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INTEGRAL EXCISION FOR K-THEORY

BJØRN IAN DUNDAS and HARALD ØYEN KITTANG

(communicated by Daniel Grayson)

Abstract
If A is a homotopy cartesian square of ring spectra satisfy-

ing connectivity hypotheses, then the cube induced by Good-
willie’s integral cyclotomic trace K(A)→ TC(A) is homotopy
cartesian. In other words, the homotopy fiber of the cyclotomic
trace satisfies excision.

The method of proof gives as a spin-off new proofs of some
old results, as well as some new results, about periodic cyclic
homology, and — more relevantly for our current application
— the T-Tate spectrum of topological Hochschild homology,
where T is the circle group.

1. Introduction

Algebraic K-theory is an important invariant that can be approached from widely
different angles. There are structural theorems cutting calculations into smaller, and
hopefully more manageable pieces, and there are approximations by theories that are
more open themselves to calculation. The aim of this paper is to explain how these
two approaches can be combined in a certain situation.

Algebraic K-theory satisfies the Mayer-Vietoris property for Zariski open imbed-
dings of schemes [18]. For closed imbeddings this generally fails, which is bad, for
instance, if you want to analyze a singularity where open covers are of little help.

On the other hand, it is sometimes possible to approximate algebraic K-theory
through the cyclotomic trace trc : K → TC to topological cyclic homology. Topologi-
cal cyclic homology lacks some of the structural properties of algebraic K-theory, but
one can hope to calculate TC in a given situation.

This paper proves that the difference between K-theory and topological cyclic
homology, that is, the homotopy fiber of the cyclotomic trace hofibtrc, has the Mayer-
Vietoris property for closed imbeddings. The importance of this is that K-theory is
wedged in a fiber sequence

hofibtrc → K → TC,

where the fiber is structurally accessible and the base functor is accessible through
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calculations in stable homotopy theory. More concretely, this means that if you have
a closed cover, then algebraic K-theory can be recovered from topological cyclic
homology and the hyper homology of algebraic K-theory with respect to the closed
cover.

When trying to generalize algebraic geometry to ring spectra, certain obstacles
are met. Most successful approaches have focused on connective (also called (−1)-
connected, i.e., the negative homotopy groups vanish) ring spectra and have translated
the crucial geometric invariants through the path component functor π0. Also, the
translation between rings and schemes requires some care. In particular, a pushout of
affine schemes is, in general, not an affine scheme. When one of the maps involved is
a closed embedding, things work out [17], and that is the context we are concerned
with in this paper.

Theorem 1.1. Let

A =


A0 −−−−→ A1y yf1

A2 −−−−→
f2

A12


be a homotopy cartesian square of connective ring spectra and 0-connected maps. Then
the resulting cube

trcA : K(A)→ TC(A)

is homotopy cartesian.

Remark 1.2.

1. The topological cyclic homology in question is Goodwillie’s integral version. We
will recall the necessary details when we need them in Section 3. If we take
the profinite completion, then Theorem 1.1 is a special case of [8], which itself
is an extension of the discrete case established by Geisser and Hesselholt [10].
If we replace topological cyclic homology with negative cyclic homology and
work rationally, then it is closely related to Cortiñas’ result [4]. The proof of
Theorem 1.1 relies on these results.

2. Theorem 1.1 says that, under the given connectivity hypotheses, the homotopy
fiber of the cyclotomic trace satisfies excision: it preserves homotopy cartesian
squares. In the commutative case, the provision that the maps are 0-connected
assures the connection to geometry: Spec(π0f

j) are closed imbeddings, and so
affine results are geometrically interesting. Note, however, that our ring spectra
are not assumed to be commutative.

3. It would be desirable to have a statement where just one of the maps, say f1,
were 0-connected (as was the case in [4, 8] and [10]). With the present line of
proof this is not obtainable, essentially because of a technicality (Ext-completion
of infinite sums of torsion modules need not be torsion), which vanishes under
certain finiteness conditions. We have refrained from pursuing this issue since
it would significantly lengthen the exposition.
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1.1. Notation
The category of finite sets and injections is denoted I. If X is a spectrum, then

X̂ is its profinite completion and X(0) its rationalization. If X is a cube of spectra,
then ifibX is the iterated homotopy fiber. If M is a simplicial abelian group, then
HM is the associated Eilenberg-Mac Lane spectrum. The results in this paper are
independent of choice of framework for symmetric monoidal smash products, but
for concreteness, “spaces” are simplicial sets and the spectra are supposed to be
simplicial functors (i.e., simplicially enriched functors from finite pointed spaces to
pointed spaces; with the appropriate model structure these functors model spectra,
see, e.g., [1, 9, 14] or [15]). Monoids with respect to the smash product are called
ring spectra or S-algebras. The accompanying homotopy notions are never used.

If k is a natural number, then we let k be the set {1, . . . , k} and k+ be the pointed
set {0, 1, . . . , k} with base point 0, and Ck+1 = Z/(k + 1) is the cyclic group of order
k + 1.

1.2. Side results
On our way we (re)prove the following results (where HP is periodic cyclic homol-

ogy); cf. [5, 11, 12, 19]:

Proposition 1.3.

1. If A→ B is a surjection of Q-algebras with nilpotent kernel, then the induced
map HPn(A)→ HPn(B) is an isomorphism for every n.

2. Periodic cyclic homology has the Mayer-Vietoris property, in the sense that for a
cartesian square A of Q-algebras and surjections, there is a long exact sequence

· · · → HPn(A
0)→ HPn(A

1)⊕HPn(A
2)→ HPn(A

12)→ HPn−1(A
0)→ · · · .

The proofs are very hands-on, filtering cyclic modules through filtrations where
the subquotients are built out of retracts — up to multiplication by concrete integers
— of free cyclic objects (on which periodic homology vanishes). The good thing about
this is that the proofs are combinatorial enough to work directly to show vanishing
results for T-Tate homology of THH(−)̂(0), where THH is topological Hochschild
homology. For instance,

Proposition 1.4. If A is a cartesian square of connective ring spectra and 0-con-

nected maps, then the square
(
THH(A)̂(0))tT is cartesian.

Remark 1.5. The problem of showing the main result 1.1 with a connectivity hypoth-
esis on only one of the maps essentially boils down to the fact that we are not able

to prove that
(
THH(A)̂(0))tT → (

THH(A0)̂(0))tT is an equivalence for a graded
ring A = A0 ⊕A1 ⊕ · · · without some finiteness hypothesis; cf. also Remark 1.2(2).

1.3. The core of the proof of Theorem 1.1
Consider the arithmetic square

ifib hofibtrc(A) −−−−→ ifib hofibtrc(A)(0)y y
ifib hofibtrc(A)̂ −−−−→ ifib hofibtrc(A)̂(0)
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(by the characterization of rationalization and profinite completion as, e.g., in [2] we
need not be concerned about whether the (iterated) fiber is taken before or after these
processes, and so we will be sloppy about providing parentheses). Theorem 1.1 claims
that ifib hofibtrc(A) ' ∗, and so it clearly suffices to show that ifib hofibtrc(A)(0) '
ifib hofibtrc(A)̂ ' ∗.

The profinite completion part, namely that ifib hofibtrc(A)̂ is contractible, is the
main result of [8], which relied heavily on the work of Geisser and Hesselholt [10] in
the discrete ring case, which again used ideas from Cortiñas’ rational paper [4].

