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CHROMATIC SUBDIVISION OF A SIMPLICIAL COMPLEX

DMITRY N. KOZLOV

(communicated by Robert Ghrist)

Abstract
We prove that the protocol complex of the immediate snap-

shot read/write complex for n+ 1 processors is a simplicial sub-
division of the input complex. Our proof is purely geometric,
using the Schlegel diagram construction.

1. Introduction

Recently, simplicial methods have been used by Herlihy, Shavit, Rajsbaum and
others, see [HKR, HS], to prove new results in theoretical distributed computing;
e.g., see [AW] for the introduction into that field. In particular, a certain construction
for simplicial complexes, called chromatic subdivision, turned out to be central for the
analysis of solvability of tasks in the immediate snapshot read/write computational
model.

A key property of that construction in the distributed computing context is that
a chromatic subdivision of a pseudomanifold is again a pseudomanifold. This has
been rigorously verified in the literature; see [HKR, HS]. Furthermore, it has been
observed that chromatic subdivision should in fact be a simplicial subdivision of the
initial simplicial complex. In this paper we present a rigorous proof of that statement.
While it is certainly motivational to know the relevance of the considered spaces and
constructions for distributed computing, it is not necessary in order to understand the
formulation and the proof of the result. Therefore, we refer to [AW, HKR, HS] for
the general distributed computing context and only present here the specific extract
that we need.

For the bulk of our argument, we shall limit ourselves to considering the n-simplex
as the initial complex. The generalization to the case of the arbitrary simplicial com-
plex is straightforward. It will be done in Subsection 4.4 by gluing the chromatic
subdivisions of individual simplices together using the colimit construction as the
technical language.

For an arbitrary natural number n, let [n] denote the set {0, 1, . . . , n}, and let ∆n

denote the n-dimensional simplex. The vertices of ∆n are indexed by the elements
of [n], and, more generally, the d-dimensional simplices of ∆n are indexed by the
subsets of [n] of cardinality d+ 1, for all d = −1, . . . , n. The following definition is
due to Herlihy and Shavit:
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Definition 1.1. Let n be a natural number. The simplicial complex χ(∆n) is a pure
n-dimensional abstract simplicial complex defined as follows:

1. The vertices of χ(∆n) are indexed by all pairs (p, V ), such that V ⊆ [n], and
p ∈ V , so there are 2n(n+ 1) vertices in total.

2. The n-dimensional simplices of χ(∆n) are formed by all sets of vertices

{(0, V0), (1, V1), . . . , (n, Vn)}

satisfying the following axioms:

(i) For all i, j ∈ [n], we have either Vi ⊆ Vj or Vj ⊆ Vi;
(ii) For all i, j ∈ [n], if i ∈ Vj , then Vi ⊆ Vj .

The simplicial complex χ(∆n) is called the chromatic subdivision of ∆n. The intu-
ition behind the terminology is that one can view choosing the first coordinate of the
index of each vertex as the vertex coloring of χ(∆n); this first coordinate can also be
interpreted as a process id; see Remark 1.2.

0, {0} 1, {0, 1} 0, {0, 1} 1, {1}

2, {2}

2, {0, 2}

0, {0, 2} 1, {1, 2}

2, {1, 2}

2, [2]

0, [2]1, [2]

0, {0}

1, {0, 1}

0, {0, 1}

1, {1}

Figure 1: The chromatic subdivisions of 1- and 2-simplex.

Some examples of chromatic subdivisions are shown in Figure 1. Note that con-
dition (ii) in Definition 1.1 can be replaced by the equivalent property: if Vi 6⊆ Vj ,
then i /∈ Vj , for all i, j ∈ [n]. By convention, we set χ(∆−1) to be the empty simplicial
complex.

Remark 1.2. The distributed computing interpretation of Definition 1.1 may be moti-
vational. There the vertices are representing views of the execution by individual
processors, so a vertex (p, V ) stands for “processor number p has view V ”. The top-
dimensional simplices are all possible executions, their vertices should form a com-
patible set of processor views. So the condition p ∈ V means “processor p sees itself”,
the axiom (i) means that for every two processors one of them executed first, and the
axiom (ii) means “if processor j sees processor i then it also sees all that i sees”.
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2. Alternative combinatorial description of the simplicial
structure of the chromatic subdivision

2.1. Top-dimensional simplices
We start by rephrasing and analyzing Definition 1.1. First we need another piece of

terminology: an ordered set partition of [n] is a tuple of non-empty sets (R1, . . . , Rt),
such that the set [n] is their disjoint union; here t is an integer between 1 and n+ 1.

