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ON THE SECOND COHOMOLOGY GROUP

OF A SIMPLICIAL GROUP

SEBASTIAN THOMAS

(communicated by Graham Ellis)

Abstract
We give an algebraic proof for the result of Eilenberg and

MacLane that the second cohomology group of a simplicial
group G can be computed as a quotient of a fibre product
involving the first two homotopy groups and the first Postnikov
invariant of G. Our main tool is the theory of crossed module
extensions of groups.

1. Introduction

In [12], Eilenberg and MacLane assigned to an arcwise connected pointed
topological space X a topological invariant k3 ∈ H3(π1(X),π2(X)), that is, a 3-
cohomology class of the fundamental group π1(X) with coefficients in the π1(X)-
module π2(X), which is nowadays known as the first Postnikov invariant of X. There-
after, they showed that the second cohomology group of X with coefficients in an
abelian group A only depends on π1(X), π2(X) and k3. Explicitly, they described
this dependency as follows. We let Ch(π1(X), A) denote the cochain complex of π1(X)
with coefficients in A and Homπ1(X)(π2(X), A) denote the group of π1(X)-equivariant
group homomorphisms from π2(X) to A, where π1(X) is supposed to act trivially on
A.

Theorem (Eilenberg, MacLane, 1946 [12, thm. 2]). We choose a 3-cocycle
z3 ∈ Z3(π1(X),π2(X)) such that k3 = z3B3(π1(X),π2(X)). The second cohomology
group H2(X,A) is isomorphic to the quotient group

Z2/B2,

where Z2 is defined to be the fibre product of

Homπ1(X)(π2(X), A)

Ch2(π1(X), A) Ch3(π1(X), A)
∂
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with vertical map given by ϕ 7→ z3ϕ, and where B2 is defined to be the subgroup

B2 := {0} × B2(π1(X), A) 6 Z2
6 Homπ1(X)(π2(X), A) × Ch2(π1(X), A).

In this article, we give an algebraic proof of the simplicial group version of the
theorem of Eilenberg and MacLane, cf. theorem 5.4(b). Since simplicial groups
are algebraic models for path connected homotopy types of CW-spaces, this yields
an algebraic proof for their original theorem mentioned above.

It turns out to be convenient to work on the level of crossed modules. To any
simplicial group G, we can attach its crossed module segment Trunc1 G, while to
any crossed module V , we can attach its simplicial group coskeleton Cosk1 V . We
have H2(G,A) ∼= H2(Cosk1 Trunc1 G,A). Moreover, the crossed module segment of
G suffices to define the Postnikov invariant k3 of G via choices of certain sections,
see [4, ch. IV, sec. 5] or [31, sec. 4]. These sections pervade our algebraic approach.

Related to this theorem, Ellis [14, th. 10] has shown that there exists a long
exact sequence involving the second cohomology group H2(V,A) of a crossed module
V starting with

0 −→ H2(π0(V ), A) −→ H2(V,A) −→ Homπ0(V )(π1(V ), A).

This part of his sequence is also a consequence of our Eilenberg-MacLane-type
description of H2(V,A), cf. theorem 5.4. (1)

Concerning Postnikov invariants, cf. also [8], where general Postnikov invariants
for crossed complexes, which are generalisations of crossed modules, are constructed.

Outline

In section 2, we recall some basic facts from simplicial algebraic topology, in par-
ticular cohomology of simplicial groups. We will recall how simplicial groups, crossed
modules and (ordinary) groups interrelate. Finally, we will give a brief outline how
a cohomology class can be attached to a crossed module – and hence to a simplicial
group – and conversely.

In section 3, we will consider the low-dimensional cohomology groups of a simplicial
group. The aim of this section is to give algebraic proofs of the well-known facts
that the first cohomology group depends only on the group segment and the second
cohomology group depends only on the crossed module segment of the given simplicial
group. This gives already a convenient description of simplicial group cohomology in
dimensions 0 and 1, and can be seen in dimension 2 as a reduction step allowing us
to work with crossed modules in the following.

In section 4, we introduce a certain standardised form of 2-cocycles and 2-coboun-
daries of a crossed module, which suffices to compute the second cohomology group.
On the other hand, this standardisation directly yields the groups Z2 and B2 occur-
ring in the description of Eilenberg and MacLane.

We apply our results of sections 3 and 4 in section 5 to simplicial groups, thus
obtaining the analogon of Eilenbergs and MacLanes theorem. Finally, we discuss
some corollaries and examples.

1Our notation here differs from Ellis’ by a dimension shift.
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Conventions and notations
We use the following conventions and notations.

• The composite of morphisms f : X → Y and g : Y → Z is usually denoted by
fg : X → Z. The composite of functors F : C → D and G : D → E is usually
denoted by G ◦ F : C → E .

• We use the notations N = {1, 2, 3, . . . } and N0 = N ∪ {0}.

• Given a map f : X → Y and subsets X ′ ⊆ X, Y ′ ⊆ Y with X ′f ⊆ Y ′, we write
f |Y

′

X′ : X ′ → Y ′, x′ 7→ x′f . Moreover, we abbreviate f |X′ := f |YX′ and f |Y
′

:=

f |Y
′

X .

• Given integers a, b ∈ Z, we write [a, b] := {z ∈ Z | a 6 z 6 b} for the set of inte-
gers lying between a and b. If we need to specify orientation, then we write
⌈a, b⌉ := (z ∈ Z | a 6 z 6 b) for the ascending interval and ⌊a, b⌋ = (z ∈ Z |
a > z > b) for the descending interval. Whereas we formally deal with tuples,
we use the element notation; for example, we write

∏

i∈⌈1,3⌉ gi = g1g2g3 and
∏

i∈⌊3,1⌋ gi = g3g2g1 or (gi)i∈⌊3,1⌋ = (g3, g2, g1) for group elements g1, g2, g3.

• Given tuples (xj)j∈A and (xj)j∈B with disjoint index sets A and B, we write
(xj)j∈A ∪ (xj)j∈B for their concatenation.

• Given groups G and H, we denote by triv : G → H the trivial group homomor-
phism g 7→ 1.

• Given a group homomorphism ϕ : G → H, we denote its kernel by Kerϕ, its
cokernel by Coker ϕ and its image by Imϕ. Moreover, we write inc = incKer ϕ :
Ker ϕ → G for the inclusion and quo = quoCoker ϕ : H → Coker ϕ for the quo-
tient morphism.

• The distinguished point in a pointed set X will be denoted by ∗ = ∗X .

• The fibre product of group homomorphisms ϕ1 : G1 → H and ϕ2 : G2 → H will
be denoted by G1 ϕ1

×ϕ2
G2.

A remark on functoriality
Most constructions defined below, for example M, Ch, etc., are functorial, although

we only describe them on the objects of the respective source categories. For the
definitions on the morphisms and other details, we refer the reader for example to [29].

A remark on Grothendieck universes
To avoid set-theoretical difficulties, we work with Grothendieck universes [1, exp. I,

sec. 0] in this article. In particular, every category has an object set and a morphism
set.

We suppose given a Grothendieck universe U. A U-set is a set that is an element
of U, and a U-map is a map between U-sets. The category of U-sets consisting of the
set of U-sets, that is, of U, as object set and the set of U-maps as morphism set will
be denoted by Set(U). A U-group is a group whose underlying set is a U-set, and a



170 SEBASTIAN THOMAS

U-group homomorphism is a group homomorphism between U-groups. The category
of U-groups consisting of U-groups and U-group homomorphisms will be denoted by
Grp(U).

Because we do not want to overload our text with the usage of Grothendieck
universes, we may suppress them in notation, provided we work with a single fixed
Grothendieck universe.

Grothendieck universes will play a role in the discussion of crossed module exten-
sions, cf. section 2.13.

2. Preliminaries on simplicial objects, crossed modules,

cohomology and extensions

In this section, we recall some standard definitions and basic facts of simplicial
algebraic topology and crossed modules. Concerning simplicial algebraic topology,
the reader is referred for example to the books of Goerss and Jardine [16] or
May [26], and a standard reference on crossed modules is the survey of Brown [5].

The main purpose of this section is to fix notation and to explain how the cocycle
formulas in the working base 3.1 can be deduced. The reader willing to believe the
working base 3.1 can start to read at that point, occasionally looking up notation.

2.1. Simplicial objects
We suppose given a Grothendieck universe containing an infinite set. For n ∈ N0,

we let [n] denote the category induced by the totally ordered set [0, n] with the natural
order, and we let ∆ be the full subcategory in Cat defined by Ob∆ := {[n] | n ∈ N0}.
For n ∈ N, k ∈ [0, n], we let δk : [n − 1] → [n] be the injection that omits k, and for
n ∈ N0, k ∈ [0, n], we let σk : [n + 1] → [n] be the surjection that repeats k.

The category of simplicial objects in a given category C is defined to be the func-
tor category sC := (((∆op, C))). The objects resp. morphisms of sC are called simplicial
objects in C resp. simplicial morphisms in C.

Given a simplicial object X in a category C, the images of δk resp. σk under
X are denoted by dk = dX

k := Xδk , called the k-th face, for k ∈ [0, n], n ∈ N, resp.
sk = sX

k := Xσk , called the k-th degeneracy, for k ∈ [0, n], n ∈ N0. For the simplicial
identities between the faces and degeneracies in our composition order, see for exam-
ple [29, prop. (1.14)]. We use the ascending and descending interval notation for
composites of faces resp. degeneracies, that is, we write d⌊l,k⌋ := dldl−1 . . . dk resp.
s⌈k,l⌉ := sksk+1 . . . sl.

Given an object X ∈ Ob C, we have the constant simplicial object Const X in C
with Constn X := X for n ∈ N0 and Constθ X := 1X for θ ∈ ∆([m], [n]), m,n ∈ N0.

A simplicial set resp. a simplicial map is a simplicial object resp. a simplicial
morphism in Set(U) for some Grothendieck universe U. A simplicial group resp. a
simplicial group homomorphism is a simplicial object resp. a simplicial morphism in
Grp(U) for some Grothendieck universe U.

2.2. The Moore complex of a simplicial group
We suppose given a simplicial group G. The Moore complex of G is the complex of

(possibly non-abelian) groups MG with entries MnG :=
⋂

k∈[1,n] Ker dk 6 Gn for n ∈
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N0 and differentials ∂ := d0|
Mn−1G

MnG for n ∈ N. In particular, M0G = G0. The boundary
group BnMG is a normal subgroup of Gn for all n ∈ N0.

2.3. Simplicial group actions
We suppose given a simplicial group G. A G-simplicial set consists of a simpli-

cial set X together with actions of Gn on Xn for n ∈ N0 such that (gnxn)Xθ =
(gnGθ)(xnXθ) for all gn ∈ Gn, xn ∈ Xn, θ ∈ ∆([m], [n]), where m,n ∈ N0. Given a
G-simplicial set X, we obtain an induced simplicial structure on the sets Xn/Gn =
{Gnxn | xn ∈ Xn} for n ∈ N0, and the resulting simplicial set is denoted by X/G.

An (abelian) G-simplicial module consists of a simplicial (abelian) group M toge-
ther with actions of Gn on Mn for n ∈ N0 such that (gnmn)Mθ = gnGθ (mnMθ) for
all θ ∈ ∆([m], [n]), where m,n ∈ N0.

2.4. Crossed modules
A crossed module consists of a group G, a (possibly non-abelian) G-module M

and a group homomorphism µ : M → G such that (gm)µ = g(mµ) and nµm = nm
for all m,n ∈ M , g ∈ G. Here, the action of the elements of G on G resp. of M on
M denote in each case the conjugation. We call G the group part, M the module part
and µ the structure morphism of the crossed module. (2) Given a crossed module V
with group part G, module part M and structure morphism µ, we write GpV := G,
MpV := M and µ = µV := µ. For a list of examples of crossed modules, we refer the
reader to [14, sec. 2].

We let V and W be crossed modules. A morphism of crossed modules from V to
W consists of group homomorphisms ϕ0 : GpV → GpW and ϕ1 : MpV → MpW
such that ϕ1µ

W = µV ϕ0 and such that (gm)ϕ1 = gϕ0(mϕ1) holds for all m ∈ MpV ,
g ∈ GpV . The group homomorphisms ϕ0 resp. ϕ1 are said to be the group part resp.
the module part of the morphism of crossed modules. Given a morphism of crossed
modules ϕ from V to W with group part ϕ0 and module part ϕ1, we write Gpϕ := ϕ0

and Mpϕ := ϕ1.
We let U be a Grothendieck universe. A crossed module V is said to be a U-crossed

module if GpV is a U-group and MpV is a U-G-module. The category of U-crossed
modules consisting of U-crossed modules and morphisms of U-crossed modules will be
denoted by CrMod = CrMod(U).

Notation. Given a crossed module V , the module part MpV acts on GpV by mg :=
(mµ)g resp. gm := g(mµ) for m ∈ MpV , g ∈ GpV . Using this, we get for example
mgn = m(gn) and gm = (gm)g for m,n ∈ MpV , g ∈ GpV , cf. [31, p. 5]. Also note
that (mg)n = m(gn) for m,n ∈ MpV , g ∈ GpV .

Given a set X and a map f : GpV → X, we usually write mf := mµf for m ∈
MpV . Similarly for maps GpV × GpV → X, etc.

Moreover, given crossed modules V and W and a morphism of crossed modules
ϕ : V → W , we may write mϕ and gϕ instead of m(Mpϕ) and g(Gpϕ). Using this,
we have (mg)ϕ = (mϕ)(gϕ) for m ∈ MpV , g ∈ GpV , cf. again [31, p. 5].

2In the literature, a G-module for a given group G is often called a G-group while an abelian G-
module is just a G-module. However, the module part of a crossed module is in general a non-abelian
module over the group part; this would be more complicated to phrase using the terms from the
literature.
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2.5. Truncation and coskeleton
We suppose given a simplicial group G. We define Trunc0 G := M0G/B0MG =

G0/B0MG, the group segment of G. Moreover, we define a crossed module Trunc1 G,
the crossed module segment of G, as follows. We let GpTrunc1 G := M0G = G0 and
MpTrunc1 G := M1G/B1MG. Further, we let (g1B1MG)µTrunc1 G := g1∂ = g1d0 for
g1 ∈ M1G and g0(g1B1MG) := g0s0g1B1MG for gi ∈ MiG, i ∈ [0, 1].

Next, we suppose given a crossed module V . We let Trunc0
1 V := Coker µ, the

group segment of V . Moreover, we define a simplicial group Cosk1 V , the coskeleton
simplicial group of V , as follows. Denoting the elements in (MpV )×n × GpV for n ∈
N0 by (mi, g)i∈⌊n−1,0⌋ := (mi)i∈⌊n−1,0⌋ ∪ (g), we equip these sets with a multiplication
by

(mi, g)i∈⌊n−1,0⌋(m
′
i, g

′)i∈⌊n−1,0⌋ := (mi
(
Q

k∈⌊i−1,0⌋ mk)gm′
i, gg′)i∈⌊n−1,0⌋

for mi,m
′
i ∈ MpV , where i ∈ ⌊n − 1, 0⌋, g, g′ ∈ GpV . The resulting group will be

denoted by MpV n⋊ GpV . For θ ∈ ∆([m], [n]), we define a group homomorphism
MpV θ⋊ GpV : MpV n⋊ GpV → MpV m⋊ GpV by

(mj , g)j∈⌊n−1,0⌋(MpV θ⋊ GpV )

:= (
∏

k∈⌊(i+1)θ−1,iθ⌋

mk, (
∏

k∈⌊0θ−1,0⌋

mk)g)i∈⌊m−1,0⌋.

The resulting simplicial group Cosk1 V := MpV ∗⋊ GpV is the coskeleton of V . (3)
Finally, we suppose given a group G. Then we define a simplicial group Cosk0 G :=

Const G, the coskeleton simplicial group of G. Moreover, we define a crossed module
Cosk1

0 G, the coskeleton crossed module of G by GpCosk0 G := G and MpCosk0 G :=
{1}.

All mentioned truncation and coskeleton constructions are functorial and the
resulting truncation functors are left adjoint to the resulting coskeleton functors. The
unit ε : idsGrp → Cosk0 ◦Trunc0 is given by gn(εG)n = gnd⌊n,1⌋B0MG for gn ∈ Gn,

n ∈ N0, G ∈ Ob sGrp, cf. [29, prop. (4.15)]. The unit ε : idsGrp → Cosk1 ◦Trunc1 ful-
fills g0(εG)0 = (g0) for g0 ∈ G0 and g1(εG)1 = (g1(g1d1s0)

−1B1MG, g1d1) for g1 ∈ G1,
G ∈ Ob sGrp, cf. for example [29, def. (6.11), def. (6.15), rem. (6.14), prop. (6.9),
th. (5.25)].

