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ON THE 3-ARROW CALCULUS

FOR HOMOTOPY CATEGORIES

SEBASTIAN THOMAS

(communicated by Charles A. Weibel)

Abstract
We develop a localisation theory for certain categories, yield-

ing a 3-arrow calculus: Every morphism in the localisation is
represented by a diagram of length 3, and two such diagrams
represent the same morphism if and only if they can be embed-
ded in a 3-by-3 diagram in an appropriate way. Applications
include the localisation of an arbitrary Quillen model category
with respect to its weak equivalences as well as the localisa-
tion of its full subcategories of cofibrant, fibrant and bifibrant
objects, giving the homotopy category in all four cases. In
contrast to the approach of Dwyer, Hirschhorn, Kan and
Smith, the Quillen model category under consideration does
not need to admit functorial factorisations.

1. Introduction

The construction of the homotopy category of a Quillen model category, that is,
the localisation with respect to its set of weak equivalences, is usually done by a
construction that works for arbitrary subsets of morphisms to be formally inverted,
called Gabriel-Zisman localisation. However, the morphisms in the Gabriel-Zisman
localisation are, in general, represented by zigzags

· · ·≈ ≈

of finite but arbitrary length, where the “backward” arrows are in the set of those
morphisms to be formally inverted. Furthermore, in the Gabriel-Zisman localisation
one has, in general, no convenient criterion to decide whether two zigzags represent
the same morphism in the localisation.

For a Quillen model category M, one can do better: Recently, Dwyer, Hirsch-

horn, Kan and Smith developed in [4, sec. 10, sec. 36] a 3-arrow calculus for the
homotopy category ofM, providedM admits functorial factorisations (cf. [4, sec. 9.1,
ax. MC5]). That is, they showed that each morphism in HoM is represented by a
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diagram

≈ ≈ ,

and, moreover, that two of these diagrams represent the same morphism if and only
if they can be embedded as the top and the bottom row in a commutative diagram
of the following form.

≈ ≈

≈

≈

≈
≈

≈

≈

≈ ≈

≈

≈ ≈

≈

To do this, they introduced the notion of a homotopical category admitting a 3-arrow
calculus [4, sec. 33.1, 36.1] and developed a 3-arrow calculus in this context [4,
sec. 36.3].

In this article, we introduce the concept of a uni-fractionable category, see defi-
nition 3.1. Our main result is the construction of a localisation of a uni-fractionable
category (with respect to its set of denominators) that satisfies a 3-arrow calculus
in the sense described above, see theorem 5.13. In contrast to [4], we will not make
use of the Gabriel-Zisman localisation. Instead, we will give an elementary ad hoc
construction of a localisation of a uni-fractionable category, in the spirit of the Ore
localisation for a 2-arrow calculus. (1)

Both in the approach of [4, sec. 36.1] and in our uni-fractionable categories, one has
three distinguished kinds of morphisms, which, in our terminology, are called denomi-
nators, S-denominators and T-denominators. The denominators are the morphisms to
be formally inverted, while the S- and T-denominators are particular denominators.
The essential stipulations in [4, sec. 36.1] are that every denominator factors functori-
ally into an S-denominator followed by a T-denominator (2) and that one has functo-
rial Ore completions along S-denominators resp. T-denominators. For uni-fractionable
categories, we omit the stipulations of functoriality; instead, we require the existence
of weakly universal Ore completions along S-denominators resp. T-denominators.

The advantage of uni-fractionable categories is that functoriality of factorisations
is not needed. On the one hand, this is convenient for applications. On the other
hand, the theory developed here can be applied to arbitrary Quillen model categories.
Moreover, it can also be applied to the full subcategories of the cofibrant, fibrant resp.
bifibrant objects of a Quillen model category. As a consequence, all of them admit a
3-arrow calculus.

1It is easy to show that every morphism in the Gabriel-Zisman localisation of a uni-fractionable
category can be represented by a diagram of length 3 (cf. the definition of the composition in
proposition 5.2). However, the author does not know how to prove in that context that two of these
diagrams represent the same morphism if and only if they can be embedded in a 3-by-3 diagram as
above.
2The S resp. the T should remind us of the fact that the S-denominator resp. the T-denominator in
a factorisation has the same source resp. the same target as the factorised morphism.
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Furthermore, a derivable category in the sense of Cisinski [2, sec. 2.25] (3), which is
a self-dual generalisation of a category of fibrant objects in the sense of K. Brown [1,
sec. 1], admits a 3-arrow calculus, provided stronger variants of the factorisation
axioms and the axioms which ensure stability of acyclic cofibrations under pushouts
resp. of acyclic fibrations under pullbacks hold. For the relationship of Cisinski’s
approach with other axiom systems, see [14, sec. 2].

Outline
We recall in section 2 some notions of localisation theory and indicate how quotients

of (ordered) graphs with respect to so-called graph congruences can be constructed.
In section 3, uni-fractionable categories are introduced. Recall that the aim of this
article is to construct a localisation of a uni-fractionable category with respect to its
set of denominators. To this end, we proceed in two steps: In section 4, we assign to
a uni-fractionable category a certain graph, its 3-arrow graph, and introduce a graph
congruence on this graph. Then, in section 5, it turns out that the quotient graph
has a canonically given category structure, and we will show that this category is a
localisation of the uni-fractionable category we started with. Our main theorem 5.13
then gives a criterion on when two 3-arrows represent the same morphism in the
localisation. Finally, in section 6, we show how Quillen model categories and derivable
categories (under additional conditions) fit into this framework.
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This article will be part of my forthcoming doctoral thesis. I thank the RWTH
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Conventions and notations
We use the following conventions and notations.
• The composite of morphisms f : X → Y and g : Y → Z is usually denoted by

fg : X → Z. The composite of functors F : C → D and G : D → E is usually denoted
by G ◦ F : C → E .
• Given a coproduct C of X1 and X2, the embedding Xk → C is denoted by

embk = embCk for k ∈ {1, 2}. Given morphisms fk : Xk → Y for k ∈ {1, 2}, the in-

duced morphism C → Y is denoted by
(

f1
f2

)

=
(

f1
f2

)C

.

• Given an initial object I, the unique morphism I → X to an object X will be
denoted by ini = iniX = iniIX .
• Given a category admitting finite coproducts and objects X1, X2, we denote

by X1 ∐X2 a chosen coproduct and by ¡ a chosen initial object. Analogously, given
morphisms fk : Xk → Yk for k ∈ {1, 2}, the coproduct of f1 and f2 is denoted by
f1 ∐ f2.
• Given a category admitting finite coproducts C and a category D, we say that

a functor F : C → D preserves finite coproducts if F ¡ is an initial object in D, and if,
given X1, X2 ∈ Ob C, the object F (X1 ∐X2) is a coproduct of FX1 and FX2, where

the embeddings are given by emb
F (X1∐X2)
k = F (embX1∐X2

k ) for k ∈ {1, 2}.

3Also called an Anderson-Brown-Cisinski premodel category by Rădulescu-Banu [14, def. 1.1.3].
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• By a weak pushout rectangle (resp. weak pullback rectangle) we understand
a quadrangle having the universal property of a pushout rectangle (resp. pullback
rectangle) except for the uniqueness of the induced morphism.

• Given integers a, b ∈ Z, we write [a, b] := {z ∈ Z | a 6 z 6 b} for the set of inte-
gers lying between a and b.

2. Preliminaries

In this section, we give some preliminaries on localisations of categories and quo-
tient graphs with respect to graph congruences.

Localisations of categories

We suppose given a category C. A denominator set in C is a subset D ⊆ Mor C.
We will consider denominator sets with special properties later in this article, but at
the moment, a denominator set D is just an arbitrary subset of Mor C. Informally,
it is a subset singled out with the “intention of localising with respect to it”, in the
following sense.

A localisation of C with respect to a denominator set D in C consists of a category
L and a functor L : C → L such that the following axioms hold.

(Inv) Invertibility. For all d ∈ D, the morphism Ld is invertible.

(1-uni) 1-universality. Given a category D and a functor F : C → D such that Fd
is invertible for all d ∈ D, there exists a unique functor F̂ : L → D with F = F̂ ◦ L.

(2-uni) 2-universality. We suppose given a category D and functors F,G : C → D
such that Fd and Gd are invertible for all d ∈ D, and we denote by F̂ : L → D resp.
Ĝ : L → D the unique functor with F = F̂ ◦ L resp. G = Ĝ ◦ L. Given a transforma-
tion α : F → G, there exists a unique transformation α̂ : F̂ → Ĝ such that α̂LX = αX

for all X ∈ Ob C.

L D

C

F̂

Ĝ

L
F

G

α̂

α

By abuse of notation, we refer to the localisation as well as to its underlying category
just by L. The functor L is said to be the localisation functor of the localisation L.
Given a localisation L of C with respect to D with localisation functor L : C → L, we
write loc = locL := L.

Gabriel and Zisman have shown in [7, sec. 1.1] that there exists a localisation
of every category C with respect to an arbitrary denominator set D in C. We will not
make use of this result. Rather, given a uni-fractionable category, see definition 3.1,
we construct a localisation directly, cf. propositions 5.2 and 5.5.
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Saturatedness
We suppose given a category C, a denominator set D in C, and a localisation L

of C with respect to D. By definition of a localisation, loc(d) is invertible for every
d ∈ D. But in general, not every morphism f in C for which loc(f) is invertible in L
has to be an element of D. The denominator set D is said to be saturated if f ∈ D
for all f ∈ Mor C with loc(f) invertible in L. We use the following notions to indicate
how far D is away from this property.

The denominator set D is said to be multiplicative if it fulfills:
(Cat) Multiplicativity. For all d, e ∈ D with Target d = Source e, their composite

de is in D, and for every object X in C, the identity 1X is in D.
The denominator set D is said to be semi-saturated if it is multiplicative and

fulfills:
(2 of 3) 2 out of 3 axiom. We suppose given morphisms f and g in C with Target f =

Source g. If two out of the morphisms f , g, fg are in D, then so is the third.
Finally, the denominator set D is said to be weakly saturated if it is multiplicative

and fulfills:
(2 of 6) 2 out of 6 axiom. We suppose given morphisms f , g, h in C with Target f =

Source g and Target g = Sourceh. If fg, gh ∈ D, then f, g, h, fgh ∈ D.
Saturatedness implies weak saturatedness, weak saturatedness implies semi-satu-

ratedness, and semi-saturatedness implies multiplicativity (the last impliciation holds
by definition).