Proposition 2.1. The n-dimensional simplices of χ(∆n) can be indexed by ordered
set partitions of [n]. Given an ordered set partition E = (R1, . . . , Rt), the vertices of
the corresponding n-simplex σE can be specified as follows: for every i ∈ [n], set Vi :=
R1 ∪ · · · ∪Rj, where j is the index such that i ∈ Rj, then the pairs (0, V0), . . . , (n, Vn)
index the vertices of σE.

Remark 2.2. The distributed computing interpretation of Proposition 2.1 is straight-
forward: the ordered set partition E = (R1, . . . , Rt) encodes the execution consisting
of t rounds, where all processes whose id’s are in Ri execute in round i, for all
i = 1, . . . , t.

Proof of Proposition 2.1. Let Sn denote the set of all (n+ 1)-sets of vertices

{(0, V0), . . . , (n, Vn)}

of χ(∆n) satisfying conditions (i) and (ii) of Definition 1.1, and let Pn denote the set
of all ordered partitions of [n].

Given an ordered set partition, it is straightforward that the corresponding set of
vertices described in Proposition 2.1 satisfies conditions (i) and (ii) of Definition 1.1;
hence the n-simplices encoded by ordered set partitions are actually n-simplices of
χ(∆n). This gives us a map ϕ : Pn → Sn.

On the other hand, we can also define a map ψ : Sn → Pn. Given an n-simplex σ =
{(0, V0), . . . , (n, Vn)} of χ(∆n), we construct the corresponding ordered set partition
ψ(σ) as follows: Since for all i, j ∈ [n], we have Vi ⊆ Vj or Vj ⊆ Vi, there exists a per-
mutation π = (π(0), . . . , π(n)) of the set [n], together with indices 0 < i1 < i2 < · · · <
it−1 < n, such that Vπ(0) = Vπ(1) = · · · = Vπ(i1) ( Vπ(i1+1) = Vπ(i1+2) = · · · = Vπ(i2)
( · · · = Vπ(it−1) ( Vπ(it−1+1) = · · · = Vπ(n). We set R1 := {π(0), . . . , π(i1)}, R2 :=
{π(i1 + 1), . . . , π(i2)}, . . ., Rt := {π(it−1 + 1), . . . , π(n)}. While the permutation π is
not uniquely determined by the simplex, the ordered set partition (R1, . . . , Rt) is,
and we set ψ(σ) := (R1, . . . , Rt).

Let us show that the composition ψ ◦ ϕ is an identity map on Pn. Given an ordered
set partition E = (R1, · · · , Rt), where R1 = {a11, . . . , a1r1}, . . . , Rt = {at1, . . . , atrt}, we
can see that when applying the function ψ to ϕ(E) one can take the permutation π =
(a11, . . . , a

1
r1 , . . . , a

t
1, . . . , a

t
rt), and set i1 := r1 − 1, i2 := r1 + r2 − 1, . . . , it−1 := r1 +

· · ·+ rt−1 − 1. This immediately implies that ψ(ϕ(E)) = E.
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Now let us show that the composition ϕ ◦ ψ is an identity map on Sn. We pick
σ = {(0, V0), . . . , (n, Vn)} ∈ Sn, and let E = (R1, . . . , Rt) = ψ(σ), with the permuta-
tion π and indices i1, . . . , it−1 chosen as in the definition of the function ψ above.
Assume that ϕ(E) = {(0,W0), . . . , (n,Wn)}; we need to show that Wi = Vi for all i.
Unwinding definitions, we see that for all j, we have Wj = {i | Vi ⊆ Vj}, hence we
need to verify the identity

{i | Vi ⊆ Vj} = Vj , (1)

for an arbitrary j. To see (1) note that first, since i ∈ Vi, the inclusion Vi ⊆ Vj implies
i ∈ Vj , hence {i | Vi ⊆ Vj} ⊆ Vj ; on the other hand, if i ∈ Vj , then Vi ⊆ Vj , implying
{i | Vi ⊆ Vj} ⊇ Vj .

