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RATIONAL VISIBILITY OF A LIE GROUP IN THE MONOID
OF SELF-HOMOTOPY EQUIVALENCES

OF A HOMOGENEOUS SPACE

KATSUHIKO KURIBAYASHI

(communicated by Charles A. Weibel)

Abstract
Let M be a homogeneous space admitting a left translation

by a connected Lie group G. The adjoint to the action gives rise
to a map from G to the monoid of self-homotopy equivalences
of M . The purpose of this paper is to investigate the injectivity
of the homomorphism which is induced by the adjoint map on
the rational homotopy group. In particular, the visibility degrees
are determined explicitly for all the cases of simple Lie groups
and their associated homogeneous spaces of rank one which are
classified by Oniscik.

1. Introduction

The study of rational visibility problems which we consider here is motivated by
work due to Kedra and McDuff [16] in which symplectic topological methods are
effectively used. In this paper, we deal with such problems relying upon algebraic
models for spaces and maps which are complements of models developed and used in
recent work on rational homotopy of function spaces [4, 6, 7, 8, 18, 19, 20].

Let f : X → Y be a map between connected spaces whose fundamental groups are
abelian. We say that X is rationally visible in Y with respect to the map f if the
induced map f∗ ⊗ 1: πi(X)⊗Q → πi(Y )⊗Q is injective for any i > 1. Let aut1(M)
denote the identity component of the monoid of self-homotopy equivalences of a space
M . Let G be a connected Lie group and M an appropriate homogeneous space M
admitting a left translation by G. We then define a map of monoids

λG,M : G→ aut1(M)

by λG,M (g)(x) = gx for g ∈ G and x ∈M . The aim of this paper is to discuss the
rational visibility of G in aut1(M) with respect to the map λG,M .

The monoid map λG,M factors through the identity component Homeo1(M) of
the monoid of homeomorphisms of M and the identity component Diff1(M) of the
space of diffeomorphisms of M . Therefore, the rational visibility of G in aut1(M)
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implies that of G in Homeo1(M) as well as in Diff1(M). We moreover expect that
non-trivial characteristic classes of the classifying spaces Baut1(M), BHomeo1(M)
and BDiff1(M) can be obtained through the study of rational visibility. Very little
is known about the (rational) homotopy of the groups Homeo1(M) and Diff1(M) for
a general manifold M ; see [10] for the calculation of πi(Diff1(S

n))⊗Q for i in some
range. Then such implication and expectation inspire us to consider the visibility
problems of Lie groups. We refer the reader to papers [12] and [30] for the study of
rational homotopy types of aut1(M) itself and related function spaces.

The key device for the study of rational visibility is the function space model due
to Brown and Szczarba [5] and Haefliger [13], which is regarded as Lannes’ division
functor. Especially, an explicit rational model for the map λG,M is constructed by
using a model for the evaluation map described in [7] and [17]; see Theorem 4.3.
We mention that a model for the left translation G×M →M provided in Section 5
completes the construction.

By analyzing such elaborate models, a recognition principle for rational visibility
is obtained in Theorem 4.1 below. We emphasize that not only does our machinery
in this paper allow us to give other proofs of results in [16], [25], [27] and [31]
concerning rational visibility, but it also leads us to an unifying way of looking at the
visibility problem explicitly. Some answers to such problems are described in Tables
1 and 2 below. Moreover, we have non-trivial characteristic classes of the classifying
spaces Baut1(M) and hence of BHomeo1(M) and BDiff1(M) for an appropriate
homogeneous space M ; see Remark 8.1.

It is important to remark that for considering the rational visibility problem the
derivation argument on a Sullivan model ∧W for M may be useful. Indeed, the
rational homotopy group of aut1(M) is isomorphic to the homology of the complex
Der(∧W ) of derivations on ∧W . Then the map λG,M is modeled by a map

λG,M] : VG → H∗(Der(∧W )) ∼= π∗(aut1(M))Q,

where ∧VG is a minimal model for G. In particular, one might obtain other recognition
principles for the rational visibility problem along the lines of the derivation argu-
ments developed in [4, 8, 18]. We leave such considerations to the reader, focusing
here on the rational visibility problem in the Lannes’ division functor argument.
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2. Results

We retain the notations in the introduction. Our results are described more pre-
cisely in this section. The first one is a generalization of the result [25, Proposition
2.4].



RATIONAL VISIBILITY OF A LIE GROUP 351

Theorem 2.1. Let G be a simply-connected Lie group and T a torus in G which is
not necessarily maximal. Then G is rationally visible in aut1(G/T ) with respect to
the map λG,G/T defined by the left translation of G/T by G.

In [25, Proposition 2.4], it is assumed that T is a maximal torus of G. We mention
that the result due to Notbohm and Smith plays an important role in the proof of the
uniqueness of fake Lie groups with a maximal torus; see [24, Section 1]. Theorem 2.1
is deduced directly from Theorem 2.2 below, which gives a tractable criterion for the
rational visibility.

In order to describe Theorem 2.2, we fix notation. Let G be a connected Lie group
and U a closed connected subgroup of G. Let Bι : BU → BG be the map induced
by the inclusion ι : U → G. We can assume that the rational cohomology of BG is a
polynomial algebra, say H∗(BG;Q) ∼= Q[c1, . . . , ck]. In what follows, we write H∗(X)
for the cohomology of a space X with coefficients in the rational field.

Consider the Lannes’ division functor (H∗(BU) :H∗(G/U)) in the category of dif-
ferential graded algebras (DGA’s). The functor is regarded as the quotient
∧(H∗(BU)⊗H∗(G/U))/I of the free algebra ∧(H∗(BU)⊗H∗(G/U)) by the ideal I
generated by 1⊗ 1∗ − 1 and all elements of the form

a1a2 ⊗ β −
∑
i

(−1)|a2||β
′
i|(a1 ⊗ β′

i)(a2 ⊗ β′′
i ),

where a1, a2 ∈ ∧V , β ∈ B∗ and D(β) =
∑
i β

′
i ⊗ β′′

i with the coproduct D on
H∗(G/U) which is the dual to the product on H∗(G/U). The quotient algebra in turn
is isomorphic to an algebra of the form ∧(QH∗(BU)⊗H∗(G/U)), where QH∗(BU)
denotes the vector space of indecomposable elements. More precisely, the composite
of the natural inclusion i and the projection p

∧(QH∗(BU)⊗H∗(G/U))
i→ ∧(H∗(BU)⊗H∗(G/U))

p→ (H∗(BU) :H∗(G/U))

give rise to the isomorphism; see Section 3. Under the isomorphism p ◦ i, we can
define an algebra map u : (H∗(BU) :H∗(G/U)) → Q by u(h⊗ b∗) = 〈j∗(h), b∗〉, where
j : G/U → BU is the fibre inclusion of the fibration G/U

j→ BU
Bι→ BG.

Let Mu be the ideal of (H∗(BU) :H∗(G/U)) generated by the set

{η | deg η < 0} ∪ {η − u(η) | deg η = 0}.

Let π : H∗(BU)⊗H∗(G/U) → (H∗(BU) :H∗(G/U)) denote the composite of the
inclusion H∗(BU)⊗H∗(G/U) → ∧(H∗(BU)⊗H∗(G/U)) and the projection p.

A recognition principle for rational visibility, Theorem 4.1 mentioned below, en-
ables one to deduce the following result.

Theorem 2.2. With the above notation, assume that for ci1 , . . . , cis ∈ {c1, . . . , ck},
there are elements cj1 , . . . , cjs ∈ H∗(BG) and u1∗, . . . , us∗ ∈ H>1(G/U) such that

π((Bι)∗(cit)⊗ 1∗) ≡ π((Bι)∗(cjt)⊗ ut∗)

for t = 1, . . . , s modulo decomposable elements in (H∗(BG) :H∗(G/U))/Mu. Then
there exists a map ρ : ×st=1 S

deg citt−1 → G such that ×st=1S
deg cit−1 is rationally vis-

ible in aut1(G/U) with respect to the map (λG,G/U ) ◦ ρ. In particular, if the elements
(Bι)∗(ci1), . . . , (Bι)

∗(cis) are decomposable, then π((Bι)∗(cit)⊗ 1∗) ≡ 0 in (H∗(BG) :
H∗(G/U))/Mu for t = 1, . . . , s, and hence one obtains the same conclusion.
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For a Lie group G and a homogeneous space M which admits a left translation
by G, put n(G) := {i ∈ N | πi(G)⊗Q 6= 0} and define the set vd(G,M) of visibility
degrees by

vd(G,M) = {i ∈ n(G) | (λG,M )∗ : πi(G)⊗Q → πi(aut1(M))⊗Q is injective}.

As for monoids of homeomorphisms and of diffeomorphisms, we benefit by the
study of rational visibility. In fact, we have an immediate but very important corollary.

Corollary 2.3. If l ∈ vd(G,M), then there exists an element with infinite order in
πl(Diff1(M)) and πl(Homeo1(M)).

Example 2.4. Since SO(d+ 1)/SO(d) is homeomorphic to the sphere Sd, we can
define the maps λSO(d+1),Sd : SO(d+ 1) → aut1(S

d) by left translations. The

Haefliger, Brown and Szczarba model for the function space aut1(S
d) allows us

to deduce that aut1(S
2m+1) 'Q S

2m+1 and aut1(S
2m) 'Q S

4m−1; see Example 3.4
below. Therefore, λSO(d+1),Sd is not injective on the rational homotopy in general.
However, it follows that the induced maps

(λSO(2m+2),S2m+1)∗ : π2m+1(SO(2m+ 2))⊗Q → π2m+1(aut1(S
2m+1))⊗Q,

(λSO(2m+1),S2m)∗ : π4m−1(SO(2m+ 1))⊗Q → π4m−1(aut1(S
2m))⊗Q

are injective. In fact it is well-known that H∗(BSO(2m+ 1)) ∼= Q[p1, . . . , pm] and
H∗(BSO(2m+ 2)) ∼= Q[p1, . . . , pm, χ] as algebras, where deg pj = 4j for j = 1, . . . ,m
and degχ = 2m+ 2. Moreover, for the inclusions ι1 : SO(2m+ 1) → SO(2m+ 2)
and ι2 : SO(2m) → SO(2m+ 1), we see that (Bι1)

∗(χ) = 0 and (Bι2)
∗(pm) = χ2;

see [23]. Thus the latter half of Theorem 2.2 enables us to conclude that

vd(SO(2m+ 2), S2m+1) = {2m+ 1} and vd(SO(2m+ 1), S2m) = {4m− 1}.

The result [1, 1.1.5 Lemma] allows one to conclude that the map SO(d+ 1) →
Diff1(S

d), induced by the left translations, is injective on the homotopy group. This
implies that the inclusion Diff1(S

d) → aut1(S
d) is surjective on the rational homotopy

group.

Theorem 4.1, which deduces Theorem 2.2, also yields another proof of a result due
to Kedra and McDuff [16] and Sasao [27].

Theorem 2.5 ([16, Proposition 4.8], [27]). Assume that M is a flag manifold of the
form U(m) /U(m1)× · · · × U(ml) . Then SU(m) is rationally visible in aut1(M) with
respect to the map λSU(m),M given by the left translations; that is, vd(SU(m),M) =
n(SU(m)) = {3, 5, . . . , 2m− 1}. In particular, the localized map

(λSU(m),U(m)/U(m−1)×U(1))Q : SU(m)Q → aut1(CPm−1)Q

is a homotopy equivalence.

Furthermore, the same argument as in the proof of Theorem 2.5 allows one to
establish the following result.

Theorem 2.6. LetM be the flag manifold of the form Sp(m)/Sp(m1)× · · ·×Sp(ml).
Then vd(Sp(m),M) = {7, 11, . . . , 4m− 1}. In particular, we see that the 3-connected
cover Sp(m)〈3〉 is rationally visible in aut1(M) with respect to λSp(m),M ◦ π, where
π : Sp(m)〈3〉 → Sp(m) is the projection.
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Let G be a compact connected simple Lie group and U a closed connected subgroup
for which G/U is a simply-connected homogeneous space of rank one; that is, its
rational cohomology is generated by a single element. In order to illustrate usefulness
of Theorems 2.2 and 4.1, we determine visibility degrees of G in aut1(G/U) for each
couple (G,U) classified by Oniscik in [26, Theorems 2 and 4] by applying the results.

