dle representing the generator Xd−|V | (compare the proof of Proposition 3.4). Then

κ−1
N (Yd,V ) is defined to be the class of the disc bundle of Ed−|V | ⊗ V . As above we

get

κN([Ed−|V | ⊗ V ]) = Xd−|V | ⊗ e
|Ed−|V ||
V = Xd−|V | ⊗ e−1

V = Yd,V .

Now κ−1
N is defined by requiring it to be a homomorphism of N∗–modules. Clearly

κ−1
N is a right and a left inverse of κN.

Proposition 3.15 (compare [Han05, Proposition 4]). There is an isomorphism

κMO : MOG
∗ [A,P] → MO∗[eV , e

−1
V , Yd,V ]

such that the following diagram commutes:

MO∗[eV , e
−1
V , Yd,V ]

MOG
∗ [A]

jMO

//

φMO

22ffffffffffffffffffffffffffff
MOG

∗ [A,P]

κMO

66mmmmmmmmmmmmm
.
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The map jMO comes from the tom Dieck exact sequence (see Section 2.5).

Proof. By definition MOG
∗ [A,P] is MOG

∗ (EA, EP). Let ΣEP be the unreduced sus-
pension of EP. We identify EP with 1

2 × EP ⊂ ΣEP and denote the upper cone by

C+EP := [ 13 , 1]× EP ⊂ ΣEP and the lower cone by C−EP := [0, 2
3 ]× EP. Then

(EA, EP) ' (C−EP, EP) and the inclusion (C−EP, EP) → (ΣEP, C+EP) gives
an isomorphism via excision:

MOG
∗ (EA, EP) ∼= MOG

∗ (ΣEP, C+EP).

To calculate MOG
∗ (ΣEP, C+EP) = MOG

∗ (ΣEP) we apply Lemma 4.2 of [Sin01]:

Lemma 3.16. Let Z be a G–complex such that ZG ' S0 and ZH is contractible for
any proper subgroup H ( G. For a finite G–complex X the restriction map

(Map(X,Y ∧ Z))G → Map(XG, (Y ∧ Z)G) = Map(XG, Y G)

is a homotopy equivalence.

For the G–complex ΣEP (compare Section 2.5) and any proper subgroup H ( G,
the space (ΣEP)H is contractible by the construction of EP and furthermore

(ΣEP)G ' S0.

Since SW is a finite G–complex, we obtain

MOG
n (ΣEP) ∼= colim

W
[SW , T (ξG|W |+n) ∧ ΣEP]G

∼= colim
W

[(SW )G, (T (ξG|W |+n))
G]

∼= ΦGMOG
n .

Combining this with the isomorphism ΦGMOG
n
∼= MO∗[eV , e

−1
V , Yd,V ] of Proposi-

tions 3.2 to 3.4, we get the desired isomorphism κMO. To show commutativity of
the following diagram, we look at the definitions of φMO and κMO:

MOG
n (EA) = MOG

∗ [A] = MOG
∗

//

j

��

ΦGMOG
n

MOG
∗ (EA, EP)

∼= // MOG
∗ (ΣEP).

∼=

OO

Here the upper horizontal map is the first map in the definition of φMO; it’s restriction
to fixed sets. The vertical map j on the left hand side comes from the tom Dieck exact
sequence. Let f represent an element in MOG

n = MOG
n (EA),

f : SW → TOn(ξ
G
n+|W |) ∧ EA.

Restricting to fixed sets gives an element represented by

fG : (SW )G → (TOn(ξ
G
n+|W |))

G.

On the other hand we see that

j(f) ∈ [SW , T (ξGn+|W |) ∧EA/EP]G = [(SW )G, (T (ξGn+|W |) ∧ (ΣEP))G]

= [(SW )G, (T (ξGn+|W |))
G]
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gives the same element and the diagram commutes. Combining this with isomor-
phisms of Propositions 3.2 to 3.4 we get κMO ◦ j = φMO.

Proposition 3.17 (compare [Han05, Proposition 4]). The following diagram com-
mutes:

NG
∗ [A,P]

PT[A,P]

��

κN // MO∗[e
−1
V , Yd,V ]

i

��

MOG
∗ [A,P]

ι◦κMO // MO∗[eV , e
−1
V , Yd,V ]

This is essentially proved in the same way as Lemma 3.13. Notice that ι corresponds
to ν there (see Definition 3.11). Given an element [N ] in NG

n [A,P] we construct the
element i ◦ κN([N ]) using the same notation as in the definition of κN. Then

i ◦ κN([N ]) = bM ⊗ e
−|E1|
V1

· · · e−|Ej |
Vj

∈ MOn−k ⊗AOk(G).

On the other hand we choose an embedding N → U into a G–representation

U = UG ⊕
⊕
i∈I

Vi

and PT[A,P]([N ]) is then represented by a map SU → T (ξG|U |−n) ∧ EP classifying
the normal bundle of the embedding. Considering the map

SUG

→ T (ξG|U |−k))
G

viewed as an element in φGMOG we obtain the element κMO ◦ PT[A,P]([N ]). We
examine the normal bundles of the embeddings

M

??������

��
??

??
?

N

��
??

??
??