Altogether, we have shown that the functions ϕ and ψ define a one-to-one corre-
spondence between the sets Sn and Rn.

012

02|1

01|2

2|01

1|020|12

1|0|20|1|2

2|0|1

0|2|1

2|1|0

1|2|0

((2, 01), (2, 0))

((2, 1), (2, 1))

((012), (02))12|0

((12, 0), (1, 0))

((012), (01))

((2, 01), (2, 1))

Figure 2: Encoding of all 2-dimensional simplices and of some of the 1-dimensional
simplices of χ(∆2).

In Figure 2 we show the alternative encoding of the top-dimensional simplices
of χ(∆n).

2.2. Simplices of lower dimension
It is possible to give a direct description using ordered set partitions for all the

simplices of χ(∆n), not just for those having the maximal dimension. To start with,
it is easy to get a description along the lines of Definition 1.1. In fact, a set of vertices
{(p0, V0), . . . , (pd, Vd)} forms a d-simplex if and only if pi 6= pj , for all i 6= j, and
conditions (i) and (ii) of Definition 1.1 are satisfied. This can be seen by the following
argument: All the d-simplices are obtained by taking a valid n-simplex and removing
n− d vertices; if this is done, then the conditions above are clearly satisfied. On the
other hand, if the set of vertices S = {(p0, V0), . . . , (pd, Vd)} satisfies the conditions
above, then the set

S ∪ {(p, [n]) | p ∈ [n] \ {p0, . . . , pd}}
corresponds to a valid n-simplex. Alternatively, using the ordered partition language,
we have the following description:
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Proposition 2.3. The simplices of χ(∆n) are indexed by pairs of tuples:

τ = ((B1, . . . , Bt), (C1, . . . , Ct)),

such that

1. The sets B1, . . . , Bt are non-empty disjoint subsets of [n].

2. For all i = 1, . . . , t, we have Ci ⊆ Bi, and the sets C1, . . . , Ct are also non-empty.

Let στ denote the simplex indexed by τ . The dimension of στ is |C1|+ · · ·+ |Ct| − 1.

Remark 2.4. The following are the special cases of Proposition 2.3:

1. When στ is a vertex, we have dimστ = 0, i.e., |C1|+ · · ·+ |Ct| = 1, which cor-
responds to the case t = 1, and |C1| = 1.

2. When dimστ = n, we have |C1|+ · · ·+ |Ct| = n+ 1, hence Ci = Bi for all i =
1, . . . , t, and (B1, . . . , Bt) is an ordered partition of [n].

Proof of Proposition 2.3. We shall extend the functions ϕ and ψ from the proof
of Proposition 2.1 to the new context. Assume we are given a pair of tuples τ =
((B1, . . . , Bt), (C1, . . . , Ct)). Let k = |C1 ∪ · · · ∪ Ct|, and let {p1, . . . , pk} = C1 ∪ · · · ∪
Ct. We define

ϕ(τ) := {(p1, V1), . . . , (pk, Vk)},

where the sets Vi are constructed using the following rule: for i = 1, . . . , k, we let l(i)
be the index such that pi ∈ Cl(i), and then set Vi := B1 ∪ · · · ∪Bl(i). Since Cl(i) ⊆
Bl(i), we have pi ∈ Vi, for all i. Also the axioms (i) and (ii) of Definition 1.1 are
satisfied, so ϕ is well-defined.

Conversely, assume we are given a (k − 1)-simplex σ = {(p1, V1), . . . , (pk, Vk)}.
After possible reindexing we can choose 0 < i1 < i2 < · · · < it−1 < n, such that V1 =
V2 = · · · = Vi1 ( Vi1+1 = · · · = Vi2 ( · · · = Vit−1 ( Vit−1+1 = · · · = Vk. We set C1 :=
{p1, . . . , pi1}, C2 := {pi1+1, . . . , pi2}, . . . Ct := {pit−1+1, . . . , pk}, and B1 := Vi1 , B2 :=
Vi2 \ Vi1 , . . ., Bt := Vk \ Vit−1 . Then we define ψ(σ) := ((B1, . . . , Bt), (C1, . . . , Ct)).
Clearly, the subsets B1, . . . , Bt are disjoint and nonempty, and the subsets C1, . . . , Ct

are also nonempty. So to check that ψ is well-defined, we just need to verify that
Ci ⊆ Bi. Assume pj ∈ Cl = {pil−1+1, . . . , pil}. On one hand, we have pj ∈ Vil , since
pj ∈ Vj and Vj = Vil . On the other hand, we have pj /∈ Vil−1