In the following table, we first list such homogeneous spaces of the form G/U with
a simple Lie group G and its subgroup U , which is not diffeomorphic to spheres or
projective spaces, together with the sets vd(G,G/U):

(G,U, index) (G/U)Q vd(G,G/U) n(G)

(1) (SO(2n+ 1), SO(2n− 1)× SO(2), 1) CP 2n−1 {3, . . . , 4n− 1} {3, . . . , 4n− 1}
(2) (SO(2n+ 1), SO(2n− 1), 1) S4n−1 {4n− 1} {3, . . . , 4n− 1}
(3) (SU(3), SO(3), 4) S5 {5} {3, 5}
(4) (Sp(2), SU(2), 10) S7 {7} {3, 7}
(5) (G2, SO(4), (1, 3)) HP 2 {11} {3, 11}
(6) (G2, U(2), 3) CP 5 {3, 11} {3, 11}
(7) (G2, SU(2), 3) S11 {11} {3, 11}
(6)′ (G2, U(2), 1) CP 5 {3, 11} {3, 11}
(7)′ (G2, SU(2), 1) S11 {11} {3, 11}
(8) (G2, SO(3), 4) S11 {11} {3, 11}
(9) (G2, SO(3), 28) S11 {11} {3, 11}

Table 1

Here the value of the index of the inclusion j : U → G is regarded as the integer
i by which the induced map j∗ : H3(U ;Z) → H3(G;Z) = Z is a multiplication; see
the proof of [26, Lemma 4]. The second column denotes the rational homotopy type
of G/U corresponding to a triple (G,U, i). The homogeneous spaces G/U for the
cases (6)′ and (7)′ are diffeomorphic to those for the cases (1) and (2) with n = 3,
respectively. Moreover, the homogeneous spaces are not diffeomorphic to each other
except for the cases (6)′ and (7)′.

The following table describes visibility degrees of a simple Lie group G in
aut1(G/U) for which G/U is of rank one and is diffeomorphic to the sphere or the
projective space, where the second column denotes the diffeomorphism type of the
homogeneous space G/U for the triple (G,U, i):

(G,U, index) G/U vd(G,G/U) n(G)

(10) (SU(n+ 1), SU(n), 1) S2n+1 {2n+ 1} {3, . . . , 2n+ 1}
(11) (SU(n+ 1), S(U(n)×U(1)), 1) CPn {3, . . . , 2n+ 1} {3, . . . , 2n+ 1}
(12) (SO(2n+ 1), SO(2n), 1) S2n {4n− 1} {3, . . . , 4n− 1}
(13) (SO(9), SO(7), 1) S15 {15} {3, 7, 11, 15}
(14) (Spin(7), G2, 1) S7 {7} {3, 7, 11}
(15) (Sp(n), Sp(n− 1), 1) S4n−1 {4n− 1} {3, . . . , 4n− 1}
(16) (Sp(n), Sp(n− 1)× S1, 1) CP 2n−1 {3, . . . , 4n− 1} {3, . . . , 4n− 1}
(17) (Sp(n), Sp(n− 1)×Sp(1), 1) HPn−1 {7, . . . , 4n− 1} {3, . . . , 4n− 1}
(18) (SO(2n), SO(2n− 1), 1) S2n−1 {2n− 1} {3, . . . , 4n− 5, 2n− 1}
(19) (F4, Spin(9), 1) LP 2 {23} {3, 11, 15, 23}
(20) (G2, SU(3), 1) S6 {11} {3, 11}

Table 2

Here LP 2 stands for the Cayley plane.



354 KATSUHIKO KURIBAYASHI

The former half of Theorem 2.2, namely the Lannes’ functor argument, does
work well enough when determining the set vd(G2, G2/U(2)) of visibility degrees
in case (6) in Table 1; see Section 8. Observe that for the cases (12) and (18) the
results follow from those in Example 2.4. We are aware that in the above tables
G is rationally visible in aut1(G/U) if and only if G/U has the rational homo-
topy type of the complex projective space. It should be mentioned that for the map
λ∗ : π∗(F4)⊗Q → π∗(aut1(LP 2))⊗Q, the restriction (λ∗)15 is not injective though
the vector space π15(aut1(LP 2))⊗Q and π15(F4)⊗Q are non-trivial; see Section 8.
Moreover, Corollary 2.3 enables us to obtain non-trivial elements with infinite order
in πl(Diff1(M)) and πl(Homeo1(M)) for each homogeneous space M described in
Tables 1 and 2 if l ∈ vd(G,M).

Let X be a space and HH,X the monoid of all homotopy equivalences from X to
itself that act trivially on the rational homology of X. The result [16, Proposition 4.8]
asserts that if X is the generalized flag manifold U(m) /U(m1)× · · · × U(ml) , then
the map BψSU(m) : BSU(m) → BHH,X arising from the left translations is injective
on the rational homotopy. Let ι : aut1(X) → HH,X be the inclusion. Since BψSU(m) =
Bι ◦BλSU(m),X , the result [16, Proposition 4.8] yields Theorem 2.5. Theorem 2.7
below guarantees that the converse also holds; that is, the result due to Kedra and
McDuff is deduced from Theorem 2.5; see Section 8.

Before describing Theorem 2.7, we recall an F0-space, which is a simply-connected
finite complex with finite-dimensional rational homotopy and trivial rational coho-
mology in odd degree. For example, a homogeneous space G/U for which G is a
connected Lie group and U is a maximal rank subgroup of G is an F0-space.

Theorem 2.7. Let X be an F0-space or a space having the rational homotopy type
of the product of odd-dimensional spheres and G a connected topological group which
acts on X. Then (BλG,X)∗ : H∗(BG) → H∗(Baut1(X)) is injective if and only if
(Bψ)∗ : H∗(BG) → H∗(BHH,X) is injective. Here ψ : G→ HH,X denotes the mor-
phism of monoids induced by the action of G on X.

We now provide an overview of the rest of the paper. In Section 3, we recall a model
for the evaluation map of a function space from [7], [15] and [17]. In Section 4, a
rational model for the map λG,M mentioned above is constructed. Section 5 is devoted
to the study of a model for the left translation of a Lie group on a homogeneous
space. In Section 6, Theorem 2.2 is proved. By using Theorems 2.2 and 4.1, we prove
Theorem 2.5 in Section 7. In Section 8, we prove Theorem 2.7. The results on visibility
degrees in Tables 1 and 2 are verified in Section 9.

3. Preliminaries

The tool for the study of the rational visibility problem is a rational model for the
evaluation map ev : aut1(M)×M →M , which is described in terms of the rational
model due to Brown and Szczarba [5] and Haefliger [13]. For the convenience of the
reader and to make notation more precise, we recall from [7] and [17] the model for
the evaluation map. We shall use the same terminology as in [3] and [11].

Throughout the paper, for an augmented algebra A, we write QA for the space
A/A ·A of indecomposable elements, where A denotes the augmentation ideal. For a
DGA (A, d), let d0 denote the linear part of the differential.
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In what follows, we assume that a space is nilpotent and has the homotopy type
of a connected CW-complex with rational homology of finite type unless otherwise
explicitly stated. We denote by XQ the localization of a nilpotent space X.

Let APL be the simplicial commutative cochain algebra of polynomial differential
forms with coefficients inQ; see [3] and [11, Section 10]. LetA and ∆S be the category
of DGA’s and that of simplicial sets, respectively. Let DGA(A,B) and Simpl(K,L)
denote the hom-sets of the categories A and ∆S, respectively. Following Bousfield
and Gugenheim [3], we define functors ∆: A → ∆S and Ω: ∆S → A by ∆(A) =
DGA(A,APL) and by Ω(K) = Simpl(K,APL).

Let (B, dB) be a connected, locally finite DGA and let B∗ denote the differential
graded coalgebra defined by Bq = Hom(B−q,Q) for q 6 0 together with the coproduct
D and the differential dB∗, which are dual to the multiplication of B and to the
differential dB , respectively. We denote by I the ideal of the free algebra ∧(∧V ⊗B∗)
generated by 1⊗ 1∗ − 1 and all elements of the form

a1a2 ⊗ β −
∑
i

(−1)|a2||β
′
i|(a1 ⊗ β′

i)(a2 ⊗ β′′
i ),

where a1, a2 ∈ ∧V , β ∈ B∗ and D(β) =
∑
i β

′
i ⊗ β′′

i . Observe that ∧(∧V ⊗B∗) is a
DGA with the differential d := dA ⊗ 1± 1⊗ dB∗. The result [5, Theorem 3.5] implies
that the composite ρ : ∧ (V ⊗B∗) ↪→ ∧(∧V ⊗B∗) → ∧(∧V ⊗B∗)/I is an isomor-
phism of graded algebras. Moreover, it follows [5, Theorem 3.3] that dI ⊂ I. Thus
(∧(V ⊗B∗), δ = ρ−1dρ) is a DGA. Observe that, for an element v ∈ V and a cycle
e ∈ B∗, if d(v) = v1 · · · vm with vi ∈ V and D(m−1)(ej) =

∑
j ej1 ⊗ · · · ⊗ ejm , then

δ(v ⊗ e) =
∑
j

±(v1 ⊗ ej1) · · · (vm ⊗ ejm). (3.1)

Here the sign is determined by the Koszul rule; that is, ab = (−1)deg a deg bba in a

graded algebra. Let F be the ideal of Ẽ := ∧(V ⊗B∗) generated by ⊕i<0Ẽ
i and

δ(Ẽ−1). Then Ẽ/F is a free algebra and (Ẽ/F, δ) is a Sullivan algebra (not necessarily
connected); see the proofs of [5, Theorem 6.1] and of [7, Proposition 19].

Remark 3.1. The result [5, Corollary 3.4] implies that there exists a natural iso-
morphism DGA(∧(∧V ⊗B∗)/I, C) ∼= DGA(∧V,B ⊗ C) for any DGA C. Then the
DGA ∧ (∧V ⊗B∗)/I is regarded as Lannes’ division functor (∧V :B) by definition.

The singular simplicial set of a topological space U is denoted by ∆U and let |X| be
the geometrical realization of a simplicial set X. By definition, APL(U) the DGA of
polynomial differential forms on U is given by APL(U) = Ω∆U . Given spaces X and
Y , we denote by F(X,Y ) the space of continuous maps from X to Y . The connected
component of F(X,Y ) containing a map f : X → Y is denoted by F(X,Y ; f).

Let α : A = (∧V, d) '→ APL(Y ) = Ω∆Y be a Sullivan model (not necessarily mini-

mal) for Y and β : (B, d)
'→ APL(X) a Sullivan model for X for which B is connected

and locally finite. For the function space F(X,Y ) which is considered below, we
assume that

dim⊕q>0H
q(X;Q) <∞ or dim⊕i>2πi(Y )⊗Q <∞. (3.2)
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Then the proof of [17, Proposition 4.3] enables us to deduce the following lemma; see
also [7].

Lemma 3.2.

(i) Let {bj} and {bj∗} be a basis of B and its dual basis of B∗, respectively and

let π̃ : ∧(A⊗B∗) → (∧(A⊗B∗)/I)
/
F ∼= Ẽ/F denote the projection. Define a

map m(ev) : A→ Ẽ/F ⊗B by

m(ev)(x) =
∑
j

(−1)τ(|bj |)π̃(x⊗ bj∗)⊗ bj ,

for x ∈ A, where τ(n) = [(n+ 1)/2], the greatest integer in (n+ 1)/2. Then
m(ev) is a well-defined DGA map.

(ii) There exists a commutative diagram

F(XQ, YQ)×XQ
ev // YQ

|∆(Ẽ/F )| × |∆(B)|

Θ×1

OO

|∆m(ev)|
// |∆(A)|

in which Θ is the homotopy equivalence described in [5, Sections 2 and 3]; see
also [17, (3.1)].

We next recall a Sullivan model for a connected component of a function space.
Choose a basis {a′k, b′k, c′j}k,j for B∗ so that dB∗(a

′
k) = b′k, dB∗(c

′
j) = 0 and c′0 = 1.

