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Abstract
It is shown that a reduced homology theory on the category

of pointed compact metric spaces is strong shape invariant if
and only if its homology functors hn satisfy the quotient exact-
ness axiom, which means that for each pointed compact metric
pair (X, A, a0) the natural sequence hn(A, a0)→ hn(X, a0)→
hn(X/A, ∗) is exact. As a consequence, all generalized Steenrod
homology theories are strong shape invariant.

1. Introduction

The concept of a generalized Steenrod homology theory for compact metric spaces
was introduced in [13] by Kaminker and Schochet. Their purely axiomatic approach
distills the essential properties which are common to classical (ordinary) Steenrod
homology and to Brown-Douglas-Fillmore homology ε∗ whose origin lies in the theory
of operator algebras (see, e.g., [3]).

Steenrod homology theories are reduced theories defined for single spaces. In [13]
the authors dealt with the unpointed case. In the subsequent paper [14], Kahn,
Kaminker and Schochet switched to the pointed case which is the more natural setting
for reduced homology and on which we shall focus.

By a reduced pointed homology system on the category CM0 of pointed compact
metric spaces we denote any system (hn, σn)n∈Z of covariant homotopy invariant
functors hn : CM0 → Ab (= category of abelian groups) and of natural isomorphisms
σn : hn → hn+1 ◦ S, where S denotes the reduced suspension functor on CM0. A
reduced pointed homology system is called exact if it satisfies the following exactness
axiom: For each pointed compact metric pair (X,A, a0) the natural sequence

hn(A, a0)
i∗−→ hn(X, a0)

j∗−→ hn(X ∪ C(A, a0), ∗)
is exact for all n ∈ Z.

Here, (X ∪ C(A, a0), ∗) denotes the pointed adjunction space obtained by attaching
the reduced cone C(A, a0) to X via the inclusion A ↪→ C(A, a0).
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In the literature, exact reduced pointed homology systems are customarily denoted
as reduced pointed homology theories (see, e.g., [5, 19]), and we shall adopt this
notation here.

We now come to a “stronger” variant of exactness. A reduced pointed homology
system (hn, σn)n∈Z on CM0 is called quotient exact if it satisfies the following quo-
tient exactness axiom: For each pointed compact metric pair (X,A, a0) the natural
sequence

hn(A, a0)
i∗−→ hn(X, a0)

p∗−→ hn(X/A, ∗)
is exact for all n ∈ Z.

Each quotient exact reduced pointed homology system yields a commutative dia-
gram

hn(A, a0)
i∗ // hn(X, a0)

p∗ //

j∗
²²

hn(X/A, ∗)

hn(C(A, a0), ∗)
i′∗ // hn(X ∪ C(A, a0), ∗)

p′∗ // hn(X/A, ∗)
with exact rows. Since hn(C(A, a0), ∗) = hn(∗, ∗) = 0, p′∗ is a monomorphism which
implies that the exactness axiom is satisfied. That is, each quotient exact reduced
pointed homology system is a reduced pointed homology theory. This legitimizes the
use of the phrase homology theory in the following definition (cf. [14]).

A Steenrod homology theory on CM0 is a reduced pointed homology system
(hn, σn)n∈Z on CM0, which is quotient exact and, in addition, satisfies the follow-
ing cluster axiom: For each sequence (Xi, xi)i∈N of pointed compacta, the projec-
tions pk : Cl∞i=1(Xi, xi)→ (Xk, xk) defined on the cluster Cl∞i=1(Xi, xi) induce iso-
morphisms

πn : hn(Cl∞i=1(Xi, xi))→
∞∏

k=1

hn(Xk, xk)

for all n ∈ Z.
An abundance of Steenrod homology theories is constructed in [14] by associating

to any CW-spectrum E a Steenrod homology theory sE∗, which is an extension of
the standard reduced pointed homology theory E∗ defined on the category CWfin

0

of finite pointed CW-complexes (see, e.g., [19, Section 8]). Therefore each reduced
pointed homology theory h∗ on CWfin

0 admits a Steenrod extension sh∗ to CM0

because h∗ can be represented by a CW-spectrum.
In [6, Section 8.2] Edwards and Hastings give an alternative construction of a

Steenrod extension sh∗ of a reduced pointed homology theory h∗ on CWfin
0 . Their

approach brings together Steenrod extensions and strong shape theory by factorizing
sh∗ over the Vietoris functor V : CM0 → Ho(pro− SS). Since V is strong shape
invariant, the Steenrod extensions defined in [6] are also strong shape invariant.

For a deeper understanding of Steenrod extensions and their relation to strong
shape theory, see Bauer’s papers [1, 2].

It is worth mentioning that ordinary Steenrod homology theory is also known to
be strong shape invariant. This is excellently explained in Ferry’s paper [7].
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The object of this paper is to show that all Steenrod homology theories are strong
shape invariant. This will be derived directly from the axioms by continuing the
approach of [18], where we showed that, among unreduced homology theories on the
category of compact metric pairs, the strong shape invariant theories are precisely
those satisfying the strong excision axiom. Our main result is the following.

Strong Shape Invariance Theorem (Theorem 3.5): The strong shape invari-
ant reduced pointed homology theories on CM0 are precisely the quotient exact
reduced pointed homology systems. In particular, all Steenrod homology theories on
CM0 are strong shape invariant.

The proof of the Strong Shape Invariance Theorem is worth sketching here because
of its exceptional clarity.

The reason why exactness plus strong shape invariance imply quotient exactness
is that quotient maps collapsing a contractible subspace to a point are strong shape
equivalences. This yields an isomorphism q∗ : hn(X ∪ C(A, a0), ∗)→ hn(X/A, ∗),
which results in quotient exactness.

The main ingredient in the proof of the converse is a representation of the pointed
strong shape category of pointed compacta SSh0 as a quotient category: In Section 7
we show that the strong shape functor S : CM0 → SSh0 localizes CM0 at the class
of pointed cylinder base embeddings. A characteristic feature of pointed cylinder base
embeddings i : (A, a0) ↪→ (X, a0) is that they are inclusions such that the quotient
space (X/A, ∗) is pointed contractible (see Proposition 7.4). But now there is a really
remarkable coincidence: Any quotient exact reduced pointed homology system on
CM0 takes such inclusions to isomorphisms which proves its strong shape invariance.

Although in this paper we concentrate on reduced pointed homology theories, we
also treat reduced unpointed homology theories and obtain an analogue of the Strong
Shape Invariance Theorem (Theorem 4.3). Moreover, in Section 6 we show that:

• strong shape invariant reduced pointed homology theories,

• strong shape invariant reduced unpointed homology theories, and

• strong shape invariant unreduced homology theories

are equivalent which means that they can be transformed into each other without
losing information.

In particular, we see that the strong excision axiom in the unreduced case and the
quotient exactness axiom in the reduced case are equivalent characterizations of the
same phenomenon — namely strong shape invariance — which may possibly lead to
a deeper understanding of the general context of these axioms.