In [4], Cortiñas proved that if A is a cartesian square of discrete rings with f1 sur-
jective, then the the Goodwillie-Jones lift of the Dennis trace map from the “birela-
tive rational K-groups” to the “birelative negative cyclic homology groups” (see 2.10
below for a discussion of negative cyclic homology) of A⊗Q is an equivalence, or in
our terminology, that the trace gives rise to a cartesian cube

K(A)(0) → (H(HH(A⊗Q)))hT

(where H denotes the Eilenberg-MacLane construction). In view of the equivalence
THH(A)(0) ' H(HH(A)⊗Q) of Lemma 2.20, Cortiñas’ result states that the com-
posite

K(A)(0) → TC(A)(0) →
(
THH(A)(0)

)hT
is cartesian. Just as we did in [8], this extends to the case where A is a homotopy
cartesian square of connective ring spectra with f1 0-connected (though there are
also other and even simpler alternatives since we are only concerned with rational
results).

Hence, to conclude the main theorem, all we have to do is to prove that

Lemma 1.6. Let A be a homotopy cartesian square of connective ring spectra and
0-connected maps. Then the resulting cube

TC(A)(0) →
(
THH(A)(0)

)hT
is homotopy cartesian.

This follows from the results in Section 3.

Acknowledgements

The authors want to thank an anonymous referee for helpful suggestions.

2. Excision and Tate homology

That rational periodic homology is excisive is well known and follows from Cuntz
and Quillen’s models [5]. However, we need a proof that is generalizable to a slightly
more involved situation.

In this section we give such a proof. A very similar argument gives a simpler
proof of Goodwillie’s result that rational periodic homology is insensitive to nilpo-
tent extensions. As a matter of fact, the way we present it, the results are logically
intertwined.
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2.1. Free cyclic objects
Let ∆o and Λo be the simplicial and cyclic categories, and let j : ∆o → Λo be the

inclusion. If X is a simplicial object in a category with finite coproducts, then we
let j∗X be the “free cyclic object” on X (i.e., the left Kan extension associated to
the inclusion j : ∆o → Λo, which exists if the category in question has finite coprod-
ucts). Explicitly, the factorization properties of Λo (see, e.g., [13, 6.1.8]) give that the
q-simplices are given by (j∗X)q =

∐
Cq+1

Xq, the coproduct indexed over the cyclic

group Cq+1 = {1, t, t2, . . . , tq} with structure maps

dr(t
s, a) =

{
(ts, dr−sa) if 0 6 s 6 r 6 q

(ts−1, dq+1+r−sa) if 0 6 r < s 6 q,

sr(t
s, a) =

{
(ts, sr−sa) if 0 6 s 6 r 6 q

(ts+1, sq+1+r−sa) if 0 6 r < s 6 q

t(ts, a) = (ts+1, a),

where we have written (ts, a) to signify an “element” a ∈ Xq in the tsth summand of
(j∗X)q.

If Y is a cyclic object, then the adjoint of the identity is the map j∗Y → Y given
by (s, y) 7→ tsy.

Example 2.1. A pointed symmetric monoid N is a symmetric monoid in the sym-
metric monoidal category of pointed sets and smash products. The smash product
becomes the coproduct in the category of pointed symmetric monoids. Considering
N as a constant simplicial object, the free cyclic object j∗N is the cyclic nerve:
(j∗N)q = N∧q+1 (this is true in general for symmetric monoids in any symmetric
monoidal category).

The following example of a symmetric pointed monoid will be important to us
shortly: Q = {∗, 0, 1} pointed at ∗, with 0 + 0 = 0, 0 + 1 = 1 and 1 + 1 = ∗. We see
that j∗Q ∼=

∨∞
k=0 Q(k), where Q(k) is the cyclic subset of j∗Q whose q-simplices are

either the base point or of the form n0 ∧ · · · ∧ nq where the sum of the n’s is k (so
that we have a bijection Q(k)q ∼=

{
(n0, . . . , nq) ∈ {0, 1}×(q+1)|

∑
ni = k

}
+
).

2.2. Rational retracts of free cyclic objects
We will need a result (Lemma 2.6 below) about variants of Hochschild homology

which naturally are rational retracts of free cyclic objects. However, we start with
a simpler version since in many situations this is all what is needed and it is easier
to encode. In order to highlight certain phenomena we choose an indexation in the
simple example which is not the same as the one we fall back on in the general case.

Definition 2.2. A cyclic spectrum or simplicial abelian group Y is said to be an
almost free cyclic object if there is a simplicial object X and maps Y → j∗X → Y
such that the composite induces multiplication by some integer k 6= 0 on homotopy
π∗Y → π∗Y .

If A is a discrete ring, then the Hochschild homology HH(A) of A is the cyclic
abelian group [q] 7→ A⊗q+1 (with tensor products over the integers unless otherwise
noted). If A is a simplicial ring, then HH(A) is the associated cyclic simplicial abelian
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group. Flatness is always assumed (so really one should take free resolutions, and we
are considering what some people call Shukla homology. Since all the applications in
this section will be rational and applied to rings that already may have a simplicial
direction, we do not bother making the resolutions explicit).

For a ring B and B-bimodule M , let B nM be the square zero extension of B by
M . We have a natural decomposition

HH(B nM) ∼= ⊕k>0H(k)(B,M)

of cyclic abelian groups, where H(k)(B,M) consists of the tensors with exactly k
factors of M in each dimension.

If we set M(∗) = 0, M(0) = B, M(1) = M , and M(n) =
⊗q

j=0 M(nj) for n =
n0 ∧ · · · ∧ nq ∈ (j∗Q)q, where Q = {∗, 0, 1} is the pointed symmetric monoid of exam-
ple 2.1, then the group of q-simplices of H(k)(B,M) is isomorphic to⊕

n∈(Q(k))q

M(n),

where Q(k) is the cyclic subcomplex of j∗Q defined in 2.1. We will use the notation
a/n to specify an element a = a0 ⊗ · · · ⊗ aq in the n = n0 ∧ · · · ∧ nq summand.

The summands with n0 = 1 (i.e., the zeroth factor in the tensor product M(n) is
M(1) = M) assemble to a simplicial subcomplex G(k)(B,M) ⊆ H(k)(B,M).

If H is a simplicial abelian group, then the free cyclic abelian group j∗H has
q-simplices

⊕
Cq+1

Hq, and we write an element h in the tjth summand as (tj , h).

Lemma 2.3. There is a cyclic map

H(k)(B,M)→ j∗G(k)(B,M)

which is given by sending a = a0 ⊗ · · · ⊗ aq in the n = n0 ∧ · · · ∧ nq’th summand of
H(k)(B,M)q to∑

nj=1

(tj , t−ja/t−jn) =
∑
nj=1

(tj , aj ⊗ · · · ⊗ aj−1/nj ∧ · · · ∧ nj−1),

where the sums are over all j such that nj = 1.

Proof. To check that this is a well-defined cyclic map, let φ ∈ ∆, use the definition of
the structure maps in the free cyclic object and unique factorization φ∗tj = t(φ,j)φ∗j
to see that the map commutes with φ∗, basically because the index sets of the two
resulting sums, {i|(φ∗n)i = 1} and {(φ, j)|nj = 1} are equal.

For future reference we note

Lemma 2.4. The composite

H(k)(B,M)→ j∗G(k)(B,M)→ j∗H(k)(B,M)→ H(k)(B,M)

is multiplication by k, where the first map is defined in Lemma 2.3, the second is
induced by the inclusion G(k)(B,M) ⊆ H(k)(B,M) and the third is the adjoint of
the inclusion. Hence H(k)(B,M) is an almost free cyclic abelian group.

As an immediate corollary (since rationalization commutes with infinite coprod-
ucts) we get
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Corollary 2.5. The fiber of the induced map HH(B nM)→ HH(B) is isomorphic
to
⊕

k>1 H(k)(B,M) and so rationally a retract of a free cyclic object.