, since otherwise axiom
(ii) of Definition 1.1 would imply that Vj ⊆ Vil−1

, which would contradict the choice
of l. Thus pj ∈ Bl.

Now to see that ϕ(ψ(σ)) = σ, for all the simplices σ, assume that

σ = {(p1, V1), . . . , (pk, Vk)},

and that the sets Vi are already reindexed as necessary for the definition of ψ(σ).
Assume ψ(σ) := ((B1, . . . , Bt), (C1, . . . , Ct)). For an arbitrary j, assume that pj ∈
Cl = {pil−1+1, . . . , pil}. Then, by construction we have Bl = Vil . On the other hand,
Vil = Vj , thus (pj , Vj) is a vertex of ϕ(ψ(σ)). This is true for all j, hence ϕ(ψ(σ)) = σ.

Finally, assume τ = ((B1, . . . , Bt), (C1, . . . , Ct)), and let us see that ψ(ϕ(τ)) = τ .
Set i1 := |C1|, i2 := |C1 ∪ C2|, . . . , it−1 := |C1 ∪ · · · ∪ Ct−1|. Without loss of general-
ity we can assume that ϕ(τ) = {(p1, V1), . . . , (pk, Vk)}, with the indexing chosen so
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that C1 = {p1, . . . , pi1}, C2 = {pi1+1, . . . , pi2}, . . . , Ct = {pit−1−1, . . . , pk}. The con-
struction of ψ specified to this particular set {(p1, V1), . . . , (pk, Vk)} yields ψ(ϕ(τ))
= τ .

2.3. The incidence structure of χ(∆n)

It is also possible to use the combinatorial description of the simplices from Propo-
sition 2.3 to give an explicit description of the incidence structure of χ(∆n).

Assume we are given a d-simplex τ = ((B1, . . . , Bt), (C1, . . . , Ct)). The vertices of
τ are indexed by all pairs (B, c), where c ∈ Ci, and B = Bi, for some 1 6 i 6 t. The
boundary ∂τ contains d+ 1 simplices of dimension d− 1, which can be indexed by the
elements of the set C1 ∪ · · · ∪ Ct. Specifically, we pick p ∈ C1 ∪ · · · ∪ Ct, and describe
a (d− 1)-simplex σp in ∂τ . Assume p ∈ Ck. If |Ck| > 2, then we take

σp = ((B1, . . . , Bt), (C1, . . . , Ck \ {p}, . . . , Ct)).

Otherwise, we have |Ck| = 1, i.e., Ck = {p}. If k < t, then we take

σp = ((B1, . . . , Bk−1, Bk ∪Bk+1, Bk+2, . . . , Bt), (C1, . . . , Ck−1, Ck+1, Ck+2, . . . , Ct)),

else k = t, and we take

σp = ((B1, . . . , Bt−1), (C1, . . . , Ct−1)).

Some of the encodings of the lower dimensional simplices are shown on Figure 2,
where the reader can also see how the combinatorial incidence structure works.

3. Preliminaries

Before proceeding with the main result, we need some preliminaries both from the
theory of simplicial complexes as well as from convex geometry.

3.1. Links, stars, and subdivisions

Let K be an arbitrary simplicial complex, and let σ be any simplex of K. We need
the following standard notions. The deletion of σ is the simplicial subcomplex of K
consisting of all simplices which do not contain σ, i.e.,

dlK(σ) = {τ ∈ K | τ 6⊇ σ}.

The link of σ consists of all the simplices which are disjoint from σ, but which form
a valid simplex together with σ, i.e.,

lkK(σ) = {τ ∈ K | σ ∩ τ = ∅ and σ ∪ τ ∈ K}.