We have Trunc0 ◦Cosk0
∼= idGrp, Trunc1 ◦Cosk1

∼= idCrMod and Trunc0
1 ◦Cosk1

0
∼= idGrp, as well as Cosk0 = Cosk1 ◦Cosk1

0 and Trunc0 = Trunc0
1 ◦Trunc1.

sGrp CrMod

sGrp Grp

Trunc1

Cosk1

Trunc01Cosk1
0

Trunc0

Cosk0

3The category of crossed modules is equivalent to the category of (strict) categorical groups, cf. [6,
thm. 1]. The coskeleton functor from crossed modules to simplicial groups can be obtained via a nerve
functor from the category of categorical groups to the category of simplicial groups. Cf. [7, sec. 1]
and [29, ch. VI, §§1–2]. For another truncation-coskeleton-pair, cf. [2, exp. V, sec. 7.1] and [11,
sec. (0.7)].
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Given a group G, we have M(Cosk0 G) = (. . . −→ 1 −→ 1 −→ G), and given a

crossed module V , we have M(Cosk1 V ) = (. . . −→ 1 −→ MpV
µV

−−→ GpV ); cf. [29,
prop. (6.22)].

2.6. Homotopy groups
For a simplicial group G, we call πn(G) := HnMG the n-th homotopy group of G

for n ∈ N0. It is abelian for n ∈ N, and we have π0 = Trunc0.
The homotopy groups of a crossed module V are defined by π0(V ) := Coker µ =

GpV/ Im µ, π1(V ) := Kerµ and πn(V ) := {1} for n ∈ N0 \ {0, 1}. The first homotopy
group π1(V ) carries the structure of an abelian π0(V )-module [5, sec. 3.1, sec. 3.2],
where the action of π0(V ) on π1(V ) is induced by the action of GpV on MpV , that
is, for k ∈ π1(V ) and p ∈ π0(V ) we have pk = gk for any g ∈ GpV with g(Im µ) = p.

For a crossed module V , we have πn(V ) ∼= πn(Cosk1 V ) for all n ∈ N0, cf. for
example [29, ch. VI, §3]. Moreover, given a simplicial group G, we have πn(G) =
πn(Trunc1 G) for n ∈ {0, 1}. (4)

2.7. Semidirect product decomposition
We suppose given a simplicial group G. The group of n-simplices Gn, where n ∈ N0,

is isomorphic to an iterated semidirect product in terms of the entries MkG for
k ∈ [0, n] of the Moore complex MG. For example, we have G0 = M0G and G1

∼=
M1G⋊ M0G and G2

∼= (M2G⋊ M1G)⋊ (M1G⋊ M0G), where M0G acts on M1G via
g0g1 := g0s0g1 for gi ∈ MiG, i ∈ {0, 1}, M1G acts on M2G via g1g2 := g1s0g2 for gi ∈
MiG, i ∈ {1, 2} and M1G⋊ M0G acts on M2G⋊ M1G via

(g1,g0)(g2, h1) := ((g1s1)(g0s0s1)(g2(h1s0))
(g1s0)(g0s0s1)((h1s0)

−1), g1(g0s0)h1)

for gi, hi ∈ MiG, i ∈ [0, 2]. The isomorphisms are given by

ϕ1 : G1 → M1G⋊ M0G, g1 7→ (g1(g1d1s0)
−1, g1d1),

ϕ−1
1 : M1G⋊ M0G → G1, (g1, g0) 7→ g1(g0s0)

and

ϕ2 : G2 → (M2G⋊ M1G)⋊ (M1G⋊ M0G),

g2 7→ ((g2(g2d2s1)
−1(g2d2s0)(g2d1s0)

−1, (g2d1)(g2d2)
−1),

((g2d2)(g2d2d1s0)
−1, g2d2d1)),

ϕ−1
2 : (M2G⋊ M1G)⋊ (M1G⋊ M0G) → G2,

((g2, h1), (g1, g0)) 7→ g2(h1s0)(g1s1)(g0s0s1).

For more details, see [9] or [29, ch. IV, §2].

2.8. Cohomology of simplicial sets
We suppose given a simplicial set X and an abelian group A. The cochain complex

of X with coefficients in A is the complex of abelian groups ChsSet(X,A) with abelian
groups Chn

sSet(X,A) := Map(Xn, A) for n ∈ N0 and differentials defined by x(c∂) :=

4In particular, given a simplicial group G, we have πn(G) ∼= πn(Cosk1 Trunc1 G) for n ∈ {0, 1}.
This property fails for the truncation-coskeleton pair in [11, sec. (0.7)].
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∑

k∈[0,n+1](−1)k(xdk)c for x ∈ Xn+1, c ∈ Chn
sSet(X,A). We call Chn

sSet(X,A) the
n-th cochain group of X with coefficients in A. Moreover, we define the n-th cocy-
cle group Zn

sSet(X,A) := ZnChsSet(X,A), the n-th coboundary group Bn
sSet(X,A) :=

BnChsSet(X,A) and the n-th cohomology group Hn
sSet(X,A) := HnChsSet(X,A) =

Zn
sSet(X,A)/Bn

sSet(X,A) of X with coefficients in A (5). An element c ∈ Chn
sSet(X,A)

resp. z ∈ Zn
sSet(X,A) resp. b ∈ Bn

sSet(X,A) resp. h ∈ Hn
sSet(X,A) is said to be an n-

cochain resp. an n-cocycle resp. an n-coboundary resp. an n-cohomology class of X
with coefficients in A.

2.9. Cohomology of simplicial groups with coefficients in an abelian group

Cohomology of simplicial sets can be used to define cohomology of a simplicial
group G. This is done via the Kan classifying simplicial set WG of G, see Kan [21,
def. 10.3], which is given by WnG := ×j∈⌊n−1,0⌋ Gj for all n ∈ N0 and

(gj)j∈⌊n−1,0⌋(WθG) := (
∏

j∈⌊(i+1)θ−1,iθ⌋

gjGθ|
[j]

[i]

)i∈⌊m−1,0⌋

for (gj)j∈⌊n−1,0⌋ ∈ WnG and θ ∈ ∆([m], [n]), where m,n ∈ N0, cf. for example [29,
rem. (4.19)]. In particular, the faces are given by

(gj)j∈⌊n−1,0⌋d
WG
k =



















(gj+1d
G
0 )j∈⌊n−2,0⌋ for k = 0,

(gj+1d
G
k )j∈⌊n−2,k⌋ ∪ ((gkdG

k )gk−1)

∪(gj)j∈⌊k−2,0⌋ for k ∈ [1, n − 1],

(gj)j∈⌊n−2,0⌋ for k = n,

for (gj)j∈⌊n−1,0⌋ ∈ WnG, n ∈ N. The cochain complex of G with coefficients in an

abelian group A is defined to be Ch(G,A) = ChsGrp(G,A) := ChsSet(WG,A). More-

over, we define the n-th cocycle group Zn(G,A) = Zn
sGrp(G,A) := Zn

sSet(WG,A), etc.,
for n ∈ N0. The differentials of Ch(G,A) are given by

(gj)j∈⌊n,0⌋(c∂) = (gj+1d0)j∈⌊n−1,0⌋c

+
∑

k∈[1,n]

(−1)k((gj+1dk)j∈⌊n−1,k⌋ ∪ ((gkdk)gk−1) ∪ (gj)j∈⌊k−2,0⌋)c

+ (−1)n+1(gj)j∈⌊n−1,0⌋c

for (gj)j∈⌊n,0⌋ ∈ Wn+1G, c ∈ Chn(G,A), n ∈ N0.

Instead of WG, one can also use Diag NG, the diagonal simplicial set of the nerve
of G, see for example [15, app. Q.3], [19, p. 41] and [29]. The simplicial sets Diag NG
and WG are simplicially homotopy equivalent [30, thm.], cf. also [10, thm. 1.1],
and thus Hn(G,A) = Hn

sSet(WG,A) ∼= Hn
sSet(Diag NG,A) for n ∈ N0, where A is an

abelian group.

5In the literature, Zn

sSet(X, A) resp. Bn

sSet(X, A) resp. Hn

sSet(X, A) are often defined by an iso-
morphic complex of abelian groups (cf. for example [29, def. (2.18)]) and are just denoted Zn(X, A)
resp. Bn(X, A) resp. Hn(X, A).
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2.10. Cohomology of simplicial groups with coefficients in an abelian
module

To generalise cohomology of a simplicial group G with coefficients in an abelian
group A to cohomology with coefficients in an abelian π0(G)-module M , we have to
introduce a further notion on simplicial sets: There is a shift functor Sh: ∆ → ∆ given
by Sh [n] := [n + 1] as well as i(Sh θ) := iθ for i ∈ [0,m] and (m + 1)(Sh θ) := n + 1,
for θ ∈ ∆([m], [n]), m,n ∈ N0. Given a simplicial set X, the path simplicial set of X
is the simplicial set PX := X ◦ (Sh)op, which is simplicially homotopy equivalent to
Const X0 [32, 8.3.14]. The faces dX

n+1 : PnX → Xn for n ∈ N0 form a simplicial map
PX → X.

Now we follow Quillen [27, ch. II, p. 6.16] and consider for a given simplicial group
G the Kan resolving simplicial set WG := PWG. The simplicial group G acts on WG
by g(gj)j∈⌊n,0⌋ := (ggn) ∪ (gj)j∈⌊n−1,0⌋ for g ∈ Gn, (gj)j∈⌊n,0⌋ ∈ WnG, n ∈ N0, and

the simplicial map WG → WG given by WnG → WnG, (gj)j∈⌊n,0⌋ 7→ (gj)j∈⌊n−1,0⌋

induces a simplicial bijection WG/G → WG.

We suppose given an abelian π0(G)-module M . Then ConstM is a simplicial
abelian π0(G)-module, and the unit ε : idsGrp → Cosk0 ◦π0 of the adjunction π0 =
Trunc0 ⊣ Cosk0 turns ConstM into an abelian G-simplicial module via gnxn :=
(gn(εG)n)xn = (gnd⌊n,1⌋B0MG)xn for gn ∈ Gn, xn ∈ Mn, n ∈ N0. Since εG is a sim-
plicial group homomorphism, we have gnGθ(εG)m = gn(εG)n for all gn ∈ Gn, θ ∈

∆([m], [n]), m,n ∈ N0.

We consider the subcomplex Chhom(G,M) = ChsGrp,hom(G,M) of the cochain
complex ChsSet(WG,M) with entries Chn

hom(G,M) := MapGn
(WnG,M) and differ-

entials given by

(gj)j∈⌊n+1,0⌋(c∂) :=
∑

k∈[0,n+1]

(−1)k((gj)j∈⌊n+1,0⌋dk)c

for (gj)j∈⌊n+1,0⌋ ∈ Wn+1G, c ∈ Chn
hom(G,M), n ∈ N0, called the homogeneous co-

chain complex of G with coefficients in M . We want to introduce an isomorphic
variant of Chhom(G,M) using transport of structure. We have

(gj)j∈⌊n+1,0⌋(c∂) = gn+1d⌊n+1,1⌋B0MG ·
(

((1) ∪ (gj+1d0)j∈⌊n−1,0⌋)c

+
∑

k∈[1,n]

(−1)k((1) ∪ (gj+1dk)j∈⌊n−1,k⌋ ∪ ((gkdk)gk−1) ∪ (gj)j∈⌊k−2,0⌋)c

+ (−1)n+1(gnd⌊n,1⌋B0MG) · ((1) ∪ (gj)j∈⌊n−1,0⌋)c
)

for (gj)j∈⌊n+1,0⌋ ∈ Wn+1G, c ∈ Chn
hom(G,M), n ∈ N0. Thus Chhom(G,M) is isomor-

phic to a complex Ch(G,M), called the cochain complex of G with coefficients in
the abelian π0(G)-module M , with entries Chn(G,M) := Map(×j∈⌊n−1,0⌋ Gj ,M) =

Chn
sSet(WG,M) and differentials given by

(gj)j∈⌊n,0⌋(c∂) = (gj+1d0)j∈⌊n−1,0⌋c

+
∑

k∈[1,n]

(−1)k((gj+1dk)j∈⌊n−1,k⌋ ∪ ((gkdk)gk−1) ∪ (gj)j∈⌊k−2,0⌋)c

+ (−1)n+1(gnd⌊n,1⌋B0MG) · (gj)j∈⌊n−1,0⌋c
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for (gj)j∈⌊n,0⌋ ∈ Wn+1G, c ∈ Chn(G,M), n ∈ N0, and where an isomorphism
ϕ : Chhom(G,M) → Ch(G,M) is given by (gj)j∈⌊n−1,0⌋(cϕ

n) = ((1) ∪ (gj)j∈⌊n−1,0⌋)c

for (gj)j∈⌊n−1,0⌋ ∈ WnG, c ∈ Chn
hom(G,M), n ∈ N0. Moreover, we set Zn

sGrp(G,M) =
Zn(G,M) := Zn(Ch(G,M)), etc., and call Chn(G,M) the n-th cochain group of G
with coefficients in M , etc. We see that this definition coincides with Ch(G,A) for
an abelian group A considered as an abelian π0(G)-module with the trivial action of
π0(G).

Isomorphic substitution of G with its semidirect product decomposition, cf. sec-
tion 2.7, leads to an isomorphic substitution of the cochain complex Ch(G,M) to
the analysed cochain complex Chan(G,M) = ChsGrp,an(G,M). Similarly, isomorphic
substitution yields Zn

an(G,M) = Zn
sGrp,an(G,M), etc., and we call Chn

an(G,M) the
n-th analysed cochain group of G with coefficients in M , etc. See 3.1 for formulas in
low dimensions.

Altogether, we have Chhom(G,M) ∼= Ch(G,M) ∼= Chan(G,M).

2.11. Cohomology of groups and cohomology of crossed modules
Since groups and crossed modules can be considered as truncated simplicial groups,

the cohomology groups of these algebraic objects is defined via cohomology of sim-
plicial groups.

Given a group G and an abelian G-module M , we define the cochain complex
Ch(G,M) = ChGrp(G,M) := ChsGrp(Cosk0 G,M) of G with coefficients in M . Simi-
larly, we set Zn(G,M) = Zn

Grp(G,M) := Zn
sGrp(Cosk0 G,M) for n ∈ N0, etc., and call

Chn(G,M) the n-th cochain group of G with coefficients in M , etc. Since W Cosk0 G =
NG, where N is the nerve functor for groups, this definition of cohomology coincides
with the standard one via BG := NG and EG := PBG.

Given a crossed module V and an abelian π0(V )-module M , we define the cochain
complex Ch(V,M) = ChCrMod(V,M) := ChsGrp(Cosk1 V,M) of V with coefficients
in M . Similarly, we set Zn(V,M) = Zn

CrMod(V,M) := Zn
sGrp(Cosk1 V,M) for n ∈ N0,

etc., and call Chn(V,M) the n-th cochain group of V with coefficients in M , etc.

Grp CrMod sGrp sSet C(AbGrp) AbGrp
Cosk1

0

Cosk0

Cosk1 W

Diag ◦N

Ch
sSet

(−, M) Hn

The semidirect product decomposition of Cosk1 V is – up to simplified notation
– already built into the definition of Cosk1 V . So the cochain complex and the anal-
ysed cochain complex of Cosk1 V are essentially equal. Therefore there is no need to
explicitly introduce analysed cochains for crossed modules.

Ellis defined in [14, sec. 3] the cohomology of a crossed module V with coefficients
in an abelian group A via the composition Diag ◦N, where N denotes the nerve
functor for simplicial groups and Diag denotes the diagonal simplicial set functor for
bisimplicial sets. In this article, we will make use of the Kan classifying simplicial
set functor W instead of Diag ◦N since W provides smaller objects, which is more
convenient for direct calculations. For example, a 2-cocycle in Z2(Diag N Cosk1 V,A) is
a map (MpV )×4 × (GpV )×2 → A, while a 2-cocycle in Z2(V,A) = Z2(W Cosk1 V,A)
is a map MpV × (GpV )×2 → A.
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2.12. Pointed cochains

We let G be a simplicial group and M be an abelian π0(G)-module. As we have seen
above, an n-cochain of G with coefficients in M is just a map c : WnG → M , where n ∈
N0. Since the sets WnG = ×j∈⌊n−1,0⌋ Gj carry structures as direct products of groups
for n ∈ N0, they are pointed in a natural way with 1 = (1)⌊n−1,0⌋ as distinguished
points. Moreover, the module M is in particular an abelian group and therefore
pointed with 0 as distinguished point. An n-cochain c ∈ Chn(G,M) is said to be
pointed if it is a pointed map, that is, if 1c = 0. The subset of Chn(G,M) consisting
of all pointed n-cochains of G with coefficients in M will be denoted by Chn

pt(G,M) :=
{c ∈ Chn(G,M) | c is pointed}. We set Zn

pt(G,M) := Chn
pt(G,M) ∩ Zn(G,M) for the

set of pointed n-cocycles, Bn
pt(G,M) := Chn

pt(G,M) ∩ Bn(G,M) for the set of pointed
n-coboundaries and Hn

pt(G,M) := Zn
pt(G,M)/Bn

pt(G,M) for the set of pointed n-
cohomology classes of G with coefficients in M .

We suppose given an odd natural number n ∈ N. Every n-cocycle z ∈ Zn(G,M)
is pointed, and hence we have Zn

pt(G,M) = Zn(G,M), Bn
pt(G,M) = Bn(G,M) and

Hn
pt(G,M) = Hn(G,M). Moreover, we have Bn+1

pt (G,M) = (Chn
pt(G,M))∂.