However, our applications are more delicate in that they need to navigate rather
carefully through functors that are not particularly well behaved with respect to
(co)limits, and we will need the formulation in Lemma 2.4 and the slightly more
general Lemma 2.6 below.

Let A = A0 be a ring and let A1, . . . , Al be A-bimodules. Let An (A1 ⊕ · · · ⊕Al)
be the square zero extension of A. It is convenient to grade this ring, so that Aj is in
degree j.

Consider the partitions of k > 0, i.e., sequences P = (k1 > k2 > · · · > kr) of posi-
tive integers such that their sum k1 + k2 + · · ·+ kr is k (the empty partition is a parti-
tion of 0). The length of P is r and its norm is |P | = k1k

k−1 + k2k
k−2 + · · ·+ krk

k−r.
We also write P = (k1 + k2 + · · ·+ kr) where notationally convenient.

Partitions of k are ordered according to their norm; if k = 4 we get that (4) >
(3 + 1) > (2 + 2) > (2 + 1 + 1) > (1 + 1 + 1 + 1). If l is a natural number, then we
say that a partition is bounded by l if all the numbers in the partition are less than
or equal to l. For instance, the partitions of k = 4 bounded by l = 2 are the three
partitions (2 + 2) > (2 + 1 + 1) > (1 + 1 + 1 + 1).

Let P = (k1 > k2 > · · · > kr) be a partition of k bounded by l and let q a natural
number. Consider the sum H(P )q = H(P )(A0;A1, . . . , Al)q of all the tensor products
you get by tensoring together (in any order) Ak1 , . . . , Akr and q + 1− r copies of
A = A0 (if q + 1− r < 0 we just get the trivial group). So, A0 ⊗A1 ⊗A2 ⊗A0 ⊗A1

is a summand in H(2 + 1 + 1)4 where l is any number greater than or equal to 2.
Explicitly,

H(P )q =
⊕
f

q⊗
j=0

Af(j),

where f varies over the set Sq(P ) of functions Z/(q + 1)→ Z/(l + 1) such that the
nonzero values of f correspond to (a permutation of) P ; i.e., such that there is a
bijection σ : r→ Supp(f) with f(σ(j)) = kj . Varying q and inserting Hochschild-style
face, degeneracy and cyclic operators we get a cyclic abelian group (note that only
when at least one of the factors getting multiplied in a face operation is A0 do we get
a nonzero map).

This structure is uniquely characterized by the statement that distributivity gives
a natural isomorphism

HH(An (A1 ⊕ · · · ⊕Al)) ∼=
⊕
k>0

⊕
P

H(P )

of cyclic abelian groups, where the second summand is over all partitions P of k
bounded by l.

Let G(P ) be the subsimplicial object of H(P ) consisting of the summands corre-
sponding to the f ∈ Sq(P ) with f(0) 6= 0, and let H(P )→ j∗G(P ) be the cyclic map
which sends a in the f ∈ Sq(P ) summand to

∑
j∈Supp(f)(t

f(j), t−f(j)a).
We note that in the case B = A, M = A1, r = k, l = 1, we are in the situation of

Lemma 2.4. The conclusion holds in the more general context:
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Lemma 2.6. Let A, A1, . . . , Al and P = (k1 > · · · > kr) a partition of k > 0. The
map H(P )→ j∗G(P ) is well defined, and the composite

H(P )→ j∗G(P )→ j∗H(P )→ H(P )

is multiplication by the length r of P , and so H(P ) = H(P )(A;A1, . . . , Al) is an
almost free cyclic object.

Eventually this leads to the lemma that decomposes relative Hochschild homology
in terms of almost free cyclic objects.

If A � A/I is a surjection of flat (= flat in every degree) simplical rings, let
F k(A, I) = F k be the cyclic subobject of HH(A) which in degree q is given by

F k
q =

∑
∑

nj>k

⊗q
j=0I

nj .

We get that F 0 = HH(A) and F 0/F 1 = HH(A/I).

Lemma 2.7. Let A � A/I be a surjection of flat simplical rings. Then, for each
k > 0, there is a sequence of surjections

F k/F k+1 � Xk(1) � · · ·� Xk(p(k)) = 0,

where p(k) is the number of partitions of k and such that the kernel of each surjection
is an almost free cyclic object.

Proof. There is a natural isomorphism F k/F k+1(A, I) ∼= F k/F k+1(gr(A, I)), where

gr(A, I) is the associated graded pair
(⊕∞

j=0 I
j/Ij+1,

⊕∞
j=1 I

j/Ij+1
)
, and so we only

need to worry about the graded situation, where A =
⊕∞

n=0 An and I =
⊕∞

n=1 An.
We may assume that for each n > 0 the n’th homogeneous piece An is (degreewise)
flat (A0 = A/I is flat by assumption, and if An is not, then we may replace it with a
free simplicial resolution as an A0-bimodule). Then HH(A) splits as a sum according
to total degree. The piece of total degree 0 is simply HH(A0). The group of q-
simplices in F k/F k+1 is isomorphic to

⊕⊗q
j=0 Anj , where the sum is over sequences

of non-negative integers n0, . . . , nq such that
∑

nj = k.

Given a partition P = (k1 > k2 > · · · > kr) of k, the group of q-simplices in the
cyclic abelian group H(P )(A0;A1, . . . , Ak) discussed before Lemma 2.6 is a subgroup
of the group of q-simplices in F k/F k+1, but does not usually form a simplicial sub-
group as q varies. Actually, the group of q-simplices in F k/F k+1 is isomorphic to⊕

H(P )(A0;A1, . . . , Ak)q, where the sum runs over all partitions P of k, but the
face maps can take summands belonging to a certain partition to a summand belong-
ing to a smaller partition.

However, if P1 > P2 > · · · > Pp(k) are all the partitions of k, then we get that

H(P1)(A0;A1, . . . , Ak) = H(k)(A0, Ak)

(in the notation of Lemma 2.4) is a cyclic subobject of F k/F k+1. Let Xk(1) be
the quotient of H(k)(A0, Ak)→ F k/F k+1, and notice that H(P2)(A0;A1, . . . , Ak)
is a cyclic subobject. Calling the quotient of this inclusion Xk(2), we notice that
H(P3)(A0;A1, . . . , Ak) is a cyclic subobject, and so on, until we reach Xk(p(k)) = 0.



INTEGRAL EXCISION FOR K-THEORY 9

By Lemma 2.6, all the kernels in the sequence of surjections

F k/F k+1 � Xk(1) � · · ·� Xk(p(k)) = 0

are almost free cyclic abelian groups.

2.3. Homology and free cyclic objects

There is another view on free cyclic objects in a category C with coproducts, which
is useful for some purposes. For convenience, if X is an object in C and S is a set,
then we write X ⊗ S for the S-fold coproduct of X with itself.

Recall that if I is a small category, C a category with coproducts and M : Io × I →
C, then we can define the (Hochschild) homology H(I,M) as the simplicial object in
C whose n-simplices are given by

∐
i0,...,in∈I M(i0, in)⊗ I(i1, i0)⊗ · · · ⊗ I(in, in−1)

with face maps given by composition and the functoriality of M and degeneracies
by inserting identity maps. If M : Jo × J → C, then f : I → J induces an obvious
map f : H(I, f∗M)→ H(J,M). If M factors as N ◦ pr where pr is the projection
Io × I → I one most frequently refers to H(I,M) as the (simplicial replacement of
the) homotopy colimit of N .

If C has coequalizers we let H0(I,M) be the coequalizer of the two face maps from
the 1-simplices to the 0-simplices.

If f : I → J and X : I → C are functors, then we can identify the left Kan extension
(f∗X)(j) with the homology H0(I,X(−)⊗ J(f(−), j)), and

ho(f∗)X(j) = H(I,X(−)⊗ J(f(−), j))

is a “homotopy left Kan extension”.

