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ON THE HOMOLOGY OF THE SPACE OF SINGULAR KNOTS

HOSSEIN ABBASPOUR and DAVID CHATAUR

(communicated by Claude Cibils)

Abstract
In this paper we introduce various associative products on

the homology of the space of knots and singular knots in Sn.
We prove that these products are related through a desin-
gularization map. We also compute some of these products
and prove the non-triviality of the desingularization morphism.
Using direct computations, we prove that some of these prod-
ucts are indeed commutative.

1. Introduction

Various authors have tried to introduce a general framework for the structures
introduced by Chas-Sullivan [CS1] on the homology and on the equivariant homol-
ogy of the free loop space of a closed manifold. One approach, first used implicitly
in [KS] and then formulated in [GS], is the notion of fibrewise (homotopy) monoid.
This formulation is inspired by Cohen-Jones’ [CJ] homotopy theoretic description of
the Chas-Sullivan product using ring spectra. Laudenbach’s formulation [Lau] using
transverse chain bicomplex can also be easily adapted to the fibrewise monoid setting
and is sufficiently efficient for geometric calculation. In this article we apply Bud-
ney’s [B1], Gruher-Salvatore’s [GS] and Salvatore’s [S] results to introduce and cal-
culate various algebra structures on the homology of knots, immersions, and singular
knots with k double points. Moreover, we prove that these structures are related
through some naturally defined maps and a desingularization morphism that we
define.

Let Imm(S1, Sn) be the space of all immersions of S1 in Sn. Then Imm′(S1, Sn) is
defined to be the space of immersions γ : S1 → Sn with no singularity at the marked
point ev0(γ) := γ(0).

The space of knots Emb(S1, Sn) is the space of all embeddings of S1 in Sn. We
will introduce various associative algebra structures on the homology of Emb(S1, Sn),
Imm′(S1, Sn) and Imm(S1, Sn), and finally

∐
k∈N Imm′

k(S
1, Sn) the space of singular

knots with a finite number of transverse double points away from the marked point
and no other singular points. Here k stands for the number of double points.
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In order to introduce these products, we use the fact that each of these spaces is
homotopy equivalent to the total space of a fibration whose fibres form a continuous
family of homotopy associative monoids, and the base space is a closed oriented
manifold. The archetype of such fibrations is the loop space fibration ΩM → LM
→ M of a closed oriented manifold. Here LM = C∞(S1,M) and ΩM are respectively
the free loop space and based loop space of M . The (classical based) loop spaces
have a homotopy associative product, but one also has the option of considering
Moore (based) loop spaces (Example 3.2) whose concatenation products are strictly
associative. We then prove that

Theorem 3.3. The graded group H∗+2n−1(Emb(S1, Sn)) can be equipped with a
graded commutative and associative product µem(−,−), which is compatible with
the intersection product on H∗+2n−1(USn) via the map ev∗ : H∗(Emb(S1, Sn)) →
H∗(USn). Here USn is the unit sphere bundle of the tangent bundle of Sn, and ev is
the map induced by ev : Emb(S1, Sn) → USn,

ev(γ) = (γ(0), γ′(0)/‖γ′(0)‖),

which sends a knot to the normal tangent vector at t = 0.

Similarly, we prove that

Theorem 3.4. The graded group H∗+2n−1(Imm′(S1, Sn)) can be equipped with a
graded commutative and associative product µim(−,−), which is compatible with the
intersection product on H∗+2n−1(USn) via the map induced by ev : Imm′(S1, Sn) →
USn.

At the first sight it is not obvious if this algebra is commutative because the product
on the fibres of the fibration ev : Imm′(S1, Sn) → USn is not a priori commutative
(even up to homotopy). The commutativity of the product follows from some explicit
computations in the last section using spectral sequences (see Theorem 6.2). After
restricting to the subspaces Imm′

k(S
1, Sn)’s, one obtains a collection of maps

µk,l
im(−,−) = H∗(Imm′

k(S
1, Sn))⊗H∗(Imm′

l(S
1, Sn))

→ H∗−2n+1(Imm′
k+l(S

1, Sn)),

which is compatible in the following sense:

µk+l,m
im

(
µk,l
im(a, b), c

)
= µk,l+m

im

(
a, µl,m

im (b, c)
)
.

In order to compare the algebra structures on the homologies of knot and singular
knot spaces, we introduce a desingularization map. Informally speaking, we resolve a
singular knot at a double point in all possible ways, parametrized by the unit vectors
perpendicular to the tangent plane at the singularity. Of course this map has a certain
degree, and it is not a map of algebras. However, it verifies some natural compatibility
conditions with respect to the number of singularities and the product. This is stated
in the main theorem of this article as follows:

Theorem 5.4. The desingularization morphisms

φk : H∗(Imm′
k(S

1, Sn)) → H∗+k(n−3)(Emb(S1, Sn)),

k > 0 are compatible with the multiplicative structures, i.e., for x∈H∗(Imm′
k(S

1, Sn))
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and y ∈ H∗(Imm′
l(S

1, Sn)),

µem(φk(x), φl(y)) = φk+l(µ
k,l
im(x, y)).

In other words,

φ = ⊕φk :
⊕
k

H∗(Imm′
k(S

1, Sn)) → H∗(Emb(S1, Sn))

is a map of algebras, where

H∗(Imm′
k(S

1, Sn)) = H∗+2n−1(Imm′
k(S

1, Sn))

and

H∗(Emb(S1, Sn)) = H∗+2n−1(Emb(S1, Sn)).

In the case of singular knots with finitely-many transverse singularities, one natu-
rally expects a compatibility with the Vassiliev spectral sequences. This issue is not
addressed in this paper and merits further investigation.

Conventions
Here Sn is the unit sphere in Rn+1, and we make the identification Rn ' {0} ×

Rn ⊂ Rn+1. We think of SO(n) ⊂ SO(n+ 1) as the stabilizer of (1, 0, . . . , 0) and
SO(n− 1) ⊂ SO(n+ 1) as the stabilizer of (1, 0, . . . , 0) and the tangent vector
(0, 1, 0, . . . , 0) ∈ T(1,0,...,0)S

n. As a consequence, SO(n+ 1)/SO(n− 1) is identified
with USn as the unit tangent sphere bundle of Sn. For a manifold M , LM =
C∞(S1,M) is the free loop space and ev0 : LM → M maps a loop γ : S1 → M to
its marked point ev0(γ) := γ(0). By abuse of notation, we denote the induced map
in homology also by ev0. If M is a d-dimensional closed oriented manifold, then
let H∗(M) = H∗+d(M,Z) be the regraded homology of M , which is a commutative
and associative algebra once it is equipped with the intersection product. Similarly,
H∗(LM,Z) = H∗+d(LM,Z) is the homology of LM with a shift in degree, which is
a graded commutative and associative algebra once it is equipped with the Chas-
Sullivan loop product.
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2. Immersions and knots

In this section we collect a few well-known facts about various immersion
and embedding spaces and their homotopy types. Note that all immersion and
embedding spaces are equipped with the induced compact-open C∞ (weak) topology
([Ada, Hir]). This is the smallest topology that makes all jet maps J : C∞(S1,M) →
C0(S1, Jk(S1,M)) or J : C∞(R,M) → C0(R, Jk(R,M)), k = 0, 1, . . . continuous.
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The choice of R or S1 depends on whether we are working with long immersions/em-
beddings or compact ones. By the space of long immersions we mean

Imml(R,Rn) = {f : R → Rn smooth immersion, supp(f)

⊂ (−1, 1) and f([−1, 1]) ⊂ Bn},

where supp(f) = {t ∈ R ⊂ Rn|f(t) 6= (t, 0, . . . , 0)} and Bn is the unit ball in Rn.
An important subspace of Imml(R,Rn) is Imml

k(R,Rn), the space of singular knots
with transverse double points. These are the immersions with only double transversal
self-intersections.

