HOMOTOPY NILPOTENCY IN LOCALIZED SU(n)

DAISUKE KISHIMOTO

(communicated by Donald M. Davis)

Abstract

We determine the homotopy nilpotency of p-localized $\mathrm{SU}(n)$ when p is a quasi-regular prime in the sense of $[\mathbf{9}]$. As a consequence, we see that it is not a monotonic decreasing function in p.

1. Introduction

Let G be a compact Lie group and let $-_{(p)}$ stand for the p-localization in the sense of [2]. In [7], McGibbon asked:

Question 1.1. For which primes p is $G_{(p)}$ homotopy commutative?
He answered this question for G simply connected. For example, he showed that $\mathrm{SU}(n)_{(p)}$ is homotopy commutative if and only if $p>2 n$. Later, in [8], he studied higher homotopy commutativity of p-local finite loop spaces and, motivated by this work, Saumell [11] considered the above question by replacing homotopy commutativity with higher homotopy commutativity in the sense of Williams [14]. For example, she showed that if $p>k n$, then $\mathrm{SU}(n)_{(p)}$ is a C_{k}-space in the sense of Williams [14].

One can also approach the problem from the opposite direction:
Question 1.2. How far from being homotopy commutative is $G_{(p)}$ for a given prime p ?

In [5], Kaji and the author approached this question by considering homotopy nilpotency which is defined as follows, where we treat only group-like spaces (see [15] for a general definition). Let X be a group-like space, that is, X satisfies all the axioms of groups up to homotopy, and let $\gamma: X \times X \rightarrow X$ be the commutator map of X. We write the n-iterated commutator map $\gamma \circ(1 \times \gamma) \circ \cdots \circ(1 \times \cdots \times 1 \times \gamma): X^{n+1} \rightarrow X$ by γ_{n}, where X^{n+1} is the direct product of $(n+1)$-copies of X. We say that X is homotopy nilpotent of class n, denoted nil $X=n$, if $\gamma_{n} \simeq *$ and $\gamma_{n-1} \nsucceq *$. Namely, nil $X=n$ means that X is a nilpotent group of class n up to homotopy. Then one can say that nil X tells how far from being homotopy commutative X is. Note that

[^0]we normalize homotopy nilpotency such that nil $X=1$ if and only if X is homotopy commutative. Then, rewriting the above result of McGibbon, we have
\[

$$
\begin{equation*}
\operatorname{nil} \mathrm{SU}(n)_{(p)}=1 \text { if and only if } p>2 n \tag{1}
\end{equation*}
$$

\]

In [5], Kaji and the author determined nil X for a p-compact group X when p is a regular prime, that is, X has the homotopy type of the direct product of localized spheres. For example, they showed

$$
\operatorname{nil} \operatorname{SU}(n)_{(p)}= \begin{cases}2 & \text { for } \frac{3}{2} n<p<2 n \tag{2}\\ 3 & \text { for } n \leqslant p \leqslant \frac{3}{2} n\end{cases}
$$

when p is odd, and nil $\mathrm{SU}(2)_{(2)}=2$.
The aim of this article is to determine nil $\operatorname{SU}(n)_{(p)}$ when p is a quasi-regular prime in the sense of $[\mathbf{9}]$, that is, $\mathrm{SU}(n)_{(p)}$ has the homotopy type of the p-localization of the direct product of spheres and sphere bundles over spheres. The result is

Theorem 1.1. Let p be a prime greater than 5. Then we have:

1. $\operatorname{nil} \mathrm{SU}(n)_{(p)}=3$ if $p=n+1$ or $\frac{n}{2}<p \leqslant \frac{2 n+1}{3}$.
2. $\operatorname{nil} \operatorname{SU}(n)_{(p)}=2$ if $\frac{2 n+1}{3}<p \leqslant n-2$.

Since the homotopy type of $\mathrm{SU}(n)_{(p)}$ gets easier as p increases, it is natural to expect that nil $\operatorname{SU}(n)_{(p)}$ is a monotonic decreasing function in p. In fact, (1) and (2) give some evidence for this expectation. However, Theorem 1.1 shows this is false in almost all cases as follows. In [10], it is shown that

$$
\frac{x}{\log x}<\pi(x)<1.25506 \frac{x}{\log x}
$$

for $x \geqslant 17$, where $\pi(x)$ is the prime counting function, that is, $\pi(x)$ is the number of primes less than or equal to x. This implies that there is a prime p in the range $\frac{2 n+1}{3}<p \leqslant n-2$ for $n \geqslant 33$. We can also show that there are such primes for $n=9$ and $13 \leqslant n \leqslant 32$ by a case-by-case analysis. Thus we obtain

Corollary 1.2. For $n=9$ or $n \geqslant 13$, $\operatorname{nilSU}(n)_{(p)}$ is not a monotonic decreasing function in p.