So we suppose given an even natural number n ∈ N and an n-cocycle z ∈ Zn(G,M).
The pointisation of z is given by zpt := z − pz∂, where the pointiser of z is defined to
be the (n − 1)-cochain pz ∈ Chn−1(G,M) given by (gj)j∈⌊n−2,0⌋pz := (1)j∈⌊n−1,0⌋z
for gj ∈ Gj , j ∈ ⌊n − 2, 0⌋. We obtain

(gj)j∈⌊n−1,0⌋z
pt = (gj)j∈⌊n−1,0⌋z − gn−1d⌊n−1,1⌋B0MG · (1)j∈⌊n−1,0⌋z

for gj ∈ Gj , j ∈ ⌊n − 1, 0⌋. Thus the pointisation zpt of every z ∈ Zn(G,M) is pointed.
We have Zn

pt(G,M) = {z ∈ Zn(G,M) | zpt = z} and the embedding Zn
pt(G,M) →

Zn(G,M) and the pointisation homomorphism Zn(G,M) → Zn
pt(G,M), z 7→ zpt in-

duce mutually inverse isomorphisms between Hn
pt(G,M) and Hn(G,M).

Altogether, we have Hn(G,M) ∼= Hn
pt(G,M) for all n ∈ N.

Given a crossed module V and an abelian π0(V )-module M , we write Chpt(V,M)
:= Chpt(Cosk1 V,M), etc. Similarly, given a group G and an abelian G-module M ,
we write Chpt(G,M) := Chpt(Cosk0 G,M), etc.

2.13. Crossed module extensions

We suppose given a group Π0 and an abelian Π0-module Π1, which will be written
multiplicatively.

A crossed module extension of Π0 with Π1 consists of a crossed module E together
with a group monomorphism ι : Π1 → MpE and a group epimorphism π : GpE → Π0

such that

Π1
ι

−→ MpE
µ

−→ GpE
π

−→ Π0

is an exact sequence of groups and such that the induced action of Π0 on Π1 caused by
the action of the crossed module E coincides with the a priori given action of Π0 on Π1,
that is, such that g(kι) = (gπk)ι for g ∈ GpE and k ∈ Π1. The group homomorphisms
ι resp. π are said to be the canonical monomorphism resp. the canonical epimorphism
of the crossed module extension E. Given a crossed module extension E of Π0 with Π1

with canonical monomorphism ι and canonical epimorphism π, we write ι = ιE := ι
and π = πE := π.
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We suppose given a Grothendieck universe U. A crossed module extension is said
to be a U-crossed module extension if its underlying crossed module is a U-crossed
module. The set of crossed module extensions in U of G with M will be denoted by
Ext2(G,M) = Ext2U(G,M).

By definition, we have π0(E) ∼= Π0 and π1(E) ∼= Π1 for every crossed module exten-
sion E of Π0 with Π1. Conversely, given an arbitrary crossed module V , we have the
crossed module extension

π1(V )
inc
−−→ MpV

µ
−→ GpV

quo
−−→ π0(V ),

again denoted by V . That is, the canonical monomorphism of V is ιV = incπ1(V ), and
the canonical epimorphism is πV = quoπ0(V ).

We let E and Ẽ be crossed module extensions of Π0 with Π1. An extension
equivalence from E to Ẽ is a morphism of crossed modules ϕ : E → Ẽ such that

ιẼ = ιE(Mpϕ) and πE = (Gpϕ)πẼ .

Π1 MpE GpE Π0

Π1 Mp Ẽ Gp Ẽ Π0

ιE µE

Mp ϕ

πE

Gp ϕ

ιẼ µẼ
πẼ

We suppose given a Grothendieck universe U and we let ≈ = ≈U be the equivalence
relation on Ext2U(Π0,Π1) generated by the following relation: Given extensions E, Ẽ ∈
Ext2U(Π0,Π1), the extension E is in relation to the extension Ẽ if there exists an
extension equivalence E → Ẽ. Given U-crossed module extensions E and Ẽ with
E ≈ Ẽ, we say that E and Ẽ are extension equivalent. The set of equivalence classes
of U-crossed module extensions of Π0 with Π1 with respect to ≈U is denoted by
Ext2(Π0,Π1) = Ext2U(Π0,Π1) := Ext2U(Π0,Π1)/≈U, and an element of Ext2(Π0,Π1)
is said to be a U-crossed module extension class of Π0 with Π1.

The following theorem appeared in various guises, see MacLane [25] and Rat-

cliffe [28, th. 9.4]. It has been generalised to crossed complexes by Holt [17,
th. 4.5] and, independently, Huebschmann [18, p. 310]. Moreover, there is a version
for n-cat groups given by Loday [23, th. 4.2].

Theorem. There is a bijection between the set of crossed module extension classes
Ext2U(Π0,Π1) and the third cohomology group H3(Π0,Π1), where U is supposed to be
a Grothendieck universe containing an infinite set.

This theorem can also be shown by arguments due to Eilenberg and MacLane,
see [13, sec. 7, sec. 9] and [24, sec. 7]. A detailed proof following these arguments, using
the language of crossed modules, can be found in the manuscript [31], where a bi-
jection Ext2U(Π0,Π1) → H3(Π0,Π1), [E]≈U

7→ z3
EB3(Π0,Π1) is explicitly constructed.

This construction is used throughout section 4. The inverse bijection z3B3(Π0,Π1) 7→
[E(z3)]≈U

is used in corollary 4.10. We give a sketch of these constructions.
Given pointed sets Xi for i ∈ I and Y , where I is supposed to be an index set,

let us call a map f : ×i∈I Xi → Y componentwise pointed if (xi)i∈If = ∗ for all
(xi)i∈I ∈×i∈I Xi with xi = ∗ for some i ∈ I. So in particular, interpreting groups
as pointed sets in the usual way, a 3-cochain c3 ∈ Ch3(Π0,Π1) is componentwise
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pointed if it fulfills (q, p, 1)c3 = (q, 1, p)c3 = (1, q, p)c3 = 1 for all p, q ∈ Π0. The set
of componentwise pointed 3-cochains of Π0 with coefficients in Π1 will be denoted
by Ch3

cpt(Π0,Π1), the set of componentwise pointed 3-cocycles by Z3
cpt(Π0,Π1) :=

Z3(Π0,Π1) ∩ Ch3
cpt(Π0,Π1), the set of componentwise pointed 3-coboundaries by

B3
cpt(Π0,Π1) := B3(Π0,Π1) ∩ Ch3

cpt(Π0,Π1) and the set of componentwise pointed
3-cohomology classes by H3

cpt(Π0,Π1) := Z3
cpt(Π0,Π1)/B3

cpt(Π0,Π1). With these nota-
tions, we have H3(Π0,Π1) ∼= H3

cpt(Π0,Π1). Analogously in other dimensions, cf. for
example [31, cor. (3.7)].

We suppose given a crossed module extension E of Π0 with Π1. First, we choose a
lift of idΠ0

along the underlying pointed map of π, that is, a pointed map Z1 : Π0 →
GpE with Z1π = idΠ0

. We obtain the componentwise pointed map

z2 = z2
E,Z1 : Π0 × Π0 → Im µ, (q, p) 7→ (qZ1)(pZ1)((qp)Z1)−1

fulfilling the non-abelian 2-cocycle condition (r, q)z2(rq, p)z2 = rZ1

((q, p)z2)(r, qp)z2

for p, q, r ∈ Π0. Next, we choose a componentwise pointed lift of z2 along µ|Im µ , that
is, a componentwise pointed map Z2 : Π0 × Π0 → MpE with Z2(µ|Im µ) = z2. This
leads to the map

z3 = z3
E,(Z2,Z1) : Π0 × Π0 × Π0 → Π1,

(r, q, p) 7→
(

(r, q)Z2(rq, p)Z2((r, qp)Z2)−1(rZ1

((q, p)Z2))−1
)

(ι|Im ι)−1,

which is shown to be a componentwise pointed 3-cocycle of Π0 with coefficients in
Π1, that is, an element of Z3

cpt(Π0,Π1). One shows that the cohomology class of z3

is independent from the choices of Z1, Z2 and the representative E in its extension
class.

A pair (Z2, Z1) of componentwise pointed maps Z1 : Π0 → GpE and Z2 : Π0 × Π0

→ MpE such that Z1π = idΠ0
and Z2(µ|Im µ) = z2 is called a lifting system for

E. Moreover, a pair (s1, s0) of pointed maps s0 : Π0 → GpE and s1 : Im µ → MpE
such that s0π = idΠ0

and s1(µ|Im µ) = idIm µ is said to be a section system for E.
Every section system (s1, s0) for E provides a lifting system (Z2, Z1) for E by setting
Z1 := s0 and Z2 := z2

E,s0s1, called the lifting system coming from (s1, s0). The 3-

cocycle z3 ∈ Z3
cpt(Π0,Π1) constructed as indicated above will be called the 3-cocycle

of E with respect to (Z2, Z1). If (Z2, Z1) comes from a section system (s1, s0), we
also write z3 = z3

E,(s1,s0) := z3
E,(Z2,Z1) and call this the 3-cocycle of E with respect to

(s1, s0). Finally, we let cl(E) := z3B3
cpt(Π0,Π1).

Conversely, for a componentwise pointed 3-cocycle z3 ∈ Z3
cpt(Π0,Π1), the standard

extension of Π0 with Π1 with respect to z3 is constructed as follows.
We let F be a free group on the underlying pointed set of Π0 with basis

s0 = Z1 : Π0 → F , that is, F is a free group on the set Π0 \ {1} and s0 maps
x ∈ Π0 \ {1} to the corresponding generator xs0 ∈ F , and 1s0 = 1. We let π : F → Π0

be induced by idΠ0
: Π0 → Π0. The basis s0 is a section of the underlying pointed

map of π. We let z2 : Π0 × Π0 → Ker π, (q, p) 7→ (qs0)(ps0)((qp)s0)−1. We let ι : Π1 →
Π1 × Ker π,m 7→ (m, 1) and µ : Π0 × Ker π → F, (m, f) 7→ f . We let s1 : Kerπ →
Π0 × Ker π, f 7→ (1, f) and we let Z2 : Π0 × Π0 → Π1 × Ker π be given by Z2 := z2s1.
The direct product Π1 × Ker π is generated by Im ι ∪ Im Z2 and carries the structure
of an F -module uniquely determined on this set of generators by rZ1

(kι) := (rk)ι for
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k ∈ Π1, r ∈ Π0, and rZ1

((q, p)Z2) := ((r, q, p)z3ι)−1((r, q)Z2)((rq, p)Z2)((r, qp)Z2)−1

for p, q, r ∈ G.

These data define the standard extension E(z3) and the standard section system
(s1z3 , s0z3) for E(z3): The group part of E(z3) is given by GpE(z3) := F , the mod-
ule part is given by MpE(z3) := M × Ker π and the structure morphism is given

by µE(z3) := µ. We have the canonical monomorphism ιE(z3) := ι and the canonical
epimorphism πE(z3) := π. The section system (s1z3 , s0z3) is defined by s0z3 := s0 and
s1z3 := s1.

By construction, the 3-cocycle of E(z3) with respect to the section system (s1z3 , s0z3)
is z3. In particular, cl(E(z3)) = z3B3

cpt(G,M).

3. Low dimensional cohomology of a simplicial group

In this section, we will show that the zeroth cohomology group of a simplicial group
depends only on the coefficient module, that the first cohomology group depends only
on the group segment and that the second cohomology group depends only on the
crossed module segment.

Our results shall be achieved by means of calculations with analysed cocycles and
coboundaries in low dimensions. Therefore, we restate their definitions explicitly.

Working base 3.1.

(a) We suppose given a simplicial group G and an abelian π0(G)-module M . The
analysed cochain complex Chan(G,M) starts with the following entries. (6)

Ch0
an(G,M) = Map({1},M),

Ch1
an(G,M) = Map(M0G,M),

Ch2
an(G,M) = Map(M1G × M0G × M0G,M),

Ch3
an(G,M) = Map(M2G × M1G × M1G × M0G

× M1G × M0G × M0G,M).

The differentials are given by

(g0)(c∂) = 1c − g0B0MG · 1c

for g0 ∈ M0G, c ∈ Ch0
an(G,M),

(g1, h0, g0)(c∂) = (g1h0)c − (h0g0)c + h0B0MG · (g0)c

for g0, h0 ∈ M0G, g1 ∈ M1G, c ∈ Ch1
an(G,M), and

(g2, k1, h1, k0, g1, h0, g0)(c∂)

= ((g2∂)k1, (h1∂)k0, (g1∂)h0)c − (k1h1, k0, h0g0)c + (h1
k0s0g1, k0h0, g0)c

− k0B0MG · (g1, h0, g0)c

for g0, h0, k0 ∈ M0G, g1, h1, k1 ∈ M1G, g2 ∈ M2G, c ∈ Ch2
an(G,M).

6To simplify notation, we identify (M1G × M0G) × (M0G) with M1G × M0G × M0G, etc.
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(b) We suppose given a crossed module V and an abelian π0(V )-module M . The
cochain complex Ch(V,M) starts with the following entries.

Ch0(V,M) = Map({1},M),

Ch1(V,M) = Map(GpV,M),

Ch2(V,M) = Map(MpV × GpV × GpV,M),

Ch3(V,M) = Map(MpV × MpV × GpV × MpV × GpV × GpV,M).

The differentials are given by

(g)(c∂) = 1c − g(Im µ) · 1c

for g ∈ GpV , c ∈ Ch0(V,M),

(m,h, g)(c∂) = (mh)c − (hg)c + h(Im µ) · (g)c

for g, h ∈ GpV , m ∈ MpV , c ∈ Ch1(V,M), and

(p, n, k,m, h, g)(c∂)

= (p, nk,mh)c − (pn, k, hg)c + (n km, kh, g)c − k(Im µ) · (m,h, g)c

for g, h, k ∈ GpV , m,n, p ∈ MpV , c ∈ Ch2(V,M).

Proof.

(a) We show how the differential ∂ : Ch2
an(G,M) → Ch3

an(G,M) of the analysed
cochain complex is computed using transport of structure, the easier lower
dimensional cases are left to the reader.
The corresponding entries of the cochain complex are Ch2(G,M) =
Map(G1 × G0,M) and Ch3(G,M) = Map(G2 × G1 × G0,M). Now the semi-
direct product decompositions of G0, G1 and G2 are given by the isomorphisms

ϕ0 : G0 → M0G, g0 7→ g0,

ϕ−1
0 : M0G → G0, g0 7→ g0,

ϕ1 : G1 → M1G⋊ M0G, g1 7→ (g1(g1d1s0)
−1, g1d1),

ϕ−1
1 : M1G⋊ M0G → G1, (g1, g0) 7→ g1(g0s0),

ϕ2 : G2 → (M2G⋊ M1G)⋊ (M1G⋊ M0G),

g2 7→ ((g2(g2d2s1)
−1(g2d2s0)(g2d1s0)

−1, (g2d1)(g2d2)
−1),

((g2d2)(g2d2d1s0)
−1, g2d2d1)),

ϕ−1
2 : (M2G⋊ M1G)⋊ (M1G⋊ M0G) → G2,

((g2, h1), (g1, g0)) 7→ g2(h1s0)(g1s1)(g0s0s1).

Moreover, the image c′∂ ∈ Ch3(G,M) of a 2-cochain c′ ∈ Ch2(G,M) is defined
by

(g2, g1, g0)(c
′∂) = (g2d0, g1d0)c

′ − (g2d1, (g1d1)g0)c
′ + ((g2d2)g1, g0)c

′

− (g2d2d1B0MG)(g1, g0)c
′.
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Hence we obtain

Ch2
an(G,M) = Map((M1G × M0G) × M0G,M),

Ch3
an(G,M) = Map((M2G × M1G × M1G × M0G)

× (M1G × M0G) × M0G,M),

and, using the isomorphisms ϕi for i ∈ {0, 1, 2}, the image c∂ ∈ Ch3
an(G,M) of

an analysed 2-cochain c ∈ Ch2
an(G,M) is given by

c∂ = (ϕ−1
2 × ϕ−1

1 × ϕ−1
0 )(((ϕ1 × ϕ0)c)∂),

that is, we have

((g2, k1, h1, k0), (g1, h0), g0)(c∂)

= ((g2, k1, h1, k0)ϕ
−1
2 , (g1, h0)ϕ

−1
1 , g0ϕ

−1
0 )(((ϕ1 × ϕ0)c)∂)

= (g2(k1s0)(h1s1)(k0s0s1), g1(h0s0), g0)(((ϕ1 × ϕ0)c)∂)

= ((g2(k1s0)(h1s1)(k0s0s1))d0, (g1(h0s0))d0)((ϕ1 × ϕ0)c)

− ((g2(k1s0)(h1s1)(k0s0s1))d1, ((g1(h0s0))d1)g0)((ϕ1 × ϕ0)c)

+ (((g2(k1s0)(h1s1)(k0s0s1))d2)(g1(h0s0)), g0)((ϕ1 × ϕ0)c)

− (g2(k1s0)(h1s1)(k0s0s1))d2d1B0MG · (g1(h0s0), g0)((ϕ1 × ϕ0)c)

= (((g2∂)k1(h1∂s0)(k0s0))ϕ1, ((g1∂)h0)ϕ0)c

− ((k1h1(k0s0))ϕ1, (h0g0)ϕ0)c + ((h1(k0s0)g1(h0s0))ϕ1, g0ϕ0)c

− k0B0MG · ((g1(h0s0))ϕ1, g0ϕ0)c

= (((g2∂)k1(h1∂s0)(k0s0)(k0s0)
−1(h1∂s0)

−1, (h1∂)k0), (g1∂)h0)c

− ((k1h1(k0s0)(k0s0)
−1, k0), h0g0)c

+ ((h1(k0s0)g1(h0s0)(h0s0)
−1(k0s0)

−1, k0h0), g0)c

− k0B0MG · ((g1(h0s0)(h0s0)
−1, h0), g0)c

= (((g2∂)k1, (h1∂)k0), g1h0)c − (((k1∂)h1, k0), h0g0)c

+ ((h1
k0g1, k0h0), g0)c − k0B0MG · ((g1, h0), g0)c

for g0, h0, k0 ∈ M0G, g1, h1, k1 ∈ M1G, g2 ∈ M2G.