Remark 2.1. One naturally asks if we get interesting subspaces of Imml(R,Rn) by
relaxing the transversality condition for self-intersections imposed on the elements of
Imml

k(R,Rn). For example, one can also consider the space Emblsing(R,Rn) as long
singular knots consisting of the long immersions f : R → Rn, which are embeddings
outside of a finite set A ⊂ [−1, 1] ⊂ R. We additionally require that for all pairs xi

and xj ∈ A with f(xi) = f(xj), the corresponding branches of the knots have finite
order tangency. We have that∐

k∈N

Imml
k(R,Rn) ⊂ Emblsing(R,Rn) ⊂ Imml(R,Rn),

but it turns out that Emblsing(R,Rn) has the same homotopy type as Imml(R,Rn).

In short the complement of an infinite codimension closed subspace of Imml(R,Rn)
has the same homotopy type as Imml(R,Rn). This is the content of Lemma 3.2.1
in [Br].

Another important space in this article is the space of long knots Embl(R,Rn),
which is the subspace of Imml(R,Rn) consisting of embeddings. The space of long
knots Embl(R,Rn) is interesting on its own and has been the subject of many recent
works. It was studied, in particular, by Vassiliev [Va] in the context of finite type
invariants. Budney [B1] recently proved that there is an action of the little disc operad
on the space of framed long knots in Rn which, in the particular case of n = 3, induces
an action on a subspace of the framed long knots, homotopy equivalent to the space
of (unframed) long knots. The latter provides us with a deep understanding of the
homotopy type of the space of long knots in dimension 3 [B2]. It is noteworthy to
mention that this action was predicted by Tourchine [Tor], who had proved that the
E2-page of Vassiliev’s spectral sequence has a Gerstenhaber structure, which is part
of the structure induced by the action of the little disk operad. More recently, Arone,
Lambrechts, Tourtchine and Volć [ALTV] have computed the rational homology (in
terms of graph complexes) by proving that the Vassiliev spectral sequence collapses
at the E1-term when n > 4.

The reason we are interested in Embl(R,Rn) is that it recovers via a Borel
construction, the space of knots in Sn as we will explain henceforth. There is an
action of SO(n− 1) on Embl(R,Rn) via the identification Rn = R× Rn−1. These
are the rotations around the fixed long axis. We also make the identification
Rn = {0} × Rn ⊂ Rn+1, which provides us with a natural inclusion SO(n− 1) ↪→
SO(n+ 1), hence an action of SO(n− 1) on SO(n+ 1). One then considers the Borel
quotient SO(n+ 1)×SO(n−1) Embl(R,Rn), which has the same homotopy type as
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Emb(S1, Sn) (see [BC, Proposition 1.4]). A homotopy equivalence is given by the
stereographic map with (1, 0, . . . , 0) ∈ Sn ⊂ Rn+1 = R× Rn as the center. Given a
pair

(A, γ) ∈ SO(n+ 1)×SO(n−1) Embl(R,Rn),

one can compactify γ in Rn+1 to get a knot in Sn ⊂ Rn+1 passing through (1, 0, . . . , 0).
Then we let A act on γ to get an element of Emb(S1, Sn). This defines a homotopy
equivalence map

ρemb : SO(n+ 1)×SO(n−1) Embl(R,Rn) → Emb(S1, Sn),

which makes the following diagram commute [BC]:

SO(n+ 1)×SO(n−1) Embl(R,Rn)
ρemb //

proj

��

Emb(S1, Sn)

ev

��
SO(n+ 1)/SO(n− 1)

id // USn.

(2.1)

Here ev(γ) = (γ(0), γ′(0)/‖γ′(0)‖) for γ ∈ Emb(S1, Sn), and the lower horizontal ar-
row is a diffeomorphism (see Conventions in the introduction). Therefore, we have
the isomorphism

ρem : H∗(SO(n+ 1)×SO(n−1) Embl(R,Rn)) → H∗(Emb(S1, Sn)).

Similarly, one can consider the Borel construction SO(n+ 1)×SO(n−1) Imml(R,Rn)

and SO(n+ 1)×SO(n−1) Imml
k(R,Rn) and the maps of fibrations

SO(n+ 1)×SO(n−1) Imml(R,Rn)
ρim //

��

Imm′(S1, Sn)

ev

��
SO(n+ 1)/SO(n− 1) // USn

and

SO(n+ 1)×SO(n−1) Imml
k(R,Rn)

ρim //

��

Imm′
k(S

1, Sn)

ev

��
SO(n+ 1)/SO(n− 1) // USn.

The homotopy equivalences induced by the stereographic map give rise to the iso-
morphisms

ρim : H∗(SO(n+ 1)×SO(n−1) Imml(R,Rn)) → H∗(Imm′(S1, Sn)),

ρkim : H∗(SO(n+ 1)×SO(n−1) Imml
k(R,Rn)) → H∗(Imm′

k(S
1, Sn)).

We have the following sequence of inclusions:

Embl(R,Rn) ⊂ Imml
k(R,Rn) ⊂ Imml(R,Rn),

Emb(S1, Sn) ⊂ Imm′
k(S

1, Sn) ⊂ Imm′(S1, Sn).

The immersion spaces were widely studied in the 50’s and 60’s. One of the most



106 HOSSEIN ABBASPOUR and DAVID CHATAUR

Embl(R,Rn) Long knots in Rn

Emb(S1, Sn) Embeddings in Sn (Knots)

Imml(R,Rn) Long immersions in Rn

Imm′(S1, Sn) Immersions in Sn without singularity at t = 0

Imml
k(R,Rn) Long immersions in Rn with k double points

Imm′
k(S

1, Sn) Immersions in Sn with k double points away from t = 0

Table 1: Notation

notable results is the Hirsch-Smale theorem. A special case of this theorem is as
follows:

Theorem 2.2 (Hirsch [Hir]-Smale [Sm]). For a smooth manifold M , the 1-jet map
D : Imm(S1,M) → LUM , given by D : γ 7→ (γ, γ′/‖γ′‖), is a homotopy equivalence.

Here UM is the unit sphere bundle of M . This theorem allows us to compute the
homotopy type of some subspaces of the Imm(S1,M). For instance, let Imm∗,v(S

1,M)
be the subspace consisting of immersions γ passing through the base point ∗ and has
v ∈ T∗M as the unit tangent vector at t = 0, i.e., γ(0) = ∗ and γ′(0)/‖γ′(0)‖ = v.
The map D is actually a fibre bundle map:

Imm∗,v(S
1,M)

��

// ΩUM

��
Imm(S1,M)

D //

ev

��

LUM

ev0

��
UM

id // UM.

Here ev(γ) = (γ(0), γ′(0)/‖γ′(0)‖), and ΩUM is the based loop spaces of UM with
(∗, v) as the base point. Since D is a homotopy equivalence between the total spaces
and the map between the base spaces is the identity map, we have:

Corollary 2.3. For a smooth manifold M , the 1-jet map

D : Imm∗,v(S
1,M) → ΩUM

is a homotopy equivalence.

Since the space of long immersions plays an important role in this paper, let us
explain how we can determine the homotopy type of Imml(R,Rn): Again by the
Hirsch-Smale theorem, the 1-jet map D : Imm(I,Bn) → PUBn is a homotopy equiv-
alence. Here PUBn is the path space of the unit sphere bundle of the unit disc Bn.
Consider the pull back diagram

P((x,v),(−x,v))UBn //

��

PUBn

ev0 × ev1

��
((−x, v), (x, v))

inclusion// UBn × UBn,
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where x = (1, 0, . . . , 0) ∈ Bn, v = (1, 0, . . . , 0) ∈ Sn−1 = TxB
n and evi maps a path γ

to γ(i), i = 0, 1. This diagram essentially defines the space of path P(−x,v),(x,v)UBn

between (x, v) and (−x, v) in UBn. On the other hand, D is a bundle map with UBn

as the base:

Imm(I,Bn)
D //

π0

��

PUBn

ev0

��
UBn

id
// UBn

Imm(I,Bn)
D //

π1

��

PUBn

ev1

��
UBn

id
// UBn.