Finally, the (closed) star of σ is the union of all simplices which form a valid simplex
together with σ, i.e.,

stK(σ) = {τ ∈ K | σ ∪ τ ∈ K}.

The open star is the union of the interiors of all simplices containing τ ; it is not
a simplicial subcomplex of K.
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We have the following equalities:

stK(σ) ∪ dlK(σ) = K,

stK(σ) = σ ∗ lkK(σ), (2)

and

stK(σ) ∩ dlK(σ) = {τ ∈ K | σ ∪ τ ∈ K and τ 6⊇ σ} = lkK(σ) ∗ ∂σ, (3)

for all simplices σ ∈ K, where ∗ denotes the simplicial join operation. Recall that
for abstract simplicial complexes K and L whose sets of vertices are disjoint, the
simplicial join is defined as K ∗ L := {σ ∪ τ | σ ∈ K, τ ∈ L}. An example is shown in
Figure 3. We refer to [Ko07, Subsection 2.1.2] for further examples ,and the more
detailed description of these concepts.

lkKσ

K dlKσ

stKσ

σ

Figure 3: An illustration for link, deletion, and star of a simplex.

Assume now that X is a subdivision of a simplex σ ∈ K. Using (2) one sees that
the join of X with lkK(σ) is a subdivision of stK(σ); this is a special case of the
following general fact:

Fact. Given simplicial complexes X and Y , and given X̃ - a simplicial subdivision of
X, then the simplicial complex X̃ ∗ Y is a subdivision of X ∗ Y .

One can see this geometrically, if one uses the realization of the join from [Ko07].
Indeed, when X and Y are embedded in complimentary dimensions, and the join is
obtained by drawing all the line segments connecting points in X and in Y , then it
is immediate that replacing X with its subdivision will subdivide the join.

Returning to the subdivision of σ, assume, in addition, that X only subdivides the
interior of σ, while leaving its boundary ∂σ unchanged. Since the extension of the
subdivision X to the subdivision of stK(σ) also does not change the link of σ, we can
use (3) to see that this extension of X does not change stK(σ) ∩ dlK(σ). This means
that we can even further extend the local subdivision X to the entire complex K by
leaving dlK(σ) intact in the new subdivision.



204 DMITRY N. KOZLOV

3.2. Schlegel diagrams
Recall that a (d+ 1)-dimensional polytope P is a convex hull of finitely many

points in Rd+1, where we assume that not all points lie on the same affine hyperplane.
Clearly, its boundary is homeomorphic to a d-sphere. Let F be a d-dimensional face
on the polytope P . By definition, F itself is a d-dimensional polytope obtained as
an intersection of P with some hyperplane H, so that the rest of the polytope lies
entirely on one side of this hyperplane. Let H− denote the open halfspace bordered
by H, which does not intersect with the polytope P . Choose a point x in H− very
close to the barycenter of F (in fact any point in the interior of F will do). Now
project the boundary of the polytope P along the rays connecting it to x into the
hyperplane H. If x is sufficiently close to the barycenter of F , then the image of
that projection will be precisely F . Furthermore, by linearity, the images of the faces
on the boundary of P , excluding F itself, will constitute a polyhedral subdivision of
F , called the Schlegel diagram of P at F , which we shall denote by SchF (P ). See
Figure 4 for examples of Schlegel diagrams of tetrahedra, cube and dodecahedron.
More information on Schlegel diagrams can be found in [Gr, HRZ].

Figure 4: Schlegel diagrams of tetrahedron, cube and dodecahedron.

4. Main theorem

4.1. Subdivisions using Schlegel diagrams of simplicial polytopes
According to what was said in Section 3, taking a Schlegel diagram of a face in

a simplicial polytope provides a simplicial subdivision of the corresponding simplex,
which leaves its boundary intact. If this was a simplex in a larger simplicial complex
K, then this can be extended to a subdivision of the entire complex, as described in
Subsection 3.1. All-in-all, given a simplicial complex K, its simplex σ of dimension d,
a simplicial polytope P of dimension d+ 1, and an isomorphism ϕσ identifying a face
F of P of dimension d with σ, we let Σ(K,σ, P, ϕσ) denote the simplicial subdivision
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of K which is obtained by replacing σ with the Schlegel diagram SchF (P ), and then
extending this to the entire K.