Graph congruences and quotient graphs
We suppose given an (oriented) graph G. An equivalence relation ≡ on ArrG is

said to be a graph congruence on G if Source a = Source ã and Target a = Target ã for
all a, ã ∈ ArrG with a ≡ ã. Given a graph congruence ≡ on G, the quotient graph of
G with respect to ≡ is the graph G/≡ with ObG/≡ := ObG, ArrG/≡ := (ArrG)/≡
and Source [a]≡ := Source a, Target [a]≡ := Target a for a ∈ ArrG. The graph mor-
phism quo = quoG/≡ : G → G/≡ given by quo(X) := X and quo(a) := [a]≡ is called
the quotient graph morphism.

The quotient graph of G with respect to a graph congrunce ≡ fulfills the following
universal property. Given a, ã ∈ ArrG with a ≡ ã, we have quo(a) = quo(ã). For every
graph H and every graph morphism F : G → H with Fa = F ã for a, ã ∈ ArrG with
a ≡ ã, there exists a unique graph morphism F : G/≡ → H with F = F ◦ quo.

G H

G/≡

F

quo F

3. Uni-fractionable categories

Definition 3.1 (uni-fractionable category). A uni-fractionable category (4) consists
of a category C together with a semi-saturated denominator set D in C and multi-
plicative subsets S, T ⊆ D, such that the following axioms hold.

4There exists also the notion of a fractionable category, cf. the author’s forthcoming doctoral thesis.
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(WU) Weakly universal Ore completions. Given morphisms i and f in C with i ∈ S
and Source i = Source f , there exists a weak pushout rectangle in C as displayed below
on the left, such that i′ ∈ S. Dually, given morphisms p and f in C with p ∈ T and
Target p = Target f , there exists a weak pullback rectangle in C as displayed below
on the right, such that p′ ∈ T .

f ′

f
i i′

f ′

p′ p

f

(Fac) Factorisations. For every d ∈ D, there exist i ∈ S and p ∈ T with d = ip.

p

d

i

By abuse of notation, we refer to the uni-fractionable category as well as to its
underlying category just by C. The elements of D resp. S resp. T are called denomi-
nators resp. S-denominators resp. T-denominators in C.

Given a uni-fractionable category C with set of denominators D, set of S-denomina-
tors S and set of T-denominators T , we write Den C := D, SDen C := S, TDen C := T .
In diagrams, a denominator d resp. an S-denominator i resp. a T-denominator p in C
will usually be depicted as

≈

d
resp.

i
resp.

p
.

Some examples of uni-fractionable categories can be found in section 6.

Definition 3.2 (denominator preserving functor). Given uni-fractionable categories
C and D, a functor F : C → D is said to preserve denominators if Fd is a denominator
in D for every denominator d in C.

4. The 3-arrow graph

We want to construct a localisation Frac C of a uni-fractionable category C with
respect to its set of denominators Den C. To this end, we begin in this section by
introducing its 3-arrow graph AG C and a graph congruence ≡ on AG C.

In this section, we suppose given a uni-fractionable category C.

Definition 4.1 (3-arrow shape). The graph

0 1 2 3
ντ σ

is said to be the 3-arrow shape and will be denoted by Θ.

Recall that a diagram of shape Θ in C is just a graph morphism A : Θ→ C. Given
a diagram D of shape Θ in C, we write Di := D(i) for i ∈ ObΘ and Da := D(a) for
a ∈ ArrΘ. Given diagrams D and E, a diagram morphism from D to E is a family
f = (fi)i∈ObΘ in Mor C with Dafj = fiEa for all arrows a : i→ j in Θ. The category
consisting of diagrams of shape Θ in C as objects and diagram morphisms between
those diagrams as morphisms will be denoted by CΘ.
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Definition 4.2 (3-arrow graph). The 3-arrow graph of C is defined to be the graph
AG C with object set ObAG C := Ob C and arrow set ArrAG C := {A ∈ Ob CΘ | Aσ,
Aτ ∈ Den C}. The source resp. the target of A ∈ ArrAG C are defined by SourceA :=
A0 resp. TargetA := A3.

An arrow A in AG C is called a 3-arrow in C. Given a denominator b : X̃ → X,
a morphism f : X̃ → Ỹ and a denominator a : Y → Ỹ in C, we abuse notation and
denote the unique 3-arrowA with Aτ = b,Aν = f , Aσ = a by (b, f, a) := A. Moreover,
we use the notation (b, f, a) : X ← X̃ → Ỹ ← Y .

X X̃ Ỹ Y
f

≈

b

≈

a

Our next step will be the introduction of an equivalence relation on the arrow set
of the 3-arrow graph.

Definition 4.3 (fraction equality). The equivalence relation ≡ on ArrAG C is defined
to be generated by the following relation on ArrAG C: Given (b, f, a) ∈ ArrAG C and
c ∈ Mor C with ac ∈ Den C, the 3-arrow (b, f, a) is in relation to the 3-arrow (b, fc, ac);
and given (b, f, a) ∈ ArrAG C and c ∈ Mor C with cb ∈ Den C, the 3-arrow (b, f, a) is
in relation to the 3-arrow (cb, cf, a).

f

≈

b

c

≈

a

fc
≈

b
≈

ac

f

≈

b

≈

a

cf
≈

cb

c

≈
a

Given (b, f, a), (b̃, f̃ , ã) ∈ ArrAG C with (b, f, a) ≡ (b̃, f̃ , ã), we say that (b, f, a) and
(b̃, f̃ , ã) are fraction equal.

In practice, it is sometimes convenient to work with different generating sets for
fraction equality.

Remark 4.4. (a) The fraction equality relation ≡ on ArrAG C is generated by the
following relation: Given (b, f, a) ∈ ArrAG C and c, c′ ∈ Mor C with ac, c′b ∈ Den C,
the 3-arrow (b, f, a) is in relation to the 3-arrow (c′b, c′fc, ac).

(b) The fraction equality relation ≡ on ArrAG C is generated by the following
relation: Given (b, f, a), (b̃, f̃ , ã) ∈ ArrAG C, the 3-arrow (b, f, a) is in relation to the
3-arrow (b̃, f̃ , ã) if there exist c, c′ ∈ Mor C with b = c′b̃, fc = c′f̃ , ac = ã.

f

≈

b

c

≈

a

c′fc

≈

c′b

c′

≈

ac

f

c′

≈

b

c

≈

a

f̃

≈

b̃

≈

ã

As Den C is semi-saturated, the morphisms c and c′ in definition 4.3 and remark 4.4
are automatically denominators in C.

Remark 4.5. We suppose given 3-arrows (b, f, a) and (b̃, f̃ , ã) in C. If (b, f, a) ≡
(b̃, f̃ , ã), then f is a denominator in C if and only if f̃ is a denominator in C.

Proof. This follows by the definition of fraction equality 4.3 and by the semi-satu-
ratedness of Den C.
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Remark 4.6. The fraction equality relation ≡ on ArrAG C defines a graph congru-
ence on AG C. In particular, the quotient graph (AG C)/≡ is defined.

Proof. For (b, f, a) ∈ ArrAG C, c, c′ ∈ Mor C with ac, c′b ∈ Den C, we have

Source (c′b, c′fc, ac) = Target(c′b) = Target b = Source (b, f, a)

and analogously Target (c′b, c′fc, ac) = Target (b, f, a). Thus the assertion follows
from remark 4.4(a).

Definition 4.7 (double fraction). Given a 3-arrow (b, f, a) in C, its equivalence class
in the quotient graph (AG C)/≡ is denoted by b\f/a := [(b, f, a)]≡ and is said to be
the double fraction of (b, f, a).

Now we will present a certain reduced form for 3-arrows. We will see that every
3-arrow is fraction equal to such a reduced form.

Definition 4.8 (normal 3-arrows). A 3-arrow (p, f, i) in C is said to be normal if i
is an S-denominator and p is a T-denominator in C.

fp i

The following lemma and its proof is (essentially) taken from [4, sec. 36.5].

Lemma 4.9 (normalisation lemma). Every 3-arrow in C is fraction equal to a normal
3-arrow in C.

Proof. We suppose given an arbitrary 3-arrow (b, f, a) in C. There exist an S-denomi-
nator i and a T-denominator p in C with b = ip, and there exist an S-denominator
i′ and a morphism f ′ in C with if ′ = fi′. By multiplicativity, ai′ is a denominator
in C. Thus there exist an S-denominator j and a T-denominator q in C with ai′ = jq,
and there exist a T-denominator q′ and a morphism f ′′ in C with f ′′q = q′f ′. By
multiplicativity, q′p is a T-denominator.

f

i

≈

b

i′

≈

a

f ′p

≈

ai′

f ′′q′p
q′ q

j

Altogether, (b, f, a) ≡ (p, f ′, ai′) ≡ (q′p, f ′′, j), and since j is an S-denominator and
q′p is a T-denominator, the 3-arrow (q′p, f ′′, j) is normal.

5. The fraction category

In this section, our main theorem 5.13 will be proven. We begin by constructing a
localisation of a uni-fractionable category C with respect to its set of denominators
Den C, see proposition 5.2 and proposition 5.5. To this end, we consider the quotient
graph (AG C)/≡ of its 3-arrow graph AG C with respect to fraction equality ≡. The
crucial point in the construction will be the following lemma.

Troughout this section, we suppose given a uni-fractionable category C.
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Lemma 5.1 (factorisation lemma). We suppose given denominators d, e and mor-
phisms f , g in C with fe = dg. Moreover, we suppose given S-denominators i, j and
T-denominators p, q in C with d = ip and e = jq. Then there exist S-denominators
j̃, k, a T-denominator q̃ and a morphism h in C such that e = j̃q̃, f j̃ = ih, pg = hq̃,
j̃ = jk, q = kq̃.

f

≈

d

i

≈

e

j̃

≈

e

j

g

h

p q̃ q

k

Proof. We let

i

fj h̃

i′

be a weak pushout rectangle in C such that i′ is an S-denominator in C. Since ipg =
dg = fe = fjq, there exists an induced morphism a with q = i′a and pg = h̃a. By
semi-saturatedness, a is a denominator in C, and thus there exist an S-denominator
k̃ and a T-denominator q̃ with a = k̃q̃.

i

fj

pg
h̃

i′

q

≈a

k̃

q̃

We set h := h̃k̃, k := i′k̃, j̃ := ji′k̃ and get e = j̃q̃, f j̃ = ih, pg = hq̃, j̃ = jk, q = kq̃.
Moreover, k = i′k̃ and j̃ = ji′k̃ are S-denominators in C by multiplicativity.