It is also interesting that strong shape invariant homology theories occur in the
entourage of the Novikov conjecture. To understand why ordinary Steenrod homology
theory arises in studies of the Novikov Conjecture, the reader should consult [7]. In
the most general form, strong shape invariant homology theories appear in Higson’s
and Roe’s paper [11] on the coarse Baum-Connes conjecture. In [11], the authors
consider coarsenings of generalized homology theories M∗. In Proposition 4.3, which
states that the coarsening map c : M∗(OY )→MX∗(OY ) is an isomorphism for any
finite-dimensional compact metric space Y , they have to assume that the homology
theory M∗ satisfies the strong excision axiom, i.e., is strong shape invariant.
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2. Reduced homology theories: Pointed case

Reduced homology theories can be defined for pointed and unpointed spaces. We
concentrate on the pointed case since this is the “natural setting” for reduced homol-
ogy. The unpointed case will be addressed in short form in Section 4.

In the sequel we shall need the four functors:
• Abs: CM2

0 → CM0,Abs(X, A, a0) = (X, a0), Abs(f) = f ,
• Res: CM2

0 → CM0, Res(X, A, a0) = (A, a0), Res(f) = f |A,
• Γ: CM2

0 → CM0, Γ(X, A, a0) = (X ∪ C(A, a0), ∗), Γ(f) = f ∪ C(f |A),
• Q : CM2

0 → CM0, Q(X,A, a0) = (X/A, ∗), Q(f) = induced quotient map.
The above functors come along with four natural transformations:
• Inclusion transformation i : Res→ Abs, i(X,A,a0) : (A, a0)→ (X, a0),
• Inclusion transformation j : Abs→ Γ, j(X,A,a0) : (X, a0)→ (X ∪ C(A, a0), ∗),
• Quotient transformation p : Abs→ Q, p(X,A,a0) : (X, a0)→ (X/A, ∗),
• Quotient transformation q : Γ→ Q, q(X,A,a0) : (X ∪ C(A, a0), ∗)→ (X/A, ∗) =

((X ∪ C(A, a0))/C(A, a0), ∗).
In the following definitions let h : CM0 → Ab be an arbitrary covariant functor.

Definition 2.1 (Exactness Axiom). h satisfies the exactness axiom if for all pointed
pairs (X, A, a0) ∈ CM2

0 the sequence

h(A, a0)
i∗ // h(X, a0)

j∗ // h(X ∪ C(A, a0), ∗)

h(Res(X,A, a0)) h(Abs(X, A, a0)) h(Γ(X, A, a0))

is exact.

Definition 2.2 (Quotient Axiom). h satisfies the quotient exactness axiom if for all
pointed pairs (X, A, a0) ∈ CM2

0 the sequence

h(A, a0)
i∗ // h(X, a0)

p∗ // h(X/A, ∗)

h(Res(X, A, a0)) h(Abs(X, A, a0)) h(Q(X, A, a0))

is exact.

Definition 2.3 (Cone Collapsing Axiom). h satisfies the cone collapsing axiom if for
all pointed pairs (X, A, a0) ∈ CM2

0 the quotient map q : (X ∪ C(A, a0), ∗)→ (X/A, ∗)
induces an isomorphism

h(X ∪ C(A, a0), ∗) q∗ // h(X/A, ∗)

h(Γ(X, A, a0)) h(Q(X, A, a0)).
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The following result (which is essentially due to [3]) relates the above concepts.

Theorem 2.4. Let h be homotopy invariant. Then the following are equivalent:
(1) h satisfies the quotient exactness axiom.
(2) h satisfies the cone collapsing axiom and the exactness axiom.

Proof of (1)⇒ (2). The cone collapsing axiom follows from the proofs of [3, Lem-
mas 2.16 and 2.17]. These proofs deal with h = Ext in the unpointed case. The
only properties of Ext used in [3] are homotopy invariance and quotient exactness
so that the proofs apply to our situation. Replacing unreduced mapping cylinders,
mapping cones, cones and suspensions by their reduced versions, we see that if
(X, A, a0) ∈ CM2

0 is a pointed pair such that (A, a0) is pointed contractible, then
p∗ : h(X, a0)→ h(X/A, ∗) is an isomorphism. The cone collapsing axiom is just a
special case of this result.

The exactness axiom is satisfied because p∗ = q∗ ◦ j∗.

Proof of (2)⇒ (1). This is obvious since p∗ = q∗ ◦ j∗.

Definition 2.5.

1. A reduced pointed homology system on CM0 is a collection of homotopy invari-
ant covariant functors hn : CM0 → Ab and natural isomorphisms σn : hn →
hn+1 ◦ S, n ∈ Z.

2. A reduced pointed homology theory is a reduced pointed homology system such
that all homology functors hn satisfy the exactness axiom.

3. A quotient exact reduced pointed homology system is a reduced pointed homology
system such that all homology functors hn satisfy the quotient exactness axiom.

From Theorem 2.4 we derive

Corollary 2.6. On CM0 the quotient exact reduced pointed homology systems coin-
cide with the reduced pointed homology theories which satisfy the cone collapsing axiom
(i.e., for which all homology functors hn satisfy the cone collapsing axiom).

One can give an alternative definition of a reduced pointed homology theory as
a collection of homotopy invariant covariant functors hn : CM0 → Ab and natural
transformations ∂n : hn+1 ◦ Γ→ hn ◦ Res satisfying the long exactness axiom, which
means that for each (X,A, a0) ∈ CM2

0 there is a long exact sequence

· · · ∂n−→ hn(A, a0)
i∗−→ hn(X, a0)

j∗−→ hn(X ∪ C(A, a0), ∗)
∂n−1−−−→ hn−1(A, a0)

i∗−→ · · · .
To verify the equivalence of both definitions we need the natural transformation

ξ : Γ→ S ◦ Res

given by the maps

ξ(X,A,a0) : (X ∪ C(A, a0), ∗) π−→ ((X ∪ C(A, a0))/X, ∗)
= (C(A, a0)/A, ∗) h−→ S(A, a0),

where π is the quotient map and h is the obvious homeomorphism. Note that the
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inclusion X ↪→ X ∪ C(A, a0) is a cofibration. Hence ξ(X,A,a0) is a pointed homotopy
equivalence if (X, a0) is pointed contractible.

Given a reduced pointed homology theory in the sense of the original definition,
we define ∂n = ∂(σn) as the composition

hn+1(X ∪ C(A, a0), ∗) ξ∗−→ hn+1(S(A, a0))
σ−1

n−−→ hn(A, a0).

The proof of long exactness can be found in [19, Section 7.33]. Observe that [19] gives
a different definition of ∂(σn) by interposing the automorphism ν∗ : hn+1(S(A, a0))→
hn+1(S(A, a0)) induced by the homotopy inverse ν on the h-cogroup S(A, a0). That is,
∂(σn) as defined here is nothing else but ∂(ν∗ ◦ σn) as defined in [19]. But (hn, ν∗ ◦ σn)
is also a reduced pointed homology theory so we get the desired exactness result.

Conversely, given a reduced pointed homology theory in the alternative sense, we
can construct natural isomorphisms σn = σ(∂n) as follows: The long exact sequence
of the pointed pair (C(A, a0), A, a0) yields isomorphisms

hn+1(Γ(C(A, a0), A, a0)
∂n−→ hn(A, a0)

since all hn(C(A, a0), ∗) = 0. We can therefore define

σn : hn(A, a0)
∂−1

n−−→ hn+1(Γ(C(A, a0), A, a0))
ξ∗−→ hn+1(S(A, a0)).