Here πi(γ) = (γ(i), γ′(i)/‖γ′(i)‖) for γ ∈ Imm(I,Bn) and i = 0, 1. Therefore we con-
clude that D : (π0 × π1)

−1((−x, v)(x, v)) → P(−x,v),(x,v))UBn is a homotopy equiva-
lence, where (π0 × π1)

−1((−x, v), (x, v)) is defined by the pull back diagram

(π0 × π1)
−1((−x, v), (x, v)) //

��

Imm(I,Bn)

π0×π1

��
((−x, v), (x, v))

inclusion // UBn × UBn.

On the other hand, (π0 × π1)
−1((−x, v), (x, v)) ⊂ Imm(I,Bn) is essentially the

space of long immersions Imml(R,Rn), and P((−x,v),(x,v))UBn is homeomorphic to
P(−x,x)B

n × ΩvS
n−1 because the tangent bundle of Bn is trivializable. It is clear

that P((−x,v),(x,v))B
n is contractible; therefore, Imml(R,Rn) is homotopy equivalent

to ΩSn−1.

Corollary 2.4. For all n, the composite map π ◦D : Imml(R,Rn) → ΩSn−1 is a
homotopy equivalence. Here π : PUBn → PSn−1 is the projection on the second fac-
tor via the identification PUBn ∼ PBn × PSn−1.

3. Stringy operations

In this section we recall the general framework where some of the string topol-
ogy operations can be defined. This was observed by several authors independently,
including the authors of this article. However, the main published reference is Gruher-
Salvatore’s paper [GS] which we follow closely. Let F → E

π→ M be a fibre bundle
over a closed compact manifold M of dimension d. We suppose that E is equipped
with a fibrewise associative product, that is a fibre bundle map m : E ×M E → E
such that

m(x,m(y, z)) = m(m(x, y), z).

Here E ×M E is defined via the pull back diagram

E ×M E

π

��

// E × E

��
M

∆ // M ×M.
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The product

Let us briefly explain how, following the main idea of [CJ], this setup provides us
with an associative product on H∗+d(E), the homology of E with shifted degree. Note
that the natural map E ×M E → E × E is an embedding equipped with a tubular
neighborhood obtained by pulling back ν, the tubular neighborhood of the diagonal

M
∆→ M ×M . The product µ : Hi(E)⊗Hj(E) → Hi+j−d(E) is defined by composing

(from left to right) the maps:

(1) the Eilenberg-Zilber map H∗(E)⊗H∗(E) → H∗(E × E),

(2) the map H∗(E × E) → H∗(Th(π
∗(ν)) induced by the Thom-Pontryagin collapse

map E × E → (Th(π∗(ν)),

(3) the Thom isomorphism H∗(Th(π
∗(ν)) → H∗−d(E ×B E),

(4) and then the map induced by m on homology m∗ : H∗−d(E ×B E) → H∗(E).

The associativity of this product, which follows from the associativity of m and
the associativity of multiple diagonal maps, is standard (for more details see [CJ]
or [GS]).

The functoriality of the product

The product defined above is natural in the following sense: Suppose

πi : (Ei,mi)→ M

are two fibrewise monoids and h : E1 → E2 is a map of fibrations over M . We have an
induced map h∆ : E1 ×M E1 → E2 ×M E2. Then h is said to be a map of fibrewise
monoids if m2(h∆(e1, e2)) = h(m1(e1, e2)).

E1 ×M E1

π1

%%JJJJJJJJJJ
h∆ //

m1

��

E2 × E2

π2

zzvvvvvvvvv

m2

��

M

E1

π1

99tttttttttt

h
// E2.

π2

ddHHHHHHHHH

If h : (E1,m1) → (E2,m2) is a map of fibrewise monoids, then

h∗ : (H∗(E1), µ1) → (H∗(E2), µ2)

is a map of algebras. Since π2h = π1, h induces a bundle map hTh : π
∗
1(Th(v)) →

π∗
2(Th(v)),

π∗
1(Th(v))

hTh //

��

π∗
2(Th(v))

��
E1 ×M E1

// E2 ×M E2,
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which makes the following diagram commute:

E1 × E1
Thom-Pontryagin //

h×h

��

π∗
1(Th(v))

hth

��
E2 × E2

Thom-Pontryagin // π∗
2(Th(v)).

Now the naturality of the Thom isomorphism and the Eilenberg-Zilber map imply
the claim.

Compatibility with m∗ on H∗(F )
Here we give a quick description of the wrong-way map i! : H∗(E) → H∗−d(F )

associated to the inclusion i : F ↪→ E. More details can be found in [GS]. One has
the pull back diagrams

F //

��

E

��
∗ // M

F × F //

��

E × E

��
∗ // M ×M

F × F //

��

E ×M E

��
∗ // M.

The wrong-way map for the left diagram is given by composing the map induced by
the Thom-Pontryagin collapse mapH∗(E) → H∗(Th(F )) and the Thom isomorphism
H∗(Th(F )) → H∗−d(F ). The wrong-way map for the middle and right diagrams are
constructed in a similar fashion.

For example, if the normal bundle of F in E is trivial, the Thom space of F ↪→ E
is the suspension space ΣdF . Then the wrong-way (shriek) map is given by compos-
ing the Thom-Pontryagin collapse map H∗(E) → H∗(Σ

dF ) and the (special case of)
Thom isomorphism H ∗ (ΣdF ) → H∗−d(F ).

Similarly, the Thom spaces of F × F ↪→ E × E and F × F ↪→ E ×M E respectively
are Σd(F × F ) and Σ2d(F × F ), and one gets the shriek maps i!∆ : H∗(E ×M E) →
H∗−d(F × F ) and (i× i)! : H∗(E × E) → H∗−2d(F × F ):

H∗(E)⊗H∗(E) ' H∗(E × E)

Thom-Pontryagin map

��

(i×i)! // H∗(Σ
2d(F × F ))

��

Thom iso

""EEEEEEEEEEEEEEEEEEEEE

H∗(Th(E ×M E))

Thom iso

��
H∗−d(E ×M E)

m∗

��

i!∆ // H∗−d(Σ
d(F × F ))

��

Thom iso// H∗−2d(F × F )

m∗

��
H∗−d(E)

i! // H∗−d(Σ
dF )

Thom iso // H∗−2d(F ).

Let us summarize the discussion above:

Proposition 3.1. Let (Ei,mi) → M , i = 1, 2 be two fibrewise monoids over a closed
oriented manifold M of dimension d. Let H∗(Ei) := H∗+d(Ei) be the homology with a
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shift in degree by −d. Then H∗(Ei) can be naturally equipped with a graded associative
algebra structure such that:

(1) The map (πi)∗ : H∗(Ei) → H∗(M) induced by the fibration map πi is a map of
algebras. Here H∗(M) is equipped with the intersection production.

(2) The wrong-way map (H∗(Ei) = H∗+d(Ei), µ) → (H∗(F ),m∗) induced by the in-
clusion of a fibre F ↪→ E is a map of algebras.

Moreover, if h : (E1,m1) → (E2,m2) is a morphism of fibrewise monoids over M ,
then the induced map h∗ : H∗(E1) → H∗(E2) is a map of graded associative algebras.

Example 3.2. Consider LM = C0(S1,M) the free loop space of a closed oriented
manifold of dimension d. One has the fibration ev0 : LM → M , where ev0 associates
to a loop γ : S1 → M its marked point γ(0) ∈ M . A typical fibre of this fibration is
the based loop space ΩM whose concatenation product is not strictly associative but
only up to homotopy. However this is not a major obstacle since one can give another
model for this fibration, where the fibre has a strictly associative product. Note that
C∞(S1,M) is homotopy equivalent to the set of continuous maps

LM := {γ : [−a, a] → M | a > 0, γ(−a) = γ(a)}.

Now one can consider the fibration ev0 : LM → M , ev0(γ) = γ(a), whose fibre is the
Moore loop space

ΩM := {γ : [−a, a] → M | a, γ(a) = γ(−a) = ∗},

whose concatenation product is

γ1 ∗ γ2(t) =

{
γ1(t+ a2) if − a1 − a2 6 t 6 a1 − a2

γ2(t− a1) if a1 − a2 6 t 6 a1 + a2.