In what follows, we will make the conventions: For a map $f: X \rightarrow Y, f_{*}:[A, X] \rightarrow$ $[A, Y]$ and $f^{*}:[Y, B] \rightarrow[X, B]$ mean the induced maps. If a map $f: X \rightarrow Y_{1} \times Y_{2}$ satisfies $\pi_{1} \circ f \simeq *$, then we say that f falls into Y_{2}, where π_{1} is the first projection. We often assume that the above f is a map from X into Y_{2}. We denote the adjoint congruence $[X, \Omega Y] \stackrel{\cong}{\rightrightarrows}[\Sigma X, Y]$ by ad. When X is group-like, we always assume that the homotopy set $[A, X]$ is a group by pointwise multiplication and we denote by 0 unity of this group which is the constant map. We denote the order of an element x of a group by $\operatorname{ord}(x)$.

2. Homotopy groups of $\boldsymbol{B}_{\boldsymbol{n}}$

Hereafter, let p denote an odd prime and put $2 \leqslant t \leqslant p$. Each space and map is always assumed to be localized at the prime p.

Let us first recall basic results on the p-primary component of the homotopy groups of spheres.

Theorem 2.1 ([12, Chapter XIII $]$).

1. We have

$$
\pi_{2 n-1+k}\left(S^{2 n-1}\right) \cong \begin{cases}\mathbf{Z} / p & \text { for } k=2 i(p-1)-1, i=1, \ldots, p-1 \\ \mathbf{Z} / p & \text { for } k=2 i(p-1)-2, i=n, \ldots, p-1 \\ 0 & \text { otherwise, for } 1 \leqslant k \leqslant 2 p(p-1)-3\end{cases}
$$

2. Let $\alpha_{1}(3)$ be a generator of $\pi_{2 p}\left(S^{3}\right)$ and define $\alpha_{i}(3) \in \pi_{2 i(p-1)+2}\left(S^{3}\right)$ inductively by the Toda bracket $\left\{\alpha_{i-1}(3), p, \alpha_{1}(2 i(p-1)+2)\right\}_{1}$ for $i=2, \ldots, p-1$. Then $\pi_{2 n+2 i(p-1)-2}\left(S^{2 n-1}\right)$ is generated by $\alpha_{i}(2 n-1)=\Sigma^{2 n-4} \alpha_{i}(3)$.
3. $\pi_{2 i(p-1)+1}\left(S^{3}\right)$ is generated by $\alpha_{1}(3) \circ \alpha_{i-1}(2 p)$ for $i=2, \ldots, p-1$.
4. $\Sigma^{2}: \pi_{2 n+2 i(p-1)-3}\left(S^{2 n-1}\right) \rightarrow \pi_{2 n+2 i(p-1)-1}\left(S^{2 n+1}\right)$ is the zero map for $i=n$, $\ldots, p-1$. In particular, $\alpha_{i}(n) \circ \alpha_{j}(n+2 i(p-1)-1)=0$ for $i+j<p$ and $n \geqslant 5$.

Let B_{n} be the $S^{2 n-1}$-bundle over $S^{2 n+2 p-3}$ such that

$$
H^{*}\left(B_{n} ; \mathbf{Z} / p\right)=\Lambda\left(\bar{x}_{2 n-1}, \mathcal{P}^{1} \bar{x}_{2 n-1}\right)
$$

where $\left|\bar{x}_{2 n-1}\right|=2 n-1$. Namely, B_{n} is induced from the sphere bundle $S^{2 n-1} \rightarrow$ $\mathrm{O}(2 n+1) / \mathrm{O}(2 n-1) \rightarrow S^{2 n}$ by $\frac{1}{2} \alpha_{1}(2 n)$ as in [9]. Recall that we have a cell decomposition

$$
B_{n}=S^{2 n-1} \cup_{\alpha_{1}(2 n+1)} e^{2 n+2 p-3} \cup e^{4 n+2 p-4}
$$

Let A_{n} denote the $(4 n+2 p-5)$-skeleton of B_{n}, that is, $A_{n}=C_{\alpha_{1}(2 n-1)}$, where C_{f} stands for the mapping cone of f. In particular, we have

$$
\begin{equation*}
A_{n}=\Sigma^{2 n-4} A_{2} \tag{3}
\end{equation*}
$$

It follows from a result of McGibbon [6] that the cofiber sequence $A_{n} \rightarrow B_{n} \rightarrow$ $S^{4 n+2 p-4}$ splits after a suspension, that is,

$$
\begin{equation*}
\Sigma B_{n} \simeq \Sigma A_{n} \vee S^{4 n+2 p-3} \tag{4}
\end{equation*}
$$