Moreover, we take a basis {vi}i>1 for V such that deg vi 6 deg vi+1 and d(vi+1) ∈ ∧Vi,
where Vi is the subvector space spanned by the elements v1, . . . , vi. The result [5,
Lemma 5.1] ensures that there exist free algebra generators wij , uik and vik such
that

wi0 = vi ⊗ 1 and wij = vi ⊗ c′j + xij , where xij ∈ ∧(Vi−1 ⊗B∗), (3.3)

δwij is in ∧ ({wsl; s < i}), (3.4)

uik = vi ⊗ a′k and δuik = vik. (3.5)

We then have an inclusion

γ : E := (∧(wij), δ) ↪→ (∧(V ⊗B∗), δ) = Ẽ, (3.6)

which is a homotopy equivalence with a retract

r : Ẽ = (∧(V ⊗B∗), δ) → E; (3.7)

see [5, Lemma 5.2] for more details. Let q be a Sullivan representative for a map
f : X → Y ; that is, q fits into the homotopy commutative diagram

∧W ' // APL(X)

∧V

q

OO

'
// APL(Y ).

APL(f)

OO

Moreover, we define a 0-simplex ũ ∈ ∆(∧(∧V ⊗B∗)/I)0 by

ũ(a⊗ b) = (−1)τ(|a|)b(q(a)), (3.8)
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where a ∈ ∧V and b ∈ B∗. Put u = ∆(γ)ũ. Let Mu be the ideal of E generated by
the set {η | deg η < 0} ∪ {δη | deg η = 0} ∪ {η − u(η) | deg η = 0}. Then we see that
(E/Mu, δ) is an explicit model for the connected component F (X,Y ; f); see [5, The-
orem 6.1] and [15, Section 3]. The proof of [17, Proposition 4.3] and [15, Remark
3.4] allow us to deduce the following proposition; see also [7].

Proposition 3.3. With the same notation as in Lemma 3.2, we define a map

m(ev) : A = (∧V, d) → (E/Mu, δ)⊗B

by

m(ev)(x) =
∑
j

(−1)τ(|bj |)π ◦ r(x⊗ bj∗)⊗ bj ,

for x ∈ A, where π : E → E/Mu denotes the natural projection. Then m(ev) is a
model for the evaluation map ev : F(X,Y ; f)×X → Y ; that is, there exists a homo-
topy commutative diagram

APL(Y )
APL(ev) // APL(F(X,Y ; f)×X)

APL(F(X,Y ; f))⊗APL(X)

'
OO

A

'α

OO

m(ev)
// (E/Mu, δ)⊗B,

' ξ⊗β
OO

in which ξ : (E/Mu, δ)
'→ APL(F(X,Y ; f)) is the Sullivan model for F(X,Y ; f) due

to Brown and Szczarba [5].

We call the DGA (E/Mu, δ) the Haefliger-Brown-Szczarba model (HBS-model for
short) for the function space F(X,Y ; f).

Example 3.4. Let M be a space whose rational cohomology is isomorphic to the
truncated algebra Q[x]/(xm), where deg x = l. Recall the model (E/Mu, δ) for
aut1(M) mentioned in [15, Example 3.6]. Since the minimal model forM has the form
(∧(x, y), d) with dy = xm, it follows that

E/Mu = ∧(x⊗ 1∗, y ⊗ (xs)∗; 0 6 s 6 m− 1)

with δ(x⊗ 1∗) = 0 and δ(y ⊗ (xs)∗) = (−1)s
(
m
s

)
(x⊗ 1∗)

m−s, where deg x⊗ 1∗

= l and deg(y ⊗ (xs)∗) = lm− ls− 1. Then the rational model m(ev) for the evalu-
ation map ev : aut1(M)×M →M is given by m(ev)(x) = (x⊗ 1∗)⊗ 1 + 1⊗ x and

m(ev)(y) =

m−1∑
s=0

(−1)s(y ⊗ (xs)∗)⊗ xs + 1⊗ y.

Remark 3.5. We describe here variants of the HBS-model for a function space.

(i) Let ∧Ṽ '→ APL(Y ) be a Sullivan model (not necessarily minimal) and B
'→

APL(X) a Sullivan model of finite type. We recall the homotopy equivalence

γ : E → Ẽ = ∧(∧V ⊗B∗)/I mentioned in (3.6). Let ũ ∈ ∆(Ẽ)0 be a 0-simplex
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and u a 0-simplex of E defined by composing ũ with the quasi-isomorphism
γ. Then the induced map γ : E/Mu → Ẽ/Mũ is a quasi-isomorphism. In fact,
the results [5, Theorem 6.1] and [7, Proposition 19] imply that the projec-

tions onto the quotient DGA’s E/Mu and Ẽ/Mũ induce homotopy equivalences

∆(p) : ∆(E/Mu) → ∆(E)u and ∆(p̃) : ∆(Ẽ/Mũ) → ∆(Ẽ)ũ, respectively. Here
Kv denotes the connected component containing the vertex v for a simplicial
set K, namely, the set of simplices all of whose faces are at v. Then we have a
commutative diagram

π∗(|∆(E/Mu)|)
|∆(p)|

∼=
// π∗(|∆(E)|, |u|)

π∗(|∆(Ẽ/Mũ)|) |∆(p̃)|

∼= //

|∆(γ)|∗

OO

π∗(|∆(Ẽ)|, |ũ|).

|∆(γ)|∗

OO

Since γ is a homotopy equivalence, it follows that |∆(γ)|∗ is an isomorphism
and hence so is |∆(γ)|∗. This yields that |∆(γ)| is a homotopy equivalence. By
virtue of the Sullivan-de Rham equivalence Theorem [3, 9.4], we see that γ is a
quasi-isomorphism.

As in Lemma 3.2, we define a DGA map m̃(ev) : (∧V, d) → Ẽ/F ⊗B and let

m(ev) : (∧V, d) → Ẽ/Mũ ⊗B be a DGA map defined bym(ev) = π ⊗ 1 ◦ m̃(ev).
We then have a homotopy commutative diagram

E/Mu ⊗B

γ⊗1'
��

∧V

m(ev) 33gggggggg

m(ev)
++VVVVVVVV

Ẽ/Mũ ⊗B.

In fact, the homotopy between idẼ and γ ◦ r defined in [5, Lemma 5.2] induces a

homotopy between idẼ/F̃ and γ ◦ r : Ẽ/F → E/F ′ → Ẽ/F . Here F ′ denotes the

ideal of E generated by ⊕i<0E
i and δ(E−1). It is immediate that r ◦ γ = idE/F .

Let m(ev)′ : ∧ V → E/F ′ ⊗B be the DGA defined as in Proposition 3.3. Then
it follows that

γ ⊗ 1 ◦m(ev) = γ ⊗ 1 ◦ π ⊗ 1 ◦m(ev)′

= π ⊗ 1 ◦ γ ⊗ 1 ◦ r ⊗ 1 ◦ m̃(ev)

' π ⊗ 1 ◦ m̃(ev) = m(ev).

(ii) In the case where X is formal, we have a more tractable model for F(X,Y ; f).
Suppose that X is a formal space with a minimal model (B, dB) = (∧W ′, d).
Then there exists a quasi-isomorphism k : (∧W ′, d) → H∗(B) which is surjec-
tive; see [9, Theorem 4.1]. With the notation mentioned above, let {ej}j be a
basis for the homology H(B∗) of the differential graded coalgebra B∗ = (∧W ′)∗
and {vi}i a basis for V . Then it follows from the proof of [5, Theorem 1.9] that
the subalgebra Q{vi ⊗ ej} is closed for the differential δ and that the inclusion
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Q{vi ⊗ ej} → ∧(W ⊗B∗) = Ẽ gives rise to a homotopy equivalence

γ : E′ := (∧(vi ⊗ ej), δ) → (∧(W ⊗B∗), δ) = Ẽ.

In fact, the elements wij in (3.3) can be chosen so that wi0 = vi ⊗ 1∗ and wij =
vi ⊗ ej for j > 1. Moreover, we see that there exists a retraction r : ∧ (W ⊗
B∗) → E′ which is the homotopy inverse of γ. Thus Proposition 3.3 remains
true after replacing E by E′. Here the 0-simplex ũ ∈ ∆(∧(W ⊗B∗))0 needed in
the construction of the model for F(X,Y ; f) has the same form as in (3.8).

We conclude this section with some comments on models for a connected compo-
nent of a function space and related maps.

In the original construction in [7] and [13] of a model for a function space F(X,Y ),
it is assumed that the source space X admits a finite-dimensional model. Indeed the
construction of a model for the evaluation map in [7, Theorem 1] requires existence
of such a model for the space X. As described in Lemma 3.2 and Proposition 3.3, our
construction only needs the assumption (3.2). Thus our model for a function space
endowed with a model for evaluation map is viewed as a generalization of that in [7].

The arguments in [5, Section 7] and [7, Section 4] on a model for a connected
component of F(X,Y ) begin with a 0-simplex. That is, the considered component is
that containing a map f which corresponds to the given 0-simplex via a sequence of
weak equivalences between the singular simplicial set of F(XQ, YQ) and the simplicial
set ∆(E/F ); see [7, Theorem 6] and also [15, (2.3)]. On the other hand, for any given
map f : X → Y , an explicit form of a 0-simplex corresponding to f is clarified in [15,
Remark 3.4] with (3.8). Thus our constructions complement the basic constructions
in rational homotopy theory of function spaces due to Buijs and Murillo [7]. This
point is mentioned once again in the next section with more explicit notations after
describing Theorem 4.1.

4. A rational model for the map λ induced by left translation

We first observe that aut1(X) is nothing but the function space F(X,X; idM ).
Moreover, for a manifold M , the function space aut1(M) satisfies assumption (3.2).
Thus we can obtain explicit models for aut1(X) and for the evaluation map accord-
ing to the construction in the previous section. Using such the models, we have an
elaborate model for the map λG,M mentioned in the introduction.

Let M be a space admitting an action of Lie group G on the left. We define the
map λ : G→ aut1(M) by λ(g)(x) = gx. The subjective in this section is to construct
an algebraic model for the map

in ◦ λ : G→ aut1(M) → F(M,M),

where in : aut1(M) → F(M,M) denotes the inclusion. To this end we use a model
for the evaluation map

ev : F(X,Y )×X → Y

defined by ev(f)(x) = f(x) for f ∈ F(X,Y ) and x ∈ X, which is considered in [7]
and [17].



360 KATSUHIKO KURIBAYASHI

Let G be a connected Lie group, U a closed subgroup of G andK a closed subgroup
which contains U . Let (∧VG, d) and (∧W,d) denote a minimal model for G and a Sul-
livan model for the homogeneous space G/U , respectively. Let λ : G→ F(G/U,G/K)
be the adjoint of the composite of the left translation G×G/U → G/U and projec-
tion p : G/U → G/K. Observe that the map λ coincides with the composite

p∗ ◦ in ◦ λG,G/U : G→ aut1(G/U) → F(G/U,G/U) → F(G/U,G/K).

We construct a model for λ by using the HBS-model for F(G/U,G/K; p) mentioned
in Remark 3.5(i). To this end, we first take a Sullivan representative

ζ ′ : ∧W → ∧VG ⊗ ∧W ′

for the composite G×G/U → G/K of the left translation G×G/U → G/U and the
projection p : G/U → G/K.

Let A, B and C be connected DGA’s. Recall from [5, Section 3] the bijection

Ψ: (A⊗B∗, C)DG
∼=→ (A,C ⊗B)DG defined by

Ψ(w)(a) =
∑
j

(−1)τ(|bj |)w(a⊗ bj∗)⊗ bj .

Consider the case where A = (∧W,d), B = (∧W ′, d) and C = (∧VG, d). Moreover,
define a map µ̃ : ∧ (A⊗B∗) → ∧VG by

µ̃(y ⊗ bj∗) = (−1)τ(|bj |)〈ζ ′(y), bj∗〉, (4.1)

where 〈 , bj∗〉 : ∧ VG ⊗ ∧W ′ → ∧VG is a map defined by 〈x⊗ a, bj∗〉 = x · 〈a, bj∗〉.
Then we see that Ψ(µ̃) = ζ ′. Hence it follows from [5, Theorem 3.3] that

µ̃ : Ẽ := ∧(A⊗B∗)/I → ∧VG

is a well-defined DGA map. We define an augmentation ũ : Ẽ → Q by ũ = ε ◦ µ̃, where
ε : ∧ VG → Q is the augmentation. Recall the ideal Mũ of Ẽ generated by

{η | deg η < 0} ∪ {δη | deg η = 0} ∪ {η − ũ(η) | deg η = 0}.