In the particular case where f = id : I = I, the map

ho(id∗)X(i) = H(I,X(−)⊗ I(−, i))→ X(i)

given by composition has a simplicial contraction given by inserting identities, and so
we have a homotopy version of the dual Yoneda lemma (which says that (id)∗X ∼= X).

Recall the inclusion j : ∆o ⊆ Λo.

Lemma 2.8. Let M be a simplicial object in a category with finite colimits. Then
ho(j∗)M → j∗M is an objectwise simplicial homotopy equivalence, in the sense that
for each [q] ∈ Λo, the map of simplicial objects (the target is constant) ho(j∗)M([q]) =
H(∆o,M ⊗ Λo(j(−), [q])))→ (j∗M)q is a simplicial homotopy equivalence.

Proof. Identifying ∆ with its image under j : ∆→ Λ, composition in Λ defines a
bijection ∆([q], [n])×AutΛ([q])→ Λ([q], [n]).

Hence ho(j∗)M([q]) = H(∆o, X(−)⊗ Λo(j(−), [q])) is naturally isomorphic to

H(∆o, X(−)⊗ (∆o(−, [q])×AutΛ([q])
o))

∼= H(∆o, X(−)⊗ (∆o(−, [q])⊗AutΛ([q])
o))

∼= H(∆o, X(−)⊗∆o(−, [q]))⊗AutΛ([q])
o,

which by the homotopical dual Yoneda lemma maps contracts to

X(q)⊗AutΛ([q])
o = (j∗X)([q]).
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As an example, if M is a cyclic abelian group, then HC(M) = H(Λo,M) and
HH(M) = H(∆o, j∗M) ' j∗M , and j : ∆→ Λ induces a map HH(M)→ HC(M).
In the free cyclic case one has

Lemma 2.9. Let M be a simplicial abelian group and j∗M the associated free cyclic
object. Then the map HH(j∗M)→ HC(j∗M) is a split surjection in the homotopy
category.

Proof. We will prove that the corresponding statement is always true for the homo-
topy Kan extension. As we have seen, the homotopy and categorical notions coincide
up to homotopy for j : ∆o → Λo, so this proves the result.

Consider the general situation f : I → J and X : I → C. We prove that the map

H(I, f∗ho(f∗)X)→ H(J, ho(f∗)X)

induced by f is a split epimorphism modulo simplicial homotopy.

Consider the inclusion

X(i)→ f∗ho(f∗)X(i)n =
∐

i0←···←in,f(in)←f(i)

X(in)

onto the i = · · · = i, f(i) = f(i) summand. This gives a natural transformation X →
f∗ho(f∗)X. Precomposing the map we want to show is a split epimorphism with
H(I,X)→ H(I, f∗ho(f∗)X) gives us a map F : H(I,X)→ H(J, ho(f∗)X). The claim
will therefore follow once we show that F is simplicially homotopic to a simplicial
homotopy equivalence G.

Now, F sends a = x⊗ (i0 ← · · · ← in) to

F (a) = ((x⊗ 1)⊗ (in = · · · = in))⊗ (f(i0)← · · · ← f(in)).

Letting k vary from 0 to n, the assignments sending a to ((x⊗ 1)⊗ (ik = · · · = ik ←
· · · ← in))⊗ (f(i0)← · · · ← f(ik) = · · · = f(ik)) assemble to a simplicial homotopy
between F and G, where G(a) = ((x⊗ 1)⊗ (i0 ← · · · ← in))⊗ (f(i0) = · · · = f(i0)).

The inclusion X(i)→ H(J,X(i)⊗ J(f(i′),−))n =
∐

j0←···←jn, jn←f(i′) X(i) onto

the f(i′) = · · · = f(i′), f(i′) = f(i′) summand gives a natural transformation. The
map G is a composite

H(I,X)→ H(I, (i′, i) 7→ H(J,X(i)⊗ J(f(i′),−))) ∼= H(J,H(I,X ⊗ J(f(−),−))),

where the first map is induced by the degeneracy X(i)→ H(J,X(i)⊗ J(f(i′),−))
(which is a simplicial homotopy equivalence) and the isomorphism is simply reversal
of priorities.

The lemma is the special case where I = ∆o, J = Λo, X = M and f = j:
I → J .

2.4. Periodic cyclic homology

In order to fix notation and for reference we recall the construction of (periodic)
cyclic homology; see, for instance, [13] for more details. Let M : Λo → Ab be a cyclic
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abelian group, and define the periodic bicomplex CP (M)y y y
· · · 1+t←−−−− M3

1−t+t2−t3←−−−−−−− M3
1+t←−−−− M2

1−t+t2−t3←−−−−−−− · · ·

−d2+d1−d0

y d0−d1+d2−d3

y −d2+d1−d0

y
· · · 1−t←−−−− M2

1+t+t2←−−−−− M2
1−t←−−−− M2

1+t+t2←−−−−− · · ·

d1−d0

y d0−d1+d2

y d1−d0

y
· · · 1+t←−−−− M1

1−t←−−−− M1
1+t←−−−− M1

1−t←−−−− · · ·

−d0

y d0−d1

y −d0

y
· · · 1−t=0←−−−− M0 M0

1−t=0←−−−− M0 · · ·

repeated indefinitely in both horizontal directions, with the middle column (which is
the Moore complex of the simplicial abelian group underlying M) in degree 0. The
odd columns are acyclic. Notice that the rows are acyclic when M is rational.

The homology groups of the zeroth column are referred to as Hochschild homology
HH∗(M) and are naturally isomorphic to the homotopy groups π∗(j

∗M) where j∗ is
precomposition with j : ∆→ Λ; see the previous section.

The homology of the total complex consisting of only the non-negative columns is
referred to as cyclic homology, HC∗(M), and can alternatively be calculated as the
homotopy groups of holim−→

Λo M = H(Λo,M).

Definition 2.10. The periodic homology HP∗(M) of M is the homology of the
total complex {n 7→

∏
r+s CP(r,s)=n(M)}. Negative cyclic homology HC−(M) is the

homology of the total complex of the sub bicomplex CC−(M) ⊆ CP (M) concentrated
in non-positive degrees.

We get canonical isomorphisms HC∗−2(M) ∼= H∗(CP (M)/CC−(M)) and long
exact sequences

· · · −→ HCn−1(M) −→ HC−n (M) −→ HPn(M) −→ HCn−2(M) −→ · · ·∥∥∥ y y ∥∥∥
· · · −→ HCn−1(M)

B−→ HHn(M) −→ HCn(M)
S−→ HCn−2(M) −→ · · · .

Lemma 2.11. Let N be a simplicial abelian group. Then the periodic homology of
the associated free cyclic object j∗N vanishes, and so the map

HCn−1(j∗N)→ HC−n (j∗N)

is an isomorphism for all n.

Proof. The map HHn(j∗N)→ HCn(j∗N) is split surjective by Lemma 2.9. Hence
the map S : HCn(j∗N)→ HCn−2(j∗N) is zero. Filtering CP (M) by columns, we get
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the short exact sequence

0→ lim←−
S

1HCn−2k+1(M)→ HPn(M)→ lim←−
S

HCn−2k(M)→ 0,

and so HP∗(j∗N) = 0.

2.5. Consequences for functors vanishing on almost free cyclic objects
The fact 2.11 that periodic homology vanishes on free cyclic objects and the retracts

of Lemma 2.4 lead to a sequence of important results.
Recall the following result by Goodwillie from [12, p. 356]. We repeat it here since

we need extra information which is obvious from Goodwillie’s proof, but not stated
as part of his result.