Mimura and Toda [9] showed that $\mathrm{SU}(n)$ has the homotopy type of the direct product of odd spheres and B_{k} 's if and only if $p>\frac{n}{2}$. We shall be concerned with $\mathrm{SU}(n)$ for $\frac{n}{2}<p<n$, equivalently, $\mathrm{SU}(p+t-1)$ since $2 \leqslant t \leqslant p$. In this case, we have a homotopy equivalence

$$
\mathrm{SU}(p+t-1) \simeq B_{2} \times \cdots \times B_{t} \times S^{2 t+1} \times \cdots \times S^{2 p-1}
$$

We compute the homotopy groups of B_{n} following Mimura and Toda [9] in a slightly larger range than [9]. Consider the homotopy exact sequence of the fibration $S^{2 n-1} \rightarrow B_{n} \rightarrow S^{2 n+2 p-3}$. Then the connecting homomorphism $\delta: \pi_{*}\left(S^{2 n+2 p-3}\right) \rightarrow$ $\pi_{*-1}\left(S^{2 n-1}\right)$ is given by

$$
\begin{equation*}
\delta(\Sigma x)=\alpha_{1}(2 n-1) \circ x \tag{5}
\end{equation*}
$$

Then by Theorem 2.1, we obtain $\pi_{*}\left(B_{2}\right)$ for $* \leqslant 2 p(p-1)$. In particular, each map
$S^{m} \rightarrow B_{2}$ for $2 p+2 \leqslant m \leqslant 2 p(p-1)$ lifts to $S^{3} \subset B_{2}$. It also follows from Theorem 2.1 that for $n \geqslant 3$ and $i=2, \ldots, p-1$, we have the short exact sequence

$$
\begin{equation*}
0 \rightarrow \pi_{*}\left(S^{2 n-1}\right) \rightarrow \pi_{*}\left(B_{n}\right) \rightarrow \pi_{*}\left(S^{2 n+2 p-3}\right) \rightarrow 0 \tag{6}
\end{equation*}
$$

for $2 n+2 p-2 \leqslant * \leqslant 2 n+2 p(p-1)-4$. Then we have only to consider the case that $*=2 n+2 i(p-1)-2$ for $i=2, \ldots, p-1$. Let $i_{n}: S^{2 n-1} \rightarrow A_{n}$ and $j_{n}: A_{n} \rightarrow B_{n}$ be the inclusions and let $q_{n}: A_{n} \rightarrow S^{2 n+2 p-3}$ be the pinch map. Consider the following commutative diagram in which the lower horizontal sequence is the exact sequence (6) and we put $k=2 n+2 i(p-1)-2$.

Note that a coextension $\underline{\alpha_{i-1}(2 n+2 p-4)}: S^{2 n+2 i(p-1)-2} \rightarrow A_{n}=C_{\alpha_{1}(2 n-1)}$ satisfies

$$
q_{n *}\left(\underline{\alpha_{i-1}(2 n+2 p-4)}\right)=-\alpha_{i-1}(2 n+2 p-3)
$$

and

$$
\left.\begin{array}{rl}
\alpha_{i-1}(2 n+2 p-4) & \circ
\end{array}=-i_{n *}\left(\left\{\alpha_{1}(2 n-1), \alpha_{i-1}(2 n+2 p-4), p\right\}_{1}\right)\right)
$$

(see [12, p.179]). Then (6) does not split for $*=2 n+2 i(p-1)-2$ and hence we have obtained that $\pi_{2 n+2 i(p-1)-2}\left(B_{n}\right) \cong \mathbf{Z} / p^{2}$. Moreover, it is generated by the element $j_{n *}\left(\alpha_{i-1}(2 n+2 p-4)\right)$. In particular, each map $S^{m} \rightarrow B_{n}$ which is of order p for $2 n+2 p-2 \leqslant m \leqslant 2 n+2 p(p-1)-4$ lifts to $S^{2 n-1} \subset B_{n}$. Summarizing, we have calculated

Proposition 2.2. As for the homotopy groups of B_{n}, we have:

1. $\pi_{3+k}\left(B_{2}\right) \cong \begin{cases}\mathbf{Z} / p & \text { for } k=2 i(p-1)-1, i=2, \ldots, p-1 \\ \mathbf{Z}_{(p)} & \text { for } k=2 p-2 \\ 0 & \text { otherwise, for } 1 \leqslant k \leqslant 2 p(p-1)-3 .\end{cases}$
2. For $n \geqslant 3, \pi_{2 n-1+k}\left(B_{n}\right) \cong \begin{cases}\mathbf{Z} / p & \text { for } k=2 i(p-1)-1, i=2, \ldots, p-1 \\ \mathbf{Z} / p & \text { for } k=2 i(p-1)-2, i=n, \ldots, p-1 \\ \mathbf{Z}_{(p)} & \text { for } k=2 p-2 \\ 0 & \text { otherwise, for } 1 \leqslant k \leqslant 2 p(p-1)-3 .\end{cases}$
3. For $2 p+2 \leqslant m \leqslant 2 p(p-1)$, each map $S^{m} \rightarrow B_{2}$ lifts to $S^{3} \subset B_{2}$.
4. For $n \geqslant 3$ and $2 n+2 p-2 \leqslant m \leqslant 2 n+2 p(p-1)-4$, each map $S^{m} \rightarrow B_{n}$ of order p lifts to $S^{2 n-1} \subset B_{n}$.
By Theorem 2.1 and Proposition 2.2 we can see the homotopy groups of $\mathrm{SU}(p+$ $t-1$) in a range. It will be useful to list the non-trivial odd homotopy groups of $\mathrm{SU}(p+t-1)$.