It is readily seen that µ̃(Mũ) = 0. Thus we see that µ̃ induces a DGA map˜̃µ : Ẽ/Mũ → ∧VG.

The result [14, Theorem 3.11] asserts that the map

e] : F(G/U, (G/K); p) → F(G/U, (G/K)Q; e ◦ p)

is a localization. Thus we have a map λQ : GQ → F(G/U, (G/K)Q; e ◦ p) which fits
into the homotopy commutative diagram

GQ
λQ // F(G/U, (G/K)Q; e ◦ p)

G

e

OO

λ
// F(G/U, (G/K); p),

e]

OO

where e denotes the localization map. We then have a recognition principle for rational
visibility.
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Theorem 4.1. Let {xi}i be a basis for the image of the induced map

H∗(Q(˜̃µ)) : H∗(Q(Ẽ/Mũ), δ0) → H∗(Q(∧VG), d0) = VG.

Then there exists a map ρ : ×si=1 S
deg xi → G such that the map

(λQ ◦ ρQ)∗ : π∗((×si=1S
deg xi)Q) → π∗(F(G/U, (G/K)Q), e ◦ p)

is injective for ∗ > 1. Moreover, (λQ)∗ : πj(GQ) → πj(F(G/U, (G/K)Q, e ◦ p)) is in-

jective if and only if Hj(Q(˜̃µ)) is surjective.

We stress here that Ẽ/Mũ and ˜̃µ in Theorem 4.1 are explicit and computable
models for the function space F(G/U, (G/K)Q, e ◦ p) and for the map λ, respectively;
see Theorem 4.3.

Following the basic construction described in [7, Section 4], we can take a

0-simplex ũ ∈ (∆Ẽ)0, which corresponds to e ◦ p through equivalences between sim-

plicial sets ∆(F(G/U, (G/K)Q)) and ∆Ẽ in order to construct a Sullivan model for
the component F(G/U, (G/K)Q, e ◦ p). Here the map e ◦ p is considered an element
in ∆(F(G/U, (G/K)Q))0. However, this does not exhibit how to precisely describe
ũ in terms of a Sullivan representative for the projection p : G/U → G/K. The nov-

elty of Theorem 4.1 is that, in the construction of the model Ẽ/Mũ, we can use the
0-simplex ũ, which is constructed explicitly with a Sullivan representative for the left

translation G×G/U → G/U
p→ G/K; see (4.1). This fact is an important thread in

proving Theorems 2.2 and 2.5.
In order to prove Theorem 4.1, we first observe that the diagram

∧VG ⊗ ∧W ′ (∧(A⊗B∗)/I)/F ⊗ ∧W ′ = Ẽ/F ⊗ ∧W ′µ̃⊗1oo

∧W
ζ′

ffMMMMMMM m(ev)

33ggggggggggggggg

(4.2)

is commutative, where F is the ideal of Ẽ defined in Section 3. Thus Lemma 3.2
enables us to obtain a commutative diagram

|∆ ∧ VG| × |∆ ∧W ′|

|∆ζ′|=actionQ **TTTTTTTTTTTTT
(Θ◦|∆µ̃|)×1 // F((G/U)Q, (G/K)Q)× (G/U)Q

evsshhhhhhhhhhhhhhhh

|∆ ∧W | = (G/K)Q.

(4.3)
Observe that assumption (3.2) is now satisfied.

Since the restriction |∆ζ ′||∗×|∆∧W | is homotopic to pQ, it follows from the commu-
tativity of diagram (4.3) that pQ ' Θ ◦ |∆µ̃|(∗). This implies that Θ ◦ |∆µ̃| maps GQ
into the function space F((G/U)Q, (G/K)Q; pQ).

Lemma 4.2. Let λQ : GQ → F(G/U, (G/K)Q; e ◦ p) be the localized map of λ men-
tioned above and let e] : F((G/U)Q, (G/K)Q; pQ) → F((G/U), (G/K)Q; e ◦ p) the map
induced by the localization e : (G/U) → (G/U)Q. Then

e] ◦Θ ◦ |∆µ̃| ' λQ : GQ → F((G/U), (G/K)Q; e ◦ p).
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Proof. Consider the commutative diagram

[G×G/U,G/K]

e∗
��

θ

≈
// [G,F(G/U,G/K)]

(e])∗
��

[G×G/U, (G/K)Q]
θ

≈
// [G,F(G/U, (G/K)Q)]

[GQ × (G/U)Q, (G/K)Q]

(e×e)∗ ≈
OO

θ

≈ ++WWWWWWWWWWWWWWW
[GQ,F(G/U, (G/K)Q]

e∗
OO

[GQ,F((G/U)Q, (G/K)Q)]

(e])∗≈
OO

(4.4)

in which θ is the adjoint map and e stands for the localization map. It follows from
diagram (4.3) that θ(actionQ) = Θ ◦ |∆µ̃|. Moreover, we have θ(action) = e] ◦ λ =
λK ◦ e. Thus the commutativity of diagram (4.3) implies that e∗([e] ◦Θ ◦ |∆µ̃|]) =
e∗([λQ]) in [G,F(G/U, (G/K)Q)]. Since G is connected, it follows that

(e]) ◦Θ ◦ |∆µ̃| ◦ e ' λQ ◦ e : G→ F(G/U, (G/K)Q; e ◦ p).

The fact that e] : F(G/U, (G/K); p) → F(G/U, (G/K)Q; e ◦ p) is the localization
yields that the induced map

e∗ : [GQ,F(G/U, (G/K)Q; e ◦ p)] → [G,F(G/U, (G/K)Q; e ◦ p)]

is bijective. This completes the proof.

Before proving Theorem 4.1, we recall some maps. For a simplicial set K, there
exists a natural homotopy equivalence ξK : K → ∆|K|, which is defined by ξK(σ) =

tσ : ∆
n → {σ} ×∆ → |K|. This gives rise to a quasi-isomorphism ξA : Ω∆|∆A| '→

Ω∆A. Moreover, we can define a bijection η : DGA(A,ΩK)
∼=→ Simp(K,∆A) by η : φ

7→ f ; f(σ)(a) = φ(a)(σ), where a ∈ A and σ ∈ K. We observe that η−1(id) : A→
Ω∆A is a quasi-isomorphism if A is a connected Sullivan algebra; see [3, 10.1. Theo-
rem].

Proof of Theorem 4.1. Let π : Ẽ → Ẽ/Mũ be the projection. With the same notation
as above, we have a commutative diagram

|∆(∧(W ⊗B∗)/F )|
Θ

'
// F((G/U)Q, (G/K)Q)

|∆(∧VG)|
|∆(˜̃µ)| //

|∆(µ̃)|
66nnnnnnnnnnn

|∆(Ẽ/Mũ)|
OO
|∆π|

OO

|∆π|
' // |(∆Ẽ)ũ| Θ

' // F((G/U)Q, (G/K)Q; Θ([(1, ũ)])),
?�

OO

where [(1, ũ)] ∈ |∆Ẽ| is the element whose representative is (1, ũ) ∈ ∆0 × (∆Ẽ)0.
Lemma 4.2 yields that

e] ◦Θ ◦ |∆π| ◦ |∆˜̃µ| ' e] ◦Θ ◦ |∆µ̃| ' λQ.

Thus we see that e] maps F((G/U)Q, (G/K)Q; Θ([(1, ũ)])) to F((G/U), (G/K)Q; e
] ◦

Θ([(1, ũ)])), which is the connected component containing Im(λQ). This implies that
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F((G/U), (G/K)Q; e
] ◦Θ([(1, ũ)])) = F((G/U), (G/K)Q; e ◦ p). Therefore, by the

naturality of maps η and ξA, we have a diagram

APL(GQ) APL(F(G/U, (G/K)Q; e ◦ p))
APL(λQ)oo

((e]))∗

��
APL(F((G/U)Q, (G/K)Q; Θ([(1, ũ)])))

Θ∗

��
APL(|∆ ∧ VG|)

ξ∧VG

��

APL(|∆(Ẽ/Mũ)|) = Ω∆(|∆Ẽ/Mũ|)
|∆˜̃µ|∗oo

ξẼ/Mũ��
Ω∆(∧VG) Ω∆(Ẽ/Mũ)

Ω∆˜̃µoo

∧VG

'η−1(id)

OO

Ẽ/Mũ

' η−1(id)

OO

˜̃µoo

in which the upper square is homotopy commutative and the lower two squares are
strictly commutative. The Lifting Lemma allows us to obtain a DGA map

ϕ : Ẽ/Mũ → APL(F(G/U, (G/K)Q))

such that ξẼ/Mũ
◦Θ∗ ◦ ((e])∗)∗ ◦ ϕ ' η−1(id). We then see that ξ∧VG ◦APL(λQ) ◦

ϕ ' η−1(id) ◦ ˜̃µ. This implies that ˜̃µ is a Sullivan representative for the map λ.

Given a space X, let u : A→ APL(X) be a DGA map from a Sullivan algebra A.

Let [f ] be an element of πn(X) and let ι : (∧Z, d) '→ APL(S
n) the minimal model.

By taking a Sullivan representative f̃ : A→ ∧Z with respect to u, namely a DGA
map satisfying the condition that ι ◦ f̃ ' APL(f) ◦ u, we define a map νu : πn(X) →
Hom(HnQ(A),Q) by νu([f ]) = HnQ(f̃) : HnQ(A) → HnQ(∧Z) = Q. By virtue of [3,
6.4 Proposition], in particular, we have a commutative diagram

πn(GQ)
λQ //

νt′ ∼=
��

πn(F(G/U, (G/K)Q); e ◦ p)
νϕ∼= ��

Hom((VG)
n,Q)

HQ(˜̃µ)∗ // Hom(HnQ(Ẽ/Mũ),Q),

in which νt′and νϕ are isomorphisms; see [3, 8.13 Proposition]. There exists an ele-
ment [fi]⊗ q in π∗(G)⊗Q which corresponds to the dual element x∗i via the isomor-

phism π∗(G)⊗Q ∼= π∗(GQ)
νt′→ Hom((VG)

n,Q) for any i = 1, . . . , s. The required map
ρ : ×si=1 S

deg xi → G is defined by the composite of the map ×si=1fi and the product
×si=1G→ G.

The proof of Theorem 4.1 yields the following result.

Theorem 4.3. The DGA map ˜̃µ : Ẽ/Mũ → ∧VG is a model for the map λ : G→
F(G/U,G/K; p), namely a Sullivan representative in the sense of [11, Definition,
page 154].
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5. A model for the left translation

In order to prove Theorems 2.2 and 2.5, a more explicit model for the map
λG,M : G→ aut1(M) is required. To this end, we refine the model of the left transla-
tion described in the proof of Theorem 4.1.

We first observe that the cohomology H∗(BU ;Q) is isomorphic to a polynomial
algebra with finite generators, say H∗(BU ;Q) ∼= Q[h1, . . . , hl]. Consider a commuta-
tive diagram of fibrations

G

i ��

G

��
G/U G×U EU'

hoo //

π
��

EG
π

��
BU

Bι
// BG

in which h : G×U EU → G/U is a homotopy equivalence defined by h([g, e]) = [g].
This diagram yields a Sullivan model (∧W,d) for G/U which has the form (∧W,d) =
(∧(h1, . . . , hl, x1, . . . , xk), d) with dxj = (Bι)∗cj ; see [11, Proposition 15.16] for the
details. Moreover, we have a model (∧VG, d) for G of the form (∧(x1, . . . , xk), 0). Since
h ◦ i is nothing but the projection π : G→ G/U , it follows that the natural projection

η : (∧(h1, . . . , hl, x1, . . . , xk), d) → (∧(x1, . . . , xk), 0) (5.1)

is a Sullivan model for the map π.