The following proposition will essentially prove the first part of our main theo-
rem 5.13, cf. also proposition 5.7 below.

Proposition 5.2. There is a category structure on (AG C)/≡, where the composition
is constructed by the following procedure.

We suppose given (b1, f1, a1), (b2, f2, a2) ∈ ArrAG C with Target (b1, f1, a1) =
Source (b2, f2, a2). First, we choose an S-denominator j and a T-denominator q in
C with b2a1 = jq. Second, we choose a T-denominator q′ and a morphism f ′1 in C
with f ′1q = q′f1, and we choose an S-denominator j′ and a morphism f ′2 in C with
jf ′2 = f2j

′. Then (b1\f1/a1)(b2\f2/a2) = q′b1\f
′
1f

′
2/a2j

′.

f ′

1

q′

f ′

2

qf1

≈

b1

f2

≈

b2

j j′

≈a1 ≈a2

The identity of X ∈ Ob (AG C)/≡ is given by 1X = 1X\1X/1X .
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Proof. Our first aim is to show that the construction described above is independent
of all choices. To this end, we first consider the particular case of choosing a weak
pullback of f1 and q and a weak pushout of f2 and j to obtain a T-denominator q′,
an S-denominator j′ and morphisms f ′1, f

′
2 in C.

We suppose given (bl, fl, al), (b̃l, f̃l, ãl) ∈ ArrAG C, cl, c
′
l ∈ Mor C with bl = clb̃l, flc

′
l

= clf̃l, alc
′
l = ãl for l ∈ {1, 2}, and such that Target (b1, f1, a1) = Source (b2, f2, a2).

f1

c1

≈

b1

c′1

≈

a1 f2

c2

≈

b2

c′2

≈

a2

f̃1

≈

b̃1

≈

ã1 f̃2

≈

b̃2

≈

ã2

We choose S-denominators j, j̃ and T-denominators q, q̃ in C such that b2a1 = jq
and b̃2ã1 = j̃q̃. By the factorisation lemma 5.1, there exist an S-denominator k, a
T-denominator r and morphisms c, c̃ in C with b̃2ã1 = kr, qc′1 = cr, c2k = jc, q̃ = c̃r,
k = j̃c̃. Next, we choose weak pullback rectangles

f ′

1

q′ q

f1 and

g1

r′ r

f̃1 and

f̃ ′

1

q̃′ q̃

f̃1

in C such that q′, r′, q̃′ are T-denominators, and we choose weak pushout rectangles

f ′

2

f2

j j′

and

g2

f̃2

k k′

and

f̃ ′

2

f̃2

j̃ j̃′

in C such that j′, k′, j̃′ are S-denominators. We obtain induced morphisms c′ and c̃′

on the weak pullbacks, that is, with q′c1 = c′r′, f ′1c = c′g1 and q̃′ = c′r′, f̃ ′1c̃ = c̃′g1,
and induced morphisms c′′ and c̃′′ on the weak pushouts, that is, with c′2k

′ = j′c′′,
cg2 = f ′2c

′′ and k′ = j̃′c̃′′, c̃g2 = f̃ ′2c̃
′′.

f ′

1

c′

q′

f ′

2

c

q

c′′

g1

r′

g2

r

f̃ ′

1

q̃′

c̃′

f̃ ′

2

q̃

c̃ c̃′′

f1

c1

≈b1

c′1

f2

c2

b2a1

≈

j

c′2

j′

≈

a2

f̃1

≈b̃1

f̃2b̃2ã1

≈

k k′

≈ã2

f̃1

≈b̃1

f̃2

≈

b̃2ã1
j̃ j̃′

≈ã2
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We get q′b1 = c′r′b̃1, f
′
1f

′
2c

′′ = c′g1g2, a2j
′c′′ = ã2k

′, q̃′b̃1 = c̃′r′b̃1, f̃
′
1f̃

′
2c̃

′′ = c̃′g1g2,
ã2j̃

′c̃′′ = ã2k
′ and therefore (q′b1, f

′
1f

′
2, a2j

′) ≡ (r′b̃1, g1g2, ã2k
′) ≡ (q̃′b̃1, f̃

′
1f̃

′
2, ã2j̃

′).

f ′

1f
′

2

c′

≈

q′b1

c′′

≈

a2j
′

g1g2

≈

r′b̃1

≈

ã2k
′

f̃ ′

1f̃
′

2

≈

q̃′b̃1

c̃′ c̃′′

≈

ã2 j̃
′

Thus we have q′b1\f
′
1f

′
2/a2j

′ = q̃′b̃1\f̃
′
1f̃

′
2/ã2j̃

′ in (AG C)/≡.

In the special case where c1 = 1, c′1 = 1, c2 = 1, c′2 = 1, we see that different choices
of constructions via weak pullback and weak pushout rectangles lead to the same
double fraction q′b1\f

′
1f

′
2/a2j

′ = q̃′b1\f̃
′
1f̃

′
2/ã2j̃

′. Hence we obtain a well-defined map

c : ArrAG C Target×Source ArrAG C → Arr (AG C)/≡,

(b1, f1, a1), (b2, f2, a2) 7→ q′b1\f
′
1f

′
2/a2j

′,

where q′, f ′1, f
′
2, j

′ are constructed as described above. Now the general case shows
that c is independent of the choice of the representatives in the equivalence classes
with respect to ≡, and thus we obtain an induced map

c : Arr (AG C)/≡ Target×Source Arr (AG C)/≡ → Arr (AG C)/≡

given by c(b1\f1/a1, b2\f2/a2) = c((b1, f1, a1), (b2, f2, a2)) = q′b1\f
′
1f

′
2/a2j

′.

We claim that arbitrary commutative quadrangles may be used instead of weak
pullback and weak pushout rectangles to compute c. Indeed, given a weak pullback
rectangle and a weak pushout rectangle

f ′

1

q′ q

f1 and

f ′

2

f2

j j′

and arbitrary commutative quadrangles

f̃ ′

1

q̃′ q

f1 and

f̃ ′

2

f2

j j̃′

such that q′, q̃′ are T-denominators and j′, j̃′ are S-denominators in C, we obtain
induced morphisms c and c′ such that q̃′ = cq′, f̃ ′1 = cf ′1, f̃

′
2 = f ′2c

′, j̃′ = j′c′.

f̃ ′

1

c
q̃′ f ′

1

q′

f ′

2

q

f̃ ′

2

c′

f1

≈

b1

f2

≈

b2

j j′

j̃′

≈a1 ≈a2
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Thus we have (q̃′b1, f̃
′
1f̃

′
2, a2j̃

′) = (cq′b1, cf
′
1f

′
2c

′, a2j
′c′) ≡ (q′b1, f

′
1f

′
2, a2j

′) and there-
fore c(b1\f1/a1, b2\f2/a2) = q′b1\f

′
1f

′
2/a2j

′ = q̃′b1\f̃
′
1f̃

′
2/a2j̃

′. This proves the claim.
In addition to c, we define the map

e : Ob (AG C)/≡ → Arr (AG C)/≡, X 7→ 1X\1X/1X .

To show that (AG C)/≡ is a category with composition c and identity map e, it
remains to verify the category axioms. By the definitions of c and e, we have

Source c(b1\f1/a1, b2\f2/a2) = Source q′b1\f
′
1f

′
2/a2j

′ = Target(q′b1) = Target b1

= Source b1\f1/a1

and analogously Target c(b1\f1/a1, b2\f2/a2) = Target b2\f2/a2 for all (b1, f1, a1),
(b2, f2, a2) ∈ ArrAG C with Target b1\f1/a1 = Source b2\f2/a2, as well as

Source e(X) = Source 1X\1X/1X = Target 1X = X

and analogously Target e(X) = X for all X ∈ Ob (AG C)/≡.
For the associativity of c, we suppose given (bl, fl, al) ∈ ArrAG C for l ∈ {1, 2, 3}

such that Target b1\f1/a1 = Source b2\f2/a2 and Target b2\f2/a2 = Source b3\f3/a3.
We choose S-denominators j, j̃ and T-denominators q, q̃ with b2a1 = jq and b3a2 = j̃q̃.
Then we choose T-denominators q′, q̃′ and morphisms f ′1, f̃

′
2 in C with f ′1q = q′f1

and f̃ ′2q̃ = q̃′f2, and we choose S-denominators j′, j̃′ and morphisms f ′2, f̃
′
3 in C

with jf ′2 = f2j
′ and j̃f̃ ′3 = f3j̃

′. By definition of c, we obtain c(b1\f1/a1, b2\f2/a2) =
q′b1\f

′
1f

′
2/a2j

′ and c(b2\f2/a2, b3\f3/a3) = q̃′b2\f̃
′
2f̃

′
3/a3j̃

′.
Moreover, we have q̃′jf ′2 = f̃ ′2q̃j

′, and thus by the factorisation axiom and the fac-
torisation lemma 5.1 there exist S-denominators k, k̃, T-denominators r, r̃ and a mor-
phism f ′′2 in C with q̃j′ = kr, q̃′j = k̃r̃, r̃f ′2 = f ′′2 r, f̃

′
2k = k̃f ′′2 . We choose a T-denom-

inator r̃′ and a morphism f ′′1 in C with f ′′1 r̃ = r̃′f ′1, and we choose an S-denomina-
tor k′ and a morphism f ′′3 in C with kf ′′3 = f̃ ′3k

′. Then we obtain r̃′f ′1f
′
2 = f ′′1 f

′′
2 r,

j̃kf ′′3 = f3j̃
′k′, f̃ ′2f̃

′
3k

′ = k̃f ′′2 f
′′
3 , f

′′
1 r̃q = r̃′q′f1, and therefore

c(c(b1\f1/a1, b2\f2/a2), b3\f3/a3) = c(q′b1\f
′
1f

′
2/a2j

′, b3\f3/a3)

= r̃′q′b1\f
′′
1 f

′′
2 f

′′
3 /a3j̃

′k′ = c(b1\f1/a1, q̃
′b2\f̃

′
2f̃

′
3/a3j̃

′)

= c(b1\f1/a1, c(b2\f2/a2, b3\f3/a3)).