(b) This follows from (a) and the definition of crossed module cohomology via Cosk1,
cf. section 2.11.

We immediately obtain the following result about the zeroth cohomology group,
which states that it only depends on the module of coefficients (and therefore implic-
itly on the zeroth homotopy group by our choice of coefficients).

Proposition 3.2. Given a simplicial group G and an abelian π0(G)-module M , we
have

H0(G,M) ∼= H0(π0(G),M) ∼= {m ∈ M | pm = m for all p ∈ π0(G)}.

Corollary 3.3. Given a crossed module V and an abelian π0(V )-module M , we have

H0(V,M) ∼= H0(π0(V ),M) ∼= {m ∈ M | pm = m for all p ∈ π0(V )}.
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We suppose given a simplicial group G, an abelian group A and n ∈ {0, 1}. In
propositions 3.5 and 3.13, we will show that Hn+1(G,A) ∼= Hn+1(Truncn G,A). Using
homotopy theory of topological spaces, this can be seen as follows.

We consider the unit component εG : G → Coskn Truncn G of the adjunction
Truncn ⊣ Coskn and claim that πkεG is an isomorphism for k ∈ [0, n], cf. section 2.5.
If n = 0, one reads off that Trunc0 εG is an isomorphism and hence π0εG is an
isomorphism since π0 = Trunc0. If n = 1, one reads off that Gp(Trunc1 εG) and
Mp(Trunc1 εG) are isomorphisms, hence Trunc1 εG is an isomorphism and thus
πkεG = πk(Trunc1 εG) are isomorphisms for k ∈ [0, 1], cf. [29, prop. (6.25)].

The canonical simplicial map WG → WG is a Kan fibration with fiber G, and WG
is contractible, see [16, ch. V, lem. 4.1, lem. 4.6]. Analogously for Coskn Truncn G,
so the induced long exact homotopy sequence [22, ch. VII, 4.1, 4.2, 5.3] shows that
πk(WεG) are isomorphisms for k ∈ [0, n + 1]. It follows that πk(|WεG|) are isomor-
phisms for k ∈ [0, n + 1], see [16, ch. I, prop. 11.1] and [22, ch. VII, 10.9]. The
Whitehead theorem [3, ch. VII, th. 11.2 I(b)] provides isomorphisms Hk(|WεG|) for
k ∈ [0, n + 1]. The universal coefficient theorem [3, ch. V, cor. 7.2] yields isomor-
phisms Hk(|WεG|, A) for k ∈ [0, n + 1]. Finally, Hk(WεG, A) are isomorphisms for
k ∈ [0, n + 1] by [20, th. 6.3]. In particular, one obtains Hn+1(G,A) ∼=
Hn+1(Coskn Truncn G,A) = Hn+1(Truncn G,A), as desired.

However, we will not make use of these topological arguments. Following the overall
intention of this article, we will give direct algebraic proofs of these results. Moreover,
we will use proposition 3.11(b) several times in section 4, in particular in the proofs
of proposition 4.4 and proposition 4.7.

Proposition 3.4. We suppose given a simplicial group G and an abelian π0(G)-
module M . The first analysed cocycle group Z1

an(G,M) is the kernel of

incZ1(M0G,M)Ch1(∂MG,M) : Z1(M0G,M) → Ch1(M1G,M),

that is, we have

Z1
an(G,M) = {z0 ∈ Z1(M0G,M) | z0|B0MG = 0}.

Proof. For every element z ∈ Z1
an(G,M), we have

0 = (1, h0, g0)(z∂Chan(G,M)) = (h0)z − (h0g0)z + h0B0MG · (g0)z

= (h0, g0)(z∂Ch(M0G,M))

for all g0, h0 ∈ M0G as well as

0 = (g1, 1, 1)(z∂Chan(G,M)) = (g1∂)z

for all g1 ∈ M1G, that is, Z1
an(G,M) ⊆ Z1(M0G,M) and z|B0MG = 0. Conversely,

given a 1-cocycle z0 ∈ Z1(M0G,M) with z0|B0MG = 0, it follows that

(g1, h0, g0)(z0∂
Chan(G,M)) = ((g1∂)h0)z0 − (h0g0)z0 + h0B0MG · (g0)z0

= (g1)z0 + (g1∂)B0MG · (h0)z0 − (h0g0)z0 + h0B0MG · (g0)z0

= (h0)z0 − (h0g0)z0 + h0B0MG · (g0)z0 = (h0, g0)(z0∂
Ch(M0G,M)) = 0

for g1 ∈ M1G, g0, h0 ∈ M0G, that is, z0 ∈ Z1
an(G,M). Altogether, we have

Z1
an(G,M) = {z0 ∈ Z1(M0G,M) | z0|B0MG = 0}.
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Recall that Ch(Trunc0 G,M) = Chan(Cosk0 Trunc0 G,M) for every simplicial
group G.

Proposition 3.5. Given a simplicial group G and an abelian π0(G)-module M , the
unit component εG : G → Cosk0 Trunc0 G of the adjunction Trunc0 ⊣ Cosk0 induces
an isomorphism

Z1
an(εG,M) : Z1(Trunc0 G,M) → Z1

an(G,M),

which in turn induces isomorphisms B1
an(εG,M) and H1

an(εG,M). In particular, we
have

H1(G,M) ∼= H1(Trunc0 G,M).

Proof. We let π : M0G → M0G/B0MG = Trunc0 G denote the canonical epi-
morphism, cf. section 2.5. The induced group homomorphism Z1

an(εG,M) is given
by (g0)(z

′Z1
an(εG,M)) = (g0π)z′ for g0 ∈ M0G, z′ ∈ Z1(Trunc0 G,M). Thus we have

z′Z1
an(εG,M) = 0 if and only if already z′ = 0, that is, Z1

an(εG,M) is injective.

To show surjectivity, we suppose given an analysed 1-cochain z ∈ Z1
an(G,M). We

choose a section of the underlying pointed map of π, that is, a pointed map
s : Trunc0 G → M0G with sπ = idTrunc0 G. Then (qs)(ps)((qp)s)−1 ∈ Ker π = B0MG
and therefore, by proposition 3.4,

((qs)(ps))z = ((qs)(ps)((qp)s)−1((qp)s))z

= ((qs)(ps)((qp)s)−1)z + ((qs)(ps)((qp)s)−1)B0MG · ((qp)s)z

= ((qp)s)z

for all p, q ∈ Trunc0 G. Now the pointed map z′ : Trunc0 G → M defined by (p)z′ :=
(ps)z for p ∈ Trunc0 G is a 1-cocycle in Z1(Trunc0 G,M) since

(q, p)(z′∂Ch(Trunc0 G,M)) = (q)z′ − (qp)z′ + q · (p)z′

= (qs)z − ((qp)s)z + qsπ · (ps)z

= (qs)z − ((qs)(ps))z + (qs)B0MG · (ps)z

= (1, qs, ps)(z∂Chan(G,M)) = 0

for all p, q ∈ Trunc0 G. Further, g0(g0πs)−1 ∈ Ker π = B0MG implies, using proposi-
tion 3.4,

0 = (g0(g0πs)−1)z = (g0)z + g0B0MG · ((g0πs)−1)z

= (g0)z + (g0πs)B0MG · ((g0πs)−1)z

= (g0)z − (g0πs)z + ((g0πs)(g0πs)−1)z = (g0)z − (g0)(z
′Z1

an(εG,M))

and therefore (g0)(z
′Z1

an(εG,M)) = (g0)z for all g0 ∈ M0G, that is, z′Z1
an(εG,M) = z.

Thus Z1
an(εG,M) is surjective. Altogether, Z1

an(εG,M) is an isomorphism of abelian
groups.

Now the injectivity of Z1
an(εG,M) implies the injectivity of the restriction

B1
an(εG,M). To show that this is also an isomorphism, it remains to show that

for every analysed 1-coboundary b ∈ B1
an(G,M), the 1-cocycle b′ ∈ Z1(Trunc0 G,M)
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given by (p)b′ := (ps)b for p ∈ Trunc0 G is in fact a 1-coboundary, that is, an ele-
ment in B1(Trunc0 G,M). Indeed, given b ∈ B1

an(G,M) and an analysed 0-cochain
c ∈ Ch0

an(G,M) with b = c∂Chan(G,M), it follows that

(p)b′ = (ps)b = 1c − (ps)B0MG · 1c = 1c − p · 1c = (p)(c∂Ch(Trunc0 G,M))

for all p ∈ Trunc0 G and hence b′ = c∂Ch(Trunc0 G,M) ∈ B1(Trunc0 G,M).
Thus we have shown that Z1

an(εG,M) and B1
an(εG,M) are isomorphisms, and hence

H1
an(εG,M) is also an isomorphism. In particular, we have

H1(G,M) ∼= H1
an(G,M) ∼= H1(Trunc0 G,M).

Corollary 3.6. Given a simplicial group G and an abelian π0(G)-module M , we have

H1(G,M) ∼= H1(π0(G),M).

Corollary 3.7. Given a crossed module V and an abelian π0(V )-module M , we have

H1(V,M) ∼= H1(π0(V ),M).

We recall a simple fact of 2-cocycles of (ordinary) groups:

Remark 3.8. We let G be a group and M be an abelian G-module. For every 2-
cocycle z ∈ Z2(G,M), we have (g, 1)z = g · (1, 1)z and (1, g)z = (1, 1)z for all g ∈ G.

Proof. Given a 2-cocycle z ∈ Z2(G,M), we have

0 = (g, 1, 1)(z∂) = (g, 1)z − (g, 1)z + (g, 1)z − g · (1, 1)z = (g, 1)z − g · (1, 1)z,

that is, (g, 1)z = g · (1, 1)z, and

0 = (1, 1, g)(z∂) = (1, 1)z − (1, g)z + (1, g)z − (1, g)z = (1, 1)z − (1, g)z,

that is, (1, g)z = (1, 1)z for all g ∈ G.

Corollary 3.9. We let G be a group and M be an abelian G-module. A 2-cocycle
z ∈ Z2(G,M) is componentwise pointed if and only if it is pointed.

To simplify our calculations, we give a bit more convenient description of the
analysed 2-cocycles.

Definition 3.10 (Moore decomposition of analysed 2-cochains).

(a) We let G be a simplicial group and M be an abelian π0(G)-module. Given an
analysed 2-cochain c ∈ Ch2

an(G,M), the 1-cochain cM1
∈ Ch1(M1G,M) defined

by (g1)cM1
:= (g1, 1, 1)c for g1 ∈ M1G is called the M1-part of c, and the 2-

cochain cM0
∈ Ch2(M0G,M) defined by (h0, g0)cM0

:= (1, h0, g0)c for g0, h0 ∈
M0G is called the M0-part of c.

(b) We let V be a crossed module and M be an abelian π0(V )-module. Given a
2-cochain c ∈ Ch2(V,M), we call the M1-part of c also the module part of c and
write cMp := cM1

, and we call the M0-part of c also the group part of c and
write cGp := cM0

. That is, (m)cMp = (m, 1, 1)c for m ∈ MpV and (h, g)cGp =
(1, h, g)c for g, h ∈ GpV .
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Proposition 3.11.

(a) We suppose given a simplicial group G and an abelian π0(G)-module M . An
analysed 2-cochain z ∈ Ch2

an(G,M) is an analysed 2-cocycle if and only if it
fulfills the following conditions.

(i) We have (g1, h0, g0)z = (g1)zM1
− (g1∂, h0)zM0

+ (h0, g0)zM0
for g1 ∈ M1G,

g0, h0 ∈ M0G.
(ii) The M0-part zM0

is a 2-cocycle of M0G with coefficients in M , that is,
zM0

∈ Z2(M0G,M).
(iii) We have (h1g1)zM1

= (h1)zM1
+ (g1)zM1

− (h1∂, g1∂)zM0
for g1, h1 ∈ M1G.

(iv) We have (g0s0g1)zM1
= g0B0MG · (g1)zM1

+ (g0(g1∂), g0)zM0
− (g0, g1∂)zM0

for g1 ∈ M1G, g0 ∈ M0G.
(v) We have (g2∂)zM1

= (1)zM1
for g2 ∈ M2G.

(b) We suppose given a crossed module V and an abelian π0(V )-module M . A 2-
cochain z ∈ Ch2(V,M) is a 2-cocycle if and only if it fulfills the following con-
ditions.

(i) We have (m,h, g)z = (m)zMp − (m,h)zGp + (h, g)zGp for m ∈ MpV , g, h ∈
GpV .

(ii) The group part zGp is a 2-cocycle of GpV with coefficients in M , that is,
zGp ∈ Z2(GpV,M).

(iii) We have (nm)zMp = (n)zMp + (m)zMp − (n,m)zGp for m,n ∈ MpV .
(iv) We have (gm)zMp = g(Im µ) · (m)zMp + (gm, g)zGp − (g,m)zGp for m ∈

MpV , g ∈ GpV .

Proof.

(a) First, we suppose given an analysed 2-cocycle z ∈ Z2
an(G,M). We verify the

asserted formulas:

(ii) We have

0 = (1, 1, 1, k0, 1, h0, g0)(z∂)

= (1, k0, h0)z − (1, k0, h0g0)z + (1, k0h0, g0)z − k0B0MG · (1, h0, g0)z

= (k0, h0)zM0
− (k0, h0g0)zM0

+ (k0h0, g0)zM0

− k0B0MG · (h0, g0)zM0

for g0, h0, k0 ∈ M0G, that is, zM0
∈ Z2(M0G,M).

(i) First, we prove the formula for h0 = 1, then for g0 = 1 and finally for the
general case.

We have

0 = (1, g1, 1, 1, 1, g0, g
−1
0 )(z∂)

= (g1, 1, g0)z − (g1, 1, 1)z + (1, g0, g
−1
0 )z − (1, g0, g

−1
0 )z

= (g1, 1, g0)z − (g1)zM1
,

that is, (g1, 1, g0)z = (g1)zM1
for g1 ∈ M1G, g0 ∈ M0G.
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Next, we obtain

0 = (1, 1, g1, 1, 1, h0, 1)(z∂)

= (1, g1∂, h0)z − (g1, 1, h0)z + (g1, h0, 1)z − (1, h0, 1)z

= (g1∂, h0)zM0
− (g1)zM1

+ (g1, h0, 1)z − (h0, 1)zM0
,

that is, (g1, h0, 1)z = (g1)zM1
− (g1∂, h0)zM0

+ (h0, 1)zM0
for g1 ∈ M1G,

h0 ∈ M0G.

Finally, we get, using (ii) and remark 3.8,

0 = (1, g1, 1, h0, 1, 1, g0)(z∂)

= (g1, h0, 1)z − (g1, h0, g0)z + (1, h0, g0)z − h0B0MG · (1, 1, g0)z

= (g1)zM1
− (g1∂, h0)zM0

+ (h0, 1)zM0
− (g1, h0, g0)z + (h0, g0)zM0

− h0B0MG · (1, g0)zM0

= (g1)zM1
− (g1∂, h0)zM0

− (g1, h0, g0)z + (h0, g0)zM0

that is, (g1, h0, g0)z = (g1)zM1
− (g1∂, h0)zM0

+ (h0, g0)zM0
for g1 ∈ M1G,

g0, h0 ∈ M0G.

(iii) We have

0 = (1, 1, h1, 1, g1, 1, 1)(z∂)

= (1, h1∂, g1∂)z − (h1, 1, 1)z + (h1g1, 1, 1)z − (g1, 1, 1)z

= (h1∂, g1∂)zM0
− (h1)zM1

+ (h1g1)zM1
− (g1)zM1

,

that is, (h1g1)zM1
= (h1)zM1

+ (g1)zM1
− (h1∂, g1∂)zM0

for g1, h1 ∈ M1G.