Let β : G× (G×U EU ) → G×U EG be the action of G on G×U EU . Then the
left translation tr : G×G/U → G/U coincides with β up to the homotopy equiv-
alence h : (G×U EU ) → G/U mentioned above. Thus, in order to obtain a model
for the linear action, it suffices to construct a model for β. Recall the fibration

G→ G×U EU
π→ BU and the universal fibration G→ EG

π→ BG. We consider here
a commutative diagram

G× (G×U EU )
β

ttjjjjjjj
π′

��

1×f // G× EG

π′

��

α

xxqqq
qqq

G×U EU
f //

π

��

EG

π

��
BU

Bι
//

=

ttiiiiiiiiiiii BG

=wwooo
ooo

BU
Bι

// BG

(5.2)

in which π′ and π′ are fibrations with the same fibre G×G, and the restrictions
α|fibre : G×G→ G and β|fibre : G× (G×U EU ) → (G×U EU ) are the multiplication

on G and the action of G, respectively. Let i : (∧VBG, 0) � ∧(ṼBU , d) be a Sullivan
model for Bι. In particular, we can choose such a model so that

∧ṼBU = ∧(c1, . . . , cm)⊗ ∧(h1, . . . , hl)⊗ ∧(τ1, . . . , τm)
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and d(τi) = Bι(ci)− ci. By the construction of a model for pullback fibration men-
tioned in [11, page 205], we obtain a diagram

∧Z ∧W ′v′oo

∧V
β̃ 66llllll

∧V ′voo
α̃ 55kkkkkk

∧ṼBU

u′OO

∧VBGooioo

OO

∧ṼBU

= 77oooo
u

OO

∧VBGoo
i

oo
=

66mmmmm

OO

(5.3)

in which vertical arrows are Sullivan models for the fibrations in diagram (5.2).
Observe that the squares are commutative except for the top square. Let Ψ: ∧ Z →
APL(G× (G×U EU )) be the Sullivan model with which Sullivan representatives
in (5.3) are constructed. The argument in [11, page 205] allows us to choose homo-

topies, which make the maps v, β̃, v′ and α̃ Sullivan representatives for the corre-
sponding maps, so that all of them are relative with respect to ∧VBG. This implies
that Ψ ◦ β̃ ◦ v ' Ψ ◦ v′ ◦ α̃ rel ∧VBG. By virtue of the Lifting Lemma [11, Proposi-

tion 14.6], we have a homotopy H : β̃ ◦ v ' v′ ◦ α̃ rel ∧VBG. This yields a homotopy
commutative diagram

∧V ′ ⊗∧VBG
∧ṼBU

u·v //

α̃⊗1
��

∧V

β̃

��
∧W ′ ⊗∧VBG

∧ṼBU
u′·v′

// ∧Z

in which horizontal arrows are quasi-isomorphisms; see [11, (15.9), page 204]. In fact,

the homotopy K : ∧ ṼBU ⊗∧VBG ∧V ′ → ∧W ⊗ ∧(t, dt) is given by K = (β̃ ◦ u) ·H.

Observe that β̃ ◦ u = u′. Thus we have a model α̃⊗ 1 for β̃ and hence for the left
translation.

The model α̃⊗ 1 can be replaced by a more tractable one. In fact, by recall-
ing the model (∧ṼBU , d) for BU mentioned above, it is readily seen that the map

s : ∧ ṼBU → ∧VBU = ∧(h1, . . . , hl), which is defined by s(ci) = (Bι)∗(ci), s(hi) = hi
and s(τj) = 0, is a quasi-isomorphism and is compatible with ∧VBG-action. Here the
Sullivan representative for Bι : BU → BG is also denoted by (Bι)∗. Thus we have a
commutative diagram

∧V ′ ⊗∧VBG ∧VBU

ζ:=α̃⊗1

��

∧V ′ ⊗∧VBG ∧ṼBU
α̃⊗1

��

1⊗soo

∧W ′ ⊗∧VBG ∧VBU ∧W ′ ⊗∧VBG ∧ṼBU1⊗s
oo

in which the DGA maps 1⊗ s are quasi-isomorphisms. As usual, the Lifting Lemma
enables us to deduce the following lemma.

Lemma 5.1. The DGA map ζ := α̃⊗ 1: ∧ V ′ ⊗∧VBG
∧VBU → ∧W ′ ⊗∧VBG

∧VBU is
a Sullivan representative for the left translation tr : G×G/U → G/U .
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In order to construct a model for tr more explicitly, we proceed to construct an
appropriate model for α : G× EG → EG.

Lemma 5.2. There exists a Sullivan representative ψ for α such that a diagram

∧(x1, . . . , xl)⊗ ∧VBG

ψ

��

= ∧V ′

∧VBG
22

i1 22eeeeeeeeeeee
,,

i2
,,YYYYYYYYYYYY

∧(x1, . . . , xl)⊗ ∧(x1, . . . , xl)⊗ ∧VBG = ∧W ′

is commutative and ψ(xi) = xi ⊗ 1⊗ 1 + 1⊗ xi ⊗ 1 +
∑
nXn ⊗X ′

nCn for some
monomials Xn ∈ ∧(x1, . . . , xl), X ′

n ∈ ∧+(x1, . . . , xl) and monomials Cn ∈ ∧+VBG.
Here i1 and i2 denote Sullivan models for π and π′, respectively.

Proof. We first observe that d(xi ⊗ 1) = 0 and d(1⊗ xi) = ci ∈ ∧(c1, . . . , cl) = ∧VBG
in ∧W ′. It follows from [11, 15.9] that there exists a Sullivan representative ψ for α
which makes the diagram commutative. We write

ψ(xi) = xi ⊗ 1⊗ 1 + 1⊗ xi ⊗ 1 +
∑
n

Xn ⊗X ′
nCn +

∑
n

X̃n ⊗ X̃ ′
n +

∑
n

X ′′
n ⊗ C ′′

n

with monomial bases, where Cn, C
′′
n ∈ ∧+VBG, Xn, X

′′
n ∈ ∧(x1, . . . , xl)⊗ 1⊗ 1, X ′

n ∈
1⊗ ∧+(x1, . . . , xl)⊗ 1 and X̃n ⊗ X̃ ′

n ∈ ∧(x1, . . . , xl)⊗ ∧(x1, . . . , xl)⊗ 1.

The map ψ̃ : ∧ (x1, . . . , xl) → ∧(x1, . . . , xl)⊗ ∧(x1, . . . , xl) induced by ψ is a Sul-
livan representative for the product of G. This allows us to conclude that X̃n and X̃ ′

n

are in ∧+(x1, . . . , xl). Since ψ is a DGA map, it follows that

dxi = ψ(dxi) = dxi +
∑
n

Xn ⊗ d(X ′
n)Cn +

∑
n

X̃n ⊗ d(X̃ ′
n).

This implies that
∑
nXn ⊗ d(X ′

n)Cn = 0 and
∑
n X̃n ⊗ d(X̃ ′

n) = 0. Since the
map d : ∧+ (x1, . . . , xl) → ∧(x1, . . . , xl)⊗ ∧VBG is a monomorphism, it follows that∑
n X̃n⊗X̃ ′

n = 0. We write C ′′
n = cknin C̃n, where kn > 1. Define a homotopy

H : ∧ (x1, . . . , xl)⊗ ∧VBG → ∧(x1, . . . , xl)⊗ ∧(x1, . . . , xl)⊗ ∧VBG ⊗ ∧(t, dt)

by H(ci) = ci ⊗ 1 and

H(xi) = xi ⊗ 1⊗ 1 + 1⊗ xi ⊗ 1 +
∑
n

Xn ⊗X ′
nCn

−
∑
n

X ′′
n ⊗ xin ⊗ ckn−1

in
C̃n ⊗ dt+

∑
n

X ′′
n ⊗ 1⊗ cknin C̃n ⊗ t.

Put ψ̃ = (ε0 ⊗ 1) ◦ ψ. We see that ψ̃ ' ψ rel ∧VBG. This completes the proof.

6. Proof of Theorem 2.2

We prove Theorem 2.2 by means of the model for the left translation described in
the previous section.
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Proof of Theorem 2.2. We adapt Theorem 4.1. We recall the Sullivan model (∧W,d)
for G/U mentioned in Section 5. Observe that (∧W,d) has the form

(∧W,d) = (∧(h1, . . . , hl, x1, . . . , xk), d)

with dxj = (Bι)∗cj . Let l : (H
∗(BU), 0) → (∧W,d) be the inclusion and

k : (∧W,d) // (∧(h1, . . . , hl)/(dx1, . . . , dxl), 0) // // (H∗(G/U), 0)

the DGA map defined by k(hi) = (−1)τ(|hi|)hi and k(xi) = 0. Recall the DGA Ẽ =

∧(∧W ⊗ (∧W )∗)/I and the DGA map µ̃ : Ẽ → ∧VG mentioned in Section 4, where
we use the model ζ : ∧W → ∧VG ⊗ ∧W for the action G×G/U → G/U constructed
in Lemmas 5.1 and 5.2 in order to define µ̃; see (4.1). Consider the composite

θ : (H∗(BU) :H∗(G/U)) = ∧(H∗(BU)⊗H∗(G/U))/I
l⊗1−−−−→∧ (∧W ⊗H∗(G/U))/I

1⊗k]−−−−→∧ (∧W ⊗ (∧W )∗)/I = Ẽ.

Let ũ : Ẽ → Q be an augmentation defined by ũ = ε ◦ µ̃, where ε : ∧ VG → Q is the
augmentation. Then we have θ(Mu) ⊂Mũ, where Mu is the ideal of the Lannes’
division functor (H∗(BU) :H∗(G/U)) defined before describing Theorem 2.2 in Sec-

tion 2, and Mũ denotes the ideal of Ẽ defined in Section 4. In fact, since i∗(hi) =
(−1)τ(|hi|)k ◦ l(hi) and 〈hi, k]b∗〉 = 〈ζhi, b∗〉 for hi ∈ H∗(BU), it follows that

θ(hi ⊗ b∗ − u(hi ⊗ b∗)) = hi ⊗ k]b∗ − 〈i∗hi, b∗〉
= hi ⊗ k]b∗ − (−1)τ(|h|)〈khi, b∗〉
= hi ⊗ k]b∗ − (−1)τ(|h|)〈ζhi, b∗〉
= hi ⊗ k]b∗ − ũ(hi ⊗ k]b∗).

Consider an element z := xit ⊗ 1∗ − (−1)τ(|ut∗|)xjt ⊗ k](ut∗) ∈ Q(Ẽ/Mũ). For any

α ∈ ∧W , 〈α, d]k]ut∗〉 = 〈kdα, ut∗〉 = 0. Therefore we see that, in Q(Ẽ/Mũ),

δ0(z) = dxit ⊗ 1∗ − (−1)τ(|ut∗|)dxjt ⊗ k](ut∗)

= θ((Bι)∗(cit)⊗ 1∗ − (Bι)∗(cjt)⊗ ut∗) = 0.

The last equality follows from the assumption that (Bι)∗(cit)⊗ 1∗ ≡ (Bι)∗(cjt)⊗ ut∗
modulo decomposable elements in (H∗(BU) : H∗(G/U))/Mu. By using the notation
in Lemma 5.2, we see that

H∗Q(˜̃µ)(z) = 〈ζxit , 1∗〉 − 〈ζxjt , k]ut∗〉

= 〈xit ⊗ 1, 1∗〉 − 〈
∑

Xn ⊗X ′
nCn, k

]ut∗〉

= xit −
∑

Xn〈k(X ′
n)Cn, ut∗〉 = xit .

Observe that k(X ′
n) = 0. By virtue of Theorem 4.1, we have the result.

Remark 6.1. As for the latter half of Theorem 2.2, we have a very simple proof of the
assertion. In fact, the composite of the evaluation map ev0 : aut1(G/U) → G/U and
the map λ : G→ aut1(G/U) is nothing but the projection π : G→ G/U . Suppose that
(Bι)∗(ci1),. . . , (Bι)

∗(cis) are decomposable. We consider the model η : (∧W,d) →
(∧VG, 0) for π mentioned in (5.1). Then we see that HQ(η)(xit) = xit for the map
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HQ(η) : HQ(∧W ) → HQ(∧VG) = VG. Observe that xit ∈ HQ(∧W ) since (Bι)∗(cit)
is decomposable. The same argument as the proof of Theorem 4.1 enables us to
conclude that there is a map ρ : ×st=1 S

deg cit−1 → G such that

π∗ ◦ ρ∗ : π∗(×st=1S
deg cit−1

Q ) → π∗(GQ)

is injective. Thus λ∗ ◦ ρ∗ is injective in the rational homotopy.