Thus c is associative.

f ′′

1

r̃′

f ′′

2

r̃

f ′′

3

r
f ′

1

q′ q

f ′

2

q̃′

k̃
f̃ ′

2
f̃ ′

3

q̃

k k′

f1

≈

b1

f2

≈

b2

j j′
f3

≈

b3

j̃ j̃′

≈a1 ≈a2 ≈a3

Finally, we suppose given (b, f, a) ∈ ArrAG C. We want to show that we have
c(b\f/a, e(Target b\f/a)) = b\f/a. By the normalisation lemma 4.9, there exists a
normal arrow (p, g, i) ∈ ArrAG C with (b, f, a) ≡ (p, g, i). We obtain

c(b\f/a, e(Target b\f/a)) = c(p\g/i, 1\1/1) = 1p\g1/1i = p\g/i = b\f/a.
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Analogously, we have c(e(Source b\f/a), b\f/a) = b\f/a.

g

g

p

i i

i

p

g

p g

p i

Altogether, (AG C)/≡ becomes a category with composition (b1\f1/a1)(b2\f2/a2) =
c(b1\f1/a1, b2\f2/a2) for (b1, f1, a1), (b2, f2, a2) ∈ ArrAG C with Target b1\f1/a1 =
Source b2\f2/a2 and identities 1X = e(X) for X ∈ Ob (AG C)/≡.

Definition 5.3 (fraction category). The fraction category of C is defined to be the
category Frac C, whose underlying graph is given by the quotient graph (AG C)/≡
and whose composition and identities are given as in proposition 5.2.

Our next aim is to show that the fraction category of a uni-fractionable category
is a localisation, which is going to be the second part of our main theorem 5.13.

Remark 5.4. We have

(b1\f1/1)(1\f2/a2) = b1\f1f2/a2

for all 3-arrows (b1, f1, 1) and (1, f2, a2) in C.

Proof. This follows using the definition of the composition in proposition 5.2.

f1 f2

f1

≈

b1

f2

≈a2

Proposition 5.5 (universal property of the fraction category). The fraction cate-
gory Frac C is a localisation of C with respect to Den C, where the localisation functor
loc : C → Frac C is given on the objects by loc(X) = X for X ∈ Ob C and on the mor-
phisms by loc(f) = 1\f/1 for f ∈ Mor C. The inverse of loc(d) for d ∈ Den C is given
by (loc(d))−1 = d\1/1 = 1\1/d.

Given a category D and a functor F : C → D such that Fd is invertible for all d ∈
Den C, the unique functor F̂ : Frac C → D with F = F̂ ◦ loc is given by F̂ (b\f/a) =
(Fb)−1(Ff)(Fa)−1.

Proof. We define a graph morphism L : C → Frac C on the objects by LX := X for
X ∈ Ob C and on the arrows by Lf := 1\f/1 for f ∈ Mor C. By remark 5.4, we get

L(fg) = 1\fg/1 = (1\f/1)(1\g/1) = (Lf)(Lg)

for all f, g ∈ Mor C with Target f = Source g and

L1X = 1X\1X/1X = 1LX

for all X ∈ Ob C, that is, L is a functor. We want to show that Frac C is a localisation
of C with localisation functor L.

(Inv) We suppose given d ∈ Den C. By remark 5.4, we have

(Ld)(1\1/d) = (1\d/1)(1\1/d) = 1\d/d = 1\1/1 = 1

and analogously (d\1/1)(Ld) = 1, that is, Ld has a right inverse 1\1/d and a left
inverse d\1/1. But then Ld is invertible and the left and the right inverse coincide as
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the unique inverse of Ld, that is, (Ld)−1 = d\1/1 = 1\1/d.
(1-uni) We letD be a category and F : C → D be a functor such that Fd is invertible

for all d ∈ Den C. For (b, f, a) ∈ ArrAG C, we have

Source((Fb)−1(Ff)(Fa)−1) = Source (Fb)−1 = Target(Fb) = F (Target b)

= F (Source (b, f, a)),

and analogously Target((Fb)−1(Ff)(Fa)−1) = F (Target (b, f, a)). Thus there exists a
graph morphism F ′ : AG C → D given on the objects by F ′X = FX for X ∈ ObAG C
and on the arrows by F ′(b, f, a) = (Fb)−1(Ff)(Fa)−1 for (b, f, a) ∈ ArrAG C. More-
over, given (b, f, a) ∈ ArrAG C and c, c′ ∈ Den C with Target c′ = Source b, Source c =
Target a, we obtain

F ′(c′b, c′fc, ac) = (F (c′b))−1(F (c′fc))(F (ac))−1

= ((Fc′)(Fb))−1((Fc′)(Ff)(Fc))((Fa)(Fc))−1

= (Fb)−1(Fc′)−1(Fc′)(Ff)(Fc)(Fc)−1(Fa)−1

= (Fb)−1(Ff)(Fa)−1 = F ′(b, f, a).

Hence F ′ maps fraction equal 3-arrows to the same morphism and we obtain an
induced graph morphism F̂ : (AG C)/≡ → D with F ′ = F̂ ◦ quo.

We want to show that F̂ is a functor. Given (b1, f1, a1), (b2, f2, a2) ∈ ArrAG C with
Target (b1, f1, a1) = Source (b2, f2, a2), we have

F̂ ((b1\f1/a1)(b2\f2/a2)) = F̂ (q′b1\f
′
1f

′
2/a2j

′)

= (F (q′b1))
−1(F (f ′1f

′
2))(F (a2j

′))−1 = (Fb1)
−1(Fq′)−1(Ff ′1)(Ff

′
2)(Fj

′)−1(Fa2)
−1

= (Fb1)
−1(Ff1)(Fq)

−1(Fj)−1(Ff2)(Fa2)
−1

= (Fb1)
−1(Ff1)(Fa1)

−1(Fb2)
−1(Ff2)(Fa2)

−1 = F̂ (b1\f1/a1)F̂ (b2\f2/a2),

where j, j′, q, q′, f ′1, f
′
2 are supposed to be constructed as in proposition 5.2.

f ′

1

q′

f ′

2

qf1

≈

b1

f2

≈

b2

j j′

≈a1 ≈a2

Moreover, we have

F̂ (1X) = F̂ (1X\1X/1X) = (F1X)−1(F1X)(F1X)−1 = 1FX = 1F̂X

forX ∈ ObFrac C. This implies that F̂ : Frac C → D is a functor, given by F̂ (b\f/a) =
F ′(b, f, a) = (Fb)−1(Ff)(Fa)−1 for (b, f, a) ∈ ArrAG C. In particular,

F̂Lf = F̂ (1\f/1) = (F1)−1(Ff)(F1)−1 = Ff

for all f ∈ Mor C, that is, F̂ ◦ L = F .
Conversely, given an arbitrary functor G : Frac C → D with F = G ◦ L, we con-

clude by remark 5.4 that

G(b\f/a) = G((b\1/1)(1\f/1)(1\1/a)) = G((Lb)−1(Lf)(La)−1)

= (GLb)−1(GLf)(GLa)−1 = (Fb)−1(Ff)(Fa)−1

for (b, f, a) ∈ ArrAG C.
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(2-uni) We suppose given a category D and functors F,G : C → D such that Fd
and Gd are invertible for all d ∈ Den C, and we let F̂ , Ĝ : Frac C → D be the unique
functors with F = F̂ ◦ L resp. G = Ĝ ◦ L. Moreover, we suppose given a transfor-
mation α : F → G. We define a family α̂ := (α̂X)X∈ObFrac C by α̂X := αX for X ∈
ObFrac C = Ob C. Then α̂LX = α̂X = αX for X ∈ Ob C. Moreover, α̂ is a transfor-
mation from F̂ to Ĝ as for every 3-arrow (b, f, a) : X ← X̃ → Ỹ ← Y in C, we have

α̂X(Ĝ(b\f/a)) = αX(Gb)−1(Gf)(Ga)−1 = (Fb)−1αX̃(Gf)(Ga)−1

= (Fb)−1(Ff)αỸ (Ga)
−1 = (Fb)−1(Ff)(Fa)−1αY = (F̂ (b\f/a))α̂Y .

Conversely, given an arbitrary transformation β : F̂ → Ĝ such that βLX = αX for
all X ∈ Ob C, we necessarily have βX = βLX = αX for all X ∈ ObFrac C = Ob C.

Corollary 5.6 (splitting double fractions). For each 3-arrow (b, f, a) in C, we have

b\f/a = (loc(b))−1loc(f)(loc(a))−1.

Proof. By proposition 5.5, the fraction category Frac C is a localisation of C with
respect to Den C. In particular, loc(d) is invertible for all d ∈ Den C, and hence
there exists a unique functor L̂ : Frac C → Frac C with loc = L̂ ◦ loc, which is given
by L̂(b\f/a) = (loc(b))−1loc(f)(loc(a))−1 for (b, f, a) ∈ ArrAG C. But since loc =
idFrac C ◦ loc, we must have L̂ = idFrac C and therefore the assertion holds.

In the construction of the composition of the fraction category in proposition 5.2,
the occurring morphisms j, j′ were S-denominators, and q, q′ were T-denominators.
We shall now show that it suffices to have a diagram with arbitrary denominators at
their places to get the correct composite.

Proposition 5.7. (a) We suppose given 3-arrows (b1, f1, a1), (b2, f2, a2) in C with
Target (b1, f1, a1) = Source (b2, f2, a2). Moreover, we suppose given denominators d,
d′, e, e′ and morphisms g1, g2 in C with b2a1 = de, g1e = e′f1, dg2 = f2d

′. Then we
have (b1\f1/a1)(b2\f2/a2) = e′b1\g1g2/a2d

′.
(b) Given a 3-arrow (b, d, a) in C with a denominator d, the double fraction b\d/a

is invertible in Frac C, and the inverse of b\d/a can be constructed as follows. We
choose denominators d1, d

′
1, d2, d

′
2, a

′, b′ in C with d = d1d2, d1b
′ = bd′1, a

′d2 = d′2a.
Then we have (b\d/a)−1 = d′2\a

′b′/d′1.

g1

≈

e′

g2

≈

ef1

≈

b1

f2

≈

b2

≈d ≈d′

≈a1 ≈a2

≈ d2

≈

b′

≈ d′

2

≈

a′

≈d′

1
≈

d

≈

b ≈d1

≈

a

Proof. (a) We compute

(b1\f1/a1)(b2\f2/a2)

= (loc(b1))
−1loc(f1)(loc(a1))

−1(loc(b2))
−1loc(f2)(loc(a2))

−1

= (loc(b1))
−1loc(f1)(loc(e))

−1(loc(d))−1loc(f2)(loc(a2))
−1

= (loc(b1))
−1(loc(e′))−1loc(g1)loc(g2)(loc(d

′))−1(loc(a2))
−1

= (loc(e′b1))
−1loc(g1g2)(loc(a2d

′))−1 = e′b1\g1g2/a2d
′.
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(b) The double fraction b\d/a = (loc(b))−1loc(d)(loc(a))−1 is invertible in Frac C
since the localisation functor loc : C → Frac C maps denominators in C to isomor-
phisms in Frac C.