(iv) We have, using (i),

0 = (1, 1, 1, g0, g1, 1, 1)(z∂)

= (1, g0, g1∂)z − (1, g0, 1)z + (g0s0g1, g0, 1)z − g0B0MG · (g1, 1, 1)z

= (g0, g1∂)zM0
+ (g0s0g1)zM1

− (g0(g1∂), g0)zM0

− g0B0MG · (g1)zM1
,

that is, (g0s0g1)zM1
= g0B0MG · (g1)zM1

+ (g0(g1∂), g0)zM0
− (g0, g1∂)zM0

for g1 ∈ M1G, g0 ∈ M0G.

(v) We have

0 = (g2, 1, 1, 1, 1, 1, 1)(z∂)

= (g2∂, 1, 1)z − (1, 1, 1)z + (1, 1, 1)z − (1, 1, 1)z

= (g2∂)zM1
− (1)zM1

,

that is, (g2∂)zM1
= (1)zM1

for g2 ∈ M2G.

Now let us conversely suppose given an analysed 2-cochain z ∈ Ch2
an(G,M) that
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fulfills the properties (i) to (v). Then we compute

(g2, k1, h1, g1, k0, h0, g0)(z∂)

= ((g2∂)k1, (h1∂)k0, (g1∂)h0)z − (k1h1, k0, h0g0)z + (h1
k0s0g1, k0h0, g0)z

− k0B0MG · (g1, h0, g0)z

= ((g2∂)k1)zM1
− (k1∂, (h1∂)k0)zM0

+ ((h1∂)k0, (g1∂)h0)zM0
− (k1h1)zM1

+ ((k1h1)∂, k0)zM0
− (k0, h0g0)zM0

+ (h1
k0s0g1)zM1

− ((h1
k0s0g1)∂, k0h0)zM0

+ (k0h0, g0)zM0
− k0B0MG · (g1)zM1

+ k0B0MG · (g1∂, h0)zM0
− k0B0MG · (h0, g0)zM0

= ((g2∂)k1)zM1
− (k1h1)zM1

+ (h1
k0s0g1)zM1

− k0B0MG · (g1)zM1

− (k1∂, (h1∂)k0)zM0
+ ((h1∂)k0, (g1∂)h0)zM0

+ ((k1∂)(h1∂), k0)zM0

− ((h1∂) k0(g1∂), k0h0)zM0
+ k0B0MG · (g1∂, h0)zM0

− (k0, h0g0)zM0

+ (k0h0, g0)zM0
− k0B0MG · (h0, g0)zM0

= (g2∂)zM1
+ (k1)zM1

− (1, k1∂)zM0
− (k1h1)zM1

+ (h1)zM1
+ (k0s0g1)zM1

− (h1∂, (k0s0g1)∂)zM0
− (k0s0g1)zM1

+ ((k0s0g1)∂, k0)zM0

− (k0, g1∂)zM0
− (k1∂, (h1∂)k0)zM0

+ ((h1∂)k0, (g1∂)h0)zM0

+ ((k1∂)(h1∂), k0)zM0
− ((h1∂) k0(g1∂), k0h0)zM0

+ k0B0MG · (g1∂, h0)zM0
− (k0, h0)zM0

= (k1)zM1
− (k1h1)zM1

+ (h1)zM1
− (h1∂, k0(g1∂))zM0

+ (k0(g1∂), k0)zM0

− (k0, g1∂)zM0
− (k1∂, (h1∂)k0)zM0

+ ((h1∂)k0, (g1∂)h0)zM0

+ ((k1∂)(h1∂), k0)zM0
− ((h1∂) k0(g1∂), k0h0)zM0

+ k0B0MG · (g1∂, h0)zM0
− (k0, h0)zM0

= (k1∂, h1∂)zM0
− (k1∂, (h1∂)k0)zM0

+ ((k1∂)(h1∂), k0)zM0

− (h1∂, k0(g1∂))zM0
− ((h1∂) k0(g1∂), k0h0)zM0

+ (k0(g1∂), k0)zM0

− (k0, h0)zM0
− (k0, g1∂)zM0

+ k0B0MG · (g1∂, h0)zM0

+ ((h1∂)k0, (g1∂)h0)zM0

= (h1∂, k0)zM0
− (k0(g1∂), k0h0)zM0

− (h1∂, k0(g1∂)k0h0)zM0

+ (k0(g1∂), k0h0)zM0
− (k0(g1∂)k0, h0)zM0

− (k0, (g1∂)h0)zM0

+ (k0(g1∂), h0)zM0
+ ((h1∂)k0, (g1∂)h0)zM0

= (h1∂, k0)zM0
+ ((h1∂)k0, (g1∂)h0)zM0

− (h1∂, k0(g1∂)h0)zM0

− (k0, (g1∂)h0)zM0

= 0

for all g0, h0, k0 ∈ M0G, g1, h1, k1 ∈ M1G, g2 ∈ M2G, that is, z ∈ Z2
an(G,M).

(b) This follows from (a) by definition of the 2-cocycles of V via Cosk1 V and the
fact that M0 Cosk1 V = GpV , M1 Cosk1 V = MpV and M2 Cosk1 V = {1} (up
to simplified notation).

With the preceeding proposition we can now establish a description of the second
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analysed cocycle group of a simplicial group resp. of a crossed module as a pullback.
This can be seen as a continuation of proposition 3.4.

Corollary 3.12.

(a) Given a simplicial group G and an abelian π0(G)-module M , the diagram

Z2
an(G,M) Ch1(M1G,M)

Z2(M0G,M) Ch2(M1G,M)×Ch1(M1G×M0G,M)
×Ch1(M2G,M)

−M1
|Z2

an(G,M)

−M0
|
Z2(M0G,M)

Z2
an(G,M)

( ∂Ch(MG,M) α1 Ch1(∂MG,M) )

inc (Ch2(∂MG,M) α0 Map(1,M))

is a pullback of abelian groups, where (g1, g0)(c1α1) := (g0s0g1)c1 − g0B0MG ·
(g1)c1 and (g1, g0)(c0α0) := (g0(g1∂), g0)c0 − (g0, g1∂)c0 for g1 ∈ M1G,
g0 ∈ M0G, c1 ∈ Ch1(M1G,M), c0 ∈ Ch2(M0G,M), and where M is considered
as a trivial M1G-module.

(b) Given a crossed module V and an abelian π0(V )-module M , the diagram

Z2(V,M) Ch1(MpV,M)

Z2(GpV,M) Ch2(MpV,M) × Ch1(MpV × GpV,M)

−Mp|Z2(V,M)

−Gp|
Z2(Gp V,M)

Z2(V,M)
( ∂Ch(Mp V,M) α1 )

inc ( Ch2(µ,M) α0 )

is a pullback of abelian groups, where (m, g)(c1α1) := (gm)c1 − g(Imµ) · (m)c1

and (m, g)(c0α0) := (gm, g)c0 − (g,m)c0 for m ∈ MpV , g ∈ GpV ,
c1 ∈ Ch1(MpV,M), c0 ∈ Ch2(GpV,M), and where M is considered as a trivial
MpV -module. In particular, we have an isomorphism

Z2(V,M) → {(c1, z0) ∈ Ch1(MpV,M) × Z2(GpV,M) |

(nm)c1 = nc1 + mc1 − (n,m)z0 and

(gm)c1 = g(Im µ) · (m)c1 + (gm, g)z0 − (g,m)z0

for all m,n ∈ MpV , g ∈ GpV },

z 7→ (zM1
, zM0

).

Proof.

(a) We note that α0 and α1 are group homomorphisms. By proposition 3.11(a)(ii)
to (v), the diagram is well-defined and commutes. To show that it is a pull-
back, we suppose given an arbitrary abelian group T and group homomorphisms
ϕ0 : T → Z2(M0G,M) and ϕ1 : T → Ch1(M1G,M) with ϕ0 inc Ch2(∂MG,M) =
ϕ1∂

Ch(MG,M), ϕ0 inc α0 = ϕ1α1 and ϕ0 inc Map(1,M) = ϕ1Ch1(∂MG,M).
For every t ∈ T , we define a 2-cochain tϕ ∈ Ch2

an(G,M) by (g1, h0, g0)(tϕ) :=
(g1)(tϕ1) − (g1∂, h0)(tϕ0) + (h0, g0)(tϕ0) for g1 ∈ M1G, g0, h0 ∈ M0G. Since

(g1)(tϕ)M1
= (g1, 1, 1)(tϕ) = (g1)(tϕ1) − (g1∂, 1)(tϕ0) + (1, 1)(tϕ0)

= (g1)(tϕ1)
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for all g1 ∈ M1G and

(h0, g0)(tϕ)M0
= (1, h0, g0)(tϕ) = (1)(tϕ1) − (1, h0)(tϕ0) + (h0, g0)(tϕ0)

= (h0, g0)(tϕ0)

for all g0, h0 ∈ M0G, it follows that (tϕ)M1
= tϕ1 and (tϕ)M0

= tϕ0 and hence
tϕ ∈ Z2

an(G,M) for all t ∈ T by proposition 3.11(a). Thus we obtain a
well-defined group homomorphism ϕ : T → Z2

an(G,M) with (tϕ)M1
= tϕ1 and

(tϕ)M0
= tϕ0 for all t ∈ T . The uniqueness of such a map follows from 3.11(a)(i).

Now we are able to show that the second cohomology group of a simplicial group
only depends on its 1-segment.

Proposition 3.13. Given a simplicial group G and an abelian π0(G)-module M , the
unit component εG : G → Cosk1 Trunc1 G of the adjunction Trunc1 ⊣ Cosk1 induces
an isomorphism

Z2
an(εG,M) : Z2(Trunc1 G,M) → Z2

an(G,M),

which in turn induces isomorphisms B2(εG,M) and H2(εG,M). In particular, we
have

H2(G,M) ∼= H2(Trunc1 G,M).

Proof. For n ∈ N0, we denote by ϕn the isomorphisms from Gn to its semidirect prod-
uct decomposition, cf. section 2.7. Then we have (g0)ϕ

−1
0 (εG)0 = (g0) and

(g1, h0)ϕ
−1
1 (εG)1 = (g1π, h0) for g1 ∈ M1G, g0, h0 ∈ M0G, where we let π : M1G →

M1G/B1MG = MpTrunc1 G denote the canonical epimorphism, cf. section 2.5.
Therefore the group homomorphism Z2

an(εG,M) is given by (g1, h0, g0)(z
′Z2

an(εG,M))
= (g1π, h0, g0)z

′ for g1 ∈ M1G, g0, h0 ∈ M0G, z′ ∈ Z2(Trunc1 G,M). Thus we have
z′Z2

an(εG,M) = 0 if and only if already z′ = 0, that is, Z2
an(εG,M) is injective.

To show surjectivity, we suppose given an analysed 2-cochain z ∈ Z2
an(G,M). We

choose a section of the underlying pointed map of π, that is, a pointed map s :
MpTrunc1 G → M1G with sπ = idMp Trunc1 G. Then (ns)(ms)((nm)s)−1 ∈ Ker π =
B1MG and therefore

((ns)(ms))zM1
= ((ns)(ms)((nm)s)−1((nm)s))zM1

= ((nm)s)zM1

for all m,n ∈ MpTrunc1 G. Moreover, ((gm)s)(gs0(ms))−1 ∈ Ker π = B1MG implies

((gm)s)zM1
= (((gm)s)(gs0(ms))−1 gs0(ms))zM1

= (gs0(ms))zM1

for all m ∈ MpTrunc1 G, g ∈ Gp Trunc1 G. Defining c′1 : MpTrunc1 G → M by (m)c′1
:= (ms)zM1

for m ∈ MpTrunc1 G, we obtain

(nm)c′1 = ((nm)s)zM1
= ((ns)(ms))zM1

= (ns)zM1
+ (ms)zM1

− (ns∂,ms∂)

= (n)c′1 + (m)c′1 − (n,m)zM0

for all m,n ∈ MpTrunc1 G as well as

(gm)c′1 = ((gm)s)zM1
= (gs0(ms))zM1

= gB0MG · (ms)zM1
+ (g(ms∂), g)zM0

− (g,ms∂)zM0

= g(Im µ) · (m)c′1 + (gm, g)zM0
− (g,m)zM0
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for all m ∈ MpTrunc1 G, g ∈ GpTrunc1 G. Thus we get a well-defined 2-cocycle z′ ∈
Z2(Trunc1 G,M) with (m)z′Mp = (ms)zM1

for m ∈ MpTrunc1 G and z′Gp = zM0
by

corollary 3.12(b). Further, g1(g1πs)−1 ∈ Ker π = B1MG implies

0 = (g1(g1πs)−1)zM1
− (1)zM1

= (g1)zM1
+ ((g1πs)−1)zM1

− (g1∂, (g1πs)−1∂)zM0
− (1)zM1

= (g1)zM1
+ ((g1πs)−1)zM1

− (g1πs∂, (g1πs)−1∂)zM0
− ((g1πs)(g1πs)−1)zM1

= (g1)zM1
− (g1πs)zM1

for all g1 ∈ M1G. But now it follows that z′Z2
an(εG,M) = z since

(g1, h0, g0)(z
′Z2

an(εG,M)) = (g1π, h0, g0)z
′

= (g1π)z′Mp − (g1π, h0)z
′
Gp + (h0, g0)z

′
Gp

= (g1πs)zM1
− (g1∂, h0)zM0

+ (h0, g0)zM0

= (g1)zM1
− (g1∂, h0)zM0

+ (h0, g0)zM0

= (g1, h0, g0)z

for all g1 ∈ M1G, g0, h0 ∈ M0G. Thus Z2
an(εG,M) is surjective. Altogether, the indu-

ced group homomorphism Z2
an(εG,M) is bijective and hence an isomorphism of abe-

lian groups.
The injectivity of Z2

an(εG,M) implies the injectivity of the restriction B2
an(εG,M).

To show that this is also an isomorphism, it remains to show that for a given
analysed 2-coboundary b ∈ B2

an(G,M), the 2-cocycle b′ ∈ Z2(Trunc1 G,M) given by
(m)b′Mp = (ms)bM1

for m ∈ MpTrunc1 G and b′Gp = bM0
is in fact a 2-coboundary in

B2(Trunc1 G,M).
We choose c ∈ Ch1

an(G,M) = Ch1(Trunc1 G,M) with b = c∂Chan(G,M), that is,
with (g1, h0, g0)b = ((g1∂)h0)c − (h0g0)c + h0B0MG · (g0)c for g1 ∈ M1G, g0, h0 ∈
M0G. It follows that

(m)b′Mp = (ms)bM1
= (ms∂)c = (m)c = (m)(c∂Ch(Trunc1 G,M))Mp

for all m ∈ MpTrunc1 G, that is, b′Mp = (c∂Ch(Trunc1 G,M))Mp, as well as

b′Gp = (c∂Chan(G,M))M0
= (c∂Ch(Trunc1 G,M))Gp.

Hence we have b′ = c∂Ch(Trunc1 G,M) ∈ B2(Trunc1 G,M).
We have shown that Z2

an(εG,M) and B2
an(εG,M) are isomorphisms, and hence

H2
an(εG,M) is also an isomorphism. In particular, we have

H2(G,M) ∼= H2
an(G,M) ∼= H2(Trunc1 G,M).

4. Crossed module extensions and standard 2-cocycles

Throughout this section, we suppose given a group Π0 and abelian Π0-modules Π1

and M , where Π1 is written multiplicatively. Moreover, we suppose given a crossed
module extension E of Π0 with Π1 and a section system (s1, s0) for E. The lifting
system coming from (s1, s0) will be denoted by (Z2, Z1), that is, Z1 = s0 and Z2 =
z2s1. Cf. section 2.13.



192 SEBASTIAN THOMAS

Notation 4.1. In this section, we use the following conventions and notations: For
p, q, r ∈ Π0, we write [p] := pZ1, [q, p] := (q, p)Z2 and [r, q, p] := (r, q, p)z3. For g ∈
Im µ, we write [g] := gs1. So for m ∈ MpE, we usually write [m] = [mµ] = mµs1,
following our convention from section 2.4. Finally, for g ∈ GpE, we write g := gπ.

With these conventions, we have [p] = p and [q, p] = [[q][p][qp]−1] and [r, q, p]ι =
[r, q][rq, p][r, qp]−1 [r]([q, p]−1) for p, q, r ∈ Π0 and [m]µ = mµ for m ∈ MpE.

We have seen in section 2.12, how the computation of cohomology groups in posi-
tive dimension can be reduced to that of pointed cohomology groups. In this section,
we will see a further reduction in the case where we consider the second cohomology
group of the underlying crossed module of a crossed module extension.

Definition 4.2 (standardisation of pointed 2-cocycles).

(a) Given a pointed 2-cocycle z ∈ Z2
pt(E,M), the standardisation of z (with respect

to (s1, s0)) is given by

zst = zst,(s1,s0) := z − sz∂,

where the standardiser of z (with respect to (s1, s0)) is defined to be the pointed

1-cochain sz = s
(s1,s0)
z ∈ Ch1

pt(E,M) given by

(g)sz := ([g[g]−1], [g], 1)z

for g ∈ GpE.