This model gives rise to the Chas-Sullivan product

• : Hi(LM)⊗Hj(LM) → Hi+j−d(LM).

After regarding Hi(LM) = Hi+d(LM), one obtains a graded associative algebra
(H(LM), •). Moreover, the induced map ev0 : H∗(LM) → H∗(M) is a map of associa-
tive algebras. It turns out that • is in fact commutative, but this is proved by using
an argument that cannot be generalized to all fibrewise monoids.

Since in most of the interesting cases the fibrewise product m is not (strictly) asso-
ciative, one must adapt this definition so that it accommodates homotopy associative
products and consider fibrewise homotopy monoids. This is better done by acquiring
an operadic approach. One considers the trivial bundles C̄n = Cn ×M → M , where
{Cn} is an operad (see [GS, Section 5]). They form an operad C̄ in the category of

fibred spaces over M . The existence of a C̄-algebra structure on a fibre bundle E
π→ M

is equivalent to having a collection of fibre bundle maps

E�n × Cn
φn //

$$IIIIIIIII E

π
��~~

~~
~~

~~

M

subject to the usual axioms for the algebras over an operad. Here E�n

is defined by
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the pull back diagram

E�n //

π

��

E × · · · × E

×nπ

��
M

diag. map // M × · · · ×M.

In particular, one can obtain a tubular neighborhood for the embedding E�n

↪→
E × · · · × E by pulling back the total space of a normal bundle ν of the embedding

M
diagonal
↪→ M × · · · ×M by π.

The operadic operation µn : H∗(Cn)⊗H∗(E)⊗n → H∗(E) is defined by composing:

(1) the tensor product of idH∗(Cn) and the Eilenberg-Zilber map: H∗(Cn)⊗H∗(E)⊗n

→ H∗(Cn)⊗H∗(E × · · · × E),

(2) the tensor product of idH∗(Cn) and the map induced by the Thom-Pontryagin
collapse map: H∗(Cn)⊗H∗(E × · · · × E) → H∗(Cn)⊗H∗(Th(π

∗(ν)),

(3) the tensor product of idH∗(Cn) and the Thom isomorphism:

H∗(Cn)⊗H∗(Th(π
∗(ν)) → H∗(Cn)⊗H∗−(n−1)d(E

�n

),

(4) the Eilenberg-Zilber map: H∗(Cn)⊗H∗−d(E
�n

) → H∗(Cn × E�n

),

(5) the map induced by the operadic map φ, H∗(Cn × E�n

)
(φn)∗−−−→ H∗(E).

Note that the map µn is of homological dimension −(n− 1)d since the Thom isomor-
phism corresponds to the integration along (n− 1)d-dimensional fibre of the normal
bundle. Therefore, to a homology class x ∈ Hk(Cn), one can associate a map

Hi1(E)⊗Hi2(E)⊗ · · · ⊗Hin(E) → Hi1+i2···in−(n−1)d+k(E).

For instance, in the case of the little 2-disk operad, a fibrewise action gives rise to
a commutative and associative product of degree −d,

• : H∗(E)×H∗(E) → H∗−d(E),

which corresponds to the action of the 0-dimensional class of H∗(C2). There is also a
Gerstenhaber bracket of degree (1− d)

{−,−} : H∗(E)×H∗(E) → H∗+1−d(E),

which satisfies the Jacobi identity for a Lie bracket of degree 1− d. This bracket
corresponds to the action of a generator of H1(C2), which can be described as follows:
fix a disc at the center of the the unit disk and consider another disk with sufficiently
small radius moving around the first one, such that its center always lays on a fixed
circle whose center is the center of the unit disk. This represents a one-dimensional
homology class in H1(C2).

Note that having an action of the little 2-cube operad is much stronger than
having a homotopically associative product, and it also implies that the product is
commutative up to homotopy. The combined works of Budney [B1, Corollary 10] and
Salvatore [S, Main Theorem] imply that:

Theorem 3.3 (R. Budney and P. Salvatore). For all n, the space of long knots
Embl(R,Rn) admits an action of the little 2-cube operad. The underlying product on
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Embl(R,Rn) is the usual concatenation which is, in particular, homotopy associative
and commutative.

Let H∗(Emb(S1, Sn)) := H∗+2n−1(Emb(S1, Sn)) be the homology of Emb(S1, Sn)
after a shift in the degree by −2n+ 1 and, similarly, H∗(USn) := H∗+2n−1(USn).

Theorem 3.4. There is a commutative and associative algebra structure on
H∗(Emb(S1, Sn)), which makes ev∗ : H∗(Emb(S1, Sn)) → H∗(USn), the map induced
by projection on the unit tangent vector, into an algebra map. Here H∗(USn) is
equipped with the standard intersection product.

Proof. Budney and Cohen ([BC, Proposition 4.3]) had observed that Emb(S1, Sn)
is homotopy equivalent to SO(n+ 1)×SO(n−1) Embl(R,Rn). The latter is the total
space of the standard fibration

π : SO(n+ 1)×SO(n−1) Embl(R,Rn) → SO(n+ 1)/SO(n− 1),

which is equipped with a fibrewise action of the little disk operad as follows: By the
Budney-Salvatore theorem, one has an action of the little disk operad

φ1
k : Ck × (Embl(R,Rn))×k → Embl(R,Rn).

The key point is that this operadic action is SO(n− 1)-equivariant. This property
is transparent in Budney’s construction [B1], and for Salvatore’s double loop space
structure, we refer the reader to the proof of Theorem 1.4 in [S, page 19]. A direct
computation shows that

(SO(n+ 1)×SO(n−1) Embl(R,Rn))�
k

= SO(n+ 1)×SO(n−1) (Embl(R,Rn)× · · ·Embl(R,Rn)︸ ︷︷ ︸
k−times

).

Here the action of SO(n− 1) on Embl(R,Rn)× · · ·Embl(R,Rn) is diagonal. We
define the fibrewise operadic actions

φk : Ck × [SO(n+ 1)×SO(n−1) (Embl(R,Rn)× · · · × Embl(R,Rn)︸ ︷︷ ︸
k−times

)]

→ SO(n+ 1)×SO(n−1) Embl(R,Rn)

to be φk(c, [a, (x1, . . . , xn)]) = [a, φ1
k(c, x1, . . . , xn)], where

a ∈ SO(n+ 1), xi ∈ Embl(R,Rn), c ∈ Cn.

Since φ1
k’s are SO(n− 1)-equivariant, φk’s are well-defined and satisfy the axioms of

an operadic action. One immediately obtains a commutative and associative product
of degree −2n+ 1 = −dim(SO(n+ 1)/SO(n− 1)):

µem(−,−) = H∗(Emb(S1, Sn))×H∗(Emb(S1, Sn)) → H∗−2n+1(Emb(S1, Sn)),

which after a shift in the degrees by −2n+ 1 reads

µem(−,−) = H∗(Emb(S1, Sn))×H∗(Emb(S1, Sn)) → H∗(Emb(S1, Sn)).