Lemma 2.12. Suppose I ⊆ A is a (k-1)-connected ideal in a simplicial ring. Then
there exists a degreewise free simplicial ring F and a k-reduced (i.e., Jq = 0 for
q < k) ideal J ⊆ F generated in each degree by generators of F , and an equivalence
of surjections of simplicial rings

F −−−−→ F/J

'
y '

y
A −−−−→ A/I.

As we will see in Section 2.6 below, the conditions on the functor V in the fol-
lowing proposition are satisfied for the Eilenberg-MacLane spectrum associated with
M 7→ HP (M ⊗Q), and so the statement 1 in Proposition 1.3 about nilpotent exten-
sions follows:

Proposition 2.13. Let V be a pointed homotopy functor from cyclic simplicial abel-
ian groups to spectra satisfying the homotopy properties

1. V preserves finite products and homotopy fibers of 0-connected maps up to weak
equivalence.

2. If · · · → F 3 → F 2 → F 1 is a sequence of cyclic simplicial abelian groups such
that the connectivity of Fn goes to infinity with n, then holim←−n V (Fn) ' ∗.

3. V vanishes on almost free cyclic objects.

Assume that A→ B is a map of simplicial rings and (at least) one of the following
conditions are met:

1. A→ B is a surjection of flat simplicial rings with nilpotent kernel.

2. A→ B is a 1-connected map of simplicial rings.

Then

V HH(A)→ V HH(B)

is an equivalence.

Proof. First, assume that A→ B is a surjection of flat rings with kernel I sat-
isfying In = 0. Recall the filtration of HH(A) given just before Lemma 2.7. Let
F k(A, I) = F k be the simplicial subcomplex of HH(A) which in degree q is given
by F k

q =
∑∑

nj>k ⊗
q
j=0I

nj i. From Lemma 2.7 and the conditions on V we get that
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V (F k/F k+1) ' ∗ for all k > 0, and so V (F 1) ' V (F 2) ' · · · ' holim←−
k
V (F k). Hence,

in order to prove that V HH(A)→ V HH(B) is an equivalence, we only need to show
that the connectivity of F k grows to infinity with k, which follows since F k(A, I)q = 0
for k > n(q + 1).

Now, let A→ B be a 1-connected map. Since V is a homotopy functor one may
assume that the map is a surjection of flat simplicial rings and by Lemma 2.12 that
the kernel I is 1-reduced (that is, the group of zero simplices is trivial: I0 = 0). Let
A(1) = A and I(1) = I. We will construct a sequence of ring-ideal pairs

· · · → (A(n), I(n))→ · · · → (A(2), I(2))→ (A(1), I(1))

such that for each n the following is true:

1. For each [q] ∈ ∆o the ring A(n)q is free and the ideal I(n)q is generated as an
ideal by generators of A(n)q.

2. The map A(n+ 1)→ A(n) is an equivalence and I(n+ 1)→ I(n) factors as
I(n+ 1)→ I(n)2 ⊆ I(n) with the first map an equivalence.

3. I(n) is n-reduced.

Assuming that for given n the pair (A(n), I(n)) is already constructed, we con-
sider I(n)2. Since I(n)q is generated by generators of A(n)q, both A(n)/I(n) and
A(n)/I(n)2 are degreewise flat. Since I(n) is n-reduced, the short exact sequence

0→ ker{mult.} → I(n)⊗ I(n)
mult.−−−→ I(n)2 → 0

gives that I(n)2 is n-connected, and we let the equivalence (A(n+ 1), I(n+ 1))→
(A(n), I(n)2) be the result of Lemma 2.12, replacing an n-connected ideal by an
n+ 1-reduced ones.

Since Hochschild homology preserves connectivity and I(n) is n-reduced, the homo-
topy fiber F (n) of

HH(A(n))→ HH(A(n)/I(n))

is (n− 1)-connected. Letting G(n) be the homotopy fiber of

HH(A(n))→ HH(A(n)/I(n)2),

we see that F (n+ 1)→ F (n) factors as F (n+ 1)
∼→ G(n)→ F (n). By the first part of

the proposition (regarding nilpotent extensions), the map V (G(n))→ V (F (n)) is an
equivalence. Consequently the homotopy fiber V (F (1)) of V HH(A)→ V HH(A/I)
is equivalent to holim←−n V F (n), and as the connectivity of F (n) grows to infin-
ity with n, our assumptions about the functor V implies that holim←−n V F (n) is
contractible.

Definition 2.14. A split square of simplicial rings is a categorically cartesian square
of simplicial flat rings, where all maps are split surjective.

If A is a commutative square of simplicial flat rings and split surjections, then set

I(0) = A12,

I(1) = ker{A0 → A2} ∼= ker{f1} and
I(2) = ker{A0 → A1} ∼= ker{f1}.
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That the square is categorically cartesian is then the same as the condition that the
intersection I(1) ∩ I(2) is trivial, considered as an ideal in A0.

In this situation, the iterated fiber of HH(A) is, via distributivity, isomorphic to
the cyclic abelian group with q-simplices⊕

f

q⊗
i=0

I(f(i)),

where the sum is over all functions f : Z/(q + 1)→ Z/3 (not necessarily linear) with
both f−1(1) and f−1(2) non-empty.

Definition 2.15. Given a function f : Z/(q + 1)→ Z/3, let Af be the set consisting
of the j in Z/(q + 1) such that f(j) = 2 and such that there is an i with f(i) = 1 and
such that all intermediate values of f (in cyclic ordering from i to j) are 0.

Example 2.16. If f, g : Z/11→ Z/3 have values

n 0 1 2 3 4 5 6 7 8 9 10
f(n) 2 2 0 1 2 1 1 0 2 0 1
g(n) 2 2 0 1 2 1 1 0 2 0 2

then Af = {0, 4, 8} and Ag = {4, 8}.
Remark 2.17. Perhaps it is appropriate that we spend a few words on the rationale
behind our choices. The set Af should be thought of as “marks on the circle”, where
one switches from label 1 to label 2. In the following lemma we use this to “turn
the dial back” to display the iterated fiber of HH(A) as a sum of almost free cyclic
objects. That this works relies on the fact that the factors marked 1 and 2 will multiply
trivially. Just noting where there is a factor 2 (for instance, if we chose f−1(2) instead
of our Af ) would not have worked since the resulting splitting would not have been
closed under the simplicial operations.

Lemma 2.18. For a simplicial ring A, let P (A) = HH(A)(0) or P (A) = HH(A)̂(0).
Let V be a homotopy functor from cyclic groups to spectra, preserving products
and homotopy fibers of 0-connected maps and vanishing on free cyclic objects. Then
V P (A) is cartesian, where A is a cartesian square of simplicial rings and 0-connected
maps.

Proof. Let A be a split square. Note that, since I(1) · I(2) ⊆ I(1) ∩ I(2) = 0, we have
a decomposition of the iterated fiber of HH(A) into a sum

⊕∞
k=1 H(k) where H(k)

is the cyclic abelian group with q-simplices

H(k)q =
⊕
f

|Af |=k

q⊗
i=0

I(f(i)).

Analogous to the argument in Lemma 2.4, there is an interesting subsimplicial
abelian group G(k) ⊆ H(k) given as the sum over only those f with |Af | = k and
0 ∈ Af and a map

H(k)→ j∗G(k)

sending a ∈ H(k)q in the fth summand to
∑

r∈Af
(r, t−ra). Notice that the composite

H(k)→ j∗G(k)→ H(k) is multiplication by k, and so H(k) is almost free cyclic. This
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proves the lemma in the case where the square A is split since the connectivity of
H(k) goes to infinity with k, and so

⊕
k>0 H(k) '

∏
k>0 H(k) is a retract of a free

cyclic object both under rationalization and under profinite completion followed by
rationalization.