(b) A pointed 2-cocycle z ∈ Z2
pt(E,M) is said to be standard (with respect

to (s1, s0)) (or a standard 2-cocycle, for short) if zst = z. The subgroup of
Z2

pt(E,M) consisting of all standard 2-cocycles of E with coefficients in M
will be denoted by

Z2
st(E,M) = Z2

st,(s1,s0)(E,M) := {z ∈ Z2
pt(E,M) | zst = z}.

Likewise, the subgroup of B2
pt(E,M) consisting of all standard 2-coboundaries

of E with coefficients in M will be denoted by

B2
st(E,M) = B2

st,(s1,s0)(E,M) := {b ∈ B2
pt(E,M) | bst = b}.

Moreover, we set

H2
st(E,M) = H2

st,(s1,s0)(E,M) := Z2
st(E,M)/B2

st(E,M).

Remark 4.3. We have

(g)sz = ([g[g]−1])zMp − (g[g]−1, [g])zGp

for g ∈ GpE, z ∈ Z2
pt(E,M).

Proof. This follows from proposition 3.11(b)(i).

In the next proposition, we give more detailed formulas for the standardisation.
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Proposition 4.4.

(a) For every pointed 2-cocycle z ∈ Z2
pt(E,M), we have

(m)zst
Mp = (m[m]−1)zMp

for m ∈ MpE, and

(h, g)zst
Gp = ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp − ([h, g], [hg])zGp

+ ([h], [g])zGp

for g, h ∈ GpE.

(b) For every pointed 2-coboundary b ∈ B2
pt(E,M), we have

(m)bst
Mp = 0

for m ∈ MpE, and, given c ∈ Ch1
pt(E,M) with b = c∂, we have

(h, g)bst
Gp = (h, g)(c0∂)

for g, h ∈ GpE, where c0 ∈ Ch1(Π0,M) is given by (p)c0 := ([p])c.

Proof.

(a) We suppose given a pointed 2-cocycle z ∈ Z2
pt(E,M). By proposition 3.11(b),

we have

(m)zst
Mp = (m)zMp − (m)(sz∂)Mp = (m)zMp − (m)sz

= (m)zMp − ([m])zMp = (m)zMp + ([m]−1)zMp − (m,m−1)zGp

= (m[m]−1)zMp

for m ∈ MpE, and

(h, g)zst
Gp = (h, g)zGp − (h, g)(sz∂)Gp

= (h, g)zGp − (h)sz + (hg)sz − h · (g)sz

= (h, g)zGp − ([h[h]−1])zMp + (h[h]−1, [h])zGp + ([hg[hg]−1])zMp

− (hg[hg]−1, [hg])zGp − h · ([g[g]−1])zMp + h · (g[g]−1, [g])zGp

= (h, g)zGp + ([h[h]−1]−1)zMp − (h[h]−1, [h]h−1)zGp + (h[h]−1, [h])zGp

+ ([hg[hg]−1])zMp − (hg[hg]−1, [hg])zGp + h · ([g[g]−1]−1)zMp

− h · (g[g]−1, [g]g−1)zGp + h · (g[g]−1, [g])zGp

= (h, g)zGp + ([h[h]−1]−1)zMp − (h[h]−1, [h]h−1)zGp + (h[h]−1, [h])zGp

+ ([hg[hg]−1])zMp − (hg[hg]−1, [hg])zGp + (h([g[g]−1]−1))zMp

− (h([g]g−1), h)zGp + (h, [g]g−1)zGp − h · (g[g]−1, [g]g−1)zGp

+ h · (g[g]−1, [g])zGp
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= ([h[h]−1]−1)zMp + (h([g[g]−1]−1))zMp + ([hg[hg]−1])zMp + (h, g)zGp

− (h[h]−1, [h]h−1)zGp + (h[h]−1, [h])zGp − (hg[hg]−1, [hg])zGp

− (h([g]g−1), h)zGp + (h, [g]g−1)zGp − h · (g[g]−1, [g]g−1)zGp

+ h · (g[g]−1, [g])zGp

= ([h[h]−1]−1)zMp + (h([g[g]−1]−1)[hg[hg]−1])zMp

+ (h[g]g−1h−1, hg[hg]−1)zGp + (h, g)zGp − (h[h]−1, [h]h−1)zGp

+ (h[h]−1, [h])zGp − (hg[hg]−1, [hg])zGp − (h([g]g−1), h)zGp

+ (h, [g]g−1)zGp − h · (g[g]−1, [g]g−1)zGp + h · (g[g]−1, [g])zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h]h−1, h[g][hg]−1)zGp

+ (h[g]g−1h−1, hg[hg]−1)zGp + (h, g)zGp − (h[h]−1, [h]h−1)zGp

+ (h[h]−1, [h])zGp − (hg[hg]−1, [hg])zGp − (h[g]g−1h−1, h)zGp

+ (h, [g]g−1)zGp − h · (g[g]−1, [g]g−1)zGp + h · (g[g]−1, [g])zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h][g], [hg]−1)zGp

− (h[g], [hg]−1)zGp + ([h]h−1, h[g])zGp + (h[g], [hg]−1)zGp

− (hg, [hg]−1)zGp + (h[g]g−1h−1, hg)zGp + (h, g)zGp

+ (hg, [hg]−1)zGp − (h, h−1)zGp + ([h], h−1)zGp

− hg · ([hg]−1, [hg])zGp − (h[g], g−1)zGp + (h[g], g−1h−1)zGp

− hg · (g−1h−1, h)zGp + (h[g], g−1)zGp − h · ([g], g−1)zGp

+ (h, [g])zGp − h · (g, g−1)zGp + h · ([g], g−1)zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h][g], [hg]−1)zGp

+ ([h]h−1, h[g])zGp + (h[g]g−1h−1, hg)zGp + (h, g)zGp

− (h, h−1)zGp + ([h], h−1)zGp − hg · ([hg]−1, [hg])zGp

+ (h[g], g−1h−1)zGp − hg · (g−1h−1, h)zGp + (h, [g])zGp

− h · (g, g−1)zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h][g], [hg]−1)zGp

+ ([h], [g])zGp − (h, [g])zGp + ([h]h−1, h)zGp − (h[g], g−1h−1)zGp

+ hg · (g−1h−1, hg)zGp + (h, g)zGp − (h, h−1)zGp + ([h], h−1)zGp

− hg · ([hg]−1, [hg])zGp + (h[g], g−1h−1)zGp − hg · (g−1h−1, h)zGp

+ (h, [g])zGp − h · (g, g−1)zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h][g], [hg]−1)zGp

+ ([h], [g])zGp + ([h]h−1, h)zGp + hg · (g−1h−1, hg)zGp + (h, g)zGp

− (h, h−1)zGp + ([h], h−1)zGp − hg · ([hg]−1, [hg])zGp

− hg · (g−1h−1, h)zGp − h · (g, g−1)zGp
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= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h][g], [hg]−1)zGp

+ ([h], [g])zGp − ([h], h−1)zGp + h · (h−1, h)zGp + hg · (g−1, g)zGp

− (h, g)zGp + hg · (g−1h−1, h)zGp + (h, g)zGp − (h, h−1)zGp

+ ([h], h−1)zGp − hg · ([hg]−1, [hg])zGp − hg · (g−1h−1, h)zGp

− h · (g, g−1)zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h][g], [hg]−1)zGp

+ ([h], [g])zGp + h · (h−1, h)zGp + hg · (g−1, g)zGp

− (h, h−1)zGp − hg · ([hg]−1, [hg])zGp − h · (g, g−1)zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h][g], [hg]−1)zGp

+ ([h], [g])zGp + (h, h−1)zGp + h · (g, g−1)zGp − (h, h−1)zGp

− hg · ([hg]−1, [hg])zGp − h · (g, g−1)zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp + ([h][g], [hg]−1)zGp

− hg · ([hg]−1, [hg])zGp + ([h], [g])zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp − ([h][g][hg]−1, [hg])zGp

+ ([h], [g])zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp − ([h, g], [hg])zGp

+ ([h], [g])zGp

for g, h ∈ GpE.

(b) By (a), we have

(m)bst
Mp = (m[m]−1)bMp = (m[m]−1)(c∂)Mp = (mm−1)c = 0

for m ∈ MpE and

(h, g)bst
Gp = ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])bMp − ([h, g], [hg])bGp

+ ([h], [g])bGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])(c∂)Mp − ([h, g], [hg])(c∂)Gp

+ ([h], [g])(c∂)Gp

= ((h[h]−1)−1 h((g[g]−1)−1)(hg[hg]−1))c − ([h, g])c + ([h, g][hg])c

− ([hg])c + ([h])c − ([h][g])c + h · ([g])c

= −([hg])c + ([h])c + h · ([g])c = (h)c0 − (hg)c0 + h · (g)c0 = (h, g)(c0∂)

for g, h ∈ GpE.

Corollary 4.5.

(a) Given a pointed 2-cocycle z ∈ Z2
pt(E,M), we have

([m])zst
Mp = (g[g]−1, [g])zst

Gp = 0

for m ∈ MpE, g ∈ GpE.
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(b) We have

Z2
st(E,M) = {z ∈ Z2

pt(E,M) | ([m])zMp = (g[g]−1, [g])zGp = 0

for all m ∈ MpE, g ∈ GpE}.

In particular, the standardisation zst of every z ∈ Z2(E,M) is standard.

(c) The embedding Z2
st(E,M) → Z2

pt(E,M) and the standardisation homomorphism
Z2

pt(E,M) → Z2
st(E,M), z 7→ zst induce mutually inverse isomorphisms between

H2
st(E,M) and H2

pt(E,M). In particular,

H2(E,M) ∼= H2
st(E,M).

Proof.

(a) We suppose given a pointed 2-cocycle z ∈ Z2
pt(E,M). Proposition 4.4(a) implies

([m])zst
Mp = ([m][m]−1)zMp = 0

for m ∈ MpE and

(g[g]−1, [g])zst
Gp = ([g[g]−1]−1[g[g]−1])zMp − ([1, g], [g])zGp + (1, [g])zGp

= 0

for g ∈ GpE.

(b) Given a standard 2-cocycle z ∈ Z2
st(E,M), we have ([m])zMp = ([m])zst

Mp = 0

for all m ∈ MpE and (g[g]−1, [g])zGp = (g[g]−1, [g])zst
Gp = 0 for all g ∈ GpE

by (a). Conversely, given a pointed 2-cocycle z ∈ Z2
pt(E,M) with ([m])zMp =

(g[g]−1, [g])zGp = 0 for all m ∈ MpE, g ∈ GpE, it follows that

(g)sz = ([g[g]−1])zMp − (g[g]−1, [g])zGp = 0

for all g ∈ GpE, that is, sz = 0. Hence zst = z − sz∂ = z, that is, z is standard.
Altogether, we have

Z2
st(E,M) = {z ∈ Z2

pt(E,M) | ([m])zMp = (g[g]−1, [g])zGp = 0

for all m ∈ MpE, g ∈ GpE}

and a further application of (a) shows that zst ∈ Z2
st(E,M) for all z ∈ Z2(E,M).

(c) By definition of the standardisation, we have z = zst + sz∂ for every pointed
2-cocycle z ∈ Z2

pt(E,M) and since the standardisation zst is standard by (b), it
follows that

H2
pt(E,M) = Z2

pt(E,M)/B2
pt(E,M)

= (Z2
st(E,M) + B2

pt(E,M))/B2
pt(E,M).

Moreover,

H2
st(E,M) = Z2

st(E,M)/B2
st(E,M)

= Z2
st(E,M)/(Z2

st(E,M) ∩ B2
pt(E,M)),

and thus Noether’s first law of isomorphism provides the asserted isomorphisms

H2
st(E,M) → H2

pt(E,M), z + B2
st(E,M) 7→ z + B2

pt(E,M)
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and

H2
pt(E,M) → H2

st(E,M), z + B2
pt(E,M) 7→ zst + B2

st(E,M).

In particular, we have

H2(E,M) ∼= H2
pt(E,M) ∼= H2

st(E,M),

cf. section 2.12.

Similarly to proposition 3.11, we will give in proposition 4.7 a characterisation of
standard 2-cocycles and 2-coboundaries. For convenience, we introduce the following
abbreviation first.

Notation 4.6. For g, h ∈ GpE, we abbreviate

(h, g)κ := [h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1][h, g]−1 ∈ Ker µ.

Proposition 4.7.

(a) A pointed 2-cochain z ∈ Ch2
pt(E,M) is a standard 2-cocycle if and only if the

following conditions hold:

(i) We have (m,h, g)z = (m)zMp − (m,h)zGp + (h, g)zGp for m ∈ MpV , g, h ∈
GpV .

(ii) We have (m)zMp = (m[m]−1)zMp for m ∈ MpE.
(iii) We have (h, g)zGp = ((h, g)κ)zMp + ([h], [g])zGp for g, h ∈ GpE.
(iv) We have ιzMp ∈ HomΠ0

(Π1,M).
(v) We have ([r, q, p]ι)zMp = (r, q, p)(((s0 × s0)zGp)∂) for p, q, r ∈ Π0.

(b) A pointed 2-cochain b ∈ Ch2
pt(E,M) is a standard 2-coboundary if and only if

the following conditions hold:

(i) We have bMp = 0.
(ii) There exists a pointed 1-cochain c0 ∈ Ch1

pt(Π0,M) such that (h, g)bGp =

(h, g)(c0∂) for g, h ∈ GpE.

Proof.

(a) First, we suppose given a standard 2-cocycle z ∈ Z2
st(E,M). We verify the

asserted formulas:

(i) Since z is a 2-cocycle, this property holds by proposition 3.11(b)(i).
(ii) By corollary 4.5(b), we have

(m)zMp = (m[m]−1[m])zMp = (m[m]−1)zMp + ([m])zMp − (1,m)zGp

= (m[m]−1)zMp

for m ∈ MpE.
(iii) By proposition 4.4(a), proposition 3.11(b)(iii), corollary 4.5(b) and (ii), we

have

(h, g)zGp = (h, g)zst
Gp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1])zMp − ([h, g], [hg])zGp

+ ([h], [g])zGp
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= (([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1][h, g]−1)[h, g])zMp

− ([h][g][hg]−1, [hg])zGp + ([h], [g])zGp

= ([h[h]−1]−1 h([g[g]−1]−1)[hg[hg]−1][h, g]−1)zMp + ([h], [g])zGp

= ((h, g)κ)zMp + ([h], [g])zGp

for g, h ∈ GpE.

(iv) We have ιzMp ∈ HomΠ0
(Π1,M) by proposition 3.11(b)(iii) and (iv).

(v) Using proposition 3.11(b) and corollary 4.5(b), we compute

([r, q, p]ι)zMp = ([r, q][rq, p][r, qp]−1([r][q, p])−1)zMp

= ([r, q][rq, p])zMp − ([r][q, p][r, qp])zMp

= ([r, q])zMp + ([rq, p])zMp − ([r, q], [rq, p])zGp − ([r][q, p])zMp

− ([r, qp])zMp + ([r][q, p], [r, qp])zGp

= −([r, q], [rq, p])zGp − r · ([q, p])zMp − ([r][q, p], [r])zGp

+ ([r], [q, p])zGp + ([r][q, p], [r, qp])zGp

= −([r, q], [rq][p][rqp]−1)zGp − ([r][q, p][r]−1, [r])zGp + ([r], [q, p])zGp

+ ([r][q, p][r]−1, [r][qp][rqp]−1)zGp

= −([r, q][rq], [p][rqp]−1)zGp + ([rq], [p][rqp]−1)zGp − ([r, q], [rq])zGp

+ ([r], [q, p][r]−1)zGp − r · ([q, p][r]−1, [r])zGp

+ ([r], [q, p][qp][rqp]−1)zGp − ([r], [q, p][r]−1)zGp

+ r · ([q, p][r]−1, [r][qp][rqp]−1)zGp

= −([r][q], [p][rqp]−1)zGp + ([rq], [p][rqp]−1)zGp

− ([r][q][rq]−1, [rq])zGp − r · ([q, p][r]−1, [r])zGp

+ ([r], [q][p][rqp]−1)zGp + r · ([q, p][r]−1, [r][qp][rqp]−1)zGp

= ([r], [q])zGp − r · ([q], [p][rqp]−1)zGp + ([rq][p], [rqp]−1)zGp

− rq · ([p], [rqp]−1)zGp + ([rq], [p])zGp + r · ([q, p], [qp][rqp]−1)zGp

− ([r], [qp][rqp]−1)zGp

= ([r], [q])zGp − r · ([q][p], [rqp]−1)zGp − r · ([q], [p])zGp

+ ([rq][p], [rqp]−1)zGp + ([rq], [p])zGp + r · ([q, p][qp], [rqp]−1)zGp

− r · ([qp], [rqp]−1)zGp + r · ([q, p], [qp])zGp − ([r][qp], [rqp]−1)zGp

+ r · ([qp], [rqp]−1)zGp − ([r], [qp])zGp

= ([r], [q])zGp − r · ([q], [p])zGp + ([rq, p][rqp], [rqp]−1)zGp

+ ([rq], [p])zGp − ([r, qp][rqp], [rqp]−1)zGp − ([r], [qp])zGp

= ([r], [q])zGp − r · ([q], [p])zGp + ([rq, p], 1)zGp − ([rq, p], [rqp])zGp

+ ([rqp], [rqp]−1)zGp + ([rq], [p])zGp − ([r, qp], 1)zGp

+ ([r, qp], [rqp])zGp − ([rqp], [rqp]−1)zGp − ([r], [qp])zGp
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= ([r], [q])zGp − ([r], [qp])zGp + ([rq], [p])zGp − r · ([q], [p])zGp

= (r, q)((s0 × s0)zGp) − (r, qp)((s0 × s0)zGp) + (rq, p)((s0 × s0)zGp)

− r · (q, p)((s0 × s0)zGp)

= (r, q, p)(((s0 × s0)zGp)∂)

for p, q, r ∈ Π0.