Assume F is a set of d-simplices of K whose open stars are disjoint, in other words
there does not exist a simplex in K which contains two simplices from F . Since only
the open star of σ gets subdivided, when we pass from the complex K to its subdi-
vision Σ(K,σ, P, ϕσ), we can do the corresponding subdivisions simultaneously and
independently for each σ ∈ F . We shall denote the total subdivision by Σ(K,F , P,Φ),
where Φ = {ϕσ | σ ∈ F}.

Let now P be a regular simplicial polytope. In this case, the combinatorial type
of SchF (P ) does not depend on the choice of F , so we can simply write Sch(P ).
Furthermore, since the symmetry group of P acts transitively on the set of flags of P ,
the induced subdivision of K will be independent on the choice of the isomorphism ϕ,
so we can just write Σ(K,σ, P ).

Assume now that in every dimension d we specified a regular simplicial polytope
Pd of dimension d+ 1 and call this family of polytopes P = {Pd}d>1. Assume K is
a simplicial polytope of dimension n, and let K(i) denote the set of the i-dimensional
simplices of K. Then it is possible to proceed as follows:

Iterated subdivision using Schlegel diagrams of P
Step 1. Replace K with X1 = Σ(K,K(n), Pn).

Step 2. Replace X1 with X2 = Σ(X1,K
(n−1), Pn−1).

· · ·
Step i. Replace Xi−1 with Xi = Σ(Xi−1,K

(n−i+1), Pn−i+1).

· · ·
Step n. Replace Xn−1 with Xn = Σ(Xn−1,K

(1), P1).

Finally, we set ΣP(K) := Xn.

Clearly, ΣP(K) depends heavily on the choice of the family P. There are two
classical infinite families of regular simplicial polytopes: the simplices and the cross-
polytopes. We can perform a complete analysis for these families.

First, taking the simplex family yields a well-known situation. Indeed, a Schlegel
diagram of a simplex is precisely the so-called stellar subdivision. On the other hand,
it is well-known that replacing all the top-dimensional simplices with their stellar
subdivisions and then proceeding to do so for lower dimensions will yield a barycentric
subdivision.

The case of cross-polytopes is more interesting, and we shall connect it to chro-
matic subdivisions by proving the following result, which will be our main technical
statement:

Theorem 4.1. Assume P is the infinite family of cross-polytopes; then we have
ΣP(∆

d) = χ(∆d). In particular, χ(∆d) is a subdivision of ∆d.

4.2. Schlegel diagrams of cross-polytopes

We now return to the framework of Subsection 3.2, though in a special case. If
the polytope P is simplicial, then F is a d-simplex, and the corresponding Schlegel
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diagram is a simplicial subdivision of F . Next, we consider a specific simplicial poly-
tope in Rd+1. For i = 1, . . . , d+ 1, let ei denote the point whose ith coordinate
is 1, and all other coordinates are 0. Let Pd be the convex hull of the point set
{e1, . . . , ed+1,−e1, . . . ,−ed+1}. It is easy to see that these 2d+ 2 points are in convex
position and that the obtained polytope is simplicial. This is a geometric realization
of the cross-polytope, see e.g., [Cox].

Since Pd is a regular polytope, all of its d-faces are isomorphic, and for any such
isomorphism between two d-faces there exists a symmetry of Pd extending that iso-
morphism. In particular, the Schlegel diagram will not depend on which d-face of Pd

we choose, so we just write Sch(Pd). The examples of Schlegel diagrams for d = 1, 2
are shown in Figure 5. An alert reader will notice that the boundary complex of Pd

is precisely the simplicial join of d+ 1 copies of the simplicial complex consisting of
two points with no edge between them.

(2,+)

(2,−)

(0,−) (1,−)

(0,+)(1,+)

Figure 5: Schlegel diagrams of cross-polytopes for d = 1, 2.