In the above situation ξ is a pointed homotopy equivalence because C(A, a0) is pointed
contractible. Therefore σn is a natural isomorphism.

The assignments σn 7→ ∂(σn) and ∂n 7→ σ(∂n) are inverse to each other; i.e., we
have σ(∂(σn)) = σn and ∂(σ(∂n)) = ∂n.

To verify the first equation observe that ξ∗ = ξ
(C(A,a0),A,a0)∗ is an isomorphism

whence

σ(∂(σn)) = ξ
(C(A,a0),A,a0)∗ ◦ ∂(σn)−1

= ξ
(C(A,a0),A,a0)∗ ◦ ((σn)−1 ◦ ξ

(C(A,a0),A,a0)∗ )−1

= σn.

To check the second equation, let us consider the inclusion maps µ : (X, A, a0)→
(C(X, a0), A, a0) and ν : (C(A, a0), A, a0)→ (C(X, a0), A, a0). The following diagram
commutes because ξ and ∂n are natural transformations:

hn+1(S(A, a0))

(S◦Res)(µ)∗

hn+1(Γ(X, A, a0))

Γ(µ)∗
²²

ξ
(X,A,a0)
∗oo ∂n // hn(A, a0)

Res(µ)∗

hn+1(S(A, a0))

(S◦Res)(ν)∗

hn+1(Γ(C(X, a0), A, a0))
ξ
(C(X,a0),A,a0)
∗

≈
oo ∂n // hn(A, a0)

Res(ν)∗

hn+1(S(A, a0)) hn+1(Γ(C(A, a0), A, a0))

Γ(ν)∗

OO

ξ
(C(A,a0),A,a0)
∗

≈
oo ∂n

≈
// hn(A, a0).
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This implies

∂(σ(∂n)) = σ(∂n)−1 ◦ ξ
(X,A,a0)∗ = (ξ(C(A,a0),A,a0)∗ ◦ ∂−1

n )−1 ◦ ξ
(X,A,a0)∗

= ∂n ◦ (ξ(C(A,a0),A,a0)∗ )−1 ◦ ξ
(X,A,a0)∗

= ∂n ◦ Γ(ν)∗ ◦ (ξ(C(A,a0),A,a0)∗ )−1 ◦ ξ
(X,A,a0)∗

= ∂n ◦ (ξ(C(X,a0),A,a0)∗ )−1 ◦ ξ
(X,A,a0)∗

= ∂n ◦ Γ(µ)∗ = ∂n.

Let us finally consider yet another concept of exactness.

Definition 2.7. A reduced pointed Q-homology theory on CM0 is a collection of
homotopy invariant covariant functors hn : CM0 → Ab and natural transformations
∆n : hn+1 ◦Q→ hn ◦ Res, n ∈ Z, such that for each (X, A, a0) ∈ CM2

0 there is a long
exact sequence

· · · ∆n−−→ hn(A, a0)
i∗−→ hn(X, a0)

p∗−→ hn(X/A, ∗) ∆n−1−−−→ hn−1(A, a0)
i∗−→ · · · .

Lemma 2.8. Each reduced pointed Q-homology theory (hn,∆n) satisfies the cone
collapsing axiom (i.e., all functors hn satisfy the cone collapsing axiom).

Proof. The long exact sequence of the pointed pair (X ∪ C(A, a0), C(A, a0), ∗) shows
that all

q∗ : hn(X ∪ C(A, a0), ∗)→ hn(X/A, ∗)
are isomorphisms.

Our above alternative definition of a reduced pointed homology theory immediately
yields the following corollary which is closely related to [3, Theorem 2.19].

Corollary 2.9. On CM0 the reduced pointed Q-homology theories (hn, ∆n) can be
identified with the reduced pointed homology theories (hn, ∂n) which satisfy the cone
collapsing axiom. The identification is given by the assignment

∆n 7→ ∂n = ∆n ◦ q∗.

3. Reduced pointed homology theories on CM0 and strong
shape invariance

Definition 3.1 (Strong Shape Invariance Axiom). A reduced pointed homology sys-
tem (hn, σn) on CM0 is strong shape invariant if each pointed strong shape equiva-
lence f : (X, x0)→ (Y, y0) between pointed compacta induces isomorphisms

f∗ : hn(X, x0)→ hn(Y, y0)

for all n ∈ Z.

Remark 3.2. The strong shape functor S : CM0 → SSh0 localizes CM0 at the class
of pointed strong shape equivalences (see Section 7). As a consequence, for each
reduced pointed homology system (hn, σn) on CM0, strong shape invariance is equiv-
alent to the existence of covariant functors h′n : SSh0 → Ab such that hn = h′n ◦ S
for all n ∈ Z. These functors h′n are of course uniquely determined.
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Theorem 3.3. Let (hn, σn) be a reduced pointed homology theory on CM0. Then the
following are equivalent:
(1) (hn, σn) is strong shape invariant.
(2) (hn, σn) satisfies the cone collapsing axiom.

Proof of (1)⇒ (2). The quotient map q : (X ∪ C(A, a0), ∗)→ (X/A, ∗) is a pointed
strong shape equivalence because C(A, a0) is contractible see, e.g., [9, Theorem 2 and
Corollary 3]).

Proof of (2)⇒ (1). Let i : (A, a0)→ (X,x0) be a pointed cylinder base embedding
(cf. Section 7). We shall show that i induces isomorphisms i∗ : hn(A, a0)→ hn(X, x0)
for all n ∈ Z.

It is no restriction to assume that A ⊂ X and a0 = x0 (otherwise decompose i into
a homeomorphism and the genuine inclusion from i(A, a0) into (X, x0) which is again
a pointed cylinder base embedding). Consider the long exact sequence of the pointed
pair (X, A, a0)

· · · → hn+1(X ∪ C(A, a0), ∗) ∂n−→ hn(A, a0)
i∗−→ hn(X, a0)

j∗−→ hn(X ∪ C(A, a0), ∗)→ · · · .
By assumption, all q∗ : hk(X ∪ C(A, a0), ∗)→ hk(X/A, ∗) are isomorphisms. Since
(X/A, ∗) is pointed contractible (cf. Proposition 7.4), hk(X/A, ∗) = 0.

Thus all hk(X ∪ C(A, a0), ∗) = 0, which implies that i∗ is an isomorphism for all
n ∈ Z.

We have now shown that the hn take pointed cylinder base embeddings to isomor-
phisms. By Theorem 7.7 there exist h′n : SSh0 → Ab such that hn = h′n ◦ S. This
implies that the hn take pointed strong shape equivalences to isomorphisms.

Remark 3.4. The implication (1)⇒ (2) holds true for any reduced pointed homology
system (hn, σn). However, the exactness axiom is essential for the proof of (2)⇒ (1),
which means that this implication holds true only when (hn, σn) is a reduced pointed
homology theory. Moreover, in the proof (2)⇒ (1) it would be sufficient to assume
that the q∗ : hk(X ∪ C(A, a0), ∗)→ hk(X/A, ∗) are monomorphisms.