Conversely, we suppose given a pointed 2-cochain z ∈ Ch2
pt(E,M) that fulfills

conditions (i) to (v). To show that z is a 2-cocycle, we use the characterisation
given in proposition 3.11(b). First of all, we show that zGp ∈ Z2(GpE,M).
Indeed, we have

(k, h)κ(kh, g)κ((k, hg)κ)−1([k]((h, g)κ))−1[k, h, g]ι

= ((k, h)κ[k, h])((kh, g)κ[k h, g])((k, hg)κ[k, h g])−1 ([k]((h, g)κ[h, g]))−1

= ([k]([h[h]−1]−1)[k[k]−1]−1[kh[kh]−1])

([kh]([g[g]−1]−1)[kh[kh]−1]−1[khg[khg]−1])

([k]([hg[hg]−1]−1)[k[k]−1]−1[khg[khg]−1])−1

([k][h]([g[g]−1]−1) [k][h[h]−1]−1 [k][hg[hg]−1])−1

= [k]([h[h]−1]−1)[k[k]−1]−1[kh[kh]−1] [kh]([g[g]−1]−1)[kh[kh]−1]−1

[khg[khg]−1][khg[khg]−1]−1[k[k]−1][k][hg[hg]−1]([k][hg[hg]−1])−1

[k][h[h]−1] [k][h][g[g]−1]

= [k]([h[h]−1]−1)[k[k]−1]−1[kh[kh]−1] [kh]([g[g]−1]−1)[kh[kh]−1]−1[k[k]−1]

[k][h[h]−1] [k][h][g[g]−1]

= [k]([h[h]−1]−1) [k[k]−1]−1[kh[kh]−1][kh]([g[g]−1]−1) [k][h[h]−1] [k][h][g[g]−1]

= [k]([h[h]−1]−1) [k]h([g[g]−1]−1) [k][h[h]−1] [k][h][g[g]−1]

= [k]([h[h]−1]−1 h([g[g]−1]−1)[h[h]−1] [h][g[g]−1])

= [k]([h[h]−1]−1h([g[g]−1]−1) [h][g[g]−1])

= [k]([h]([g[g]−1]−1) [h][g[g]−1]) = 1

and hence

(k, h, g)(zGp∂) = (k, h)zGp − (k, hg)zGp + (kh, g)zGp − k · (h, g)zGp

= ((k, h)κ)zMp + ([k], [h])zGp − ((k, hg)κ)zMp − ([k], [hg])zGp

+ ((kh, g)κ)zMp + ([kh], [g])zGp − k · ((h, g)κ)zMp − k · ([h], [g])zGp

= ((k, h)κ(kh, g)κ((k, hg)κ)−1 [k](((h, g)κ)−1))zMp

+ (k, h, g)(((s0 × s0)zGp)∂)

= ((k, h)κ(kh, g)κ((k, hg)κ)−1 ([k]((h, g)κ))−1[k, h, g]ι)zMp = 0
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for g, h, k ∈ GpE, that is, zGp ∈ Z2
pt(GpE,M). Moreover, we have

(nm)zMp − (n)zMp − (m)zMp + (n,m)zGp

= (nm[nm]−1)zMp − (n[n]−1)zMp − (m[m]−1)zMp + ((n,m)κ)zMp

= ((nm[nm]−1)(n[n]−1)−1(m[m]−1)−1(n,m)κ)zMp

= ((n[n]−1)−1n(m[m]−1)−1m(n,m)κ[nm]−1)zMp

= ([n]n−1n[m]m−1m[n]−1 n([m]−1)[nm][nm]−1)zMp

= ([n][m][n]−1 n([m]−1))zMp = ([n][m] n([m]−1))zMp = 0

for m,n ∈ MpE and

(gm)zMp − g · (m)zMp − (gm, g)zGp + (g,m)zGp

= (gm[gm]−1)zMp − g · (m[m]−1)zMp − ((gm, g)κ)zMp + ((g,m)κ)zMp

= ((gm[gm]−1) g((m[m]−1)−1)((gm, g)κ)−1(g,m)κ)zMp

= ((g[m] g(m−1))(gm[gm]−1)((gm, g)κ)−1(g,m)κ)zMp

= (g[m](g,m)κ((gm, g)κ)−1[gm]−1)zMp

= (g[m]([g[g]−1]−1 g([m]−1)[gm[g]−1])([gm]−1 gm([g[g]−1]−1)

[gmg[g]−1])−1[gm]−1)zMp

= (g[m][g[g]−1]−1 g([m]−1)[gm[g]−1][gmg[g]−1]−1 gm[g[g]−1][gm]

[gm]−1)zMp

= (g[m][g[g]−1]−1 g([m]−1)
gm[g[g]−1])zMp

= (
g [m]([g[g]−1]−1)

gm[g[g]−1])zMp = 0

for m ∈ MpE and g ∈ GpE. Altogether, z ∈ Z2
pt(E,M). Finally, we have

([m])zMp = ([m][m]−1)zMp = 0

for m ∈ MpE and

(g[g]−1, [g])zGp = ((g[g]−1, [g])κ)zMp + (1, [g])zGp

= ([g[g]−1]−1[g[g]−1])zMp = 0

for g ∈ GpE. Hence z ∈ Z2
st(E,M) by corollary 4.5(b).

(b) We suppose given a standard 2-coboundary b ∈ B2
st(E,M) and we choose c ∈

Ch1
pt(E,M) such that b = c∂. Letting c0 ∈ Ch1

pt(Π0,M) be defined by (p)c0 :=
([p])c, proposition 4.4(b) implies that (m)bMp = (m)bst

Mp = 0 for m ∈ MpE and

(h, g)bGp = (h, g)bst
Gp = (h, g)(c0∂) for g, h ∈ GpE.

Conversely, let us suppose that bMp = 0 and suppose given a pointed 1-cochain
c0 ∈ Ch1

pt(Π0,M) with (h, g)bGp = (h, g)(c0∂) for g, h ∈ GpE. Defining

c ∈ Ch1
pt(E,M) by (g)c := (g)c0 for g ∈ GpE, we have

(m)(c∂)Mp = (m)c = (m)c0 = 0
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for m ∈ MpE and

(h, g)(c∂)Gp = (h)c − (hg)c + h · (g)c = (h)c0 − (hg)c0 + h · (g)c0

= (h, g)(c0∂),

that is, c∂ = b. Moreover, ([m])bMp = 0 for all m ∈ MpE and (g[g]−1, [g])bGp =
(1, g)(c0∂) = 0 for all g ∈ GpE. Hence b ∈ Z2

st(E,M) ∩ B2
pt(E,M) = B2

st(E,M)
by corollary 4.5(b).

Definition 4.8 (cocycle, coboundary and cohomology group of a 3-cocycle). For a
3-cocycle z3 ∈ Z3(Π0,Π1), we set

Z2((Π0,Π1, z
3),M) := HomΠ0

(Π1,M) Map(z3,M)|HomΠ0
(Π1,M)

×∂ Ch2
cpt(Π0,M),

B2((Π0,Π1, z
3),M) := {0} × B2

cpt(Π0,M), and

H2((Π0,Π1, z
3),M) := Z2((Π0,Π1, z

3),M)/B2((Π0,Π1, z
3),M).

Corollary 4.9. We have group homomorphisms Φ1 : Z2
st(E,M) → HomΠ0

(Π1,M)
and Φ0 : Z2

st(E,M) → Ch2
pt(Π0,M) given by (k)(zΦ1) := (kι)zMp for k ∈ Π1 and

(q, p)(zΦ0) := ([q], [p])zGp for p, q ∈ Π0, z ∈ Z2
st(E,M). These group homomorphisms

fit into the following diagram, which is a pullback of abelian groups.

Z2
st(E,M) HomΠ0

(Π1,M)

Ch2
cpt(Π0,M) Ch3

cpt(Π0,M).

Φ1

Φ0 Map(z3, M)|HomΠ0
(Π1,M)

∂

The induced isomorphism

Φ: Z2
st(E,M) → Z2((Π0,Π1, z

3),M), z 7→ (zΦ1, zΦ0),

whose inverse

Ψ: Z2((Π0,Π1, z
3),M) → Z2

st(E,M)

is given by (m,h, g)((z1, c0)Ψ) = ((m[m]−1((m,h)κ)−1(h, g)κ)(ι|Im ι)−1)z1 + (h, g)c0

for m ∈ MpE, g, h ∈ GpE, induces in turn isomorphisms

B2
st(E,M) → B2((Π0,Π1, z

3),M) and H2
st(E,M) → H2((Π0,Π1, z

3),M).

In particular, we have

H2(E,M) ∼= H2((Π0,Π1, z
3),M).

Proof. By proposition 4.7(a)(iv) and (v), the group homomorphisms Φ0 and Φ1

are well-defined and the quadrangle commutes. To show that it is a pullback of
abelian groups, we suppose given an arbitrary abelian group T as well as group homo-
morphisms ϕ0 : T → Ch2

cpt(Π0,M) and ϕ1 : T → HomΠ0
(Π1,M) such that

ϕ1Map(z3,M)|HomΠ0
(Π1,M) = ϕ0∂, that is, with ([r, q, p])(tϕ1) = (r, q, p)((tϕ0)∂) for

all p, q, r ∈ Π0, t ∈ T . For t ∈ T , we define a pointed 2-cochain tϕ ∈ Ch2
pt(E,M) by

(m,h, g)(tϕ) := ((m[m]−1((m,h)κ)−1(h, g)κ)(ι|Im ι)−1)(tϕ1) + (h, g)(tϕ0)

for m ∈ MpE, g, h ∈ GpE. We obtain (m)(tϕ)Mp = ((m[m]−1)(ι|Im ι)−1)(tϕ1) for
m ∈ MpE and (h, g)(tϕ)Gp = ((h, g)κ(ι|Im ι)−1)(tϕ1) + (h, g)(tϕ0) for g, h ∈ GpE.
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To show that tϕ is a standard 2-cocycle, we verify the conditions in proposition 4.7(a).
Indeed, using [m[m]−1] = ([h], [g])κ = (1, h)κ = 1 for m ∈ MpE, g, h ∈ GpE, we have

(m,h, g)(tϕ) = ((m[m]−1((m,h)κ)−1(h, g)κ)(ι|Im ι)−1)(tϕ1) + (h, g)(tϕ0)

= ((m[m]−1)(ι|Im ι)−1)(tϕ1) − ((m,h)κ(ι|Im ι)−1)(tϕ1)

+ ((h, g)κ(ι|Im ι)−1)(tϕ1) + (h, g)(tϕ0)

= (m)(tϕ)Mp − (m,h)(tϕ)Gp + (h, g)(tϕ)Gp

since tϕ1 is componentwise pointed as well as

(m)(tϕ)Mp = (m[m]−1)(tϕ1) = (m[m]−1)(tϕ)Mp

and

(h, g)(tϕ)Gp = ((h, g)κ(ι|Im ι)−1)(tϕ1) + (h, g)(tϕ0)

= ((h, g)κ)(tϕ)Mp + ([h], [g])(tϕ)Gp

for m ∈ MpE, g, h ∈ GpE. Moreover, ι(tϕ)Mp = tϕ1 ∈ HomΠ0
(Π1,M) and

([r, q, p])(tϕ)Mp = ([r, q, p]ι)(tϕ1) = (r, q, p)((tϕ0)∂)

= (r, q, p)(((s0 × s0)(tϕ)Gp)∂)

for p, q, r ∈ Π0. Altogether, tϕ ∈ Z2
st(E,M) for all t ∈ T , and we have constructed a

well-defined group homomorphism ϕ : T → Z2
st(E,M). Finally, we have

(k)((tϕ)Φ1) = (kι)(tϕ)Mp = (k)(tϕ1)

for k ∈ Π1, t ∈ T , and

(q, p)((tϕ)Φ0) = ([q], [p])(tϕ)Gp = (([q], [p])κ(ι|Im ι)−1)(tϕ1) + (q, p)(tϕ0)

= (q, p)(tϕ0)

for p, q ∈ Π0, t ∈ T , that is, ϕΦ1 = ϕ1 and ϕΦ0 = ϕ0.
Conversely, given an arbitrary group homomorphism ϕ : T → Z2

st(E,M) with
ϕΦ1 = ϕ1 and ϕΦ0 = ϕ0, we necessarily have

(m)(tϕ)Mp = (m[m]−1)(tϕ)Mp = ((m[m]−1)(ι|Im ι)−1)(tϕΦ1)

= ((m[m]−1)(ι|Im ι)−1)(tϕ1)

for m ∈ MpE, and

(h, g)(tϕ)Gp = ((h, g)κ)(tϕ)Mp + ([h], [g])(tϕ)Gp

= ((h, g)κ)(tϕ)Mp + (h, g)(tϕΦ0)

= ((h, g)κ(ι|Im ι)−1)(tϕ1) + (h, g)(tϕ0)

for g, h ∈ GpE. This shows the uniqueness of the induced group homomorphism.
Altogether, the diagram under consideration is a pullback of abelian groups.

Our next step is to show that the induced isomorphism

Φ: Z2
st(E,M) → Z2((Π0,Π1, z

3),M)

restricts to an isomorphism B2
st(E,M) → B2((Π0,Π1, z

3),M). Given a standard 2-
coboundary b ∈ B2

st(E,M), proposition 4.7(b) states that bMp = 0 and that there
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exists a pointed 1-cochain c0 ∈ Ch1
pt(Π0,M) with (h, g)bGp = (h, g)(c0∂) for g, h ∈

GpE. In particular, bΦ1 = 0 and

(q, p)(bΦ0) = ([q], [p])bGp = (q, p)(c0∂)

for p, q ∈ Π0 and hence bΦ0 ∈ B2(Π0,M). Conversely, we suppose given a standard
2-cocycle b ∈ Z2

st(E,M) with bΦ1 = 0 and bΦ0 ∈ B2
pt(Π0,M), that is, there exists a

pointed 1-cochain c0 ∈ Ch1
pt(Π0,M) with bΦ0 = c0∂. Then

(m)bMp = (m[m]−1)bMp = ((m[m]−1)(ι|Im ι)−1)(bΦ1) = 0

for all m ∈ MpE and

(h, g)bGp = ((h, g)κ)bMp + ([h], [g])bGp = (h, g)(bΦ0) = (h, g)(c0∂)

for all g, h ∈ GpE. Hence b is a standard 2-coboundary by proposition 4.7(b).
Altogether, Φ restricts to an isomorphism B2

st(E,M) → B2((Π0,Π1, z
3),M) and

hence induces also an isomorphism H2
st(E,M) → H2((Π0,Π1, z

3),M). Moreover, cor-
ollary 4.5(c) implies that

H2(E,M) ∼= H2
st(E,M) ∼= H2((Π0,Π1, z

3),M).

Corollary 4.10. For z3, z̃3 ∈ Z3
cpt(Π0,Π1) with z3B3

cpt(Π0,Π1) = z̃3B3
cpt(Π0,Π1), we

have

H2((Π0,Π1, z
3),M) ∼= H2((Π0,Π1, z̃

3),M).

Proof. We suppose given 3-cocycles z3, z̃3 ∈ Z3
cpt(Π0,Π1) with z3B3

cpt(Π0,Π1) =
z̃3B3

cpt(Π0,Π1). By construction of the standard extension E(z3), the 3-cocycle of
the standard extension E(z3) with respect to the standard section system (s1z3 , s0z3)
is given by z3

E(z3),(s1
z3 ,s0

z3 )
= z3, cf. section 2.13. Moreover, by [31, prop. (6.5)] there

exists a section system (s̃1, s0z3) for E(z3) such that z3
E(z3),(s̃1,s0

z3 )
= z̃3. Thus corol-

lary 4.9 implies

H2((Π0,Π1, z
3),M) ∼= H2(E(z3),M) ∼= H2((Π0,Π1, z̃

3),M).

We finish this section by a direct algebraic proof that extension equivalent crossed
module extensions yield the same second cohomology group, as to be expected from
a weak homotopy equivalence, cf. for example [31, rem. (4.5)].