Corollary 2.3. Let $p \geqslant 7$ and $2(p+t)-1 \leqslant k \leqslant 12 p-1$. Then $\pi_{k}(\mathrm{SU}(p+t-1))=$ 0 unless k is odd and not in the following table. Moreover, each element of $\pi_{2 k-1}(\mathrm{SU}(p+t-1))$ can be compressed into $S^{n} \subset \mathrm{SU}(p+t-1)$ for n in the following table.

	$6 p-3$			
k	$8 p-5$	$8 p-3$		
	$10 p-7$	$10 p-5$	$10 p-3$	
	$12 p-9$	$12 p-7$	$12 p-5$	$12 p-3$
n	5	7	9	11

3. Homotopy nilpotency and Samelson products

Let X be a group-like space. For a map $f: A \rightarrow X$ we write by $-f$ the composition $A \xrightarrow{f} X \xrightarrow{\iota} X$, where $\iota: X \rightarrow X$ is the homotopy inversion. We will often use the fact that the pinch map $V_{1} \times \cdots \times V_{k} \rightarrow V_{1} \wedge \cdots \wedge V_{k}$ induces an injection [$V_{1} \wedge \cdots \wedge$ $\left.V_{k}, X\right] \rightarrow\left[V_{1} \times \cdots \times V_{k}, X\right]$ (see [15, Lemma 1.3.5]).

Suppose that $X=X_{1} \times \cdots \times X_{n}$ as spaces, not necessarily as group-like spaces. We denote the inclusion $X_{k} \rightarrow X$ and the projection $X \rightarrow X_{k}$ by i_{k} and p_{k} respectively for $k=1, \ldots, n$. Note that we may assume $1_{X}=\left(i_{1} \circ p_{1}\right) \cdots\left(i_{n} \circ p_{n}\right)$, the pointwise multiplication. Let $\gamma: X^{2} \rightarrow X$ be the commutator map of X and let γ_{k} be the k-iterated commutator map $\gamma \circ(1 \times \gamma) \circ \cdots \circ(1 \times \cdots \times 1 \times \gamma): X^{k+1} \rightarrow X$. By applying a commutator calculus to a certain subgroup of $\left[X^{k+1}, X\right]$ together with the above description of 1_{X}, Kaji and the author [5] gave a decomposition of γ_{k} and obtained

Proposition 3.1. Let X be a group-like space such that $X=X_{1} \times \cdots \times X_{n}$ as spaces and let $i_{m}: X_{k} \rightarrow X$ be the inclusion for $m=1, \ldots, n$. Then nil $X<k$ if and only if $\left\langle\theta_{1},\left\langle\cdots\left\langle\theta_{k}, \theta_{k+1}\right\rangle \cdots\right\rangle\right\rangle=0$ for each $\theta_{1}, \ldots, \theta_{k+1} \in\left\{ \pm i_{1}, \ldots, \pm i_{n}\right\}$.

We produce formulae for Samelson products which will be useful for our purpose.
Proposition 3.2. Let X be a group-like space and let $\theta_{i}: V_{i} \rightarrow X$ for $i=1,2,3$.

1. If $\left\langle \pm \theta_{1},\left\langle \pm \theta_{2}, \pm \theta_{3}\right\rangle\right\rangle=\left\langle \pm \theta_{2},\left\langle \pm \theta_{3}, \pm \theta_{1}\right\rangle\right\rangle=0$, then $\left\langle \pm \theta_{3},\left\langle \pm \theta_{1}, \pm \theta_{2}\right\rangle\right\rangle=0$.
2. $\left\langle\theta_{1}, \theta_{2}\right\rangle=0$ implies $\left\langle\theta_{1},-\theta_{2}\right\rangle=0$.
3. Let $\theta_{3}^{\prime}: V_{3} \rightarrow X$. If $\left\langle\theta_{1},\left\langle\theta_{2}, \theta_{3}\right\rangle\right\rangle=\left\langle\theta_{1},\left\langle\theta_{2}, \theta_{3}^{\prime}\right\rangle\right\rangle=\left\langle\theta_{3},\left\langle\theta_{2}, \theta_{3}^{\prime}\right\rangle\right\rangle=0$, then we have $\left\langle\theta_{1},\left\langle\theta_{2}, \theta_{3} \theta_{3}^{\prime}\right\rangle\right\rangle=0$.
4. Suppose that $X=X_{1} \times \cdots \times X_{n}$ as spaces and denote by i_{k} and p_{k} the inclusion $X_{k} \rightarrow X$ and the projection $X \rightarrow X_{k}$ respectively for $k=1, \ldots, n$. Then we have that $\left\langle\theta_{1}, i_{k} \circ p_{k} \circ \theta_{2}\right\rangle=0$ for $k=1, \ldots, n$ implies $\left\langle\theta_{1}, \theta_{2}\right\rangle=0$.
Proof. 1. Recall first the Hall-Witt formula of groups. Let G be a group and let $[-,-]$ denote the commutator of G. Then we have the Hall-Witt formula,