Given denominators d1, d
′
1, d2, d

′
2, a

′, b′ in C with d = d1d2, d1b
′ = bd′1, a

′d2 = d′2a,
we obtain

(b\d/a)−1 = ((loc(b))−1loc(d)(loc(a))−1)−1 = loc(a)(loc(d))−1loc(b)

= loc(a)(loc(d1d2))
−1loc(b) = loc(a)(loc(d2))

−1(loc(d1))
−1loc(b)

= (loc(d′2))
−1loc(a′)loc(b′)(loc(d′1))

−1

= (loc(d′2))
−1loc(a′b′)(loc(d′1))

−1 = d′2\a
′b′/d′1.

Proposition 5.8. Given a uni-fractionable category D and a denominator preserving
functor F : C → D, there exists a unique induced functor

FracF : Frac C → FracD

with locFracD ◦ F = (FracF ) ◦ locFrac C. It is given on the objects by (FracF )X =
FX for X ∈ ObFrac C and on the morphisms by (FracF )(b\f/a) = Fb\Ff/Fa for
(b, f, a) ∈ ArrAG C.

Proof. Since F preserves denominators and locFracD maps denominators in D to iso-
morphisms in FracD, the composite locFracD ◦ F maps denominators in C to isomor-
phisms in FracD. By the universal property of Frac C, there exists a unique functor
FracF : Frac C → FracD with locFracD ◦ F = (FracF ) ◦ locFrac C . It follows that

(FracF )X = (FracF )loc(X) = loc(FX) = FX

for X ∈ Ob C as well as

(FracF )(b\f/a) = (FracF )((loc(b))−1loc(f)(loc(a))−1)

= ((FracF )loc(b))−1((FracF )loc(f))((FracF )loc(a))−1

= (loc(Fb))−1loc(Ff)(loc(Fa))−1 = Fb\Ff/Fa

for (b, f, a) ∈ ArrAG C.

Here is another elementary property of the fraction category, which will be needed
in proposition 5.15, where we deal with coproducts.

Proposition 5.9. We suppose given morphisms ϕ1 and ϕ2 in Frac C.
(a) If Sourceϕ1 = Sourceϕ2, then there exist normal 3-arrows (p, f1, i1), (p, f2, i2)

in C with ϕ1 = p\f1/i1 and ϕ2 = p\f2/i2.
(b) If Sourceϕ1 = Sourceϕ2 and Targetϕ1 = Targetϕ2, then there exist normal

3-arrows (p, f1, i), (p, f2, i) in C with ϕ1 = p\f1/i and ϕ2 = p\f2/i.

Proof. (a) We choose 3-arrows (bk, gk, ak) with ϕk = bk\gk/ak for k ∈ {1, 2}. By the
normalisation lemma 4.9, there exist normal 3-arrows (pk, g

′
k, ik) in C with (bk, gk, ak)

≡ (pk, g
′
k, ik) for k ∈ {1, 2}, that is, with ϕk = bk\gk/ak = pk\g

′
k/ik for k ∈ {1, 2}.

There exist a T-denominator p′2 and a morphism p′1 in C with p′2p1 = p′1p2. We
define p := p′2p1 = p′1p2, f1 := p′2g

′
1, f2 := p′1g

′
2. By multiplicativity, p = p′2p1 is a

T-denominator in C, and we have ϕ1 = p1\g
′
1/i1 = p′2p1\p

′
2g

′
1/i1 = p\f1/i1 and anal-

ogously ϕ2 = p\f2/i2.
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(b) This is proven similarly to (a).

g′

1p1 i1

p′

1

p

p′

2 f1

f2
g′

2p2 i2

g1p1

i′2

i1

p′

1

p

p′

2
f̃1

f̃2

i

g2p2

i′1
i2

Proposition 5.10 (cf. [4, sec. 36.4]). The denominator set in C is saturated if and
only if it is weakly saturated.

Proof. Since saturatedness always implies weak saturatedness, it suffices to show that
if Den C is weakly saturated, then it is already saturated. So we suppose that Den C
is weakly saturated and we suppose given a morphism f in C such that loc(f) is
invertible in Frac C. We let (p, g, i) be a normal 3-arrow in C with (loc(f))−1 = p\g/i.
Moreover, we choose a T-denominator p′ and a morphism f ′ in C with f ′p = p′f , and
we choose an S-denominator i′ and a morphism f ′′ in C with if ′′ = fi′.

f ′

p′

g

p

f ′′

f g

p

fi i′

i

Then we have 1\1/1 = (1\f/1)(p\g/i) = p′\f ′g/i and 1\1/1 = (p\g/i)(1\f/1) =
p\gf ′′/i′. By remark 4.5, the morphisms f ′g and gf ′′ must be denominators. Now
(2 of 6) implies that f ′ and thus f is a denominator. Hence Den C is saturated.

Now we come to the last part of the main theorem of this article, that is, we want
to show that C admits a 3-arrow calculus. It can be found in proposition 5.12. The
key step of its proof is treated in the following lemma.

Lemma 5.11 (flipping lemma). Given 3-arrows (b1, f1, a1), (b2, f2, a2), (v1, h1, u1),
(v2, h2, u2), morphisms g1, g

′
1, g

′′
1 , g2, g

′
2, g

′′
2 , denominators d, e, an S-denomina-

tor i2 and a T-denominator p1 in C, fitting into the commutative diagram in C on
the left, there exist 3-arrows (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) and normal 3-arrows (p̃1, g̃1, ĩ1),
(p̃2, g̃2, ĩ2), fitting into the commutative diagram in C on the right.

f1

g′′

2

≈

b1

g′

2
g2

≈

a1

h1

≈

v1

≈

u1

g1

p1

h2

g′

1

≈

v2

≈ d

g′′

1

≈ e

≈

u2

i2

f2

≈

b2

≈

a2

f1

≈

b1

≈

a1

g1

p1

f̃1

g̃1

≈

b̃1

p̃1

g̃2

p̃2

g2

≈

ã1

f̃2

≈

b̃2

≈

ã2

f2

≈

b2

ĩ1 ĩ2

≈

a2

i2
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Proof. By the factorisation axiom and the factorisation lemma 5.1, there exist
S-denominators j1, j̃2, T-denominators q1, q̃2 and morphisms b, ã in C with d = j1q1,
e = j̃2q̃2, q1v1 = bp1, v2 = j1b, u1 = ãq̃2, u2j̃2 = i2ã. Moreover, by the factorisation
lemma 5.1, there exist an S-denominator j2, a T-denominator q2, a morphism f and
a denominator ã′ in C with e = j2q2, q1h1 = fq2, j1f = h2j2, q̃2 = ã′q2, j2 = j̃2ã

′.

h1

≈

v1

≈

u1

p1

h2

≈

v2

j1

≈ d

j̃2 ≈ e

≈

u2

i2

i2

p1 q1

≈

b
q̃2

≈

ã

h1

h2

j1 ≈ d j2 ≈ e j̃2

≈ e
f

q1 q2 q̃2

≈

ã′

We set a := ãã′ and obtain u1 = aq2 and u2j2 = i2a. Next, we choose weak pullback
rectangles

g̃′

1

p̃1 q1
g′′

2 and

g̃′

2

p̃2 q2
g′

2

in C such that p̃1 and p̃2 are T-denominators, and we choose weak pushout rectangles

g̃′′

1

g′

1

j1 ĩ1

and

g̃′′

2

g′′

1

j2 ĩ2

in C such that ĩ1 and ĩ2 are S-denominators. We obtain induced morphisms b̃1, f̃1, ã1
on the weak pullbacks, that is, with p̃1b1 = b̃1p1, b̃1 = g̃′1b, p̃1f1 = f̃1p̃2, f̃1g̃

′
2 = g̃′1f ,

a1 = ã1p̃2, ã1g̃
′
2 = g2a, and induced morphisms b̃2, f̃2, ã2 on the weak pushouts, that

is, with bg1 = g̃′′1 b̃2, ĩ1b̃2 = b2, fg̃
′′
2 = g̃′′1 f̃2, ĩ1f̃2 = f2ĩ2, ag̃

′′
2 = ã2, i2ã2 = a2ĩ2.

f1

g′′

2

≈

b1

g′

2

g2

≈

a1

h1

≈

v1

≈

u1

g1

p1

h2

g′

1

≈

v2

j1 ≈ d

g′′

1

j2 ≈ e

≈

u2

i2

i2

f2

≈

b2
ĩ1 ĩ2

≈

a2

i2

p1

f̃1

g̃′

1

≈

b̃1

p̃1

g̃′

2

p̃2

g2

≈

ã1

g1

p1

f

g̃′′

1

≈

b

q1

g̃′′

2

q2

≈

a

f̃2

≈

b̃2

≈

ã2
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Setting g̃1 := g̃′1g̃
′′
1 and g̃2 := g̃′2g̃

′′
2 yields b̃1g1 = g̃1b̃2, f̃1g̃2 = g̃1f̃2, ã1g̃2 = g2ã2. More-

over, ã1, ã2, b̃1, b̃2 are denominators in C by semi-saturatedness.

Proposition 5.12 (3-arrow calculus, cf. [4, sec. 36.3]). (a) Given 3-arrows (b1, f1, a1)
and (b2, f2, a2) in C, we have b1\f1/a1 = b2\f2/a2 in Frac C if and only if there
exist 3-arrows (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) and normal 3-arrows (p1, d1, i1), (p2, d2, i2) with
denominators d1, d2, fitting into the commutative diagram in C on the left.