Theorem 3.5. Let (hn, σn) be a reduced pointed homology system on CM0. Then
the following are equivalent:
(1) (hn, σn) is quotient exact.
(2) (hn, σn) is exact and strong shape invariant, i.e., is a strong shape invariant

reduced pointed homology theory.
In other words: On CM0 the quotient exact reduced pointed homology systems coin-
cide with the strong shape invariant reduced pointed homology theories.

Proof of (1)⇒ (2) By Theorem 2.4, (hn, σn) is exact and satisfies the cone collapsing
axiom. Theorem 3.3 then yields strong shape invariance.

Proof. Proof of (2)⇒ (1) By Theorem 3.3, (hn, σn) satisfies the cone collapsing
axiom. Theorem 2.4 yields quotient exactness.
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Corollary 3.6. Each Steenrod homology theory on CM0 is a strong shape invariant
reduced pointed homology theory.

Corollary 3.7. On CM0 the reduced pointed Q-homology theories (hn, ∆n) can be
identified with the strong shape invariant reduced pointed homology theories (hn, ∂n).
The identification is given by the assignment

∆n 7→ ∂n = ∆n ◦ q∗.

4. Reduced homology theories: unpointed case

Reduced theories can also be defined in the unpointed setting. We shall be short
since everything is almost identical with the pointed case. In the unpointed case the
categories CM0 (resp. CM2

0) have to be replaced by their unpointed counterparts
CMne (resp. CM2

ne) whose objects are all nonempty compact metric spaces X (resp.
all compact metric pairs (X, A) such that A 6= ∅).

The definitions of the Exactness Axiom, the Quotient Exactness Axiom, the Cone
Collapsing Axiom and the Strong Shape Invariance Axiom in the unpointed setting
are omitted here since they are completely analogous as in the pointed case (of course,
the reduced cone appearing in the Exactness Axiom has to be replaced by the unre-
duced cone).

Definition 4.1.

1. A reduced unpointed homology system on CMne is a collection of homotopy
invariant covariant functors hn : CMne → Ab and natural isomorphisms

σn : hn → hn+1 ◦ S, n ∈ Z
(where S : CMne → CMne is the unreduced suspension functor).

2. A reduced unpointed homology theory is a reduced unpointed homology system
such that all homology functors hn satisfy the exactness axiom.

3. A quotient exact reduced unpointed homology system is a reduced unpointed
homology system such that all homology functors hn satisfy the quotient exact-
ness axiom.

Our definition of a reduced unpointed homology theory is essentially that given
in [12, 15] and can therefore be regarded as the “standard” definition.

As in the pointed case there is yet another concept of exactness (see, e.g., [10]
and [13, Proposition 2.5]).

Definition 4.2. A reduced unpointed Q-homology theory on CMne is a collection of
homotopy invariant covariant functors hn : CMne → Ab and natural transformations
∆n : hn+1 ◦Q→ hn ◦ Res, n ∈ Z, satisfying the axiom of Q-exactness, which says
that for each (X,A) ∈ CM2

ne there is a long exact sequence

· · · ∆n−−→ hn(A) i∗−→ hn(X)
p∗−→ hn(X/A)

∆n−1−−−→ hn−1(A) i∗−→ · · · .
Let us now state the main results. The proofs are omitted because they can be

copied from the pointed case (using [17] instead of Section 7).
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Theorem 4.3. On CMne the following coincide:
• Quotient exact reduced unpointed homology systems,
• Reduced unpointed homology theories which satisfy the cone collapsing axiom,
• Strong shape invariant reduced unpointed homology theories.

The concept of a Steenrod homology theory was originally introduced in [13] for
the unpointed case, that is on CMne (see also [6]).

Theorem 4.4. Each Steenrod homology theory on CMne is a strong shape invariant
reduced unpointed homology theory.

Theorem 4.5. On CMne the reduced unpointed Q-homology theories (hn, ∆n) can
be identified with the strong shape invariant reduced unpointed homology theories
(hn, ∂n). The identification is given by the assignment

∆n 7→ ∂n = ∆n ◦ q∗.

5. Strong shape invariance for unreduced homology theories
on CM2 revisited

In [18] we have shown that strong shape invariance and strong excision are equiva-
lent for unreduced homology theories on CM2. We shall slightly improve this result.
In the following definitions, let (Hn, ∂n) be an unreduced homology theory on CM2.

Definition 5.1 (Cone Collapsing Axiom). (Hn, ∂n) satisfies the cone collapsing
axiom if for all (X, A) ∈ CM2 the quotient map p : (X ∪ CA, CA)→ (X/A, ∗) in-
duces isomorphisms

p∗ : Hn(X ∪ CA, CA)→ Hn(X/A, ∗)
for all n ∈ Z.

Remark 5.2. (Hn, ∂n) satisfies the cone collapsing axiom if and only if it satisfies
the cone collapsing axiom in the absolute case, which means that p : X ∪ CA→ X/A
induces isomorphisms

p∗ : Hn(X ∪ CA)→ Hn(X/A)

for all n ∈ Z.

Proof. Let (X,A) ∈ CM2. Consider the infinite commutative diagram consisting of
the long exact sequences of the pairs (X ∪ CA, CA) and (X/A, ∗) and the homomor-
phisms p∗ connecting both sequences. Since all p∗ : Hn(CA)→ Hn(∗) are isomor-
phisms, the five lemma yields the assertion.

Definition 5.3 (Strong Excision Axiom). (Hn, ∂n) satisfies the strong excision axiom
if, for all (X, A) ∈ CM2, the quotient map p : (X, A)→ (X/A, ∗) induces isomor-
phisms

p∗ : Hn(X, A)→ Hn(X/A, ∗)
for all n ∈ Z.
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Remark 5.4. In case A = ∅, we define (X/∅, ∗) = (X+, +) and let

p : (X, ∅)→ (X/∅, ∗)
denote inclusion. Then p is an excision map (excising the one-point subspace +)
and therefore induces isomorphisms p∗ in homology.

Definition 5.5. An unreduced homology theory (Hn, ∂n) on CM2 is strong shape
invariant in the absolute case if each strong shape equivalence f : X → Y between
compacta induces isomorphisms

f∗ : Hn(X)→ Hn(Y )

for all n ∈ Z.

Theorem 5.6. Let (Hn, ∂n) be an unreduced homology theory on CM2. Then the
following are equivalent:
(1) (Hn, ∂n) is strong shape invariant (cf. [18]).
(2) (Hn, ∂n) is strong shape invariant in the absolute case.
(3) (Hn, ∂n) satisfies the cone collapsing axiom.
(4) (Hn, ∂n) satisfies the strong excision axiom.

Proof of (1)⇒ (2). This is obvious.

Proof of (2)⇒ (3). This follows from Remark 5.2 and the fact that p : X ∪ CA→ X/A
is a strong shape equivalence (cf. [9]).

Proof of (3)⇒ (4). This follows from the ordinary excision axiom as shown in the
proof of [18, Theorem 2.3].

Proof of (4)⇒ (1). This is covered by [18, Theorem 2.3].