$$
\left[y,\left[z, x^{-1}\right]\right]^{x}\left[x,\left[y, z^{-1}\right]\right]^{z}\left[z,\left[x, y^{-1}\right]\right]^{y}=1
$$

for $x, y, z \in G$, where $x^{y}=y x y^{-1}$.

Let $q_{i}: V_{1} \times V_{2} \times V_{3} \rightarrow V_{i}$ be the i-th projection for $i=1,2,3$. Put $\bar{\theta}_{i}=\theta_{i} \circ q_{i}$ for $i=1,2$, 3. For $\sigma \in \Sigma_{3}$, we define $\sigma: V_{1} \wedge V_{2} \wedge V_{3} \rightarrow V_{\sigma(1)} \wedge V_{\sigma(2)} \wedge V_{\sigma(3)}$ by $\sigma\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{\sigma(1)}, v_{\sigma(2)}, v_{\sigma(3)}\right)$. Then we have

$$
\left[\bar{\theta}_{\sigma(1)},\left[\bar{\theta}_{\sigma(2)}, \bar{\theta}_{\sigma(3)}\right]\right]=\sigma^{-1} \circ q^{*}\left(\left\langle\theta_{1},\left\langle\theta_{2}, \theta_{3}\right\rangle\right\rangle\right)
$$

where $[-,-]$ denotes the commutator in the group $\left[V_{1} \times V_{2} \times V_{3}, X\right]$ and q : $X^{3} \rightarrow X^{(3)}$ is the pinch map, where $X^{(m)}$ denotes the smash product of m-copies of X. Hence, by hypothesis, we have established $\left[\pm \bar{\theta}_{1},\left[\pm \bar{\theta}_{2}, \pm \bar{\theta}_{3}\right]\right]=$ $\left[\pm \bar{\theta}_{2},\left[\pm \bar{\theta}_{3}, \pm \bar{\theta}_{1}\right]\right]=0$ and thus it follows from the Hall-Witt formula that we obtain $\left[\pm \bar{\theta}_{3},\left[\pm \bar{\theta}_{1}, \pm \bar{\theta}_{2}\right]\right]=0$. Since σ^{-1} and q^{*} are monic, we have $\left\langle \pm \theta_{3},\left\langle \pm \theta_{1}\right.\right.$, $\left.\left.\pm \theta_{2}\right\rangle\right\rangle=0$.
2. This follows from the fact $1_{X}=\left(i_{1} \circ p_{1}\right) \cdots\left(i_{n} \circ p_{n}\right)$ and the formula

$$
[x, y z]=[x, y][x, z]^{y}
$$

for $x, y \in G$.
3. This also follows from the above formula.
4. This follows from the formulae

$$
[x,[y, z w]]=[x,[y, z]][x,[z,[y, w]]]^{[y, z]}[x,[y, w]]^{[y, z][z,[y, w]]}
$$

for $x, y, z, w \in G$ respectively.

We denote the inclusions $S^{2 i-1} \rightarrow \mathrm{SU}(p+t-1), A_{j} \rightarrow \mathrm{SU}(p+t-1)$ and $B_{j} \rightarrow$ $\mathrm{SU}(p+t-1)$ by $\epsilon_{i}, \lambda_{j}$ and $\bar{\lambda}_{j}$ respectively for $2 \leqslant i \leqslant p$ and $2 \leqslant j \leqslant t$. We also denote by π_{i} the projections $\mathrm{SU}(p+t-1) \rightarrow B_{i}$ for $2 \leqslant i \leqslant t$ and $\mathrm{SU}(p+t-1) \rightarrow S^{2 i-1}$ for $t+1 \leqslant i \leqslant p$.

Let $W=A_{2} \vee \cdots \vee A_{t} \vee S^{2 t+1} \vee \cdots \vee S^{2 p-1}$ and let $j=\lambda_{2} \vee \cdots \vee \lambda_{t} \vee \epsilon_{t+1} \vee \cdots$ $\vee \epsilon_{p}: W \rightarrow \mathrm{SU}(p+t-1)$. By (4) there is a homotopy retraction $r: \Sigma \mathrm{SU}(p+t-$ 1) $\rightarrow \Sigma W$ of Σj and as in $[7]$ we can see that there is a self-homotopy equivalence $f: \mathrm{SU}(p+t-1) \rightarrow \mathrm{SU}(p+t-1)$ such that the following square diagram is homotopy commutative.