If (b1, f1, a1), (b2, f2, a2) are normal 3-arrows, then (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) can be
chosen to be normal, too.

(b) Given 3-arrows (b1, f1, a1), (b2, f2, a2) and normal 3-arrows (p1, g1, i1),
(p2, g2, i2) in C, we have (b1\f1/a1)(p2\g2/i2) = (p1\g1/i1)(b2\f2/a2) in Frac C if and
only if there exist 3-arrows (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) and normal 3-arrows (p̃1, g̃1, ĩ1),
(p̃2, g̃2, ĩ2), fitting into the commutative diagram in C on the right.

f1

≈

b1

≈

a1

f̃1

≈

d1

≈

b̃1

p1

≈
d2

p2

≈

ã1

f̃2

≈

b̃2

≈

ã2

f2

≈

b2

i1 i2
≈

a2

f1

≈

b1

≈

a1

g1

p1

f̃1

g̃1

≈

b̃1

p̃1

g̃2

p̃2

g2

≈

ã1

p2

f̃2

≈

b̃2

≈

ã2

i1
f2

≈

b2

ĩ1 ĩ2
≈

a2

i2

Proof. (a) If we have a commutative diagram as stated, then we have

(b1, f1, a1) ≡ (b̃1, f̃1, ã1) ≡ (b̃2, f̃2, ã2) ≡ (b2, f2, a2)

and thus b1\f1/a1 = b2\f2/a2 in Frac C.
So we suppose conversely that b1\f1/a1 = b2\f2/a2 in Frac C, that is, we sup-

pose that (b1, f1, a1) ≡ (b2, f2, a2) in AG C. By remark 4.4(b), there exist n ∈ N0,
(vl, hl, ul) ∈ ArrAG C for l ∈ [0, 2n+ 1], cl, c

′
l ∈ Mor C for l ∈ [0, n], wl, w

′
l for l ∈

[0, n− 1], with (v0, h0, u0) = (b1, f1, a1), (v2n+1, h2n+1, u2n+1) = (b2, f2, a2) and v2l =
clv2l+1, h2lc

′
l = clh2l+1, u2lc

′
l = u2l+1 for l ∈ [0, n] and v2l+2 = wlv2l+1, wlh2l+1 =

h2l+2w
′
l, u2l+2w

′
l = u2l+1 for l ∈ [0, n− 1].

h2l

cl

≈

v2l

c′l

≈

u2l

h2l+1

≈

v2l+1

≈

u2l+1

h2l+2

≈

v2l+2

wl w′

l

≈

u2l+2

By semi-saturatedness, cl and c′l are denominators for all l ∈ [0, n] and wl, w
′
l are

denominators for all l ∈ [0, n− 1]. Using the flipping lemma 5.11 and induction on
n ∈ N0 yields the first assertion.

Now let us suppose that (b1, f1, a1) and (b2, f2, a2) are normal 3-arrows. By multi-
plicativity, b̃1 = p1b1 is a T-denominator and ã2 = a2i2 is an S-denominator in C. We
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choose S-denominators j1, j2 and T-denominators q1, q2 with ã1 = j1q1 and b̃2 = j2q2.
Moreover, we choose a T-denominator q′1 and a morphism f̃ ′1 in C with f̃ ′1q1 = q′1f̃1,
and we choose an S-denominator j′2 and a morphism f̃ ′2 in C with j2f̃

′
2 = f̃2j

′
2.

f̃ ′

1

q′1 q1

f̃1

≈

ã1

j1

f̃ ′

2

q2

f̃2

≈

b̃2

j2 j′2

By multiplicativity, q′1b̃1 = q′1p1b1, q
′
1p1, q1p2 are T-denominators and ã2j

′
2 = a2i2j

′
2,

i1j2, i2j
′
2 are S-denominators in C. Now the diagram

f1b1 a1

f̃ ′

1

≈ q
′

1d1j2

q′1b̃1

q′1p1

≈ q1d2j
′

2

q1p2

j1

f̃ ′

2q2 ã2j
′

2

f2b2

i1j2 i2j
′

2

a2

commutes and (q′1b̃1, f̃
′
1, j1), (q2, f̃

′
2, ã2j

′
2), (q

′
1p1, q

′
1d1j2, i1j2), (q1p2, q1d2j

′
2, i2j

′
2) are

normal 3-arrows.
(b) If we have a commutative diagram as stated, then proposition 5.7(a) implies

that

(b1\f1/a1)(p2\g2/i2) = p̃1b1\f̃1g̃2/i2ã2 = b̃1p1\g̃1f̃2/a2ĩ2

= (p1\g1/i1)(b2\f2/a2).

So we suppose conversely that (b1\f1/a1)(p2\g2/i2) = (p1\g1/i1)(b2\f2/a2).
We construct (b1\f1/a1)(p2\g2/i2) = q′b1\f

′
1g

′
2/i2j

′ and (p1\g1/i1)(b2\f2/a2) =
q̃′p1\g

′
1f

′
2/a2j̃

′ as in proposition 5.2.

f ′

1

q′

g′

2

qf1

≈

b1

g2

p2

j j′

≈a1 i2

g′

1

q̃′

f ′

2

q̃g1

p1

f2

≈

b2

j̃ j̃′

i1 ≈a2

By(a), as (b1\f1/a1)(p2\g2/i2) = (p1\g1/i1)(b2\f2/a2) and therefore q′b1\f
′
1g

′
2/i2j

′ =
q̃′p1\g

′
1f

′
2/a2j̃

′, there exist 3-arrows (v1, h1, u1), (v2, h2, u2) and normal 3-arrows
(r1, d1, k1), (r2, d2, k2) in C with denominators d1, d2, fitting into the commutative
diagram displayed below on the left. Altogether, we obtain the commutative diagram
displayed below on the right. Applying the flipping lemma 5.11 twice and composing
yields the assertion.
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f ′

1g
′

2

≈

q′b1 i2j
′

h1

≈

d1

≈

v1

r1

≈

d2

r2

≈

u1

h2

≈

v2

≈

u2

g′

1f
′

2q̃′p1

k1 k2

≈

a2 j̃
′

f1

≈

b1

≈

a1

f ′

1

≈

q′b1

q′

g′

2

q

g2

j

p2

f ′

1g
′

2

≈

q′b1 j′

h1

≈
d1

≈

v1

r1
≈

d2

r2

≈

u1

i2

h2

≈

v2

≈

u2

g1

p1

g′

1f
′

2

g′

1

q̃′
k1 k2

≈

a2 j̃
′

f ′

2q̃

≈

a2 j̃
′

i1
f2

≈

b2

j̃ j̃′

≈

a2

Altogether, we have proven the following main theorem of this article. Recall that
C is supposed to be a uni-fractionable category, see definition 3.1.

Theorem 5.13. The fraction category Frac C fulfills the following properties.

(a) The object set of Frac C is the object set of C. The morphism set of Frac C
consists of double fractions, that is, equivalence classes of 3-arrows with respect to
fraction equality, where a 3-arrow (b, f, a) is a diagram

f

≈

b

≈

a

in C with denominators a and b. For every 3-arrow (b, f, a) in C, source and target
of the double fraction b\f/a are given by Source b\f/a = Target b and Target b\f/a =
Source a. Given 3-arrows (b1, f1, a1) and (b2, f2, a2) in C with Target b1\f1/a1 =
Source b2\f2/a2, the composite of the double fractions can be constructed as follows:
One chooses denominators d, d′, e, e′ and morphisms g1, g2 in C with b2a1 = de,
g1e = e′f1, dg2 = f2d

′. Then (b1\f1/a1)(b2\f2/a2) = e′b1\g1g2/a2d
′.

g1

≈

e′

g2

≈

ef1

≈

b1

f2

≈

b2

≈d ≈d′

≈a1 ≈a2

The identity of an object X in Frac C is given by 1X = 1X\1X/1X .

(b) The fraction category Frac C is a localisation of C with respect to Den C, where
the localisation functor loc : C → Frac C is given on the objects by loc(X) = X for
X ∈ Ob C and on the morphisms by loc(f) = 1\f/1 for f ∈ Mor C. The inverse of
loc(d) for d ∈ Den C is given by (loc(d))−1 = d\1/1 = 1\1/d.
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Given a category D and a functor F : C → D such that Fd is invertible for all d ∈
Den C, the unique functor F̂ : Frac C → D with F = F̂ ◦ loc is given by F̂ (b\f/a) =
(Fb)−1(Ff)(Fa)−1.

(c) Given 3-arrows (b1, f1, a1), (b2, f2, a2) and normal 3-arrows (p1, g1, i1),
(p2, g2, i2) in C, we have (b1\f1/a1)(p2\g2/i2) = (p1\g1/i1)(b2\f2/a2) in Frac C if and
only if there exist 3-arrows (b̃1, f̃1, ã1), (b̃2, f̃2, ã2) and normal 3-arrows (p̃1, g̃1, ĩ1),
(p̃2, g̃2, ĩ2), fitting into the following commutative diagram in C.

f1

≈

b1

≈

a1

g1

p1

f̃1

g̃1

≈

b̃1

p̃1

g̃2

p̃2

g2

≈

ã1

p2

f̃2

≈

b̃2

≈

ã2

i1
f2

≈

b2

ĩ1 ĩ2

≈

a2

i2

Proof. This follows from propositions 5.2 and 5.7(a), proposition 5.5 and proposi-
tion 5.12(b).

As a consequence of 3-arrow calculus, we get the following criterion. For a related
2-arrow version of this result, cf. [15, ch. 1, §2, th. 4-2] and [8, III.2.10].

Proposition 5.14. We suppose given a uni-fractionable category U such that U is a
full subcategory of C and DenU = (Den C) ∩ (MorU). We suppose that for every object
X in C, there exist an object X̃ in U and a denominator d : X̃ → X in C. We suppose
that for every S-denominator i : U → Ũ with U in U , it follows that Ũ is in U . Then
the inclusion functor inc : U → C induces an equivalence Frac inc : FracU → Frac C.

Proof. To show that Frac inc is an equivalence of categories, we will verify that
Frac inc is full, faithful and dense. Since for every X ∈ Ob C there exist X̃ ∈ ObU
and a denominator d : X̃ → X in C, we have X ∼= X̃ = (Frac inc)X̃ in Frac C. Hence
Frac inc is dense. To prove that Frac inc is full and faithful, we have to show that the
map FracU (U, V )→ Frac C(U, V ), ϕ 7→ (Frac inc)ϕ is bijective for U, V ∈ ObU .