Now we prove the second part of the statement. Consider the projection

ev : Emb(S1, Sn) → H∗(USn), ev(γ) = (γ(0), γ′(0)/‖γ′(0)‖).
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By the commutative diagram (2.1), ev is identified with the projection on the first
factor π : SO(n+ 1)×SO(n−1) Embl(R,Rn). Note that by the pull back diagram

SO(n+1)×(Embl(R,Rn)×Embl(R,Rn))
SO(n−1)

π

��

// SO(n+1)×Embl(R,Rn)
SO(n−1) × SO(n+1)×Embl(R,Rn)

SO(n−1) ,

π×π

��
SO(n+1)
SO(n−1)

// SO(n+1)
SO(n−1) ×

SO(n+1)
SO(n−1)

the normal bundle of embedding

SO(n+1)×(Embl(R,Rn)×Embl(R,Rn))
SO(n−1)

// SO(n+1)×Embl(R,Rn)
SO(n−1) × SO(n+1)×Embl(R,Rn)

SO(n−1)

is the pull back of the normal bundle of the diagonal embedding

SO(n+ 1)

SO(n− 1)
→ SO(n+ 1)

SO(n− 1)
× SO(n+ 1)

SO(n− 1)

by π. Therefore we have the commutative diagram

H∗(
SO(n+1)×Embl(R,Rn)

SO(n−1) × SO(n+1)×Embl(R,Rn)
SO(n−1) )

��

(π×π)∗// H∗(
SO(n+1)
SO(n−1) ×

SO(n+1)
SO(n−1) )

��

H∗−2n+1(
SO(n+1)×(Embl(R,Rn)×Embl(R,Rn))

SO(n−1) )
π∗ // H∗−2n+1(

SO(n+1)
SO(n−1) )

where the vertical arrows are given by composing the Thom isomorphisms and the
Thom-Pontryagin collapse maps. Next we have the commutative diagram

H∗
(SO(n+1)×(Embl(R,Rn)×Embl(R,Rn))

SO(n−1)

) concat.//

π∗

��

H∗
(SO(n+1)×Embl(R,Rn)

SO(n−1)

)
π∗

��
H∗

(SO(n+1)
SO(n−1)

) identity // H∗
(SO(n+1)
SO(n−1)

)
,

where the top horizontal arrow is given by the concatenation. By fitting together these
two commutative diagrams and the naturality of the Eilenberg-Zilberg isomorphism,
one deduces that π∗ is a morphism of algebras. We recall that the map given by
composing the Thom-Pontryagin collapse map and the Thom isomorphism,

H∗
(SO(n+1)
SO(n−1)

)
⊗H∗

(SO(n+1)
SO(n−1)

)
'Eilenberg-Zilber

��
H∗

(SO(n+1)
SO(n−1) ×

SO(n+1)
SO(n−1)

)
Thom-Pontryagin. collapse + Thom iso.

��
H∗−2n+1

(SO(n+1)
SO(n−1)

)
,

is precisely the intersection product that can be alternatively defined using the
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Poincaré duality for the compact manifold SO(n+1)
SO(n−1) .

As mentioned in the previous section, Imm′(S1, Sn) is homotopy equivalent to
SO(n+ 1)×SO(n−1) Imml(R,Rn), which is the total space of the fibration

Imml(R,Rn) → SO(n+ 1)×SO(n−1) Imml(R,Rn) → SO(n+ 1)/SO(n− 1).

The fibres have a homotopy associative product, but they do not accommodate an
action of the little 2-disk operad. For instance, we lose the homotopy commutativity
of the product. Since the fibrewise product is not strictly associative, one cannot
apply the fibrewise monoid formulation neither but this is not a major obstacle. We
only have to modify our model so that the fibre has a strictly associative product.

Let H∗(Imm′(S1, Sn)) := H∗+2n−1(Imm′(S1, Sn)).

Theorem 3.5. There is a graded associative algebra structure on H∗(Imm′(S1, Sn))
such that ev∗ : H∗(Imm′(S1, Sn)) → H∗(USn), the map induced by projection on the
unit tangent vector, is an algebra map. Here H∗(USn) is equipped with standard
intersection product.

Proof. The space Imml(R,Rn) is homotopy equivalent to

Imml
+(R,Rn) =

{
f : R → Rn immersion, supp(f) ⊂ (−a, a) and

f([−a, a]) ⊂ Bn for some a ∈ R+
}
.

In fact, Imml(R,Rn) is a deformation retract of Imml
+(R,Rn), and the retract R is

given by reparametrizing linearly (−a, a) by (−1, 1). More precisely, for f : R → Rn

with supp(f) ⊂ (−a, a), one writes R(f)(t) := f(ta).
Note that the standard concatenation product given by Imml

+(R,Rn) is strictly

associative. Therefore one can use SO(n+ 1)×SO(n−1) Imml
+(R,Rn) as a model for

Imm′(S1, Sn), and one immediately obtains an associative product

µim(−,−) = H∗(Imm′(S1, Sn))⊗H∗(Imm′(S1, Sn)) → H∗−2n+1(Imm′(S1, Sn)).

The second part of the statement is proved just like in the previous theorem.

After restricting to immersions with k and l with transverse double points, the
product is

µk,l
im(−,−) = H∗(Imm′

k(S
1, Sn))⊗H∗(Imm′

l(S
1, Sn))

→ H∗−2n+1(Imm′
k+l(S

1, Sn)).

Theorem 3.6. There is a collection of maps

µk,l
im : H∗(Imm′

k(S
1, Sn))×H∗(Imm′

l(S
1, Sn)) → H∗−2n+1(Imm′

k+l(S
1, Sn))

such that

µk+l,m
im (µk,l

im(a, b), c)) = µk,l+m
im (a, µl,m

im (b, c)).

Stated slightly differently, (H∗(Embs(S1, Sn)), µs) is an associative algebra, where

H∗(Embs(S1, Sn)) = ⊕kH∗+2n−1(Imm′
k(S

1, Sn)) and µs = ⊕k,lµ
k,l
im .
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4. Comparison with the Chas-Sullivan product

So far we have only defined an associative product on H∗(Imm′(S1, Sn)) and
H∗(Imm′

k(S
1, Sn)) and not on H∗(Imm(S1, Sn)) := H∗+2n−1(Imm(S1, Sn)). We first

show how one can define an associative product on H∗(Imm(S1, Sn)), and then we
will compare this product with those on H∗(Imm′(S1, Sn)) and H∗(Imm′

k(S
1, Sn))

via the maps induced by the inclusion Imm′(S1, Sn) ↪→ Imm(S1, Sn).
Let USn be the unit tangent bundle of the n-sphere Sn and LUSn be its free loop

spaces. We consider the 1-jet map D : Imm(S1, Sn) → LUSn

D : γ 7→ (γ, γ′/‖γ′‖).

By the Hirsch-Smale Theorem 2.2, H∗(Imm(S1, Sn)) is isomorphic to H∗(LUSn),
which, by Example 3.2, is equipped with the Chas-Sullivan product. Moreover, one
has the commutative diagram

Imm′(S1, Sn)
Ψ◦incl.//

ev

��

LUSn

ev0

��
USn id // USn.

Here ev(γ) = (γ(0), γ′(0)/‖γ′(0)‖) for γ ∈ Imm′(S1, Sn), and ev0(α) = α(0) for α ∈
LUSn. As explained in the previous section, we can take a model for the fibration
ev : Imm′(S1, Sn) → USn so that the fibre is a strict monoid. It is clear that the
two monoidal structures given in the proof of Theorem 3.5 and Example 3.2 are
compatible, and the map

D ◦ incl. ◦ρImm : SO(n+ 1)×SO(n−1) Imml(R,Rn) ' Imm′(S1, Sn) → LUSn

is a morphism of fibrewise monoids

SO(n+ 1)×SO(n−1) Imml(R,Rn)
D◦incl. ◦ρim //

ev

��

LUSn

ev0

��
USn id // USn.

An immediate consequence of Proposition 3.1 is

Corollary 4.1. The map induced by the 1-jet map, D∗ : (H∗(Imm′(S1, Sn)), µim) →
(H∗(LUSn), •), is a map of graded associative algebras. Here, • is the Chas-Sullivan
loop product.

5. Desingularization morphism

We first introduce the desingularization spaces Qn
k and the desingularization mor-

phism σk : Q
n
k → Emb(R,Rn). One should think of Qn

k as the space of k-singular
long knots decorated with k tangent vectors at the singular points, to be used to
desingularize the knot (see [CCL]).

Let G2,n = SO(n)/(SO(2)× SO(n− 2)) be the Grassmanian manifold of oriented
2-planes in Rn. One has the canonical fibration Qn → G2,n whose fibres are Sn−3.
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Here Qn is the space of the pairs (π, v), where π is a 2-plane and v is a vector
perpendicular to π. More precisely,

Qn = SO(n)×(SO(2)×SO(n−2)) S
n−3,

where the action of (SO(2)× SO(n− 2)) on Sn−3 is trivial for the first factor and
for the second factor is given by the natural action of SO(n− 2) on Sn−3 ⊂ Rn−2.
Then Q×k

n fibres over G×k
2,n through the map (πi, vi)16i6k 7→ (πi)16i6k.