Then for any map $g: \Sigma A \rightarrow \mathrm{SU}(p+t-1)$, the Whitehead product $\left[\pm \mathrm{ad} \bar{\lambda}_{i}, g\right]=0$ if and only if $\left[\pm \operatorname{ad} \lambda_{i}, g\right]=0$. By adjointness of Whitehead products and Samelson products, we have established

Proposition 3.3. For any map $f: V \rightarrow \mathrm{SU}(p+t)$ and each $i=1, \ldots, t$, the Samelson product $\left\langle \pm \bar{\lambda}_{i}, f\right\rangle=0$ if and only if $\left\langle \pm \lambda_{i}, f\right\rangle=0$. In particular, $\left\langle \pm \bar{\lambda}_{k}, \pm \bar{\lambda}_{l}\right\rangle=0$ if and only if $\left\langle \pm \lambda_{k}, \pm \lambda_{l}\right\rangle=0$.

4. Computing the Samelson products

Let $\Lambda=\left\{\epsilon_{2}, \ldots, \epsilon_{p}, \lambda_{2}, \ldots, \lambda_{t}\right\}$ and $\bar{\Lambda}=\left\{\epsilon_{2}, \ldots, \epsilon_{p}, \bar{\lambda}_{2}, \ldots, \bar{\lambda}_{t}\right\}$, and let $\pm \Lambda=$ $\left\{ \pm \epsilon_{2}, \ldots, \pm \epsilon_{p}, \pm \lambda_{2}, \ldots, \pm \lambda_{t}\right\}$ and $\pm \bar{\Lambda}=\left\{ \pm \epsilon_{2}, \ldots, \pm \epsilon_{p}, \pm \bar{\lambda}_{2}, \ldots, \pm \bar{\lambda}_{t}\right\}$. We write the domain of $\theta \in \pm \Lambda$ or $\pm \bar{\Lambda}$ by $X(\theta)$. For example, if $\theta=\lambda_{i}$, then $X(\theta)=A_{i}$. For $\theta \in \pm \Lambda$ or $\pm \bar{\Lambda}$, we write $|\theta|=i$ if $\theta= \pm \epsilon_{i}, \pm \lambda_{i}$ or $\pm \bar{\lambda}_{i}$.

By Proposition 3.1, it is sufficient to calculate the iterated Samelson products $\left\langle\theta_{1},\left\langle\cdots\left\langle\theta_{n}, \theta_{n+1}\right\rangle \cdots\right\rangle\right\rangle$ for $\theta_{1}, \ldots, \theta_{n+1} \in \pm \bar{\Lambda}$ in determining nil $\operatorname{SU}(p+t-1)$. To do so, we will use the following result of Hamanaka [3].
Theorem 4.1 (Hamanaka [3]). Let X be a $C W$-complex with $\operatorname{dim} X \leqslant 2 n+2 p-4$.
Then there is an exact sequence
$\widetilde{K}^{0}(X)_{(p)} \stackrel{\Theta}{\rightarrow} \bigoplus_{i=0}^{p-2} H^{2 n+2 i}\left(X, \mathbf{Z}_{(p)}\right) \rightarrow[X, \mathrm{U}(n)]_{(p)} \rightarrow \widetilde{K}^{1}(X)_{(p)} \rightarrow \bigoplus_{i=0}^{p-3} H^{2 n+2 i+1}\left(X, \mathbf{Z}_{(p)}\right)$
such that:

1. $\Theta(x)=\bigoplus_{i=0}^{p-2}(n+i)!c h_{n+i}(x)_{(p)}$ for $x \in \widetilde{K}^{0}(X)$, where $c h_{k}$ is the $2 k$-dimensional part of the Chern character.
2. For $f, g \in[X, \mathrm{U}(n)]_{(p)}$, the commutator $[f, g]$ lies in $\mathbf{C o k e r} \Theta$ and represented by

$$
\bigoplus_{k=0}^{p-2} \sum_{i+j-1=n+k} f^{*}\left(x_{2 i-1}\right) \cup g^{*}\left(x_{2 j-1}\right)
$$