6. The equivalence of unreduced and reduced strong shape
invariant homology theories

It is commonly understood that unreduced and reduced homology theories are
equivalent. Unfortunately, it is not true in this general form. In fact, one has to make
additional assumptions to establish such an equivalence.

Concerning the equivalence of unreduced and reduced pointed homology theories
(which constitute the “natural” framework for reduced homology), the reader should
consult [19, Section 7]. The price paid in [19] is to require that homology theories
satisfy the weak homotopy axiom and that all pointed spaces under consideration
have a non-degenerate basepoint.

The situation is better for reduced unpointed homology theories. Kelly [15] has
shown that unreduced homology theories which satisfy the dimension axiom and a
slightly weakened form of the excision axiom are equivalent to reduced unpointed
homology theories which satisfy a variant of the dimension axiom and a slightly
modified form of the exactness axiom (in which X ∪ CA is replaced by the space
X ∪Ap got from X by “joining the subset A to a point p”). For compact metric
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spaces Kelly’s modified axioms agree with the standard axioms and it is, moreover,
easy to verify that the dimension axiom can be omitted without affecting the proof
of the equivalence of unreduced and reduced theories. In the compact metric case we
may therefore restate Kelly’s results as follows.

Theorem 6.1. Unreduced homology theories on CM2 are equivalent to reduced un-
pointed homology theories on CMne.

For an unreduced theory (Hn, ∂n), the associated reduced theory (Hn, σ(∂n)) is
given by

Hn(X) = Hn+1(CX,X) ≈ ker(c∗ : Hn(X, ∅)→ Hn(∗, ∅)),

Hn(f) = Hn(Cf).

For a reduced unpointed theory (hn, σn), the associated unreduced theory (ĥn, ∂(σn))
is given by

ĥn(X, A) = hn(Γ(X, A)),

ĥn(f) = hn(Γ(f)).

The formulae for σ(∂n) and ∂(σn) have been omitted because they are irrelevant
for our purposes. Note that in case A = ∅ we set Γ(X, ∅) = X+.

The purpose of this section is to show that in the realm of compact metric spaces
the concepts of

• strong shape invariant unreduced homology theories,

• strong shape invariant reduced unpointed homology theories and

• strong shape invariant reduced pointed homology theories

are completely equivalent.
The first part is obtained as an easy deduction of Theorem 6.1.

Theorem 6.2. Under the equivalence of Theorem 6.1, strong shape invariant unre-
duced homology theories on CM2 correspond to strong shape invariant reduced un-
pointed homology theories on CMne.

In other words: Unreduced homology theories on CM2 which satisfy the strong
excision axiom correspond to quotient exact reduced unpointed homology theories on
CMne.

Proof. Assume that (Hn, ∂n) is strong shape invariant. Consider a strong shape equiv-
alence f : X → Y between nonempty compacta. Then C(f) : (CX, X)→ (CY, Y ) is
a strong shape equivalence of pairs; thus Hn(f) is an isomorphism. This shows that
(Hn, σ(∂n)) is strong shape invariant.

Assume that (hn, σn) is strong shape invariant. Consider a strong shape equivalence
f : X → Y between compacta. Then also Γ(f) = f+ : X+ → Y + is a strong shape
equivalence; hence ĥn(f) is an isomorphism. This means that (ĥn, ∂(σn)) is strong
shape invariant in the absolute case and therefore strong shape invariant.

In the reduced pointed case we cannot establish an analogue of Theorem 6.1 but
confine ourselves to
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Theorem 6.3. Strong shape invariant unreduced homology theories on CM2 are
equivalent to strong shape invariant reduced pointed homology theories on CM0.

In other words: Unreduced homology theories on CM2, which satisfy the strong
excision axiom, are equivalent to quotient exact reduced pointed homology theories on
CM0.

Proof. We establish an equivalence between unreduced homology theories on CM2

which satisfy the strong excision axiom and reduced pointed Q-homology theories on
CM0. By Corollary 3.7 this proves the theorem.

Given an unreduced homology theory (Hn, ∂n) on CM2, which satisfies the strong
excision axiom, we define reduced homology functors Hn : CM0 → Ab by

Hn(X, x0) = Hn(X, {x0}),
Hn(f) = Hn(f).

For any pointed pair (X,A, a0) ∈ CM2
0 we have a commutative diagram

Hn+1(X, {a0}) // Hn+1(X,A)
∂n //

p∗ ≈
²²

Hn(A, {a0}) // Hn(X, {a0})

Hn+1(X/A, {∗})

Hn+1(X, a0)
p∗ // Hn+1(X/A, ∗) ∂n // Hn(A, a0) // Hn(X, a0),

where the top row is the long exact sequence of the triple (X, A, {a0}), the vertical
arrow p∗ is the strong excision isomorphism and ∂n is defined to make the middle
square commutative.

It is then clear that (Hn, ∂n) is a reduced pointed Q-homology theory on CM0.
Given a reduced pointed Q-homology theory (hn,∆n) on CM0, we define unre-

duced homology functors ĥn : CM2 → Ab by

ĥn(X, A) = hn(X/A, ∗),
ĥn(f) = hn(f).

For any pair (X, A) ∈ CM2 we have a commutative diagram

hn+1(X+, +) // hn+1(X+/A+, ∗) ∆n // hn(A+,+) // hn(X+, +)

hn+1(X/A, ∗)

ĥn+1(X, ∅) // ĥn+1(X, A)
∆̂n // ĥn(A, ∅) // ĥn(X, ∅),

where the top row is the long exact sequence of the pointed pair (X+, A+,+) and
∆̂n is defined to make the middle square commutative.
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It is then clear that (ĥn, ∆̂n) is an unreduced homology theory on CM2 which by
construction satisfies the strong excision axiom (since (X/A)/{∗} = X/A).

It is easy to see that the unreduced homology theories (Ĥn, ∂̂n) and (Hn, ∂n) are
naturally isomorphic: Observe that

Ĥn(X, A) = Hn(X/A, {∗})

and verify that the strong excision isomorphism p∗ : Hn → Ĥn is an isomorphism of
unreduced homology theories.

It is also easy to see that the reduced pointed Q-homology theories (ĥn, ∆̂n) and
(hn, ∆n) are naturally isomorphic: Observe that

ĥn(X,x0) = hn(X/{x0}, ∗)
and verify that the pointed homeomorphisms q(X,x0) : (X, x0)→ (X/{x0}, ∗) induce
an isomorphism q∗ : hn → ĥn of reduced pointed Q-homology theories.

Remark 6.4. It follows from Theorems 6.2 and 6.3 that strong shape invariant reduced
pointed homology theories on CM0 are equivalent to strong shape invariant reduced
unpointed homology theories on CMne. Using the fact that X is a strong deformation
retract of X ∪ C{x0}, one easily verifies the following: Given a reduced unpointed
homology theory (hn, σn) on CMne, an equivalent reduced pointed homology theory
(h̃n, σ̃n) on CM0 is obtained by

h̃n(X, x0) = hn(X), h̃n(f) = hn(f),

i.e., by forgetting the basepoints.