UG

??������

U

and get the desired conclusion ι ◦ κMO ◦ PT[A,P]([N ]) = i ◦ κN([N ]).

3.5. Statement and proof of main result
Theorem 3.18 (compare [Han05, Theorem 1]). The following diagram commutes
and is a pull-back with all maps injective:

NG
∗

PT

��

φN // MO∗[e
−1
V , Yd,V ]

i

��

MOG
∗

ι◦φMO // MO∗[eV , e
−1
V , Yd,V ].

Proof. Putting together the exact sequence of the pair of families of subgroups (A,P)
(see Section 2.5), the natural transformation coming from the Pontryagin–Thom map
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(see Theorem 2.1) and commutative diagrams of Propositions 3.14, 3.17 and 3.15, we
obtain the following commutative diagram with exact horizontal rows:

MOn[e
−1
V , Yd,V ]

i

��

NG
n [A]

PT[A]

��

jN
//

φN

22fffffffffffffffffffffffffffffff
NG

n [A,P]

PT[A,P]

��

∼=
κN

66mmmmmmmmmmmmm
∂N // NG

n−1[P]

PT[P]

��

MOn[eV , e
−1
V , Yd,V ]

MOG
n [A]

jMO

//

ι◦φMOfffffffffffffffff

22fffffffffff

MOG
n [A,P]

∼=
ι◦κMO

66mmmmmmmmmmmmm
∂MO // MOG

n−1[P].

Using the isomorphisms κN and ι ◦ κMO to substitute PT[A,P] in the middle by the
inclusion i, gives the following commutative diagram with short exact sequences as
rows:

0 // NG
n

PT

��

φN // MOn[e
−1
V , Yd,V ]

i

��

∂N◦κ−1
N // NG

n−1[P]

PT[P]

��

// 0

0 // MOG
n

ι◦φMO // MOG
n [eV , e

−1
V , Yd,V ]

∂MO◦(ι◦κMO)−1

// MOG
n−1[P] // 0.

The Pontryagin–Thom maps PT = PT[A] and PT[P] are injective by Section 2.4
and by identification of bordism of families with that of the corresponding classifying
spaces, as in Section 2.5. From the injectivity of the inclusion in the middle and the
injectivity of ι ◦ φMO (see Section 3.2) the injectivity of φN follows. (The injectivity
of φN can also be deduced from the injectivity of jN; see Proposition 3.20). To prove
the pullback property it suffices to show that an element x ∈ im i ∩ im ι ◦ φMO comes
from an element in NG

n , which is done by a diagram chase.

We identify MO∗[e
−1
V , Yd,V ] as a subring of MO∗[eV , e

−1
V , Yd,V ] via i.

Corollary 3.19 (compare [Han05, Corollary 1]). The following isomorphism of
MO∗–algebras describes geometric equivariant bordism for G = Z/2× · · · × Z/2:

NG
∗
∼= ι ◦ φMO(MOG

∗ ) ∩MO∗[e
−1
V , Yd,V ].

3.6. Comparison with Sinha’s results for G = Z/2
The description of MO

Z/2
∗ in [Sin02, Theorem 2.4] is more explicit than ours in

Theorem 3.18. In both cases MO
Z/2
∗ is identified with a subring of MO∗[eσ, e

−1
σ , Yd,σ].

Here σ denotes the non-trivial one-dimensional real representation of Z/2. Also the

description of N
Z/2
∗ in Theorem 2.7 of [Sin02] is more explicit than ours, but the

generators given there can be derived from the pullback property of our Theorem 3.18
and Theorem 2.4 of [Sin02].
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3.7. Real equivariant bordism for G 6= Z/2× · · · × Z/2
Theorem 3.18 fails to be true if G is not of the form Z/2× · · · × Z/2. For the

complex case Hanke shows that his theorem [Han05, Theorem 1] does not hold if G
is not of the form S1 × · · · × S1. He gives counterexamples for G = Z/n× Z/n and
G = Z/n2 [Han05, Section 4]. In the real case the situation is similar. There are
different ways Theorem 3.18 can fail for G not of the form Z/2× · · · × Z/2.

Proposition 3.20. The homomorphism jN : NG
∗ [A] → NG

∗ [A,P] from the Conner–
Floyd exact sequence (see Section 2.5) is a monomorphism if and only if G = (Z/2)k
for some k.

Together with Proposition 3.14 we immediately get the following.

Corollary 3.21. The homomorphism φN : NG
∗ → MO∗[e

−1
V , Yd,V ] is a monomorph-

ism if and only if G = (Z/2)k for some k.

Proof of Proposition 3.20. Stong proves in [Sto70b, Proposition 14.2, p. 75] that
the map ιN : NG

∗ [P] → NG
∗ [A] is trivial if and only if G = (Z/2)k for some k. One

direction is proved already in [Sto70a, Proposition 2]. Taking this together with the
Conner–Floyd exact sequence of the pair (A,P) completes the proof.

Stong provides an example of a non-zero element in N
Z/4
3 that is mapped to zero

by jN. Using similar techniques as Hanke in [Han05], a counterexample can be con-

structed, proving for G = Z/4 that the map ι ◦ φMO : MO
Z/4
∗ → MO∗[eV , e

−1
V , Yd,V ]

fails to be injective.
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