Remark 6.2. In the proof of Theorem 2.2, we construct a model for G of the form
(∧(x1, . . . , xk), 0). By virtue of [11, Proposition 15.13], we can choose the elements

xj so that σ∗(cj) = xj , where σ∗ : H∗(BG)
π∗

// H∗(EG, G) H∗(G)
δ
∼=

oo denotes

the cohomology suspension.

In the rest of this section, we describe a suitable model for F(G/U, (G/K)Q; e ◦ p)
for proving Theorems 2.5 and 2.6.

Let G be a connected Lie group, U a connected maximal rank subgroup and K
another connected maximal rank subgroup which contains U . We recall from Section 3
a Sullivan model for the connected component F(G/U, (G/K)Q; e ◦ p). Let ι1 : K → G

and ι2 : U → K be the inclusions and put ι = ι1 ◦ ι2. Let ϕU : (∧W ′, d)
'→ Ω∆(G/U)

and ϕK : (∧W̃ , d)
'→ Ω∆(G/K) be the Sullivan models for the homogeneous spaces

G/U and G/K, respectively, mentioned in the proof of Theorem 2.2; that is,

(∧W ′, d) = (∧(h1, . . . , hl, x1, . . . , xk), d) with d(xi) = (Bι)∗(ci)

and

(∧W̃ , d) = (∧(e1, . . . , es, x1, . . . , xk), d) with d(xi)= (Bι1)
∗(ci).

By applying the Lifting Lemma to the commutative diagram

∧VBK
(Bι2)

∗
//

��
��

∧VBU // // ∧W ′

ϕU��
∧W̃ ϕK

// Ω∆(G/K)
Ω∆(p)

// Ω∆(G/U),

we have a diagram

H∗(G/U) ∧W ′
'

//k

'
oo Ω∆(G/U)

H∗(G/K)

p∗
OO

∧W̃
' //

ϕ

OO

l

'oo Ω∆(G/K)

Ω∆(p)

OO
(6.1)

in which the right square is homotopy commutative and the left that is strictly com-
mutative. In particular, k(xi) = 0, l(xi) = 0 and ϕ(ei) = (Bι2)

∗ei.

Let w : ∧W → ∧W̃ be a minimal model for (∧W̃ , d) and k] : (H∗(G/U))] →
(∧W ′)] the dual to the map k. As in Remark 3.5(ii), we construct a DGA E′ by using
(∧W ′, d) = (B, dB) and (∧W,d). We then have a sequence of quasi-isomorphisms

E′ γ:=1⊗k]

'
// ∧(∧W ⊗ (∧W ′)∗)/I

w⊗1

'
// ∧(∧W̃ ⊗ (∧W ′)∗)/I = Ẽ.

Moreover, we choose a model ζ ′ for the action G×G/U
tr→ G/U

p→ G/K which is
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defined by the composite ∧W̃ ζ→ ∧VG ⊗ ∧W̃ 1⊗ϕ→ ∧VG ⊗ ∧W ′, where ζ is the Sullivan
representative for the left translation tr mentioned in Lemmas 5.1 and 5.2. Then the
map ζ ′ deduces a model ˜̃µ : E′/Mu → ∧VG (6.2)

for λ : G→ F(G/U, (G/K)Q; e ◦ p) as in Theorem 4.1. Observe that

µ̃(vi ⊗ ej) = (−1)τ(|ej |)〈(1⊗ ϕ)ζw(vi), k
]ej〉 and u = ε ◦ µ̃, (6.3)

where ε : ∧ VG → Q denotes the augmentation. In the next section, we shall prove

Theorem 2.5 by using the model ˜̃µ : E′/Mu → ∧VG.

7. Proof of Theorem 2.5

Let G and U be the Lie group U(m+ k) and a maximal rank subgroup of the form
U(m1)× · · · × U(ms)× U(k), respectively. Without loss of generality, we can assume
that m1 > · · · > ms > k. Let K denote the subgroup U(m)× U(k) of U(m+ k),
where m = m1 + · · ·+ms. Then the Leray-Serre spectral sequence, with coefficients
in the rational field for the fibration p : G/U → G/K with fibre K/U , collapses
at the E2-term because the cohomologies of G/K and of K/U are algebras gen-
erated by elements with even degree. Therefore, it follows that the induced map
p∗ : H∗(G/K) → H∗(G/U) is a monomorphism. In order to prove Theorem 2.5, we
apply Theorem 4.1 to the function space F(G/U,G/K, p).

Let P = {S1, . . . , Sn} be a family consisting of subsets of the finite ordered set
{1, . . . , s}, which satisfies the condition that x < y whenever x ∈ Si and y ∈ Si+1.
Define ]lP to be the number of elements of the set {Sj ∈ P | |Sj | = l}. Let k be a
fixed integer. We call the family P a (i1, . . . , ik)-type block partition of {1, . . . , s}
if ]lP = il for 1 6 l 6 k. Let Q

(s)
i1,...,ik

denote the number of (i1, . . . , ik)-type block
partitions of {1, . . . , s}.

We construct a minimal model explicitly for the Grassmann manifold G/K =
U(m+ k)/U(m)× U(k). Assume that m > k. As in the proof of Theorem 2.2, we
have a Sullivan model for U(m+ k)/U(m)× U(k) of the form

(∧W̃ , d) = (∧(τ1, . . . , τm+k, c1, . . . , ck, c
′
1, . . . , c

′
m), d)

with dτl =
∑
i+j=l c

′
icj .

Lemma 7.1. There exists a sequence of quasi-isomorphisms

∧W̃ ∧W(1)
'oo · · ·'oo ∧W(s)

'oo · · ·'oo ∧W(m)
'oo

in which, for any s, (∧W(s), d(s)) is a DGA of the form

∧W(s) = ∧(τs+1, . . . , τm+k, c1, . . . , ck, c
′
s+1, . . . , c

′
m) with
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d(s)τl = c′l + c′l−1c1 + · · ·+ c′s+1cl−(s+1)

+
∑

i1+2i2+···+kik=s

(−1)i1+···+ikQ
(s)
i1,...,ik

ci11 · · · cikk cl−s

+
∑

i1+2i2+···+kik=s−1

(−1)i1+···+ikQ
(s−1)
i1,...,ik

ci11 · · · cikk cl−(s−1)

+ · · ·+ (−c1)cl−1 + cl

for s+ 1 6 l 6 m+ k, where ci = 0 for i < 0 or i > k.

Proof. We shall prove this lemma by induction on the integer s. We first observe that

dτ2 = c′2 − c1c1 + c2 in ∧W(1) because Q
(1)
i1

= 1. Define a map ϕ : ∧W(1) → ∧W̃ by
ϕ(ci) = ci, ϕ(c

′
j) = c′j and ϕ(τ2) = τ2 − τ1c1. Since dτ1 = c′1 + c1 in ∧W , it follows

that ϕ is a well-defined quasi-isomorphism. Suppose that (∧W(s), d(s)) in the lemma
can be constructed for some s 6 m− 1. In particular, we have

d(s)τs+1 = c′s+1 +
∑

06j6s

∑
i1+2i2+···+kik=j

(−1)i1+···+ikQ
(j)
i1,...,ik

ci11 · · ·+ cikk cs+1−j .

Claim 1.

Q
(s+1)
i1,...,ik

= Q
(s)
i1−1,i2,...,ik

+Q
(s−1)
i1,i2−1,...,ik

+ · · ·+Q
(s+1−k)
i1,...,ik−1.

Claim 1 implies that

d(s)τs+1 = c′s+1 −
∑

i1+2i2+···+kik=s+1

(−1)i1+···+ikQ
(s+1)
i1,...,ik

ci11 · · · cikk .

We define d(s+1)τl+1 in ∧W(s+1) by replacing the factor c′s+1 which appears in d(s)τl+1

with c′s+1 − d(s)τs+1, namely,

d(s+1)τl+1 = c′l+1 + c′lc1 + · · ·+ c′s+2c(l+1)−(s+2)

+
∑

i1+2i2+···+kik=s+1

(−1)i1+···+ikQ
(s+1)
i1,...,ik

ci11 · · · cikk cl−s

+ · · ·+ (−c1)cl + cl+1.

Moreover, define a map ϕ : ∧W(s+1) → ∧W(s) by ϕ(ci) = ci, ϕ(c
′
j) = c′j and ϕ(τl+1)

= τl+1 − τs+1cl+1−(s+1). It is readily seen that ϕ is a well-defined DGA map. The
usual spectral sequence argument enables us to deduce that ϕ is a quasi-isomorphism.
This finishes the proof.

Proof of Claim 1. Let {Pl} denote the family of all (i1, . . . , ik)-type block partitions

of {1, . . . , s+ 1}. We write Pl = {S(l)
1 , . . . , S

(l)
n(l)}. Then {Pl} is represented as the

disjoint union of the families of (i1, . . . , ik)-type block partitions whose last sets S
(l)
n(l)

consist of j elements, namely, {Pl} = q16j6k{Pl | |Sn(l)| = j}. It follows that∣∣{Pl | |Sn(l)| = j}
∣∣ = Q

(s+1−j)
i1,...,ij−1,ij−1,ij+1,...,ik

.

We have the result.

Recall the minimal model (∧W(m), d) for G/K mentioned in Lemma 7.1. We
see that deg dτm+1 = deg cm1 c1 = 2(m+ 1) and that dα = 0 for any element α with
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degα 6 2m+ 1. This yields that cm1 6= 0 in H∗(G/K;Q). As was mentioned before
Lemma 7.1, the induced map p∗ : H∗(G/K) → H∗(G/U) is injective. Therefore, we
have (p∗c1)

s 6= 0 for s 6 m.

Let ˜̃µ : E′/Mu → ∧VG be the model for the map λ : G→ F(G/U, (G/K)Q; e ◦ p)
mentioned in the previous section; see (6.2) and (6.3). The following four lemmas are
keys to proving Theorem 2.5. The proofs are deferred to the end of this section.

Lemma 7.2. δ0(τm+(m−s+1) ⊗ ((p∗c1)
m)∗) = (−1)mcm−s+1 if m 6= s.

Lemma 7.3. ˜̃µ(τm+(m−s+1) ⊗ ((p∗c1)
m)∗) = 0 if m 6= s.

Lemma 7.4. δ0(τm+1 ⊗ ((p∗c1)
s)∗) = (−1)sscm−s+1.

Lemma 7.5. ˜̃µ(τm+1 ⊗ ((p∗c1)
s)∗) = τm−s+1.

Proof of Theorem 2.5. By virtue of Lemmas 7.2, 7.3, 7.4 and 7.5, we have

δ0((−1)mτm+(m−s+1) ⊗ ((p∗c1)
m)∗ −

(−1)s

s
τm+1 ⊗ ((p∗c1)

s)∗)

= (−1)m(−1)mcm−s+1 −
(−1)s

s
(−1)sscm+s−1 = 0

and

˜̃µ((−1)mτm+(m−s+1) ⊗ ((p∗c1)
m)∗ −

(−1)s

s
τm+1 ⊗ ((p∗c1)

s)∗)

= − (−1)s

s
τm−s+1,

where s 6 m− 1. Theorem 4.1 implies that

(λQ)i : πi(GQ) → πi(F(G/U, (G/K)Q, e ◦ p))

is injective for i = deg τ2, . . . ,deg τm. We see that the map (λQ)i factors through the
map (λG,G/U )Q i : πi(GQ) → πi(aut1(G/U)Q) and that the inclusion SU(m+ k) → G
induces an injective map π∗(SU(m+ k)Q) → π∗(GQ). This implies that {3, . . . , 2m−
1} ⊂ vd(SU(m+ k), G/U). Since dτl =

∑
i+j c

′
icj in (∧W ), it follows that dτl is de-

composable for l > m+ 1. Therefore, Theorem 2.2 yields that (λG,G/U )Q i is also
injective for i = deg τm+1, . . . ,deg τm+k. We have

vd(SU(m+ k), G/U) = {3, . . . , 2m− 1, 2m+ 1, . . . , 2(m+ k)− 1} = n(SU(m+ k)).