We reduce the general case to the split case. For simplicity of notation let

A =


B ×D C −−−−→ By y

C
g−−−−→ D


with B → D and C → D surjective on π0. We may assume that these maps are
fibrations, and so surjections (since a map B → D of simplicial abelian groups is
a fibration if and only if B → D ×π0D π0B is a surjection) and that the square is
categorically cartesian.

Consider the (bi)simplicial resolution of D

BD = {r 7→ B ×D · · · ×D B}

(r + 1 factors of B in degree r and multiplication componentwise), where di projects
away from the i’th factor and si repeats the i’th factor. That BD → D is an equiva-
lence is fairly general, but in this context it can be seen directly by noting that the
normalized chain complex of BD is simply the inclusion of 0×D B into B.

By taking pullback, we get a resolution of A with r-simplices

B ×D BD
r ×D C −−−−→ B ×D BD

ry y
BD

r ×D C −−−−→ BD
r .

Note that B ×D BD and B ×D BD ×D C have an “extra degeneracy” given by dupli-
cating the first factor: (b, b0, . . . , br, c) 7→ (b, b, b0, . . . , br, c).

If i : {1, 2} → {0, . . . , s} is an injection and t ∈ {0, . . . , s}, then let I(i, t) equal
B ×D BD ×D C if t /∈ im(i) and I(i, i(1)) (resp. I(i, i(2))) be the ideal 0×D C (resp.
B ×D 0) in B ×D BD ×D C.

Applying Hochschild homology to the square in each dimension and taking the
iterated kernel gives us a simplicial cyclic object which in dimension (r, s) is

Irs =
∑
i

s⊗
t=0

Ir(i, t) ⊆ (B ×D BD
r ×D C)⊗s+1.

Note that the extra degeneracy B ×D BD
r ×D C → B ×D BD

r+1 ×D C induces a map
on all the Ir(i, t)’s compatible with the structure map in the Hochschild direction, giv-
ing us a simplicial cyclic object I = {[r] 7→ Ir = {[s] 7→ Irs}} and a simplicial homo-
topy equivalence I

∼→ I−1 = ifibHH(A).
Simplicial homotopy equivalences are preserved when functors are applied degree-

wise to them, and so we get a simplicial homotopy equivalence

{[r] 7→ V (Ir)}
∼→ V (I−1).

But since V preserves products and homotopy fibers of 0-connected maps, V (Ir) is
the iterated fiber of V ◦HH applied to the r-simplices of our resolution of A. In
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dimension r this splits in the vertical direction, so it is enough to show excision in
cartesian squares with vertical (or horizontal) splittings.

We may repeat the argument above, starting this time with a square with horizon-
tal splitting we reduce to the case where both the vertical and the horizontal maps
split.

Note that we did not assume that V could be “calculated degreewise” (which is false
in the applications we have in mind), but we got around this by considering simplicial
homotopy equivalences, where we could apply V degreewise to our resolution without
destroying the homotopy type in our special case.

2.6. Proofs of Propositions 1.3 and 1.4

Proof of Proposition 1.3. Notice that Proposition 1.3 follows from Proposition 2.13
and Lemma 2.18 as soon as we establish that if V is the functor which to the
cyclic abelian group M assigns (the Eilenberg-MacLane spectrum associated with)
HP (M ⊗Q), then V satisfies the conditions of Proposition 2.13 (when the input is
rational, an extra rationalization will not matter). Firstly, rationalization and taking
the Eilenberg-MacLane spectrum will not cause any trouble, so the question is really
only about periodic cyclic homology. As the total of a double complex with M in
each column, we see that M 7→ HP (M) preserves products and homotopy fibers of
0-connected maps (the 0-connectivity is needed at one point since we are translat-
ing from simplicial abelian groups to chain complexes). Let · · · → F 3 → F 2 → F 1

be a sequence of cyclic simplicial abelian groups such that the connectivity of Fn

goes to infinity with n. Filtering periodic cyclic homology by columns, we may
write holim←−n HP (Fn) as a double homotopy limit holim←−n holim←−

k
Σ−2kHC(Fn) '

holim←−
k
holim←−n Σ−2kHC(Fn). Since cyclic homology preserves connectivity, we have

that holim←−n Σ−2kHC(Fn) ' ∗ and we get that holim←−n HP (Fn) ' ∗. Given a ratio-
nal input, vanishing on almost free cyclic objects is the same as vanishing on free
cyclic objects, which is true for periodic cyclic homology by Lemma 2.11.

Proof of Proposition 1.4. By resolving connective S-algebras by simplicial rings as
in [6], we see that it is enough to establish 1.4 for A a cartesian square of sim-
plicial rings, with all maps 0-connected. In Lemma 2.18, let P (A) = HH(A)̂(0).
By Lemma 2.20 below, the Eilenberg-MacLane spectrum associated with P (A) is
equivalent to THH(A)̂(0). Let V (M) = (H(M))tT be the T-Tate homology of the
Eilenberg-MacLane spectrum, and observe that, by Lemma 2.22 below, V satisfies
the conditions of Lemma 2.18, showing that (THH(A)̂(0))tT is cartesian.

Definition 2.19. Let X be a spectrum and let N : Z→ Z+ be a function from the
integers to the positive integers. We say that X is N -annihilated if for each k the
group πkX is annihilated by N(k). A mapX → Y is an N -equivalence if its homotopy
fiber is N -annihilated and a torsion equivalence if it is an M -equivalence for some
unspecified M : Z→ Z+.

Note that there are no finiteness requirements in this definition, just a statement
about the torsion.
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Lemma 2.20. Let A be a simplicial ring. Then the linearization map

THH(HA)→ H(HH(A))

is a torsion equivalence. Consequently, there are natural equivalences of cyclic spectra

THH(A)(0)
∼→ H (HH(A))(0) ,

THH(A)̂(0) ∼→ H (HH(A))̂(0).
Proof. Let {[s] 7→ Es} be a simplicial spectrum such that, for each s, the spectrum Es

is connective and Ns-annihilated. Then the first quadrant spectral sequence πrEs ⇒
πr+s diag

∗E shows that diag∗E is N -annihilated, where N(t) =
∑

r+s=t Ns(r).
Hence, if a map of simplicial connective spectra is a degreewise torsion equivalence
then its diagonal is a torsion equivalence. The topological Hochschild homology ofHA
is a simplicial spectrum which in dimension q is equivalent to HA ∧LS · · · ∧LS HA and
maps to HA ∧LHZ · · · ∧LHZ HA which is equivalent to the q-simplices of H(HH(A)).
Hence, it is enough to show that for simplicial abelian groups M and N the map
HM ∧LS HN → HM ∧LHZ HN is a torsion equivalence. There is an associated map
of first quadrant spectral sequences with E2-sheet

Torπ∗S
∗ (π∗M,π∗N)→ TorZ∗ (π∗M,π∗N)

converging to π∗(HM ∧LS HN)→ π∗(HM ∧LHZ HN). Now, the map of E2-sheets has
kernel and cokernel annihilated by integers depending on position since S→ HZ is a
torsion equivalence. The numbers annihilating the kernel and cokernel do not change
as we move to the E∞-sheets, and moving to πk(HM ∧LS HN)→ πk(HM ∧LHZ HN)
the kernel and cokernel are annihilated by the product of the numbers needed for the
E∞s,k−s as s runs from 0 to k.

Corollary 2.21. There is a function L : Z→ Z+ such that, for any subgroup C of
the circle, the map

|THH(HA)|hC → |H(HH(A))|hC
is an L-equivalence.

The point of this corollary is that L does not depend on C.