where $x_{2 i-1} \in H^{2 i-1}\left(\mathrm{U}(n) ; \mathbf{Z}_{(p)}\right)$ is the suspension of the universal i-th Chern class $c_{i} \in H^{2 i}\left(B U(n) ; \mathbf{Z}_{(p)}\right)$.
As an easy consequence of Theorem 4.1, Hamanaka [3] showed:
Proposition 4.2. $\operatorname{ord}\left(\left\langle \pm \epsilon_{i}, \pm \epsilon_{j}\right\rangle\right)= \begin{cases}0 & \text { for } i+j \leqslant p+t-1 \\ p & \text { for } i+j \geqslant p+t .\end{cases}$
Now let us calculate other Samelson products of $\pm \epsilon_{i}$ and $\pm \lambda_{j}$ by applying Theorem 4.1. We have that $H^{*}\left(B_{n} ; \mathbf{Z}_{(p)}\right)=\Lambda\left(x_{2 n-1}, x_{2 n+2 p-3}\right)$ such that the $\bmod p$ reduction of $x_{2 n-1}$ and $x_{2 n+2 p-3}$ are $\bar{x}_{2 n-1}$ and $\mathcal{P}^{1} \bar{x}_{2 n-1}$ respectively. Then $H^{*}\left(A_{n} ; \mathbf{Z}_{(p)}\right)=$ $\mathbf{Z}_{(p)}\left\langle a_{2 n-1}, a_{2 n+2 p-3}\right\rangle$ such that $j_{n}^{*}\left(x_{i}\right)=a_{i}$ for $i=2 n-1,2 n+2 p-3$, where $R\left\langle e_{1}\right.$, $\left.e_{2}, \ldots\right\rangle$ stands for the free R-module with a basis e_{1}, e_{2}, \ldots and $j_{n}: A_{n} \rightarrow B_{n}$ is the inclusion.
Lemma 4.3. For $n \leqslant p, \widetilde{K}\left(\Sigma A_{n}\right)_{(p)}=\mathbf{Z}_{(p)}\left\langle\xi_{n}, \eta_{n}\right\rangle$ such that

$$
\operatorname{ch}\left(\xi_{n}\right)=\Sigma a_{2 n-1}+\frac{1}{p!} \Sigma a_{2 n+2 p-3}, \operatorname{ch}\left(\eta_{n}\right)=\Sigma a_{2 n+2 p-3}
$$

Proof. Let γ be the canonical line bundle of $\mathbf{C} P^{p}$ and let $\epsilon \in \widetilde{K}\left(\mathbf{C} P^{p}\right)=\left[\mathbf{C} P^{p}\right.$, $B \mathrm{U}(\infty)]$ be the composite $\mathbf{C} P^{p} \xrightarrow{q} S^{2 p} \xrightarrow{u} B \mathrm{U}(\infty)$ for the pinch map $q: \mathbf{C} P^{p} \rightarrow S^{2 p}$ and a generator u of $\pi_{2 p}(B \mathrm{U}(\infty))$. Note that $\Sigma \mathbf{C} P^{p} \simeq A_{2} \vee S^{5} \vee \cdots \vee S^{2 p-1}$. By using (3), we put ξ_{n} and η_{n} to be the pullback of $\Sigma^{2 n-2} \gamma$ and $\Sigma^{2 n-2} \epsilon$ by the inclusion $\Sigma A_{n} \rightarrow \Sigma^{2 n-2} \mathbf{C} P^{p}$. Then Lemma 4.3 follows from an easy calculation of the Chern character of γ and ϵ.

Proposition 4.4. 1. $\operatorname{For}(i, j) \neq(p, t)$,

$$
\operatorname{ord}\left(\left\langle \pm \epsilon_{i}, \pm \lambda_{j}\right\rangle\right)=\operatorname{ord}\left(\left\langle \pm \lambda_{j}, \pm \epsilon_{i}\right\rangle\right)= \begin{cases}0 & \text { for } i+j \leqslant p+1 \\ p & \text { for } i+j \geqslant p+2\end{cases}
$$

2. For $i+j \leqslant t$, $\operatorname{ord}\left(\left\langle \pm \lambda_{i}, \pm \lambda_{j}\right\rangle\right)=0$.
3. Let $X(i, j)$ be the $(2 i+2 j+4 p-5)$-skeleton of $A_{i} \wedge A_{j}$, that is, $A_{i} \wedge A_{j}$ minus the top cell. For $(i, j) \neq(p, p)$,

$$
\operatorname{ord}\left(\left.\left\langle \pm \lambda_{i}, \pm \lambda_{j}\right\rangle\right|_{X(i, j)}\right)= \begin{cases}0 & \text { for } i+j \leqslant p+1 \\ p & \text { for } i+j \geqslant p+2\end{cases}
$$