Corollary 6.5. Let (hn, σn) be a quotient exact reduced pointed homology system on
CM0. If two pointed maps f, g : (X, x0)→ (Y, y0) between pointed compacta induce
the same unpointed strong shape morphism, then they induce the same homomor-
phism f∗ = g∗ : hn(X, x0)→ hn(Y, y0). This applies, in particular, if f, g are freely
homotopic.

7. Pointed cylinder base embeddings

It is well-known that in the absolute case the strong shape functor S : CM→ SSh
localizes CM at the class of strong shape equivalences see, e.g., [16, Section 10.7]).
In [18] we have shown that this generalizes to compact metric pairs. In this section
we treat the pointed case.

The pointed strong shape category SSh0 can be regarded as a full subcategory
of the strong shape category of compact metric pairs SSh2. This follows from the
“standard” constructions of SSh2 and SSh0 as presented in [16]. The construction of
SSh2 is based on resolutions of pairs, the construction of SSh0 on pointed resolutions
which occur as a special case of resolutions of pairs. See also [9] for an explicit
reference.

We can therefore apply the results of [18]. We recall that a cylinder base embed-
ding of pairs is an embedding of compact metric pairs i : (B,B0)→ (C,C0) such
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that C0\i(B0) ⊂ C\i(B) and (C\i(B), C0\i(B0)) ≈ (Z, Z0)× (0, 1] for some compact
metric pair (Z, Z0).

Definition 7.1. A cylinder base embedding for pointed compacta is a cylinder base
embedding of pairs i : (B, B0)→ (C,C0) such that B0 = {b0} for some point b0 ∈ B
and (C\i(B), C0\i(B0)) ≈ (Z, z0)× (0, 1] for some pointed compactum (Z, z0).

By [18, Theorem A.1] each cylinder base embedding for pointed compacta is
a strong shape equivalence of pairs of compacta. Observe that C0\{i(b0)} ≈
{z0} × (0, 1]. Thus C0 is a homeomorphic copy of the unit interval I. Note also
that i(B) ∩ C0 = {i(b0)}.
Definition 7.2. A collapse is a map p : (C, C0)→ (D, d0) from a compact metric pair
(C, C0) to a pointed metric space (D, d0) such that p maps C\C0 homeomorphically
onto D\{d0}.

For each compact metric pair (C, C0), the quotient map q : (C,C0)→ (C/C0, [C0])
is a collapse. For any collapse p : (C, C0)→ (D, d0) there is a unique homeomorphism
κ : (C/C0, [C0])→ (D, d0) such that κ ◦ q = p.

Definition 7.3. A map of pointed compacta j : (B, b0)→ (D, d0) is called a pointed
cylinder base embedding if it can be decomposed as j = p ◦ i, where i : (B, b0)→
(C, C0) is a cylinder base embedding for pointed compacta and p : (C, C0)→ (D, d0)
is a collapse.

Note that j is in fact an embedding because i(B) ∩ C0 = {i(b0)}. Also observe that
the collapse p occurring in the definition of a pointed cylinder base embedding is a
strong shape equivalence of pairs since C0 is a homeomorphic copy of the unit interval
(see [9]).

Proposition 7.4. Let j : (B, b0)→ (D, d0) be a pointed cylinder base embedding.
Then the quotient space (D/j(B), [j(B)]) obtained from (D, d0) by collapsing its base
j(B) to a point is pointed contractible.

Proof. Let i : (B, b0)→ (C,C0) be as in Definition 7.3. Let (Z, z0) be a pointed
compactum such that (C\i(B), C0\i(b0)) ≈ (Z, z0)× (0, 1]. Then (D/j(B), [j(B)]) ≈
C(Z, z0) = reduced cone of (Z, z0).

Proposition 7.5. Each pointed cylinder base embedding is a pointed strong shape
equivalence of pointed compacta.

Proof. By definition, each pointed cylinder base embedding is the composition of two
strong shape equivalences of pairs of compacta and therefore is itself a strong shape
equivalence of pairs of compacta. Since SSh0 is a full subcategory of SSh2, we are
done.

Proposition 7.6. Let Φ: (X, x0)→ (Y, y0) be a pointed strong shape morphism
between pointed compacta. Then there exist a pointed cylinder base embedding
j : (Y, y0)→ (D, d0) and a pointed map f : (X, x0)→ (D, d0) such that Φ = S(j)−1 ◦
S(f).
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Proof. By [18], Φ has a mapping cylinder in the category SSh2. This means that there
exist a cylinder base embedding for pointed compacta i : (Y, y0)→ (C,C0) and a map
g : (X,x0)→ (C, C0) such that Φ = S(i)−1 ◦ S(g) in SSh2. Let p : (C, C0)→ (D, d0)
be a collapse. Then j = p ◦ i is a pointed cylinder base embedding. Letting f = p ◦ g,
we see that Φ = S(j)−1 ◦ S(f) in SSh0.

Let ΣCBE0 be the class of pointed cylinder base embeddings of pointed compacta.

Theorem 7.7. S : CM0 → SSh0 localizes CM0 at ΣCBE0 . A fortiori S localizes
CM0 at pointed strong shape equivalences of pointed compacta.

To prepare the proof we recall the concept of a calculus of left fractions. Let C be
a category and Σ a set of morphisms in C. Σ admits a calculus of left fractions if the
following conditions are satisfied:

(LF0) For each object X in C there is a set ΣX ⊂ Σ such that for each morphism
s : X → Y of Σ there exists an isomorphism u : Y → Y ′ in C such that
u ◦ s ∈ ΣX .

(LF1) Σ contains all identity morphisms in C.

(LF2) If s : X → Y and t : Y → Z are in Σ, then also t ◦ s is in Σ.

(LF3) Each pair of morphisms X ′ s← X
u→ Y with s in Σ can be completed to a com-

mutative square

X
u //

s

²²

Y

s′

²²
X ′

u′
// Y ′

such that s′ is in Σ.

(LF4) Let u, v : X → Y be morphisms in C. If there exists a morphism s : X ′ → X
in Σ with u ◦ s = v ◦ s, then there exists a morphism t : Y → Y ′ in Σ with
t ◦ u = t ◦ v.

If Σ admits a calculus of left fractions, then we can construct the category of left
fractions C/Σ. It has the same objects as C and the morphisms from X to Y are
equivalence classes of pairs of morphisms (f : X → Z, s : Y → Z) in C with s ∈ Σ (for
details see [8]). The equivalence class of (f, s) is denoted by f\s. A canonical quotient
functor Q : C→ C/Σ is defined by Q(X) = X for the objects and Q(f) = f\ id for
the morphisms. This functor Q localizes C at the class Σ.

We need a slight modification of the concept of a calculus of left fractions.

Definition 7.8. Let C be a category and Σ a set of morphisms in C. We say that
Σ admits a weak calculus of left fractions if conditions (LF0), (LF3) and (LF4) are
satisfied.

Definition 7.9. Let Σ admit a weak calculus of fractions. The closure of Σ is defined
to be the class Σ of all identities in C and all finite compositions sn ◦ · · · ◦ s1 of
elements s1, . . . , sn ∈ Σ (with arbitrary length n).
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Proposition 7.10. Let Σ admit a weak calculus of fractions. Then the closure Σ
admits a calculus of left fractions. The quotient functor Q : C→ C\Σ localizes C
at Σ.