To show surjectivity, we suppose given a morphism ψ ∈ Frac C(U, V ) and a normal
3-arrow (p, f, i) : U ← X → Y ← V in C with ψ = p\f/i. Since i is an S-denominator
and V is an object in U , it follows that Y is an object in U . Moreover, there exists
an object X̃ in U and a denominator d : X̃ → X.

U X̃ Y V

U X Y V

df

≈

d

≈

dp

≈

i

fp i

It follows that (p, f, i) ≡ (dp, df, i), and as (dp, df, i) is a 3-arrow in U , we have ψ =
p\f/i = dp\df/i = (Frac inc)(dp\df/i). Thus the map FracU (U, V )→ Frac C(U, V ),
ϕ 7→ (Frac inc)ϕ is surjective.
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To show injectivity, we suppose given ϕ1, ϕ2 ∈ FracU (U, V ) with (Frac inc)ϕ1 =
(Frac inc)ϕ2. We choose normal 3-arrows (p1, f1, i1) : U ← U1 → V1 ← V and
(p2, f2, i2) : U ← U2 → V2 ← V in U with ϕ1 = p1\f1/i1 and ϕ2 = p2\f2/i2. By
proposition 5.12(a), there exist normal 3-arrows (p̃1, f̃1, ĩ1) : U ← X1 → Y1 ← V ,
(p̃2, f̃2, ĩ2) : U ← X2 → Y2 ← V , (q1, d1, j1) : U1 ← X1 → X2 ← U2, (q2, d2, j2) : V1 ←
Y1 → Y2 ← V2 in C with denominators d1, d2, fitting into a commutative diagram as
displayed below on the left. Since ĩ1 resp. j1 resp. j2 is an S-denominator and V resp.
U2 resp. V2 is an object in U , it follows that Y1 resp. X2 resp. Y2 is an object in
U . Moreover, there exists an object X̃1 in U and a denominator d : X̃1 → X1 in C.
Thus we obtain the commutative diagram displayed below on the right, in which all
objects – and hence all morphisms – are in U , and where dp̃1 is a denominator by
multiplicativity. It follows that ϕ1 = p1\f1/i1 = p2\f2/i2 = ϕ2 in FracU . Thus the
map FracU (U, V )→ Frac C(U, V ), ϕ 7→ (Frac inc)ϕ is injective.

U U1 V1 V

U X1 Y1 V

U X2 Y2 V

U U2 V2 V

f1p1 i1

f̃1

≈

d1

p̃1

q1

≈
d2

q2

ĩ1

f̃2p̃2 ĩ2

f2p2

j1 j2

i2

U U1 V1 V

U X̃1 Y1 V

U X2 Y2 V

U U2 V2 V

f1p1 i1

df̃1

≈

dd1

≈

dp̃1

≈ dq1

≈

d2

q2

ĩ1

f̃2p̃2 ĩ2

f2p2

j1 j2

i2

Some of our examples of uni-fractionable categories in section 6 have finite coprod-
ucts, so it is a natural question to ask whether these are preserved when passing to
the fraction category.

Proposition 5.15. We suppose that C admits finite coproducts.

(a) If Den C is closed under finite coproducts, then the fraction category Frac C
admits finite coproducts and the localisation functor loc : C → Frac C preserves finite

coproducts. In this case, we have ini
loc(¡)
loc(X) = loc(ini¡X) : loc(¡)→ loc(X) for X ∈ Ob C,

and we have
(

b1\f1/a
b2\f2/a

)loc(X1∐X2)

= (b1 ∐ b2)\
(

f1
f2

)X̃1∐X̃2

/a : loc(X1 ∐X2)→ loc(Y )

for 3-arrows (b1, f1, a) : X1 ← X̃1 → Ỹ ← Y , (b2, f2, a) : X2 ← X̃2 → Ỹ ← Y in C.

(b) If Den C is saturated and the localisation functor loc : C → Frac C preserves
finite coproducts, then Den C is closed under finite coproducts.

Proof. (a) We suppose that Den C is closed under finite coproducts. Moreover, we
suppose givenX ∈ Ob C. Then loc(ini¡X) is a morphism from loc(¡) to loc(X). So let us
suppose given an arbitrary morphism ϕ : loc(¡)→ X in Frac C, and we let (b, f, a) : ¡ ←
I → X̃ ← X be a 3-arrow in C with ϕ = b\f/a. By the universal property of ¡, we
have ini¡Ib = 1¡ and ini¡If = ini¡

X̃
= ini¡Xa, and therefore

ϕ = b\f/a = ini¡Ib\ini
¡
If/a = 1¡\ini

¡
X/1 = loc(ini¡X).
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Hence loc(¡) is an initial object in Frac C with ini
loc(¡)
loc(X) = loc(ini¡X) for X ∈ Ob C.

¡ ¡ X X

¡ I X̃ X

ini¡
X

≈

ini¡
I

≈

a

f

≈

b

≈

a

Next, we suppose given morphisms ϕ1 : X1 → Y and ϕ2 : X2 → Y in Frac C. By
proposition 5.9, there exist 3-arrows (bk, fk, a) : Xk ← X̃k → Ỹ ← Y in C with ϕk =
bk\fk/a for k ∈ {1, 2}. As b1 ∐ b2 is a denominator in C by assumption, we have the

3-arrow (b1 ∐ b2,
(

f1
f2

)

, a) in C. Moreover, since embX̃1∐X̃2

k (b1 ∐ b2) = bkembX1∐X2

k ,

we have

loc(embX1∐X2

k )((b1 ∐ b2)\
(

f1
f2

)X̃1∐X̃2

/a) = bk\embX̃1∐X̃2

k

(

f1
f2

)X̃1∐X̃2

/a

= bk\fk/a = ϕk

for k ∈ {1, 2}.

X̃k X̃1 ∐ X̃2 Ỹ

Xk X1 ∐X2 X̃1 ∐ X̃2 Ỹ

Xk X1 ∐X2 Y

emb
X̃1∐X̃2
k

≈
bk

(

f1
f2

)X̃1∐X̃2

≈
b1 ∐ b2emb

X1∐X2
k

(

f1
f2

)X̃1∐X̃2≈

b1 ∐ b2 ≈a

Conversely, we suppose given morphisms ϕ,ϕ′ : loc(X1 ∐X2)→ loc(Y ) in Frac C
such that loc(embX1∐X2

k )ϕ = loc(embX1∐X2

k )ϕ′ = ϕk for k ∈ {1, 2}. Then by proposi-

tion 5.9, there exist normal 3-arrows (p, f, i), (p, f ′, i) : X1 ∐X2 ← X̃ → Ỹ ← Y in C
with ϕ = p\f/i and ϕ′ = p\f ′/i. For k ∈ {1, 2}, we choose a T-denominator pk : X̃k →
Xk and a morphism ek : X̃k → X̃ in C with pkembX1∐X2

k = ekp. We get

ϕk = loc(embX1∐X2

k )ϕ = loc(embX1∐X2

k )(p\f/i) = pk\ekf/i

for k ∈ {1, 2}.

X̃k X̃ Ỹ

Xk X1 ∐X2 X̃ Ỹ

Xk X1 ∐X2 Y

ek

pk

f

p
emb

X1∐X2
k f

p i

Analogously, we have ϕk = pk\ekf
′/i and hence loc(ekf) = loc(ekf

′) for k ∈ {1, 2}.
By proposition 5.12(a), there exist normal 3-arrows (p̃k, f̃k, ĩk), (p̃

′
k, f̃

′
k, ĩ

′
k), (qk, dk, jk),

(q̃k, d̃k, j̃k) in C with denominators dk, d̃k for k ∈ {1, 2}, fitting into the following
commutative diagrams in C.
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e1f

f̃1

≈

d1

p̃1

q1

≈

d̃1

q̃1
ĩ1

f̃ ′

1p̃′

1 ĩ′1

e1f
′

j1 j̃1

e2f

f̃2

≈

d2

p̃2

q2

≈

d̃2

q̃2
ĩ2

f̃ ′

2p̃′

2 ĩ′2

e2f
′

j2 j̃2

We let

≈

ī2 ĩ2

ĩ1

ī1 and

≈

ī′2 ĩ′2

ĩ′1

ī′1

be weak pushout rectangles in C such that ī1 and ī′1 are S-denominators, so that we
obtain morphisms q, d, j such that the diagram displayed below on the left commutes.
Using coproducts, we obtain the commutative diagram displayed below on the right.

≈

d̃1

≈ī2

q̃1

ĩ2

ĩ1

≈ī′2 ĩ′2

ĩ′1

j̃1

≈

d

≈

q

≈

d̃2

ī1

q̃2

ī′1

j

j̃2

(

e1f

e2f

)

(

f̃1 ī2

f̃2 ī1

)

≈d1 ∐ d2

≈

p̃1 ∐ p̃2

≈

q1 ∐ q2

≈

d

≈

q

ĩ1 ī2

(

f̃′
1 ī′2

f̃′
2 ī′1

)

≈

p̃′

1 ∐ p̃′

2 ĩ′1 ī
′

2

(

e1f′

e2f′

)≈

j1 ∐ j2 j

We finally have

loc(( e1e2 ))loc(f) = loc(
(

e1f
e2f

)

) = loc(
(

e1f
′

e2f
′

)

) = loc(( e1e2 ))loc(f
′).

On the other hand,

( e1e2 ) p = ( e1pe2p ) =

(

p1emb
X1∐X2
1

p2emb
X1∐X2
2

)

= p1 ∐ p2

implies that ( e1e2 ) is a denominator in C by semi-saturatedness, so we have loc(f) =
loc(f ′) and therefore ϕ = p\f/i = p\f ′/i = ϕ′.
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Altogether, loc(X1 ∐X2) is a coproduct of loc(X1) and loc(X2) with embeddings

emb
loc(X1∐X2)
k = loc(embX1∐X2

k ) for k ∈ {1, 2}.