We define Qk
n to be the total space of the pull back of the fibration Q×k

n → G×k
2,n

via the natural map rk : Imml
k(R,Rn) → G×k

2,n, given by sending an immersion with k
singular double points to the k 2-planes spanned at the singularities by the tangent
vectors. We have the following commutative diagram of fibrations:

Qk
n

//

��

Q×k
n

��
Imml

k(R,Rn)
rk // G×k

2,n,

where the fibres are (Sn−3)×k.
The desingularization morphism σ =

∐
σk :

∐
k>1 Q

k
n → Embl(R,Rn) is defined

by resolving the singularities using the normal vectors given at those points. More
explicitly, let (γ, (vi)16i6k) ∈ Qk, where γ : R → Rn is a long immersion with double
singular points γ(t11) = γ(t12), γ(t

2
1) = γ(t22), . . . , γ(t

k
1) = γ(tk2) and v1, . . . , vk are the

vectors normal to the tangent plane at the singularities. We can take the tij ’s to be

pairwise ordered, i.e., ti1 6 ti2 for all i. Consider the bump functions

αi(t) =


δ exp( −1

(t−ti1)
2−ε2

) if t ∈ [ti1 − ε, ti1 + ε]

−δ exp( −1
(t−ti2)

2−ε2
) if t ∈ [ti2 − ε, ti2 + ε]

0 otherwise,

where each ai is 1 or 2. Let σ((γ, (vi)
k
i=1)) : R → Rn be

σk((γ, (vi)
k
i=1))(t) = γ(t) +

k∑
i=1

αi(t)vi.

For sufficiently small ε and δ, t 7→ σk((γ, (vi)
k
i=1))(t) is well-defined and is an embed-

ding. So one considers the space Q′n
k consisting of the triples [(γ, (v0i)16i6k), ε, δ],

where ε, δ are small enough so that the construction works, i.e., the outcome is an
embedding. For each γ, the domain of admissible ε and δ continuously depends on γ.
One has the fibration Q′n

k → Qn
k , given by projecting on the first factor (γ, (vi)16i6k),

whose fibres are contractible. Therefore, Q′n
k and Qn

k have the same homotopy type.
Then both Q′n

k and Qn
k are thought of as the space of long immersions decorated

with some normal vectors at the singularities, and they have a natural homotopy
associative product induced by concatenation.

Moreover, σk is clearly SO(n− 1) equivariant; therefore it induces a homologically
well-defined map

Σk : H∗(SO(n+ 1)×SO(n−1) Q
n
k ) → H∗(SO(n+ 1)×SO(n−1) Embl(R,Rn)).
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We have a map ∐
k Q

n
k

∐
k σk //

��

Embl(R,Rn)

��∐
k SO(n+ 1)×SO(n−1) Q

n
k

∐
k Σk //

��

SO(n+ 1)×SO(n−1) Embl(R,Rn)

��
SO(n+ 1)/SO(n− 1)

id // SO(n+ 1)/SO(n− 1)

of fibrewise monoid. Hence

Lemma 5.1.

⊕k Σk : (⊕kH∗(SO(n+ 1)×SO(n−1) Q
n
k ), ∗)

→ (H∗(SO(n+ 1)×SO(n−1) Embl(R,Rn)), µim)

is a map of associative algebras. Here the product ∗ is induced by the concatenation.

We need another map in order to complete the construction of the desingulari-
zation morphism from the homology of the space of immersions in Sn to the homol-
ogy of knot space. So far we have constructed a map from H∗((SO(n+ 1)×SO(n−1)

Qn
k ) to H∗(SO(n+ 1)×SO(n−1) Embl(R,Rn)), and we need a map which takes from

H∗(Immk(S
1, Sn)) to H∗((SO(n+ 1)×SO(n−1) Q

n
k ). The latter is given by the Gysin

map associated to the projection map

SO(n+ 1)×SO(n−1) Q
n
k → (SO(n+ 1)×SO(n−1) Imml

k(R,Rn)) ' Immk(S
1, Sn).

The Gysin maps of fibrations have a convenient description using the spectral se-
quence, which makes its naturality property more transparent.

Proposition 5.2 (See [BG]). Let F → E → M be an oriented fibration whose fibre
has the homotopy type of a closed manifold of dimension p. Then there is a natural
map f ! : H∗(M) → H∗+p(E). This is the dual of the map on the cohomology given by
integration over fibres.

A description using spectral sequence is the following composite:

E2
p,n = Hp(M,Hn(F )) = Hp(M,Z) ↪→ E∞

p,n ⇒ Hp+n(E).

Here Hq(F ) stands for the local coefficient system, which is trivial in this case and
has the fundamental class of F as a generator (because the fibration is oriented). In
this description one can clearly see the naturality property.

We apply this construction to the oriented fibration Qn
k → Imml

k(R,Rn)

and SO(n+ 1)×SO(n−1) Q
n
k → SO(n+ 1)×SO(n−1) Imml

k(R,Rn).

Therefore the fibration Qn
k → Imml

k(R,Rn) gives rise to the maps

θk : H∗(Imml
k(R,Rn)) → H∗+k(n−3)(Q

n
k )

and

Θk : H∗(SO(n+ 1)×SO(n−1) Imml
k(R,Rn)) → H∗+k(n−3)(SO(n+ 1)×SO(n−1) Q

n
k ).
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Lemma 5.3. The Gysin maps Θn
k ’s are multiplicative in the sense that

Θk(x) ∗Θl(y) = Θk+l(µ
k,l
im(x, y)).

Proof. If the fibration F → E → M is a fibrewise monoid, then the Leray-Serre spec-
tral sequence accommodates the fibrewise monoidal structure. In other words, all the
pages, including E∞, of the spectral sequence have a multiplicative structure.

A reader interested in a more detailed proof is invited to see the Cohen-Jones-Yan
paper [CJY], where they give a detailed proof of the multiplicative structure of the
Leray-Serre spectral sequence in the case of free loop space fibration. Their result and
proof apply to our general case of fibrewise monoids.

We define the desingularization morphism to be the composite

Σk ◦Θk : H∗(SO(n+ 1)×SO(n−1) Imml
k(R,Rn)) →

H∗−k(n−3)(SO(n+ 1)×SO(n−1) Embl(R,Rn)),

φk = Σk ◦Θk : H∗(Immk(S
1, Sn)) → H∗+k(n−3)(Emb(S1, Sn)).

Theorem 5.4. The desingularization morphisms

φk : H∗(Imm′
k(S

1, Sn)) → H∗(Emb(S1, Sn)),

k > 0, are compatible with the products, i.e., for x ∈ H∗(Imm′
k(S

1, Sn)) and y ∈
H∗(Imm′

l((S
1, Sn)))

µem(φk(x), φl(y)) = φk+l(µ
k,l
im(x, y)).

Proof. For x, y ∈ H∗(Imm′
k(S

1, Sn)),

µem(φk(x), φl(y)) = µem(Σk ◦Θk(x),Σl ◦Θn
l (y)) = Σk+l(Θk(x) ∗Θl(y))

by Lemma 5.1. The latter is Σk+l ◦Θk+l(µ
k,l
im(x, y)) = φk+l(µ

k,l
im(x, y)).

6. Some computations

Let us consider the canonical inclusion i : Imm′(S1, Sn) → Imm(S1, Sn). The aim
of this section is two-fold. First, we determine i∗, the morphism induced in singular
homology i∗; secondly, we prove that the desingularization morphism is non-trivial.

Notation. For V a graded Z-module, Λ(V ) is the free exterior algebra generated by
V , and T (V ) is the free tensor algebra generated by V .

6.1. Homology of immersion space

6.1.1. Immersions in Rn+1.

As a warm-up example, we first consider the cases of long immersions Imml(R,Rn+1),
and of singular knots Imm(S1,Rn+1) in an Euclidean space. Thanks to the Hirsch-
Smale theorem one knows that the 1-jet map, γ 7→ Dγ, is a homotopy equivalence
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from, respectively, Imml(R,Rn+1) and Imm(S1,Rn+1) to P(−x,v),(x,v)URn (see Corol-

lary 2.4) and LURn+1, where D(γ) := (γ, γ̇
‖γ̇‖ ).