The latter half of Theorem 2.5 is obtained by comparing the dimension of ratio-
nal homotopy groups. In fact, it follows from the rational model for aut1(CPm−1)
mentioned in Example 3.4 that

π∗(out1(CPm−1)⊗Q)] ∼= H∗(Q(Ẽ/Mu), δ0)
∼= Q{y ⊗ 1∗, y ⊗ (x1)∗, . . . , y ⊗ (xm−2)∗}.

This implies that

dimπi(aut1(CPm−1))⊗Q = 1 = dimπi(SU(m))⊗Q

for i = 3, . . . , 2m− 1. The result follows from the first assertion. This completes the
proof.
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We conclude this section with proofs of Lemmas 7.2, 7.3, 7.4 and 7.5.

Proof of Lemma 7.2. We regard the free algebra ∧(c1, . . . , cl) as a primitively gen-
erated Hopf algebra. Observe that (csi )∗ = 1

s! ((ci)∗)
s. Recall the 0-simplex u in ∆E′

mentioned in (6.3). We have u(cj ⊗ (p∗c1)∗) = 0 if j 6= 1 and

u(c1 ⊗ (p∗c1)∗) = (−1)τ(|p
∗(c1)|)k](p∗(c1)∗)(ϕ ◦ w(c1))

= (−1)((p∗(c1)∗)k ◦ ϕ ◦ w(c1) = (−1)((p∗(c1)∗)p
∗c1) = −1.

For the map k, see diagram (6.1) and the ensuing paragraph. Thus it follows that

δ0(τm+(m−s+1) ⊗ ((p∗c1)
m)∗)

= cm1 cm−s+1 ·D(m)(p∗cm1 )∗ = cm1 cm−s+1 ·
1

m!
D(m)(p∗c1)

m
∗

=
1

m!
cm1 cm−s+1 ·

(
(p∗c1)∗ ⊗ 1⊗ · · · ⊗ 1 + 1⊗ (p∗c1)∗ ⊗ 1⊗ · · · ⊗ 1

+ · · ·+ 1⊗ · · · ⊗ 1⊗ (p∗c1)∗

)m
=

1

m!
cm1 cm−s+1 · (· · ·+m!(p∗c1)∗ ⊗ · · · ⊗ (p∗c1)∗ ⊗ 1 + · · · )

= u(c1 ⊗ (p∗c1)∗) · · ·u(c1 ⊗ (p∗c1)∗)cm−s+1 = (−1)mcm−s+1.

Proof of Lemma 7.3. Recall the quasi-isomorphism ϕs+1 : ∧W(s+1) → ∧W(s) in the
proof of Lemma 7.1, which is defined by ϕ(τl+1) = τs+1 − τl+1cl+1−(s+1). Let w

be the composite ϕ1 ◦ · · · ◦ ϕm : ∧W = ∧W(m) → ∧W̃ . It is readily seen that
w(τm+(m−s+1)) does not have the element cm1 as a factor if s 6= m. By using the
DGA map ζ in Lemma 5.1, we have

˜̃µ(τm+(m−s+1) ⊗ ((p∗c1)
m)∗)

= (−1)τ(|p
∗cm1 |)〈(1⊗ ϕ)ζw(τm+(m−s+1)), k

](p∗cm1 )∗〉 = 0.

See (6.1) for the notations. Observe that H∗(G/K) ∼= H∗(∧W ) ∼= Q[c1, . . . , ck] for
∗ 6 2m. This completes the proof.

Proof of Lemma 7.4. From Lemma 7.1, we see that in ∧W(m),

dτm+1 =
∑

i1+2i2+···+kik=m

(−1)i1+···+ikQ
(m)
i1,...,ik

ci11 · · · cikk c1

+
∑

i1+2i2+···+kik=m−1

(−1)i1+···+ikQ
(m−1)
i1,...,ik

ci11 · · · cikk c2

+ · · ·+
∑

i1+2i2+···+kik=l

(−1)i1+···+ikQ
(l)
i1,...,ik

ci11 · · · cikk cm−l+1

+ · · · .

Suppose that ci11 · · · cikk cm−l+1 ⊗ ((p∗c1)
s)∗ 6= 0 in Q(Ẽ/Mu), where i1 + 2i2 + · · · kik

= l. Then we have

(1) l = m and ci11 · · · cikk = cs−1
1 cm−s+1, or

(2) l 6= m, l = s and ci11 · · · cikk = cs1.
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It follows that

(−1)i1+···+ikQ
(m)
i1,...,ik

cs−1
1 cm−s+1c1 = (−1)s−1+1(s− 1)cs1cm−s+1

if (i1, . . . , ik) = (s− 1, 0, . . . , 0, 1, 0, . . . , 0) with im−s+1 = 1 and that

Q
(s)
i1,...,ik

cs1cm−s+1 = (−1)s · 1 · cs1cm−s+1 if (i1, . . . , ik) = (s, 0, . . . , 0).

This fact allows us to conclude that

δ0(τm+1 ⊗ ((p∗c1)
s)∗) = (−1)s(s− 1)cm−s+1 + (−1)scm−s+1 = (−1)sscm−s+1.

We have the result.

Proof of Lemma 7.5. In order to compute ˜̃µ, we determine

〈(1⊗ ϕ)ζw(τm+1), k
](p∗cs1)∗〉.

With the the same notation as in the proof of Lemma 7.3, we have w(τm+1) = · · ·+
(−1)sτm−s+1c

s
1 + · · · . Lemmas 5.1 and 5.2 imply that

ζ(τm−s+1c
s
1) = ψ ⊗ 1(τm−s+1 ⊗ cs1)

= (τm−s+1 ⊗ 1⊗ 1 + 1⊗ τm−s+1 ⊗ 1 +
∑
n

Xn ⊗X ′
nCn)c

s
1.

Thus it follows that˜̃µ(τm+1 ⊗ ((p∗c1)
s)∗) = (−1)τ(|p

∗cs1|)〈(1⊗ ϕ)ζw(τm+1), k
](p∗cs1)∗〉

= (−1)s+s〈(1⊗ ϕ)ζ(τm−s+1c
s
1), k

](p∗cs1)∗〉
= τm−s+1〈ϕ(cs1), k](p∗cs1)∗〉+ 〈ϕ(τm−s+1c

s
1), k

](p∗cs1)∗〉
+
∑
n

Xn〈ϕ(X ′
nCnc

s
1), k

](p∗cs1)∗〉

= τm−s+1〈kϕ(cs1), (p∗cs1)∗〉+ 〈kϕ(τm−s+1c
s
1), (p

∗cs1)∗〉
+
∑
n

Xn〈kϕ(X ′
nCnc

s
1), (p

∗cs1)∗〉

= τm−s+1.

The last equality is extracted from the commutativity of diagram (6.1). This com-
pletes the proof.

8. Proof of Theorem 2.7

This section is devoted to proving Theorem 2.7. The inclusion ι : aut1(X) → HH,X

induces the map Bι : Baut1(X) → BHH,X with Bι ◦BλG,X = Bψ. Therefore, if Bψ
is injective on homology, then so is BλG,X .

We shall prove the “only if” part by using the general categorical construction of a
classifying space due to May [21, Section 12] and by applying a part of the argument
in the proof of [22, Theorem 3.2] to our case.

We recall here the notion of a O-graph briefly; see [22, page 68] for more detail.
Let O be a discrete topological space. Define a O-graph to be a space A together with
the maps S : A → O and T : A → O. The space O itself is regarded as a O-graph with
the arrows S and T the identity map. Let OGr be the category of O-graphs whose
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morphisms are maps h : A → A′ compatible with the maps S and T . Observe that
the pullback construction with respect to S and T makes OGr a monoidal category.
In fact, for O-graphs A and A′, A2A′ is defined by {(a, a′) ∈ A×A′ | Sa = Ta′}.
Let X and Y be a left O-graph and a right O-graph, respectively; that is, X is a space
with a map T : X → O and the space Y admits only a map S : Y → O.

Let M be a monoid in OGr the category of O-graphs and B(Y,M,X ) denote
the two-sided bar construction in the sense of May [21, Section 12], which is the
geometric realization of the simplicial space B∗ with Bj = Y2M2j2X . We regard a
topological monoid G as that in OGr with O = {x} the space of a point. Then the
classifying space BG we consider here is regarded as the bar construction B(x,G, x).

Proof of the “only if” part of Theorem 2.7. Let ι′ : HH,X → F(X,X) be the inclu-
sion and e∗ : F(X,X) → F(X,XQ) the map induced by the localization e : X → XQ.
Since X is an F0-space or a space having the rational homotopy type of the product
of odd-dimensional spheres by assumption, it follows from [2, 3.6 Corollary] and [11,
Proposition 32.16] that the natural map [X,XQ] → Hom(H∗(XQ;Q),H∗(X;Q)) is
bijective. We see that e ◦ ϕ ' e for any ϕ ∈ HH,X . Therefore, the composite e∗ ◦ ι′
factors through the connected component F(X,XQ; e) of F(X,XQ). We have a com-
mutative diagram

HH,X e∗◦ι′
**UUUUUU

F(X,XQ; e) aut1(XQ)
e∗

'
oo

aut1(X) e∗

44iiiii

ι

OO

in which the induced map e∗ is a homotopy equivalence.
Define O to be the discrete space with two points x and y. Let M be the monoid in

OGr defined byM(x, x) = aut1(X),M(y, y) = aut1(XQ) andM(x, y) =F(X,XQ; e)
withM(y, x) empty. Arrows S, T : M(a, b) → O are defined by S(z) = a and T (z) = b
for z ∈ M(a, b). Moreover, we define another monoid M′ in OGr by M′(x, x) =
HH,X , M′(y, y) = aut1(XQ), M′(x, y) = F(X,XQ; e) and M′(y, x) = φ with arrows
defined immediately as mentioned above.

Consider the inclusions i : aut1(X) → M, j : aut1(XQ) → M, i′ : HH,X → M′ and
j′ : aut1(XQ) → M′. They induce the maps between classifying spaces which fit into
the commutative diagram

BHH,X
Bi′ // B(O,M′,O)

BG

Bψ 66nnnnnnn

BλG,X
((PPPPPPP Baut1(XQ),

'
Bj′jjUUUUUUU

'
Bjttiiiiiii

Baut1(X)
Bi

//

Bι

OO

B(O,M,O)

Bι̃

OO

where ι̃ : M → M′ is the morphism of monoids in OGr induced by the inclusion
ι : aut1(X) → HH,X . The proof of [22, Theorem 3.2] enables us to conclude that the
maps Bj and Bj′ are homotopy equivalences. The map Ω((Bj)−1 ◦ (Bi)) coincides
with the composite (e∗)−1 ◦ e∗ : aut1(X) → F(X,XQ; e) → aut1(XQ) up to weak
equivalence; see [22, Theorem 3.2(i)]. Moreover, the map e∗ : aut1(X) → F(X,XQ; e)
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is a localization; see [14]. These facts yield that π∗(ΩBi)⊗Q is an isomorphism and
hence so is π∗(Bi)⊗Q. Thus the localized map (Bi)Q is a weak equivalence. This
implies that (Bi)∗ : H∗(Baut1(X);Q) → H∗(B(O,M,O);Q) is an isomorphism. The
commutative diagram (7.1) enables us to conclude that H∗(Bψ;Q) is injective if so
is H∗(BλG,X ;Q). This completes the proof.

As we pointed out in the introduction, [16, Proposition 4.8] follows from Theo-
rems 2.5 and 2.7. In fact, suppose that M is the flag manifold U(m)/U(m1)× · · · ×
U(ml), and G = SU(m). Then as is seen in Remark 8.1 below (λG,M )∗ : π∗(BG)⊗
Q → π∗(Baut1(M))⊗Q is injective if and only if

(BλG,M )∗ : H∗(BG) → H∗(Baut1(M))

is surjective.