(b) We suppose that Den C is saturated and that loc preserves finite coproducts.
Moreover, we suppose given denominators d1 : X1 → Y1 and d2 : X2 → Y2 in C. Then
we have

loc(dk)emb
loc(Y1∐Y2)
k = loc(dk)loc(embY1∐Y2

k ) = loc(dkembY1∐Y2

k )

= loc(embX1∐X2

k (d1 ∐ d2)) = loc(embX1∐X2

k )loc(d1 ∐ d2)

= emb
loc(X1∐X2)
k loc(d1 ∐ d2).

Since d1 and d2 are denominators, loc(d1) and loc(d2) are isomorphisms. But then
loc(d1 ∐ d2) is also an isomorphism and hence d1 ∐ d2 is a denominator since Den C
is saturated.

6. Applications

Quillen model categories

Given a Quillen model category M [13, ch. I, §1, def. 1], we denote by Cof(M)
resp. Fib(M) resp. Bif(M) the full subcategory of cofibrant resp. fibrant resp. bifi-
brant (that is, cofibrant and fibrant) objects.

Example 6.1. Given a Quillen model category M, the categories M, Cof(M),
Fib(M), Bif(M) carry the structure of uni-fractionable categories, where

Den C = {w ∈ Mor C | w is a weak equivalence},

SDen C = {i ∈ Mor C | i is an acyclic cofibration},

TDen C = {p ∈ Mor C | p is an acyclic fibration}

for C ∈ {M, Cof(M), Fib(M), Bif(M)}. In particular, the homotopy category
HoM is isomorphic to FracM. IfM is a closed Quillen model category, then Den C
is saturated in C for C ∈ {M,Cof(M),Fib(M),Bif(M)}. The localisation functor
loc : C → Frac C preserves finite coproducts for C ∈ {Cof(M),Bif(M)} and finite
products for C ∈ {Fib(M),Bif(M)}. (5)

Proof. (a) We considerM and verify the axioms of a uni-fractionable category.

(Cat) By definition of a Quillen model category, weak equivalences, cofibrations
and fibrations are closed under composition and contain all isomorphisms. Hence in
particular weak equivalences, acyclic cofibrations and acyclic fibrations are closed
under composition and contain all identities.

(2 of 3) This holds by definition of a Quillen model category.

5In general, the localisation functor loc : M → FracM does not preserve finite coproducts or
finite products since the set of denominators in a closed Quillen model category need not be
closed under finite (co)products. A counterexample is provided by (Z/4 ↓ mod(Z/4)), cf. [6,
rem. 3.11], as considered in [5, ex.]: The coproduct of 2: (Z/4, 1) → (Z/4, 2) with itself is given
by ( 2 0 ) : (Z/4, 1) → (Z/4⊕ Z/2, ( 2 0 )); the former is a weak equivalence, but the latter is not
since Z/4 is a bijective object and Z/4⊕ Z/2 is not a bijective object in mod(Z/4).
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(WU) We suppose given an acyclic cofibration i : X → X ′ and a morphism
f : X → Y inM, and we let

X ′ Y ′

X Y

f ′

f

i i′

be a pushout rectangle in C. Then i′ is an acyclic cofibration.
The other assertion follows by duality.
(Fac) Since every morphism decomposes into a composite of a cofibration followed

by an acyclic fibration, the assertion follows by semi-saturatedness.
Altogether,M becomes a uni-fractionable category with

DenM = {w ∈ MorM | w is a weak equivalence},

SDenM = {i ∈ MorM | i is an acyclic cofibration},

TDenM = {p ∈ MorM | p is an acyclic fibration}.

The assertion on the saturatedness of DenM is proven in [13, ch. I, §5, prop. 1].
(b) We consider Cof(M) and have to verify the axioms of a uni-fractionable cate-

gory. Since (Cat) and (2 of 3) hold forM by (a), they hold in particular for Cof(M).
(WU) We suppose given an acyclic cofibration i : X → X ′ and a morphism

f : X → Y in Cof(M), and we let

X ′ Y ′

X Y

f ′

f

i i′

be a pushout rectangle in C. Then i′ is an acyclic cofibration, and since Y is cofibrant
and i′ is in particular a cofibration, it follows that Y ′ is also cofibrant.

Now we suppose given an acyclic fibration p : Y ′ → Y and a morphism f : X → Y
in Cof(M), and we let

X ′ Y ′

X Y

f ′

p′ p

f

be a pullback rectangle in C. Then p′ is an acyclic fibration. We consider a strong
cofibrant approximation of X ′, that is, we let X̃ ′ be a cofibrant object together
with an acyclic fibration q : X̃ ′ → X ′. The composite qp′ is an acyclic fibration by
multiplicativity. We will show that

X̃ ′ Y ′

X Y

qf ′

qp′ p

f

is a weak pullback of f along p. To this end, we suppose given an object T ∈
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ObCof(M) and morphisms s : T → X, t : T → Y ′ with sf = tp. By the universal
property of X ′, there exists a (unique) morphism u : T → X ′ such that up′ = s and
uf ′ = t. Moreover, as T is cofibrant and q is an acyclic fibration, there exists a lift
û : T → X̃ ′ such that u = ûq. Now we have ûqp′ = up′ = s and ûqf ′ = uf ′ = t.

T

X ′ Y ′

X Y

t

u

s

f ′

p′ p

f

T

X̃ ′ Y ′

X Y

t

û

s

qf ′

qp′ p

f

(Fac) We let w : X → Y be a weak equivalence in Cof(M). Then there exists an
acyclic cofibration i : X → Z and an acyclic fibration p : Z → Y in M with w = ip.
But since X is cofibrant and i is a cofibration, Z is cofibrant, too.

Altogether, Cof(M) becomes a uni-fractionable category with

DenCof(M) = {w ∈ MorCof(M) | w is a weak equivalence},

SDenCof(M) = {i ∈ MorCof(M) | i is an acyclic cofibration},

TDenCof(M) = {p ∈ MorCof(M) | p is an acyclic fibration}.

The assertion on the saturatedness of DenCof(M) follows from (a) since if

locFracCof(M)(f) is an isomorphism, then also locFracM(f) is an isomorphism. The
fact that the localisation functor loc : Cof(M)→ FracCof(M) preserves finite co-
products follows from the gluing lemma [10, lem. 7.4], cf. also [9, ch. II, lem. 8.8],
and proposition 5.15(a).

(c) The proof for Fib(M) is dual to (b).
(d) The proof for Bif(M) is a combination of (b) and (c).

As an application of our abstract machinery, we obtain the following part of
Quillen’s homotopy category theorem [13, ch. I, §1, th. 1]. Given a Quillen model
category M, we (re-)define the homotopy category of C ∈ {M,Cof(M),Fib(M),
Bif(M)} by Ho C := Frac C, using the uni-fractionable category structures from the
preceding example.

Example 6.2. We suppose given a Quillen model category M. The commutative
diagram of inclusion functors displayed below on the left induces the commutative
diagram of equivalences displayed below on the right.

Cof(M)

Bif(M) M

Fib(M)

inc

inc

inc

inc

HoCof(M)

HoBif(M) HoM

HoFib(M)

≃≃

≃ ≃

In particular, HoBif(M) ≃ HoM.

Proof. This follows using proposition 5.14 for inc : Cof(M)→M and inc : Bif(M)
→ Fib(M), and its dual for inc : Fib(M)→M and inc : Bif(M)→ Cof(M).
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The proof of Quillen’s homotopy category theorem, which states in particular
that the homotopy category HoM is equivalent to the quotient category Bif(M)/∼,
where ∼ denotes the homotopy congruence, can now be completed as in [11, cor. 1.2.9]
by showing that Bif(M)/∼ fulfills the universal property of a localisation, which is
essentially a corollary of Whitehead’s theorem [11, prop. 1.2.8].

Derivable categories
Recall that a derivable category in the sense of Cisinski [2, sec. 2.25] consists

of the same data as a Quillen model category, that is, a category C together with
three distinguished subsets of morphisms, called cofibrations, fibrations and weak
equivalences, subject to the following axioms, where (co)fibrant objects and acyclic
(co)fibrations are defined as in the Quillen model category case: The set of weak
equivalences is supposed to be semi-saturated. The set of cofibrations is supposed to
be closed under (binary) composition. There exists an initial object in C, which is
supposed to be cofibrant. The set of cofibrant objects is supposed to be closed under
isomorphisms. The set of cofibrations between cofibrant objects and the subset of
acyclic cofibrations therein are supposed to be stable under pushouts along morphisms
between cofibrant objects. Every morphism with cofibrant source object factors into
a cofibration followed by a weak equivalence. And dually for the fibrations and fibrant
objects.

For homotopical algebra in derivable categories, cf. also the manuscript of Rădu-

lescu-Banu [14], who uses the terminology Anderson-Brown-Cisinski premodel cat-
egory.

Derivable categories are a natural generalisation of categories of fibrant objects in
the sense of K. Brown [1, sec. 1]. More precisely: Given a derivable category, then
its full subcategory of fibrant objects is a category of fibrant objects in this sense,
and its full subcategory of cofibrant objects fulfills the dual properties.

In the proof of example 6.1, we have not used the existence of general finite limits
and colimits [13, ch. I, §1, def. 1, ax. M0]. Moreover, to show that a Quillen model
category carries the structure of a uni-fractionable category, we also did not use the
lifting axioms [13, ch. I, §1, def. 1, ax. M1]. Thus we obtain the following more general
example.

Example 6.3. We let C be a derivable category such that the following properties
hold.
• Every identity in C is a cofibration and a fibration.
• Given an acyclic cofibration i : X → X ′ and a morphism f : X → Y in C, there

exists a pushout rectangle in C as displayed below on the left, such that i′ is an acyclic
cofibration. Dually, given an acyclic fibration p : Y ′ → Y and a morphism f : X → Y
in C, there exists a pullback rectangle in C as displayed below on the right, such that
p′ is an acyclic fibration.

X ′ Y ′

X Y

f ′

f

i i′

X ′ Y ′

X Y

f ′

p′ p

f

• For every weak equivalence w : X → Y in C there exists an acyclic cofibration
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i : X → Z and an acyclic fibration p : Z → Y with w = ip.

Z

X Y

p
w

i

Then C carries the structure of a uni-fractionable category, where

Den C = {w ∈ Mor C | w is a weak equivalence},

SDen C = {i ∈ Mor C | i is an acyclic cofibration},

TDen C = {p ∈ Mor C | p is an acyclic fibration}.

Proof. This is the same proof as for a Quillen model category, see part (a) of the
proof of example 6.1.
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