Proof. This is a straightforward exercise.

Let HCM0 be the homotopy category of CM0 and let HΣCBE0 be the set of
homotopy classes of maps in ΣCBE0 .

Theorem 7.11. HΣCBE0 admits a weak calculus of left fractions in HCM0.

Proof of (LF0). (LF0) is obvious since each pointed compactum has a homeomorphic
copy in the Hilbert cube.

Proof of (LF3). Let (X ′, x′0)
j← (X,x0)

u→ (Y, y0) be a pair of morphisms in CM0

with j ∈ ΣCBE0 . We have j = p ◦ i, where i : (X,x0)→ (C, C0) is a cylinder base
embedding for pointed compacta, and p : (C, C0)→ (X ′, x′0) is the collapse associated
to i. Consider the pushout diagram

(X,x0)
u //

i

²²

(Y, y0)

i′

²²
(C, C0)

u′
// (Y ′, Y ′

0).

It is easy to see that i′ is a a cylinder base embedding for pointed compacta and that
u′ maps C0 homeomorphically onto Y ′

0 .
Let p′ : (Y ′, Y ′

0)→ (Y ′′, y′′0 ) be the collapse associated to i′. Then u′ induces a map
u′′ : (X ′, x′0)→ (Y ′′, y′′0 ) such that the diagram

(C, C0)
u′ //

p

²²

(Y ′, y′0)

p′

²²
(X ′, x′0)

u′′
// (Y ′′, y′′0 )

commutes. Since j′ = p′ ◦ i′ : (Y, y0)→ (Y ′′, y′′0 ) is a pointed cylinder base embedding,
we are done.

Proof of (LF4). Let f0 and f1 : (X, x0)→ (Y, y0) be two pointed maps and let
j : (X ′, x′0)→ (X, x0) be a pointed cylinder base embedding such that f0 ◦ j ' f1 ◦ j
(' denotes basepoint preserving homotopy). By definition, there exist a cylinder base
embedding for pointed compacta i : (X ′, x′0)→ (C, C0) and a collapse p : (C, C0)→
(X, x0) such that p ◦ i = j.

There is a homotopy H : (j(X ′), x0)× I → (Y, y0) such that H0 = f0 |j(X′) and
H1 = f1 |j(X′). We can extend H to a map

H ′ : (X × {0, 1} ∪ j(X ′)× I, x0 × I)→ (Y, y0)

such that H ′
0 = f0 and H ′

1 = f1.
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Let
ι : (X × {0, 1} ∪ j(X ′)× I, x0 × I)→ (X,x0)× I

denote inclusion and let

(D, d0) = ((X × {0, 1} ∪ j(X ′)× I)/x0 × I, [x0 × I])

denote the pointed quotient space obtained by contracting x0 × I to a point. We have
quotient maps

q : (X × {0, 1} ∪ j(X ′)× I, x0 × I)→ (D, d0)

and
q′ : (X,x0)× I → (X × I/x0 × I, [x0 × I]).

H ′ induces a pointed map
H ′′ : (D, d0)→ (Y, y0)

such that H ′′ ◦ q = H ′ and ι induces an embedding

ι′ : (D, d0)→ (X × I/x0 × I, [x0 × I])

of pointed compacta such that ι′ ◦ q = q′ ◦ ι. We shall show that ι′ is a pointed cylinder
embedding. Let R = C × {0, 1} ∪ i(X ′)× I and R0 = C0 × {0, 1} ∪ i(x′0)× I. The
map p× idI : (C, C0)× I → (X,x0)× I restricts to a map

p : (R, R0)→ (X × {0, 1} ∪ j(X ′)× I, x0 × I).

Let
r : (R, R0)→ (R/R0, [R0])

denote the quotient map. It is easy to see that q ◦ p induces a map

p̂ : (R/R0, [R0])→ (D, d0)

such that p̂ ◦ r = q ◦ p. Since p is a collapse, p̂ is a homeomorphism.
We shall first show that the inclusion

ι′′ : (R, R0)→ (C × I, C0 × I)

is a cylinder base embedding of compact metric pairs.
Since i is a cylinder base embedding for pointed compacta, there exist a pointed

compactum (Z, z0) and a homeomorphism

h : (Z, z0)× (0, 1]→ (C\i(X ′), C0\i(x′0)).
Let

h0 : {z0} × (0, 1]→ C0\i(x′0)
denote the restriction of h. Clearly h0 extends to a homeomorphism

k0 : {z0} × I → C0.

Define a homeomorphism h′ by

h′ = h× id(0,1) : (Z, z0)× (0, 1]× (0, 1)→ (C\i(X ′), C0\i(x′0))× (0, 1)
= (C × I\R, C0 × I\R0)
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and let
h′0 : {z0} × (0, 1]× (0, 1)→ C0 × I\R0

denote the restriction of h′. By construction, the homeomorphism

k′0 = k0 × idI : {z0} × I × I → C0 × I

is an extension of h′0.
Choose a homeomorphism λ : I × I → I × I such that λ(I × (0, 1]) = (0, 1]× (0, 1).

We obtain a homeomorphism

h′′ = h′ ◦ (idZ ×λ) : (Z, z0)× I × (0, 1]→ (C × I\R,C0 × I\R0)

which shows that ι′′ is a cylinder base embedding of compact metric pairs.
Next let

h′′0 : {z0} × I × (0, 1]→ C0 × I\R0

denote the restriction of h′′. Again by construction, the homeomorphism

k′′0 = k′0 ◦ (idz0 ×λ) : {z0} × I × I → C0 × I

is an extension of h′′0 .
The fibres Ft = k′′0 ({z0} × I × {t}), t ∈ I, are homeomorphic copies of the unit

interval I. We have F0 = R0 and Ft ∩R = ∅ for t ∈ (0, 1]. Define an equivalence rela-
tion ∼ on C × I by

ξ1 ∼ ξ2 if and only if ξ1 = ξ2 or there exists t ∈ I such that ξ1, ξ2 ∈ Ft.

∼ restricts to an equivalence relation on C0. Define

(E,E0) = (C × I/ ∼, C0 × I/ ∼).

(E, E0) is a compact metric pair such that E0 is a homeomorphic copy of I. Let
π : (C × I, C0 × I)→ (E,E0) be the quotient map. It contracts each fibre Ft ⊂ C0

to a point and compresses the square C0 × I to E0. Since π(R0) = [F0] ∈ [E0], the
restriction of π to (R, R0) induces a map

π′ : (R/R0, [R0])→ (E, E0)

such that π ◦ ι′′ = π′ ◦ r. Since Ft ∩R = ∅ for t ∈ (0, 1], π′ is an embedding.
By construction, h′′ : (Z, z0)× I × (0, 1]→ (C × I\R, C0 × I\R0) maps the fibres

F ′t = {z0} × I × {t} homeomorphically onto

h′′(F ′t) = h′′0(F ′t ) = k′′0 (F ′t ) = Ft, t ∈ (0, 1].

Hence h′′ induces a homeomorphism

h′′′ : (Z/{z0} × I, [{z0} × I])× (0, 1]→ (E\π′(R/R0), E0\π′([R0])).