Proof. Consider the spectral sequence calculating the C-homotopy orbits of the
homotopy fiber F of |THH(HA)| → |H(HH(A))|. Lemma 2.20 gives that F is
N -annihilated by some N . Hence E1

s,r = πsF and E∞r,s are annihilated by N(s) and
πnFhC is annihilated by L(n) = N(0) ·N(1) · · ·N(n).

Lemma 2.22. Let Y be a simplicial spectrum. Then the T-Tate homology of |j∗Y |
vanishes.

Proof. This follows since |j∗Y | ∼= T+ ∧ |Y |, and Tate homology vanishes on free
objects.

Corollary 2.23. Let X be an almost free cyclic spectrum. Then the natural map
(XhT)(0) → (X(0))

hT is an equivalence.
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Proof. By Lemma 2.22, both the source and the target of (XtT)(0) → (X(0))
tT are

contractible, so the T-norm maps S1 ∧ (XhT)(0) → (XhT)(0) and S1 ∧ (X(0))hT →
(X(0))

hT are both equivalences. Homotopy orbits commute with rationalization, so
we are done.

3. Relations between TC and homotopy T-fixed points

Topological cyclic homology TC(A) of a connective S-algebra A is most effectively
defined integrally, as in [7], by a cartesian square

TC(A) −−−−→ THH(A)hTy y(
holim←−−
R,F

THH(A)Cn

)̂ −−−−→ (
holim←−

F

THH(A)hCn

)̂ .
Here R and F are maps THH(A)Cmn → THH(A)Cn called, respectively, the restric-
tion and Frobenius (the latter is just the inclusion of fixed points), where m and n
are positive integers. The homotopy limit in the lower left corner is over the category
whose objects are the positive integers and where the morphisms are freely generated
by commuting morphisms R : mn→ n and F : mn→ m.

The lower horizontal map in the defining square for TC is a composite(
holim←−−
R,F

THH(A)Cn

)̂→ (
holim←−

F

THH(A)Cn

)̂→ (
holim←−

F

THH(A)hCn

)̂,
where the first map is projection to the homotopy limit of the subcategory generated
by the F ’s only, and the second map is the map from fixed points to homotopy fixed
points. The rightmost vertical map in the defining square for TC is given by the
restriction from the homotopy fixed points of all of T to its finite subgroups.

This definition is equivalent to Goodwillie’s original definition in terms of an
enriched homotopy limit involving a mix of the restriction, Frobenius and the entire
circle action, but it is better suited for our purposes.

Note that profinite completion commutes with homotopy fixed points, whereas
rationalization usually does not.

Lemma 3.1 (Goodwillie). For any connective S-algebra A, both the squares in

TC(A)(0) −−−−→
(
THH(A)hT

)
(0)
−−−−→

(
THH(A)(0)

)hTy y y
TC(A)̂(0) −−−−→ (

THH(A)hT
)̂(0) −−−−→ (

THH(A)̂(0))hT
are homotopy cartesian.

Proof. The right vertical map THH(A)hT → (holim←−
F
THH(A)hCn)̂ in the defin-

ing square for TC is an equivalence after profinite completion (essentially because
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lim−→n BCn → BT is a profinite equivalence), and so the square

TC(A) −−−−→ THH(A)hTy y
TC(A)̂ −−−−→ (

THH(A)hT
)̂

is homotopy cartesian even before rationalization. Both the left and outer square in

THH(A)hT −−−−→
(
THH(A)hT

)
(0)
−−−−→

(
THH(A)(0)

)hTy y y(
THH(A)hT

)̂ −−−−→ (
THH(A)hT

)̂(0) −−−−→ (
THH(A)̂(0))hT

are homotopy cartesian (they both come from arithmetic squares), and so the right
square is homotopy cartesian.

A technical issue we are faced with in proving Theorem 1.1 is commuting homotopy
limits and rationalization. Apart from connectivity arguments we need to be able to
commute homotopy T-fixed points and rationalization in the almost free cyclic case.

Lemma 3.2. Given an almost free cyclic spectrum X, the map

(holim←−
F

XhCn)̂(0) → (X̂(0))hT
is an equivalence.

Proof. Not using anything about free cyclic spectra, we have that both the maps
(holim←−

F
XhCn)̂(0) → (

XhT
)̂(0) → (

(X̂)hT)
(0)

are weak equivalences. Since the

Tate spectrum vanishes for free cyclic spectra, we have that both the horizontal
T-transfers in

Σ ((X̂)hT)(0) −−−−→ (
(X̂)hT)

(0)y y
Σ(X̂(0))hT −−−−→ (X̂(0))hT

are equivalences, and the lemma follows since the left vertical map is an equivalence
since homotopy orbits commute with rationalization.

Let us recall some more or less standard notation. The category of finite sets of the
form n = {1, . . . , n} and injections is denoted I. We write Sn for S1 smashed with
itself n times (so that S0 = S0). Our S-algebras A are either Γ-spaces or connective
symmetric spectra, according to taste, but ultimately they give rise to simplicial func-
tors, and it is as such they are input to the machinery, and so we write A(Sn) for the
n-th level. In particular, when A is the Eilenberg-MacLane spectrum of a simpli-
cial ring R, A(Sn) = U(R⊗ Z̃[Sn]), where (Z̃, U) is the free/forgetful pair between
abelian groups and pointed sets.

In this notation, the q-simplices of Bökstedt’s THH(A) is the homotopy colimit
over (x0, . . . ,xq) ∈ Iq+1 ofMap∗(

∧q
i=0 S

xi ,
∧q

i=0 A(S
xi)) with Hochschild-style cyclic

operators.
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Let A be a square arising as the Eilenberg-MacLane spectra of a split square of
simplicial rings (see Definition 2.14), and let as before I(0) = A12, I(1) = ker{A0 →
A2} ∼= ker{f1} and I(2) = ker{A0 → A1} ∼= ker{f2}. For x = (x0, . . . , xq) ∈ Iq+1, let

V (k)(A)(x) =
∨
f

q∧
i=0

I(f(i))(Sxi),

where the wedge runs over the f : Z/(q + 1)→ Z/3 such that |Af | = k, where Af

is the set given by Definition 2.15. Observe that if x ∈ Iq+1 and xn = (x, . . . ,x) ∈
In(q+1) is the diagonal, then

V (k)(A)(xn)Cn ∼=

{
V (k/n)(A)(x) if k = 0 mod n

∗ otherwise.

In analogy with the cyclic objects H(k) defined in the proof of Lemma 2.18, let
T (k) be the cyclic object which in degree q is the homotopy colimit over x ∈ Iq+1 of
Map∗(

∧q
i=0 S

xi , V (k)(A)(x)). We get equivalences of cyclic objects∨
k>0

T (k)
∼→ ifibTHH(A) ∼→

∏
k>0

T (k),

where the infinite wedge and product are weakly equivalent as the connectivity of
T (k) goes to infinity with k (since V (k)(A)(x) is trivial for 2k > q + 1).

For positive integers n and k, let T (n, k) = sdnT (k)
Cn , and extend to rational n

and k by setting T (n, k) = ∗ if n or k is not integral.

Restriction induces maps T (n, k)→ T (n/m, k/m) which are interesting only when
m divides both n and k.

Lemma 3.3. The homotopy fiber of the restriction map

T (n, k)→ holim←−−−
m>1

T (n/m, k/m) ∼= holim←−−−−−−−−−−
1 6=m| gcd(n,k)

T (n/m, k/m)

is equivalent to T (k)hCn . In particular, if 1 = gcd(n, k) then we have an equivalence
T (k)hCn ' T (n, k)

Proof. This follows by the standard arguments proving the “fundamental cofibration
sequence” for fixed points of topological Hochschild homology, as in [7, VI.1.3.8]. For
a published account see [3, 5.2.5], but remove the intricacies which are present in the
commutative situation where non-cyclic group actions are allowed.