Remark 8.1. Suppose that M is a homogeneous space of the form G/H for which
rank G = rank H. The main theorem in [28] due to Shiga and Tezuka implies that
π2i(aut1(M))⊗Q = 0 for any i. Thus H∗(Baut1(M);Q) is a polynomial algebra gen-
erated by the graded vector space (sV )], where (sV )l = πl−1(aut1(M)). Therefore,
the dual map to the Hurewicz homomorphism

Ξ] : H∗(Baut1(M);Q) → Hom(π∗(Baut1(M)),Q)

induces an isomorphism on the vector space of indecomposable elements; see [11,
page 173] for example. Thus the commutative diagram

H∗(BG;Q)

Ξ]

��

H∗(Baut1(M);Q)
(BλG,M )∗oo

Ξ]

��
Hom(π∗(BG),Q) Hom(π∗(Baut1(M)),Q)

((BλG,M )∗)
]

oo

yields that the map (BλG,M )∗ is surjective if G is rationally visible in aut1(M). We
also see that the induced map (Bψ)∗ : Hj(BG) → Hj(BHH,G/U ) is injective for each
triple (G,U, i) in Tables 1 and 2 if j ∈ vd(G,G/U).

9. The sets vd(G,G/U) of visibility degrees in Tables 1 and 2

In this section, we deal with the visibility degrees described in Tables 1 and 2 in
the introduction.

For the case where the homogeneous space G/U has the rational homotopy type
of the sphere, the assertions on the visibility degrees follow from the latter half of
Theorem 2.2. In fact, the argument in Example 2.4 does work well to obtain such
results. The details are left to the reader. The results for (11) and for (17) follow from
Theorems 2.5 and 2.6, respectively. We are left to verify the visibility degrees for the
cases (1), (5), (6), (6)′ (16) and (19).

Case (1). It is well-known that (Bι)∗(pi) = (−1)i(χ2p′i−1 + p′i) for the induced
map (Bι)∗ : H∗(BSO(2m+ 1)) → H∗(B(SO(2)× SO(2m− 1)), where p′i is the ith
Pontrjagin class in H∗(B(SO(2m− 1)) ∼= Q[p′1, . . . , p

′
m−1]; see [23].

We can construct a Sullivan model (∧W,d) for the Grassmann manifold M :=
SO(2m+ 1)/SO(2)× SO(2m− 1) for which ∧W = ∧(χ, p′1, . . ., p′m−1, τ2, τ4, . . ., τ2m)
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and d(τ2i) = (−1)i(χ2p′i−1 + p′i) for 1 6 i 6 m. We see that there exists a quasi-
isomorphism w : (∧(χ, τ2m), dτ2m = −χ2m) → (∧W,d) such that w(χ) = χ and

w(τ2m) = χ2(m−1)τ2 + · · ·+ χ2τ2(m−1) + τ2m.

In view of the rational model ˜̃µ : E′/Mu → ∧VG for λG,M : SO(2m+ 1) → aut1(M)
mentioned in (6.2) and Theorem 4.3, it follows from Lemma 5.2 that˜̃µ(τ2m ⊗ (χ2l)∗)) = (−1)τ(|χ

2l|)〈ζ ◦ w(τ2m), (χ2l)∗〉
= 〈χ2(m−1)τ2 + · · ·+ χ2τ2(m−1) + τ2m, (χ

2l)∗〉
= τ2(m−l),

where ζ is the Sullivan representative for the action SO(2m− 1)×M →M described
in Lemma 5.1. We have the result.

The same argument does work well to prove the result for the case (16).

Case (19). Let ι : Spin(9) → F4 be the inclusion map. Without loss of generality,
we can assume that the induced map

(Bι)∗ : H∗(BF4;Q) = Q[y4, y12, y16, y24] → H∗(BSpin(9);Q) = Q[y4, y8, y12, y16]

satisfies the condition that (Bι)∗(yi) = yi for i = 4, 12, 16 and (Bι)∗(y24) = y38 , where
deg yi = i. This fact follows from a usual argument with the Eilenberg-Moore spectral

sequence for the fibration LP 2 → BSpin(9)
Bι→ BF4. By virtue of Lemmas 5.1 and 5.2,

we see that there exists a model for the linear action F4 × LP 2 → LP 2 of the form

ζ : (∧(x′23)⊗ ∧(y8), d) → (∧(x3, x11, x15, x23)⊗ ∧(x′23 ⊗ ∧(y8), d′)

with ζ(x′23) = x23 ⊗ 1⊗ 1 + 1⊗ x′23 ⊗ 1, where d(x′23) = y38 , d
′(xj) = 0 for j = 3, 11,

15, 23. In fact, for dimensional reasons, we write ζ(x′23) = 1⊗ x′23 ⊗ 1 + x23 ⊗ 1⊗ 1 +
cx15 ⊗ 1⊗ y8 with a rational number c. By definition, we see that ζ = ψ ⊗ 1, where
ψ denotes the DGA map in Lemma 5.2. Since the image of each element with degree
less than 24 by (Bι)∗ does not have the element y8 as a factor, it follows that c = 0.
Observe that ∧VBF4 -action on ∧VBSpin(9) is induced by the map (Bι)∗. The dual to
the map (λ∗)i : πi(F4)⊗Q → πi(aut1(F4/Spin(9)))⊗Q is regarded as the induced

map H(Q(˜̃µ)) : H∗(Q(Ẽ/Mu), δ0) → VG = Q{x3, x11, x15, x23} in Theorem 4.1. We

see that Q(Ẽ/Mu) = Q{y8 ⊗ 1∗, x
′
23 ⊗ 1∗, x

′
23 ⊗ (y8)∗, x

′
23 ⊗ (y28)∗}, δ0(x′23 ⊗ (y28)∗) =

3y8 ⊗ 1∗, δ0(x
′
23 ⊗ 1∗) = δ0(x

′
23 ⊗ (y18)∗) = 0; see Example 3.4. Furthermore the direct

computation with (6.2) shows that Q(˜̃µ)(x′23 ⊗ 1∗) = ±x23 and Q(˜̃µ)(x′23 ⊗ (y8)∗)
= 0. This implies that vd(F4,LP 2) = {23}.

Case (5). The inclusion ι : SO(4) → G2 induces the ring homomorphism

(Bι)∗ : H∗(BG2) ∼= Q[y4, y12] → H∗(BSO(4)) ∼= Q[p1, χ],

where deg p1 = 4 and degχ = 4. It is immediate that (Bι)∗(y12) is decomposable for
dimensional reasons. From Example 3.4, we see that π∗(aut1(HP 2)) ∼= Q{y ⊗ 1∗, y ⊗
(x1)∗}, where deg y ⊗ 1∗ = 11 and deg y ⊗ (x1)∗ = 7. It follows from Theorem 2.2
that vd(G2, G2/SO(4)) = {11}.

Case (6). Let T 2 be the standard maximal torus of U(2). We assume that G2 ⊃
U(2) ⊃ T 2 without loss of generality. Then the inclusion W (G2) ⊃W (U(2)) of Weyl
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groups gives the inclusions

Q[t1, t2]
W (G2) // // Q[t1, t2]

W (U(2)) // // Q[t1, t2]

H∗(BG2)

∼=
OO

H∗(BU(2))

∼=
OO

H∗(BT 2).

∼=
OO

The result [29, page 212, Example 3] implies that there exist generators y4, y12 of
H(BG2) such that H(BG2) ∼= Q[y4, y12] and y4 = t21 − t1t2 + t22, y12 = (t1t

2
2 − t21t2)

2

in Q[t1, t2]
W (G2). Since the Chern classes c1, c2 ∈ H∗(BU(2)) are regarded as t1 + t2

and t1t2, respectively in Q[t1, t2]
W (U(2)), it follows that

(Bι)∗(y4) = c21 − 3c2 and (Bι)∗(y12) = c21c
2
2 − 4c32,

where ι : U(2) → G2 is the inclusion. Put c̃2 = −1
3c

2
1 + c2. Then it is readily seen that

(Bι)∗(−1
3y4) = c̃2 and

(Bι)∗(y12) = − 1

27
c61 −

2

3
c41c̃2 − 3c21c̃

2
2 − 4c̃32.

By the direct computation implies that

(Bι)∗(−1

3
y4)⊗ 1∗ − (Bι)∗(y12)⊗ (−3

2
)(c41)∗

= c̃2 ⊗ 1∗ +
3

2

(
− 1

27
c61 −

2

3
c41c̃2 − 3c21c̃

2
2 − 4c̃32

)
⊗ (c41)∗

≡ c̃2 ⊗ 1∗ − c̃2 ⊗ 1∗ ≡ 0

modulo decomposable elements in (H∗(BU(2)) :H∗(G2/U(2)))/Mu. It is immediate
that the element (Bι)∗(y12) is decomposable. By virtue of Theorem 2.2, we have
vd(G2, G2/U(2)) = {3, 11}. The same argument works well to deduce the result for
the case (6)′.
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[4] J. Block and A. Lazarev, André-Quillen cohomology and rational homotopy of
function spaces, Adv. Math. 193 (2005), no. 1, 18–39.

[5] E.H. Brown Jr. and R.H. Szczarba, On the rational homotopy type of function
spaces, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4931–4951.

[6] U. Buijs, Y. Félix and A. Murillo, Lie models for the components of sections of
a nilpotent fibration, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5601–5614.

[7] U. Buijs and A. Murillo, Basic constructions in rational homotopy theory of
function spaces, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 815–838.



378 KATSUHIKO KURIBAYASHI

[8] U. Buijs and A. Murillo, The rational homotopy Lie algebra of function spaces,
Comment. Math. Helv. 83 (2008), no. 4, 723–739.

[9] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of
Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274.

[10] F.T. Farrell and W.-c. Hsiang, On the rational homotopy groups of the dif-
feomorhism groups of discs, spheres and aspherical manifolds, Proceedings of
Symposia in Pure Math. 32 (1978), 325–337.

[11] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Graduate
Texts in Mathematics 205, Springer-Verlag. New York, 2001.

[12] Y. Félix and J.-C. Thomas, The monoid of self-homotopy equivalences of some
homogeneous spaces, Expositiones Math. 12 (1994), no. 4, 305–322.

[13] A. Haefliger, Rational homotopy of space of sections of a nilpotent bundle,
Trans. Amer. Math. Soc. 273 (1982), no. 2, 609–620.

[14] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces,
North Holland Mathematics Studies 15, North Holland Publ. Co., New York,
1975.

[15] Y. Hirato, K. Kuribayashi and N. Oda, A function space model approach to
the rational evaluation subgroups, Math. Z. 258 (2008), no. 3, 521–555.

[16] J. Kedra and D. McDuff, Homotopy properties of Hamiltonian group actions,
Geometry & Topology 9 (2005), no. 9, 121–162.

[17] K. Kuribayashi, A rational model for the evaluation map, Georgian Mathemat-
ical Journal 13 (2006), no. 1, 127–141.

[18] G. Lupton and S.B. Smith, Rationalized evaluation subgroups of a map. I. Sul-
livan models, derivations and G-sequences, J. Pure Appl. Algebra 209 (2007),
no. 1, 159–171.

[19] G. Lupton and S.B. Smith, Rationalized evaluation subgroups of a map. II. Sul-
livan models, derivations and G-sequences, J. Pure Appl. Algebra 209 (2007),
no. 1, 173–188.

[20] G. Lupton and S.B. Smith, Whitehead products in function spaces: Quillen
model formulae, J. Math. Soc. Japan 62 (2010), no. 1, 49–81.

[21] J.P.May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1, 1975,
no. 155, A.M.S., Providence, RI.

[22] J.P. May, Fiberwise localization and completion, Trans. Amer. Math. Soc. 258
(1980), no. 1, 127–146. P

[23] M. Mimura and H. Toda, Topology of Lie groups. I, II, Translations of Math-
ematical Monographs 91, A.M.S., Providence, RI, 1991.

[24] D. Notbohm and L. Smith, Fake Lie groups and maximal tori. III, Math. Ann.
290 (1991), no. 4, 629–642.

[25] D. Notbohm and L. Smith, Rational homotopy of the space of homotopy equiv-
alences of a flag manifold, Algebraic topology, homotopy and group cohomology
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