To fix notations, we shall consider the Schlegel diagram associated to the negative
d-face of Pd, i.e., the face with vertices −e1, . . . ,−ed+1. We now give a combinatorial
description of the abstract simplicial complex associated with that Schlegel diagram
Sch(Pd). The set of vertices is indexed by V = {(i, s) | 0 6 i 6 d, s ∈ {+,−}}, where
for every i = 0, . . . , d, the pair (i,+) denotes the inner point of Sch(Pd) corresponding
to the (i+ 1)th axis, whereas the pair (i,−) denotes the vertex of the d-simplex,
which we use as the initial face for constructing the Schlegel diagram, corresponding
to the (i+ 1)th axis. Then, the d-dimensional simplices of Sch(Pd) are all tuples
((0, s0), . . . , (d, sd)), such that (s0, . . . , sd) 6= (−, . . . ,−). See Figure 5 for the indexing
of simplices in Sch(P2).

Clearly, the advantage of using the Schlegel diagrams is that one gets the fact
that it is a subdivision of the face for free. We have seen on Figure 5 that Sch(P1) is
isomorphic to χ(∆1), whereas Sch(P2) is different from χ(∆2). To get from Sch(P2)
to χ(∆2) one needs to further subdivide each of the edges of the triangle and then
extend these subdivisions to the subdivision of Sch(P2). For higher d one needs to do
this several times.
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4.3. Chromatic subdivision of a simplex

Let us now perform the iterated subdivision of ∆d using Schlegel diagrams of P,
where P is the infinite family of cross-polytopes. Set X0 = ∆d, let Xk as above denote
the intermediate steps for k > 1, and let ΣP(∆

d) denote the final result. We can give
a direct combinatorial description of the simplicial structure which we get at every
step of the process.

Proposition 4.2. For k = 0, . . . , d, the simplicial complex Xk has the following com-
binatorial description:

1. The vertices of Xk are indexed by pairs (i, A), such that A ⊆ [d], i ∈ A, and
either |A| = 1, or |A| > d− k + 2.

2. The d-simplices of Xk are indexed by all sets of d+ 1 vertices corresponding to
tuples σ = ((i1, A1), . . . , (id+1, Ad+1)), with {i1, . . . , id+1} = [d], satisfying the
following conditions:

(i) |A1| 6 · · · 6 |Ad+1|,
(ii) Aα ⊆ Aβ, whenever α < β, and |Aβ | 6= 1,
(iii) |Ad−k+2| > 2.

Remark 4.3. For k > 1, the transient simplicial complexes Xk can also be given a dis-
tributed computing interpretation. Namely, we consider all the executions where in
the initial stage a certain group of processors, numbering at most d− k + 1, will
only perform the write operation, with the rest of processors functioning normally
and performing a write and then the regular immediate snapshot read operation. In
particular, the views of those first “write-only” processors consist solely of their own
id’s. Note that this also interprets the equality Xd = Xd+1, since it does not mat-
ter whether the first processor also reads or not after it wrote its id into the shared
memory.

Proof of Proposition 4.2. To start with, note that for k = 0, we only get vertices
(i, A), with |A| = 1, i.e., the vertices (1, {1}), . . . , (d+ 1, {d+ 1}). These form a single
d-simplex, so our combinatorial description is correct for X0 = ∆d.

Let us now show that when passing from k to k + 1, for k = 0, . . . , d− 1, the change
in the combinatorial simplicial structure described in the proposition corresponds
exactly to the transformation from Xk to Xk+1 , For convenience, we define r(σ) to
be the maximal index such that |Ar(σ)| = 1, and set R(σ) = {i1, . . . , ir(σ)}.

First, we consider the new vertices. For every simplex of ∆d of codimension k,
i.e., for every subset S ⊆ [d], such that |S| = d− k + 1, we add new vertices
(s1, S), . . . , (sd−k+1, S), where S = {s1, . . . , sd−k+1}. This is consistent both with the
Schlegel construction for cross-polytopes, see Subsection 4.2, as well as with the
description of the set of vertices of Xk.

Next, we analyze what happens with the d-simplices. Many d-simplices stay intact.
Those which do get subdivided are of the form σ = ((i1, A1), . . . , (id+1, Ad+1)), such
that r(σ) = d− k + 1. Each such σ gets replaced by new d-simplices, which are
obtained as follows: Choose a non-empty subset S ⊆ R(σ). For simplicity of notations,
we can re-index the vertices so that there exists r, such that {i1, . . . , ir} = R(σ) \ S,
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i.e., {ir+1, . . . , ir(σ)} = S. Then the new simplex is

τ = ((i1, A1), . . . , (ir, Ar), (ir+1, R(σ)), . . . , (ir(σ), R(σ)),

(ir(σ)+1, Ar(σ)+1), . . . , (id+1, Ad+1)).