Consider the homotopy limit of the fixed points of
∏

k>0 T (k) under the restriction
and Frobenius maps. By prioritizing the restriction map, we write this as(

holim←−
R

∏
k>0

T (n, k)

)hF

.

The homotopy limit of the restriction maps gives the homotopy limit of the diagram
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(extended to infinity in both directions)

T (1, 1) T (2, 1) T (3, 1) T (4, 1) T (5, 1) T (6, 1)

T (1, 2) T (2, 2)

ddIIIIIIIII

T (3, 2) T (4, 2)

jjTTTTTTTTTTTTTTTTTT
T (5, 2) T (6, 2)

kkXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

T (1, 3) T (2, 3) T (3, 3)

\\

T (4, 3) T (5, 3) T (6, 3)

ll

T (1, 4) T (2, 4)

[[7777777777777777

T (3, 4) T (4, 4)

ii

T (5, 4) T (6, 4)

hhQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

T (1, 5) T (2, 5) T (3, 5) T (4, 5) T (5, 5)

ii

T (6, 5)

T (1, 6) T (2, 6)

WW////////////////////////

T (3, 6)

VV

T (4, 6)

__??????????????????????????????

T (5, 6) T (6, 6),

ii

\\

which, by reversal of priorities, is the same as holim←−
R

∏
n>0 T (n, k):

holim←−n

∏
k>0

T (n, k) ∼= holim←−n

∏
t∈Q∗

T (n, tn)

∼= holim←−
k

∏
t∈Q∗

T (k/t, k) ∼= holim←−
k

∏
n>0

T (n, k).

Lemma 3.4. Let A be the square of S-algebras associated with a split square. Then
the map

ifibTC(A)̂(0) '
(holim←−

R

∏
k>0

T (n, k)

)hF
̂(0)

→

holim←−
R

(∏
n>0

T (n, k)̂)
(0)

hF

is an equivalence.

Proof. If in a tower of spectra the connectivity of the maps grows to infinity, then
the rationalization of the homotopy limit is equivalent to the homotopy limits of the
rationalized tower. Since the connectivity of

∏
n>0 T (n, k) grows to infinity with k

(and the category of natural numbers and factorizations has cofinal directed subcat-
egories), we have the claimed equivalence.
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Lemma 3.5. The restriction map(∏
n>0

T (n, k)̂)
(0)

→ holim←−−−
1 6=l|k

(∏
n>0

T (n, k/l)̂)
(0)

is split surjective up to homotopy.

Proof. We have seen that the homotopy fiber of the restriction map may be identified
with

(∏
n>0 T (k)hCn̂)(0), and the lemma follows once we know that the left and lower

arrows in the commutative diagram( ∏
n>0

T (k)hCn

)̂(0) //

��

( ∏
n>0

T (n, k)

)̂(0) //
( ∏

n>0
T (k)hCn

)̂(0)
��( ∏

n>0
H(H(k))hCn

)̂(0) //
( ∏

n>0
H(H(k))hCn

)̂(0)
are equivalences. Here the vertical maps are induced by the linearization maps T (k)→
H(H(k)), where H(k) is the cyclic module introduced in the proof of the split part of
Lemma 2.18. Exactly as in Corollary 2.21, there is a function L : Z→ Z+ (not depend-
ing on the cyclic group C) such that T (k)hC → H(H(k))hC is an L-equivalence.
Consequently, the infinite product

∏
n>0 T (n, k)→

∏
n>0 H(H(k))hCn is also an L-

equivalence, which shows that the left map in the displayed diagram is an equivalence.
The lower map is an equivalence, since the cofiber is

(∏
n>0 H(H(k))tCn

)̂(0), and
each Tate homology is k-torsion (since – up to multiplication by k – H(k) is a retract
of a free cyclic object).

Corollary 3.6. The map

holim←−
R

(∏
n>0

T (n, k)̂)
(0)

→
∏
k

(∏
n

H(H(k))hCn̂)
(0)

is an equivalence. On the right-hand side the action by the Frobenius is represented
by the product of the maps F : H((k))hCnm → H(H(k))hCm associated to Cm ⊆ Cnm.

Proof. Lemma 3.5 shows that the restriction maps split, and so there is an equiva-
lence between

(∏
n>0 T (n, k)̂)(0) and the product of the fibers up to that stage. We

saw in the proof of Lemma 3.5 that the map from the fiber

( ∏
n>0

T (k)hCn

)̂(0) to( ∏
n>0

H(H(k))hCn

)̂(0) is a weak equivalence. Hence the map(∏
n>0

T (n, k)̂)
(0)

→
∏
d|k

(∏
n

H(H(k/d))hCn/d̂)
(0)

=

∏
n

∏
d| gcd(k,n)

H(H(k/d))hCn/d̂


(0)
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is a weak equivalence, and the homotopy limit over R just adds successively new
factors.

Corollary 3.7. All maps in the commuting diagram

ifibTC(A)̂(0) //

��

ifib(THH(A)̂(0))hT
��∏

k

((∏
n H(H(k))hCn

)hF)̂(0)
��

ifib(H(HH(A))̂(0))hT
��∏

k

((
holim←−

F
H(H(k))hCn

)̂(0)) // ∏
k

(
H(H(k))̂(0))hT

are equivalences.

Proof. The upper left vertical map is an equivalence by the definition of TC,
Lemma 3.4, Corollary 3.6 and the fact that profinite completion commutes with
taking F -homotopy fixed points. The lower left vertical map is simply rewriting the
homotopy limit of a directed system as homotopy fixed points of a product. The upper
right vertical map is an equivalence by Lemma 2.20. The lower right vertical map is
the decomposition of the Hochschild homology of a split square. The horizontal lower
map is an equivalence by Lemma 3.2 since H(k) is almost free cyclic.

Proof of Theorem 1.1. As observed in Section 1.3, Theorem 1.1 follows from

Lemma 1.6, which claims that the cube TC(A)(0) →
(
THH(A)(0)

)hT
is homotopy

cartesian. Lemma 3.1 reduces the problem to showing that the cube

TC(A)̂(0) → (
THH(A)̂(0))hT

is homotopy cartesian.
Recall from [6] that we may resolve connective S-algebras by simplicial rings.

More precisely, if A is an S-algebra, then U Z̃A is the S-algebra obtained by applying
the free/forgetful pair (Z̃, U). This gives rise to a cosimplicial resolution A→ {[q]→
(U Z̃)q+1A}, and the connectivity of A→ holim←−−q<r(U Z̃)q+1A goes to infinity with r.

For our purposes, it is important to note that if A is a homotopy cartesian square,
then its underlying cube of spectra is homotopy cocartesian, and so the cube of
“spectrum homologies” U Z̃A is again homotopy cartesian. If the maps in A are
0-connected, then so are the maps in U Z̃A.

Furthermore, U Z̃A is naturally equivalent to the Eilenberg-MacLane spectrum
H(RA), where RA is a simplicial ring, and so if A is a homotopy cartesian square of
S-algebras, then RA is a homotopy cartesian diagram of simplicial rings.

Now, exactly the same set of arguments used in [6] to reduce the profinite Good-
willie conjecture to McCarthy’s theorem [16] can now be used to see that it is enough
to prove Lemma 1.6 in the case where A is the result of applying the Eilenberg-
MacLane functor to a homotopy cartesian square of simplicial rings and 0-connected
maps.

By the reduction performed in the proof of Lemma 2.18, it is enough to consider
squares A associated with split squares of simplicial rings, and we assume in the rest
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of the proof that A has this form (although all the results used could be generalized
to the more general case using the reductions above).

In this special case the cube TC(A)̂(0) → (
THH(A)̂(0))hT is homotopy cartesian

by Corollary 3.7.
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