This means that π′ is a cylinder base embedding for pointed compacta.
Consider the map

q′ ◦ (p× idI) : (C × I, C0 × I)→ (X × I/x0 × I, [x0 × I]).

It is a collapse which contracts the square C0 × I to the point [x0 × I]. Since it maps
points which are equivalent with respect to ∼ to the same point in X × I/x0 × I, it
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induces a map

s : (E, E0)→ (X × I/x0 × I, [x0 × I]).

It is clear by construction that s is a collapse. Therefore

J = s ◦ π′ : (R/R0, [R0])→ (X × I/x0 × I, [x0 × I])

is a pointed cylinder base embedding. It is easy to verify that J = ι′ ◦ p̂. Since p̂ is
a homeomorphism, we conclude that ι′ is a pointed cylinder base embedding as we
claimed above.

As in the proof of (LF3) there exists a commutative diagram

(D, d0)
H′′

//

ι′

²²

(Y, y0)

j′

²²
(X × I/x0 × I, [x0 × I])

u
// (Y ′, y′0),

where j′ is a pointed cylinder base embedding. We therefore obtain a commutative
diagram

((X × {0, 1} ∪ j(X ′)× I, x0 × I) H′
//

ι

²²

(Y, y0)

j′

²²
(X × I, x0 × I)

q′◦u
// (Y ′, y′0).

The pointed homotopy G = q′ ◦ u satisfies G0 = j′ ◦H ′
0 = ι ◦ f0 and G1 = j′ ◦ f1

which proves (LF4).

We now prove Theorem 7.7.
Let us first consider any functor Θ: CM0 → K taking ΣCBE0 to isomorphisms

in the category K. Then Θ is homotopy invariant, i.e., factorizes as Θ = HΘ ◦H
with HΘ: HCM0 → K. This comes from the fact that the inclusions ik : (X, x0)→
(X, x0)× I/{x0} × I, ik(x) = [x, k], k = 0, 1 are pointed cylinder base embeddings
and therefore induce isomorphisms Θ(ik). Hence Θ(i0) = Θ(i1) since Θ(p), where
p : (X, x0)× I/{x0} × I → (X, x0) denotes the projection map, is a common right
inverse for both. This implies that homotopic maps have the same image under Θ.

It is therefore sufficient to show that the functor HS : HCM0 → SSh0 localizes
HCM0 at HΣCBE0 .

Consider the closure HΣCBE0 of HΣCBE0 . Let HCM0/HΣCBE0 be the category
of left fractions and let Λ: HCM0 → HCM0/HΣCBE0 be the quotient functor which
localizes HCM0 at HΣCBE0 (cf. Proposition 7.10).

By Proposition 7.5, HS takes HΣCBE0 to isomorphisms. Hence HS also takes the
closure HΣCBE0 to isomorphisms. Therefore there exists a unique functor

Ω: HCM0/HΣCBE0 → SSh0

such that HS = Ω ◦ Λ. On the morphisms, Ω([f ]\[s]) = S([s])−1 ◦ S([f ]). We shall
show that Ω is a category isomorphism; this will prove Theorem 7.7.
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By Proposition 7.6, Ω is a full functor.We shall show that Ω is faithful. Using the
fact that HΣCBE0 admits a calculus of left fractions, it suffices to show the following
(see, e.g., [4, Lemma 1.19]):

For any pointed homotopy classes [f0], [f1] : (X,x0)→ (Y, y0) such that HS([f0]) =
HS([f1]), there exists [s] ∈ HΣCBE0 such that [s] ◦ [f0] = [s] ◦ [f1].

We shall show that we can even find an [s] ∈ HΣCBE0 with this property. This will
be done using mapping cylinders of approaching maps (see [17]). We may assume that
X and Y are contained in the Hilbert cube Q. Then we can identify pointed strong
shape morphisms (X, x0)→ (Y, y0) with approaching homotopy classes of approach-
ing maps (Q,X, x0)⇒ (Q,Y, y0).

Choose approaching extensions

ϕk : (Q,X, x0)⇒ (Q,Y, y0) of fk : (X, x0)→ (Y, y0).

By assumption, there exists an approaching homotopy φ : (Q,X, x0)× I ⇒ (Q,Y, y0)
connecting ϕ0 and ϕ1. We identify the mapping cylinders C2(ϕk) = C2(fk) with
the left and right face of the mapping cylinder C2(φ) (as sets, C2(gk) = (X, x0)
× {k} × (0, 1] + (Y, y0) ⊂ (X, x0)× I × (0, 1] + (Y, y0) = C2(φ)). We choose a home-
omorphism

h : (X,x0)× I × (0, 1]→ C2(φ)\(Y, y0).

Let αk : C2(fk)→ C2(φ) be the left and right face embeddings, let i
(k)
(X,x0)

: (X, x0)→
C2(fk) be the top embeddings (identifying (X, x0) with h((X, x0)× {k} × {1})) and
let j

(k)
(Y,y0)

: (Y, y0)→ C2(fk) as well as j(Y,y0) : (Y, y0)→ C2(φ) be the base embed-
dings. We then have

j(Y,y0) ◦ f0 = α0 ◦ j
(0)
(Y,y0)

◦ f0 ' α0 ◦ i
(0)
(X,x0)

' α1 ◦ i
(1)
(X,x0)

' α1 ◦ j
(1)
(Y,y0)

◦ f1 = j(Y,y0) ◦ f1.

Here, ' denotes homotopy of pairs.
We have C2(φ) = (C(φ), C(φ0)), where φ0 : (Q, x0)× I ⇒ (Q, y0) is the restriction

of φ. Let

q : C2(φ)→ (C(φ)/C(φ0), [C(φ0)])

be the quotient map. Defining s = q ◦ j(Y,y0), we see that s ◦ f0 and s ◦ f1 are pointed
homotopic. We shall show that s is a pointed cylinder base embedding.

Define an equivalence relation ∼ on C(φ) by

ξ1 ∼ ξ2 if and only if ξ1 = ξ2 or there exists t ∈ (0, 1]
such that ξ1, ξ2 ∈ h(x0 × I × {t}).

∼ restricts to an equivalence relation on C(φ0). Let

r : C2(φ)→ (C(φ)/ ∼, C(φ0)/ ∼)

denote the quotient map. Then i = r ◦ j(Y,y0) is a cylinder base embedding for pointed
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compacta since h induces a homeomorphism

((C(φ)/ ∼)\i(Y ), (C(φ0)/ ∼)\i(y0)) ≈ (X × I/x0 × I, [x0 × I])× (0, 1].

It is clear that q maps points which are equivalent with respect to ∼ to the same
point in X × I/x0 × I. Therefore q induces a map

p : ((C(φ)/ ∼)\i(Y ), (C(φ0)/ ∼)\i(y0))→ (C(φ)/C(φ0), [C(φ0)])

such that p ◦ r = q. This map obviously is a collapse.
We have now shown that s = q ◦ j(Y,y0) = p ◦ r ◦ j(Y,y0) = p ◦ i is a pointed cylinder

base embedding which completes the proof. The a fortiori part of the theorem holds
because pointed strong shape equivalences are precisely the morphisms which are
taken to isomorphisms by S.
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