We have r(τ) = r, and R(τ) = R(σ) \ S.
To see that this is exactly what happens when Schlegel diagrams are extended

to the entire complex, one can think of the part {(i1, A1), . . . , (ir(σ), Ar(σ))} as the
maximal face the corresponding cross-polytope indexed by the tuple (−, . . . ,−). In
the Schlegel constructions it gets replaced by simplices indexed by all possible non-
empty subsets of {i1, . . . , ir(σ)}. Then the extension of these subdivisions to the entire
complex corresponds to appending this with the rest of the vertices, which is exactly
what we do. Clearly, the obtained d-simplices are precisely those occurring in our
description of the d-simplices of Xk+1, where the order of the vertices is given by
construction.

We can now show the result which we announced earlier.

Proof of Theorem 4.1. For k = d we have d− k + 2 = 2. This means that there is at
most one singleton set among the sets A1, . . . , Ad+1. We see that the vertices of Xd

are all the pairs (i, A), for i ∈ [d], i ∈ A ⊆ [d], whereas a set of d+ 1 vertices forms
a d-simplex if and only if it can be ordered into a tuple ((i1, A1), . . . , (id+1, Ad+1))
satisfying {i1, . . . , id+1} = [d], |A1| 6 · · · 6 |Ad+1|, and Aα ⊆ Aβ , whenever α < β. In
other words, the conditions for the sets of d+ 1 vertices to form d-simplices translate
precisely into our previous description of the simplicial complex χ(∆d).

4.4. Chromatic subdivision of a simplicial complex

Let K be an arbitrary simplicial complex. Informally, we would like to define χ(K)
to be the simplicial complex obtained from K by replacing each simplex σ ∈ K by
χ(σ) simultaneously. This is the same as replacing all the maximal simplices with
their chromatic subdivisions and then gluing them together over their boundaries in
a coherent way.

While the intuition is clear, one option for a compact rigorous approach is to use
the language of colimits; see [Ko07, Section 4.4]. Let I(K) be the incidence category
of K: its objects are indexed by simplices of K, and morphisms σ → τ correspond to
inclusions σ ⊆ τ . One can define a functor SK : I(K) → SS, where SS is the category
of simplicial complexes, by taking SK(σ) to be the subcomplex of K corresponding
to σ ∈ K and letting SK(σ → τ) to be the corresponding simplicial inclusion. Passing
on to the colimits of diagrams, see [Ko07, Section 15.1], we can say that the colimit
of I(K) is precisely K itself. Indeed, when the maps involved in the diagram are
just inclusions, the colimit is precisely what one gets by gluing spaces together in
a coherent way.

Definition 4.4. Let K be a simplicial complex, and let the category I(K) be as
above. We construct a functor ΣK : I(K) → SS by setting ΣK(σ) := χ(σ) for σ ∈ K,
and letting ΣK(σ → τ) be the corresponding simplicial inclusion. Then we define
χ(K) to be the colimit of ΣK .
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Note that by construction of χ, if σ ⊆ τ , then χ(σ) ⊆ χ(τ). Indeed, replacing [n] by
any of its subsets in Definition 1.1, will just yield the same object, for a different index
set, as all the conditions are preserved. This means that the morphism Σk(σ → τ) is
well-defined.

Theorem 4.5. For an arbitrary simplicial complex K, the complex χ(K) is a sim-
plicial subdivision of K.

Proof of Theorem 4.5. Theorem 4.1 and the construction of χ imply that composing
the functors SK and ΣK with the forgetful functor SS → Top will yield the same dia-
grams. This means that K and χ(K) are homeomorphic. Moreover, since each space
in the diagram ΣK is a subdivision of the corresponding space in the diagram SK , and
the simplicial inclusions associated to morphisms σ → τ respect these subdivisions,
we can conclude that χ(K) is actually a simplicial subdivision of the complex K.
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