Imml(R,Rn+1)
D //

��

P(−x,v),(x,v)(Rn+1 × Sn) = P(−x,x)Rn+1 × ΩSn ' ΩSn.

��
Imm(S1,Rn+1)

D //

D0
,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXX LURn+1 = LRn+1 × LSn ' LSn

ev0 ◦ pr2

��
Sn

Note that one has the inclusion Imml(R,Rn+1) ↪→ Imm(S1,Rn+1), which
corresponds to gluing the two end points of f |[−1,1] for a given immersion

f ∈ Imml(R,Rn+1) using a fixed path. After the identification URn+1 together with
Rn+1 × Sn, the spaces Imml(R,Rn+1) and Imm(S1,Rn+1) are homotopy equivalent
to ΩSn and LSn. The concatenation of long immersions in Imml(R,Rn+1) obviously
corresponds to the composition of based loops in ΩSn. We recall that H∗(ΩS

n) with
this multiplicative structure is isomorphic to the tensor algebra generated by an ele-
ment u of degree n− 1. The evaluation map

D0 : Imm(S1,Rn+1)
pr2 ◦D−−−−→ LSn ev0−−→ Sn

can be used to endow the singular homology of Imm(S1,Rn+1) with a product. We
consider the diagram

Imm(S1,Rn+1)× Imm(S1,Rn+1) Imm(S1,Rn+1)×Sn Imm(S1,Rn+1)
joo

Tr

��
Imm(0,...,0)(∞,Rn+1).

Here Imm(S1,Rn+1)×Sn Imm(S1,Rn+1) is the space of immersions (γ1, γ2) such
that D0(γ1) = D0(γ2), and the space Imm(0,...,0)(∞,Rn+1) is the subspace of
Imm(S1,Rn+1)×Sn Imm(S1,Rn+1) such that γ1(0) = γ2(0) = (0, . . . , 0). The map
Tr is a translation map. It is defined using the unique translation T1 that sends
γ1(0) to (0, . . . , 0) and the unique translation T2 that sends γ2(0) to (0, . . . , 0),
Tr(γ1, γ2) = (T1(γ1), T2(γ2)). We also have a composition map

comp: Imm(0,...,0)(∞,Rn+1) → Imm(S1,Rn+1).

As j is a finite codimensional embedding, we can define a Gysin morphism j! and a
product:

− • − := comp∗ ◦Tr∗ ◦j! ◦ − × −.

This multiplicative structure is isomorphic to the Chas-Sullivan product on
H∗+n(LS

n), and the isomorphism is induced by the map D. The algebra H∗+n(LS
n)

has been computed by Cohen, Jones and Yan [CJY, Theorem 2]. For an oriented,
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closed manifold M they consider the Serre spectral sequence associated to the eval-
uation fibration

ΩM → LM → M

enriched with a multiplicative structure coming from the loop product of H∗(LM)
lifted at the chain level. To be more precise, using the Pontryagin product onH∗(ΩM)
and the intersection product on H∗(M) = H∗+d(M), the second page of this spectral
sequence is ([CJY, Theorem 1])

E2
p,q := Hp(M,Hq(ΩM)) ⇒ Hp+q(LM) := H∗+d(LM).

For the spheres, they get

H∗(Imm(S1,Rn+1)) ∼= H∗(LS
n) ∼=

{
Λ(a)⊗ Z[u] for n odd

(Λ(b)⊗ Z[a, v])/(a2, ab, 2av) for n even

with a ∈ H−n(LS
n) ∼= E∞

−n,0, b ∈ H−1(LS
n) ∼= E∞

−n,n−1, u ∈ Hn−1(LS
n) ∼= E∞

0,n−1

and v ∈ H2n−2(LS
n) ∼= E∞

0,2n−2.

6.1.2. Immersions in Sn.
The computation of H∗(Imm(S1, Sn)) has been completed by Chataur-Le Borgne
in [CL]. In fact Le Borgne in [L] considers the loop fibration

LF → LE → LB

associated to a smooth fibre bundle of oriented closed manifolds

F → E → B.

Then he enriches the Serre spectral sequence with a multiplicative structure coming
from the Chas-Sullivan loop product on LB, LE and LF :

E2
p,q := Hp(LB,Hq(LF )) → Hp+q(LE).

In particular, he applies this new technique to the fibration

LSn−1 → LUSn → LSn,

and he proves that the spectral sequence collapses at the E2-term. For n odd this is
done directly and for n even, using a comparison with the Serre spectral sequence of

ΩUSn → LUSn → USn.

In both cases there are some serious extension issues which are all resolved in [CL,
Main Theorem] using Morse theoretical techniques: the authors filter the immersion
spaces by the energy functional, and they get a new multiplicative spectral sequence
that converges to H∗(Imm(S1, Sn)). We recall that we have the following isomor-
phisms of algebras:

Odd case. When n is odd we have

H∗(Imm(S1, Sn)) ∼= H∗(LS
n)⊗H∗(LS

n−1).

Even case. When n is even we have

H∗(Imm(S1, Sn)) ∼= H∗(USn)⊗H∗(ΩUSn).
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We also recall:

Lemma 6.1.

H∗(USn) ∼= Λ(a−n, b−2n+1)/(2a−n, a−nb−2n+1)

and

H∗(ΩUSn) ∼= Z[un−2, v2n−2]/(2un−2).

Proof. The homology of USn can be computed using the Serre spectral sequence of
the fibration

Sn−1 → USn → Sn.

As we want the multiplicative structure, we work in cohomology. We have

Ep,q
2 = Hp(Sn)⊗Hq(Sn−1) ∼= Λ(xn)⊗ Λ(yn−1).

The only non-trivial differential (for n > 2) is

dn : E
0,n−1
n

∼= Hn−1(Sn−1) → En,0
n

∼= Hn(Sn),

which is the multiplication by 2 (the Euler characteristic), and we apply Poincaré
duality to get the intersection product. The class a−n is Poincaré dual to the class of
xn and b−2n+1 to the class of xn ⊗ yn−1.

Similarly, H∗(ΩUSn) can be computed using the Serre spectral sequence of

ΩSn−1 → ΩUSn → ΩSn.

We get a multiplicative spectral sequence

E2
p,q = Hp(S

n)⊗Hq(S
n−1) ∼= T (wn−1)⊗ T (un−2).

As it is a spectral sequence of algebra differentials are derivations, from the compu-
tation of the derivation

dn−1(wn−1) = 2un−2,

we deduce the presentation of the Pontryagin algebra H∗(ΩS
n) given above where

v2n−2 = u2
n−1. Let us explain why we have dn−1(wn−1) = 2un−2. As USn is n− 2-

connected we know that

Hn−2(ΩUSn) ∼= Hn−1(USn) ∼= Z/2Z.

In order to produce this 2-torsion in the spectral sequence, we must have dn−1(wn−1)
= 2un−2.

In order to determine i∗ : H∗(Imm′(S1, Sn)) → H∗(Imm(S1, Sn)), we need to con-
sider the fibrations

Imm′
∗(S

1, Sn) → Imm′(S1, Sn) → Sn

Imm′
∗,v(S

1, Sn) → Imm′(S1, Sn) → USn,

where Imm′
∗ denotes the space of based immersions and Imm′

∗,v is its subspace
consisting of those immersions with a given unit tangent vector at the base point.

We notice that the second fibration admits a section geod. This map sends the
unit tangent vector v ∈ USn to the unique great circle such that γ̇(0) = v.
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Theorem 6.2. For n even number then

H∗(Imm′(S1, Sn)) ∼= H∗(USn,H∗(ΩS
n−1)) ∼= H∗(USn)⊗H∗(ΩS

n−1).