Proposition 4.11. We suppose given crossed module extensions E and Ẽ of Π0 with
Π1 and an extension equivalence ϕ : E → Ẽ. Moreover, we suppose given a section
system (s1, s0) for E and a section system (s̃1, s̃0) for Ẽ such that s̃0 = s0(Gpϕ) and

s1(Mpϕ) = (Gpϕ)|Im µẼ

Im µE s̃1. (7)

The induced group homomorphism Z2(ϕ,M) : Z2(Ẽ,M) → Z2(E,M) restricts to
an isomorphism Z2

st,(s̃1,s̃0)(Ẽ,M) → Z2
st,(s1,s0)(E,M), which induces in turn isomor-

phisms

B2
st,(s̃1,s̃0)(Ẽ,M) → B2

st,(s1,s0)(E,M) and H2
st,(s̃1,s̃0)(Ẽ,M) → H2

st,(s1,s0)(E,M).

7Such section systems exist, cf. for example [31, prop. (5.16)(b)].
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Proof. To show that Z2(ϕ,M) restricts to a group homomorphism Z2
st(Ẽ,M) →

Z2
st(E,M), we have to show that z̃Z2(ϕ,M) ∈ Z2

st(E,M) for every given standard
2-cocycle z̃ ∈ Z2

st(Ẽ,M). By corollary 4.5(b), we have

(m̃s̃1)z̃Mp = (g̃(g̃πẼ s̃0)−1, g̃πẼ s̃0)z̃Gp = 0

for all m̃ ∈ Mp Ẽ, g̃ ∈ Gp Ẽ. Since s0(Gpϕ) = s̃0 and s1(Mpϕ) = (Gpϕ)|Im µẼ

Im µE s̃1, it
follows that

(ms1)(z̃Z2(ϕ,M))Mp = (ms1ϕ)z̃Mp = (mϕs̃1)z̃Mp = 0

for all m ∈ MpE and

(g(gπEs0)−1, gπEs0)(z̃Z2(ϕ,M))Gp = ((gϕ)(gπEs0ϕ)−1, gπEs0ϕ)z̃Gp

= ((gϕ)((gϕ)πẼ s̃0)−1, (gϕ)πẼ s̃0)z̃Gp = 0

for all g ∈ GpE, that is, z̃Z2(ϕ,M) ∈ Z2
st(E,M) by corollary 4.5(b). Hence Z2(ϕ,M)

restricts to a well-defined group homomorphism

Z2(ϕ,M)|
Z2

st(E,M)

Z2
st(Ẽ,M)

: Z2
st(Ẽ,M) → Z2

st(E,M).

Now, [31, prop. (5.14)(c)] implies that z3
E,(s1,s0) = z3

Ẽ,(s̃1,s̃0)
. By corollary 4.9, we

have isomorphisms

Φ: Z2
st(E,M) → Z2((Π0,Π1, z

3),M), z 7→ (zΦ1, zΦ0)

given by (k)(zΦ1) := (kιE)zMp for k ∈ Π1 and (q, p)(zΦ0) := (qs0, ps0)zGp for p, q ∈
Π0, z ∈ Z2

st(E,M), and

Φ̃ : Z2
st(Ẽ,M) → Z2((Π0,Π1, z

3),M), z̃ 7→ (z̃Φ̃1, z̃Φ̃0)

given by (k)(z̃Φ̃1) := (kιẼ)z̃Mp for k ∈ Π1 and (q, p)(z̃Φ̃0) := (qs̃0, ps̃0)z̃Gp for p, q ∈

Π0, z̃ ∈ Z2
st(Ẽ,M). To show that Z2(ϕ,M)|

Z2
st(E,M)

Z2
st(Ẽ,M)

is an isomorphism, it suffices to

verify that Φ̃ = (Z2(ϕ,M))|
Z2

st(E,M)

Z2
st(Ẽ,M)

Φ. Indeed, given z̃ ∈ Z2
st(Ẽ,M), we have

k(z̃Z2(ϕ,M)Φ1) = (kιE)(z̃Z2(ϕ,M))Mp = (kιEϕ)z̃Mp = (kιẼ)z̃Mp = k(z̃Φ̃1)

for all k ∈ Π1 and

(q, p)(z̃Z2(ϕ,M)Φ0) = (qs0, ps0)(z̃Z2(ϕ,M))Gp = (qs0ϕ, ps0ϕ)z̃Gp

= (qs̃0, ps̃0)z̃Gp = (q, p)(z̃Φ̃0)

for all p, q ∈ Π0, that is, Φ̃ = (Z2(ϕ,M))|
Z2

st(E,M)

Z2
st(Ẽ,M)

Φ.

Moreover, the induced group homomorphism B2(ϕ,M) also restricts to a well-
defined group homomorphism

B2(ϕ,M)|
B2

st(E,M)

B2
st(Ẽ,M)

: B2
st(Ẽ,M) → B2

st(E,M),

cf. definition 4.2(b), which is an isomorphism since

Φ̃|
B2

EM((Π0,Π1,z3),M)

B2
st(Ẽ,M)

= (B2(ϕ,M)|
B2

st(E,M)

B2
st(Ẽ,M)

)(Φ|
B2

EM((Π0,Π1,z3),M)

B2
st(E,M)

)
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and since Φ|
B2

EM((Π0,Π1,z3),M)

B2
st(E,M)

and Φ̃|
B2

EM((Π0,Π1,z3),M)

B2
st(Ẽ,M)

are isomorphisms by cor-

ollary 4.9.
Finally, it follows that we get an induced isomorphism

H2
st(Ẽ,M) → H2

st(E,M).

5. Second Eilenberg-Mac Lane cohomology group

Until now, we have worked with crossed module extensions. Since every crossed
module gives rise to a canonical crossed module extension, we can now formulate
Eilenbergs and MacLanes theorem in the context of crossed modules and simpli-
cial groups.

Definition 5.1 (first Postnikov invariant).

(a) Given a crossed module V , the cohomology class associated to the canonical
extension

π1(V )
inc
−−→ MpV

µ
−→ GpV

quo
−−→ π0(V )

will be denoted by k3
V := cl(V ) ∈ H3

cpt(π0(V ),π1(V )) and is called the (first)
Postnikov invariant of V .

(b) Given a simplicial group G, we call k3
G := cl(Trunc1 G) ∈ H3

cpt(π0(G),π1(G))
the first Postnikov invariant of G.

Definition 5.2 (second Eilenberg-Mac Lane cohomology group, cf. [12, sec. 3]).

(a) We suppose given a crossed module V and a componentwise pointed 3-cocycle
z3 ∈ Z3

cpt(π0(V ),π1(V )) with k3
V = z3B3

cpt(π0(V ),π1(V )). The second Eilen-
berg-MacLane cohomology group of V with respect to z3 and with coefficients
in M is defined by

H2
EM,z3(V,M) := H2((π0(V ),π1(V ), z3),M).

(b) We suppose given a simplicial group G and a componentwise pointed 3-cocycle
z3 ∈ Z3

cpt(π0(G),π1(G)) with k3
G = z3B3

cpt(π0(G),π1(G)). The second Eilenberg-
MacLane cohomology group of G with respect to z3 and with coefficients in M
is defined by

H2
EM,z3(G,M) := H2((π0(G),π1(G), z3),M).

We have already seen that the isomorphism class of the second Eilenberg-Mac Lane
cohomology group of a crossed module does not depend on the choice of a specific
3-cocycle in its associated cohomology class:

Remark 5.3. Given a crossed module V and componentwise pointed 3-cocycles z3,
z̃3 ∈ Z3

cpt(π0(V ),π1(V )) with k3
V = z3B3

cpt(π0(V ),π1(V )) = z̃3B3
cpt(π0(V ),π1(V )),

we have

H2
EM,z3(V,M) ∼= H2

EM,z̃3(V,M).

Proof. This follows from corollary 4.10.
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Theorem 5.4 (cf. [12, th. 2]).

(a) Given a crossed module V , an abelian π0(V )-module M and a componentwise
pointed 3-cocycle z3 ∈ Z3

cpt(π0(V ),π1(V )) with k3
V = z3B3

cpt(π0(V ),π1(V )), we
have

H2(V,M) ∼= H2
EM,z3(V,M).

(b) Given a simplicial group G, an abelian π0(G)-module M and a componentwise
pointed 3-cocycle z3 ∈ Z3

cpt(π0(G),π1(G)) with k3
G = z3B3

cpt(π0(G),π1(G)), we
have

H2(G,M) ∼= H2
EM,z3(G,M).

Proof.

(a) This follows from corollary 4.9 and remark 5.3.

(b) Applying proposition 3.13 and (a), we obtain

H2(G,M) ∼= H2(Trunc1 G,M) ∼= H2
EM,z3(Trunc1 G,M) = H2

EM,z3(G,M).

Corollary 5.5 (cf. [12, sec. 4]).

(a) We suppose given a simplicial group G and an abelian π0(G)-module M .

(i) If k3
G = 1, then

H2(G,M) ∼= Homπ0(G)(π1(G),M) ⊕ H2(π0(G),M).

(ii) If Homπ0(G)(π1(G),M) = {0}, then

H2(G,M) ∼= H2(π0(G),M).

(b) We suppose given a crossed module V and an abelian π0(V )-module M .

(i) If k3
V = 1, then

H2(V,M) ∼= Homπ0(V )(π1(V ),M) ⊕ H2(π0(V ),M).

(ii) If Homπ0(V )(π1(V ),M) = {0}, then

H2(V,M) ∼= H2(π0(V ),M).

Proof.

(a) (i) If k3
G = 1, then we have Z2((π0(G),π1(G), 1),M) = Homπ0(G)(π1(G),M) ×

Z2
cpt(π0(G),M) and hence

H2(G,M) ∼= H2
EM,1(G,M) = H2(π0(G),π1(G), 1),M)

∼= Homπ0(G)(π1(G),M) × H2
cpt(π0(G),M)

∼= Homπ0(G)(π1(G),M) ⊕ H2(π0(G),M)

by theorem 5.4.
(ii) If Homπ0(G)(π1(G),M) = {0}, then we get

H2(G,M) ∼= H2
EM,z3(G,M) = H2(π0(G),π1(G), z3),M)

∼= H2
cpt(π0(G),M) ∼= H2(π0(G),M),

where z3 ∈ Z3
cpt(π0(G),π1(G)) with k3

G = z3B3
cpt(π0(G),π1(G)).

(b) This follows from (a) applied to the simplicial group Cosk1 V .
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Question 5.6 (cf. [12, sec. 5]).

(a) We suppose given a crossed module V and an abelian π0(V )-module M . How
can theorem 5.4 be generalised to obtain a description of Hn(V,M) for n > 3 in
terms of π0(V ), π1(V ) and k3

V ? What about such descriptions for homology?

(b) We suppose given a simplicial group G and an abelian π0(V )-module M . How
can theorem 5.4 be generalised to obtain a description of Hn(G,M) for n >

3 in terms of homotopy groups and Postnikov invariants? What about such
descriptions for homology?

Finally, we discuss some examples.

Example 5.7. We suppose given a group Π0 and abelian Π0-modules Π1 and M . We
let E be the crossed module extension

Π1

idΠ1−−−→ Π1
triv
−−→ Π0

idΠ0−−−→ Π0.

Then we have

H2(E,M) ∼= HomΠ0
(Π1,M) ⊕ H2(Π0,M).

Proof. The 3-cocycle of E with respect to the unique section system (triv, idΠ0
) for

E is trivial and hence

H2(E,M) ∼= HomΠ0
(Π1,M) ⊕ H2(Π0,M)

by corollary 5.5(b)(i).

Example 5.8. We suppose given a simplicial group G such that π1(G) is finite. Then
we have

H2(G, Z) ∼= H2(π0(G), Z).

Proof. Since π1(G) is finite, we have Homπ0(G)(π1(G), Z) = {0}, whence cor-
ollary 5.5(a)(ii) applies.

Example 5.9. We suppose given a simplicial group G with π0(G) ∼= π1(G) ∼= C2.
For n ∈ N0, we have

H2(G, Z/n) ∼=

{

Hom(C2, Z/n) ⊕ H2(C2, Z/n) if k3
G = 1,

H2(C2, Z/n) if k3
G 6= 1,

}

∼=



















Z/2 if n = 0,

{0} if n ∈ N, 2 ∤ n,

Z/2 ⊕ Z/2 if n ∈ N, 2 | n, k3
G = 1,

Z/2 if n ∈ N, 2 | n, k3
G 6= 1,

where Z/n is considered as a trivial C2-module.

Proof. The assertion for k3
G = 1 is a particular case of corollary 5.5(a)(i), so let us

suppose that k3
G 6= 1. For n = 0, we get the assertion from example 5.8. So let us

suppose given an n ∈ N. By the additivity of H2(G,−) resp. H2(π0(G),−) and the
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Chinese Remainder Theorem, it suffices to consider the case where n = pe for a prime
p and e ∈ N. If p > 2, we have Homπ0(G)(π1(G), Z/pe) = {0} and hence

H2(G, Z/pe) ∼= H2(π0(G), Z/pe)

by corollary 5.5(a)(ii).
It remains to consider the case n = 2e for some e ∈ N. We let x be the generator

of π0(G), we let y be the generator of π1(G) and we let z3 ∈ Z3
cpt(π0(G),π1(G)) be a

componentwise pointed 3-cocycle with k3
G = z3B3

cpt(π0(G),π1(G)). Since k3
G 6= 1, we

have z3 6= 1 and hence

(r, q, p)z3 =

{

1 for (r, q, p) 6= (x, x, x),

y for (r, q, p) = (x, x, x).

Now Homπ0(G)(π1(G), Z/2e) = Hom(π1(G), Z/2e) has a unique non-trivial element

z1 : π1(G) → Z/2e, which maps y to yz1 = 2e−1. But for all c0 ∈ Ch2
cpt(π0(G), Z/2e),

we have

(x, x, x)(c0∂) = (x, x)c0 − (x, 1)c0 + (1, x)c0 − (x, x)c0 = 0 6= 2e−1 = yz1

= (x, x, x)z3z1.

Hence there does not exist a cochain c0 ∈ Ch2
cpt(π0(G), Z/2e) with z3z1 = c0∂. It

follows that

Z2
EM,z3(G, Z/2e) = {0} × Z2

cpt(π0(G), Z/2e)

and thus

H2(G, Z/2e) ∼= H2
EM,z3(G, Z/2e) ∼= H2

cpt(π0(G), Z/2e) ∼= H2(π0(G), Z/2e).

Example 5.10. We consider the crossed module V with group part GpV = 〈a | a4 =
1〉, module part MpV = 〈b | b4 = 1〉, structure morphism given by bµ = a2 and action
given by ab = b−1, cf. [29, ex. (5.6)]. Then we have

H2(V, Z/n) ∼=

{

Z/2 for n ∈ N0 even,

{0} for n ∈ N0 odd.

Proof. The homotopy groups of V are given by π0(V ) = 〈x〉 with x := a(Im µ) and
π1(V ) = 〈y〉 with y := b2, and we have π0(V ) ∼= π1(V ) ∼= C2. Now (s1, s0) defined
by s0 : π0(V ) → GpV, 1 7→ 1, x 7→ a and s1 : Im µ → MpV, 1 7→ 1, a2 7→ b is a section
system for V . We let (Z2, Z1) be the lifting system coming from (s1, s0). It follows
that (x, x)z2 = (xs0)(xs0)(1s0)−1 = a2 and therefore (x, x)Z2 = a2s1 = b. Finally,

(x, x, x)z3 = (x, x)Z2(1, x)Z2((x, 1)Z2)−1(xZ1

(x, x)Z2)−1 = b a(b−1) = b2 = y

and therefore z3 6= 1. Since

(x, x, x)(c2∂) = (x, x)c2((x, 1)c2)−1(1, x)c2(x(x, x)c2)−1 = (x, x)c2((x, x)c2)−1

= 1

for every componentwise pointed 2-cochain c2 ∈ Ch2
cpt(π0(V ),π1(V )), we conclude

that z3 /∈ B3
cpt(π0(V ),π1(V )) and hence k3

V 6= 1. The assertion follows now from
example 5.9.
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the diagonal and the bar constructions on a bisimplicial set. Topology Appl.
153(1) (2005), pp. 21–51.

[11] Duskin, John W. Simplicial methods and the interpretation of “triple” coho-
mology. Mem. Amer. Math. Soc., vol. 3(2), no. 163. Amer. Math. Soc., 1975.

[12] Eilenberg, Samuel and MacLane, Saunders. Determination of the second
homology and cohomology groups of a space by means of homotopy invariants.
Proc. Nat. Acad. Sci. U.S.A. 32 (1946), pp. 277–280.

[13] Eilenberg, Samuel and MacLane, Saunders. Cohomology theory in
abstract groups. II. Group Extensions with a non-Abelian Kernel. Ann. of
Math. 48(2) (1947), pp. 326–341.

[14] Ellis, Graham J. Homology of 2-types. Jour. Lond. Math. Soc. 46(1) (1992),
pp. 1–27.

[15] Friedlander, Eric M. and Mazur, Barry. Filtrations on the homology of
algebraic varieties. Mem. Amer. Math. Soc., vol. 110, no. 529. Amer. Math.
Soc., 1975.



210 SEBASTIAN THOMAS

[16] Goerss, Paul G. and Jardine, John F. Simplicial Homotopy Theory.
Progress in Mathematics, vol. 174. Birkhäuser Verlag, Basel, 1999.
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