The morphism i∗ is induced by the canonical morphism

H∗(USn,H∗(ΩS
n−1)) → H∗(USn,H∗(ΩUSn)) ∼= H∗(Imm(S1, Sn)),

which is the identity on H∗(USn), and the morphism

j∗ : H∗(ΩS
n−1) → H∗(ΩUSn)

given by the inclusion of a fibre j : Sn−1 → USn. For odd number n,

H∗(Imm′(S1, Sn)) ∼= H∗(S
n)⊗H∗(LS

n−1).

In this case the morphism i∗ is the injection

H∗(S
n)⊗H∗(LS

n−1)
c∗⊗Id−−−−→ H∗(LS

n)⊗H∗(LS
n−1),

where c : Sn ↪→ LSn is the inclusion of the constant loops.

Proof of the even case. Let us consider the Serre spectral sequence associated to the
fibration

Imm′
∗,v(S

1, Sn) → Imm′(S1, Sn) → USn.

The E2-term of this spectral sequence is given by

E2
p,q = Hp(USn,Hq(Imm′

∗,v(S
1, Sn))).

Because H∗(ΩS
n) is torsion free, we have the canonical isomorphism

E2
p,q

∼= Hp(USn)⊗Hq(ΩS
n−1).

Let us recall that in the even case we have

H∗(USn) ∼= Λ(a−n, b−2n+1)/(2a−n, a−nb−2n+1)

and

H∗(ΩS
n−1) ∼= Z[un−2].

In order to compute the other terms, we use the fact that this spectral sequence is mul-
tiplicative. As the underlying fibration has a section, we have dk(a−n) = dk(b−2n+1)
= 0 for k > 2, and we also have dk(un−2) = 0 for degree reasons. We conclude that
this spectral sequence collapses at the E2-term. Also, for degree reasons, there are
no extension issues in that spectral sequence. In fact the E2-term is concentrated on
three columns, and it is easy to check that for any element x ∈

⊕
p,q E

2
p,q of total

degree m, there exists a unique couple (p, q) such that m = p+ q and x ∈ E2
p,q. Thus

we have that

H∗(Imm′(S1, Sn)) ∼= Λ(a−n, b−2n+1)/(2a−n, a−nb−2n+1)⊗ Z[un−2].
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Now to identify i∗, note that i is in fact a map of fibration,

ΩSn−1 D' Imm′
∗,v(S

1, Sn) //

��

Imm∗,v(S
1, Sn)

D' ΩUSn

��
Imm′(S1, Sn)

i //

ev

��

Imm(S1, Sn)
D' LUSn

ev0

��
USn id // USn.

Therefore it induces a map between the E2-pages of the Leray-Serre spectral sequen-
ces. Since the 1-jet map D commutes with i and both spectral sequences collapse at
the E2-term, the statement for the case n even follows.

Proof of the odd case. In this case we consider the Leray-Serre spectral sequence asso-
ciated to the fibration

Imm′
∗(S

1, Sn) → Imm′(S1, Sn)
ev0−−→ Sn (6.1)

because this fibration is comparable with the fibration LSn−1 → LUSn → LSn whose

Leray-Serre spectral sequence allows us to compute the homology of Imm(S1, Sn)
D'

LUSn. Stated more precisely, the 1-jet map is a map of fibrations:

Imm′
∗(S

1, Sn) //

��

Imm∗(S
1, Sn)

D' LSn−1

��
Imm′(S1, Sn)

i //

ev0

��

Imm(S1, Sn)
D' LUSn

pr

��
Sn inc . // LSn,

where inc . : Sn → LSn is the inclusion of the constant loops in LSn. On the other
hand, the spectral sequence of the fibration (6.1) collapses at the E2-term. To make
this clear let us compute the homology of the fibre using the spectral sequence of the
fibration

Imm′
∗,v(S

1, Sn) → Imm′
∗(S

1, Sn) → Sn−1.

We have that H∗(Imm′
∗,v(S

1, Sn)) ' H∗(Imml(R,Rn) ' H∗(ΩS
n−1) ' Z[xn−2] is

the polynomial algebra in one variable xn−2 of degree n− 2 and H∗(S
n−1) ' Λy−n+1.

So we have E2 = Λy−n+1 ⊗ Z[xn−2]. Clearly, d2xn−2 = 0 and d2yn−1 = 0 as this fibra-
tion has a section, and all elements of H∗(S

n−1) must survive in E∞. This section
is given by sending a vector u ∈ Sn−1 to the unique closed geodesic in Sn passing
through the marked point ∗ and tangent to v. The differentials of the higher pages
of the spectral sequence are identically zero for degree reasons. This proves that

H∗(Imm′
∗(S

1, Sn)) := H∗+n−1(Imm′
∗(S

1, Sn)) ' H∗+n−1(LS
n−1) = H∗(LS

n−1),

and in fact the isomorphism is given by the 1-jet map. Going back to the Leray-Serre
spectral sequence of the fibration (6.1), we have E2 = Λy−n+1 ⊗ Z[xn−2]⊗ Λz−n.
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Since the differential d2 of E2 is a derivation, we only need to compute the d2 on
the generators. It is clear that d2xn−2 = d2yn−1 = 0. We claim that d2zn = 0; this is
done by comparison with the spectral sequence of the fibration

Imm′
∗,v(S

1, Sn) → Imm′(S1, Sn) → USn (6.2)

which has a section. Therefore all the elements of H∗(USn) must survive all the
way up to the E∞-page of the Leray-Serre spectral sequence of the fibration (6.2).
This implies that zn should survive all the way to the E∞-page, thus d2zn = 0.
For degree reasons we also have dizn = 0, i > 2. Therefore the H∗(Imm′(S1, Sn)) '
H∗(LS

n−1)⊗H∗(S
n), which proves the statement.

6.2. Non-triviality of the desingularization morphism
Let us prove that the desingularization morphism

φ2 : H0(Imm′
2(S

1, Sn)) → H2n−6(Emb(S1, Sn))

is non-trivial for n > 4. By a result of V. Turchin, H2n−6(Embl(R,Rn)) ' Z. In [B3,
Proposition 3.9], R. Budney proves that π2n−6(Embl(R,Rn)), which is the first non-
trivial homotopy group. Therefore by Hurewitz’s theorem,

π2n−6(Embl(R,Rn)) ∼= H2n−6(Embl(R,Rn)) ∼= Z,

and all elements of H2n−6(Embl(R,Rn)) are spherical. Moreover, he constructs a
generator of π2n−6(Embl(R,Rn)) ∼= Z, which is in the image of the desingularization
map ([B3, Theorem 3.13]).

We give a geometric description of this generator: take a long immersion γ : R →
R3 ⊂ Rn with two regular double points such that one of its four resolutions in R3 is
the trefoil knot. The desingularization morphism maps γ to

des : Sn−3 × Sn−3 → Embl(R,Rn).

If s2n−6 is the fundamental class of Sn−3 × Sn−3, then in homology des∗(s2n−6) is the
generator of H2n−6(Embl(R,Rn)) (see [B3, Theorem 3.13]). Let γ′ ∈ Imm2(S

1, Sn)
be a closure of γ. Using the fact mentioned earlier and the spectral sequence argument,
we see that

(1) H2n−6(Emb(S1, Sn)) ∼= Z by using the Serre spectral sequence of the fibration
Emb(S1, Sn) → USn and the fact that this fibration has a cross section we have
H2n−6(Emb(S1, Sn)) ∼= E0,2n−6

2 . This element cannot be killed by another class
because the existence of a cross section implies that the differential

d2n−5 : H2n−5(USn) = E2n−5,0
2n−5 → E0,2n−6

2n−5 = E0,2n−6
2 ' H2n−6(Embl(R,Rn))

is identically zero as the zeroth horizontal line has to survive all the way up to
E∞-page.

(2) If k2n−6 is a generator of H2n−6(Emb(S1, Sn)), then we have φ2(1tref) = k2n−6

where 1tref is the generator of the 0-th homology group of the connected com-
ponent containing γ′. Here we use the naturality of the spectral sequence with
respect to the maps between fibration and the fact that in these degrees the desin-
gularization morphism is completely determined by its restriction to the fibers:
by the desingularization morphism between long immersions and long knots.
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France