Proof. 1. Note that $\mathrm{U}(n) \simeq \mathrm{SU}(n) \times S^{1}$ as H-spaces; here we localize at the odd prime p. Then we have $\operatorname{ord}\left(\left\langle\epsilon_{i}, \lambda_{j}\right\rangle\right)=\operatorname{ord}\left(\left\langle\epsilon_{i}^{\prime}, \lambda_{j}^{\prime}\right\rangle\right)$, where ϵ_{i}^{\prime} and λ_{j}^{\prime} are the compositions $S^{2 i-1} \xrightarrow{\epsilon_{i}} \mathrm{SU}(p+t-1) \hookrightarrow \mathrm{U}(p+t-1)$ and $A_{i} \xrightarrow{\lambda_{i}} \mathrm{SU}(p+t-1) \hookrightarrow$ $\mathrm{U}(p+t-1)$ respectively. Hence we calculate $\left\langle\epsilon_{i}^{\prime}, \lambda_{j}^{\prime}\right\rangle$. Apply Theorem 4.1 to $X=S^{2 i-1} \times A_{j}$. Then, by Lemma 4.3, the $2(i+j+p-2)$-dimensional part of Coker Θ is

$$
\mathbf{Z}_{(p)}\left\langle s_{2 i-1} \times a_{2 j+2 p-3}\right\rangle /\left(\frac{(i+j+p-2)!}{p!} s_{2 i-1} \times a_{2 j+2 p-3}\right)
$$

where $s_{2 i-1}$ is a generator of $H^{2 i-1}\left(S^{2 i-1} ; \mathbf{Z}_{(p)}\right)$. By definition, $\epsilon^{\prime}\left(x_{2 i-1}\right)=s_{2 i-1}$ and $\lambda_{j}^{\prime}\left(x_{2 j+2 p-3}\right)=a_{2 j+2 p-3}$. Then, by the above observation, $q^{*}\left(\left\langle\epsilon_{i}^{\prime}, \lambda_{j}^{\prime}\right\rangle\right) \in$ Coker Θ is represented by $s_{2 i-1} \times a_{2 j+2 p-3}$. Thus we have calculated $\operatorname{ord}\left(\left\langle\epsilon_{i}^{\prime}, \lambda_{j}^{\prime}\right\rangle\right)$.
2. This is quite analogous to 1 .
3. Let $p_{i}: X_{1} \times X_{2} \rightarrow X_{i}$ be the i-th projection for $i=1,2$ and let $q: X_{1} \times X_{2} \rightarrow$ $X_{1} \wedge X_{2}$ be the pinch map. For $f_{i}: X_{i} \rightarrow \mathrm{U}(n), i=1,2$, we have

$$
\left[f_{1} \circ p_{1}, f_{2} \circ p_{2}\right]=q^{*}\left(\left\langle f_{1}, f_{2}\right\rangle\right) \in\left[X_{1} \times X_{2}, \mathrm{U}(n)\right]
$$

as in the proof of Proposition 3.2. Since q^{*} is monic, $\operatorname{ord}\left(\left[f_{1} \circ p_{1}, f_{2} \circ p_{2}\right]\right)=$ $\operatorname{ord}\left(\left\langle f_{1}, f_{2}\right\rangle\right)$. Now if the subcomplex $Y \subset X_{1} \times X_{2}$ satisfies $\operatorname{dim} Y \leqslant 2 n+2 p-$ 4 , it follows from the construction of the exact sequence in Theorem 4.1 that $\left.\left[f_{1} \circ p_{1}, f_{2} \circ p_{2}\right]\right|_{Y}$ lies in $\operatorname{Coker} \Theta$ which is represented by

$$
\bigoplus_{k=0}^{p-2} \sum_{i+j-1=n+k} g^{*}\left(f_{1}^{*}\left(x_{2 i-1}\right) \times f_{2}^{*}\left(x_{2 j-1}\right)\right)
$$

where $g: Y \rightarrow X_{1} \times X_{2}$ is the inclusion (see [3] for details). Using this formula, the remaining calculation is analogous to 1 .

In what follows we will often use the argument below implicitly.
Proposition 4.5. Let $X \rightarrow Y \rightarrow Z$ be a cofiber sequence and let W be a space such that $[Z, W]=*$. If a map $f: Y \rightarrow W$ satisfies $\left.f\right|_{X}=0$, then $f=0$.

Proof. Proposition 4.5 follows from the exact sequence $[Z, W] \rightarrow[Y, W] \rightarrow[X, W]$ induced from the cofiber sequence $X \rightarrow Y \rightarrow Z$.

By Theorem 2.1 and Proposition 2.2, the Samelson product $\left\langle \pm \theta_{1}, \pm \theta_{2}\right\rangle$ for $\theta_{1}, \theta_{2} \in$ Λ falls to a single B_{i} or $S^{2 j-1} \subset \mathrm{SU}(p+t-1)$ for $i=2, \ldots, t$ and $j=t+1, \ldots, p$. We shall consider the lifting problem of the above $\left\langle \pm \theta_{1}, \pm \theta_{2}\right\rangle$ when it maps to B_{i}.

Let us first consider $\left\langle \pm \epsilon_{i}, \pm \epsilon_{j}\right\rangle$. Note that we can assume $i+j \geqslant p+t$ by Proposition 4.2, which implies that $\left\langle \pm \epsilon_{i}, \pm \epsilon_{j}\right\rangle$ falls to $S^{2(i+j-p)+1}$ for $i+j \leqslant 2 p-1$ and to B_{2} for $i=j=p$. Then it is sufficient to look at the case $i=j=p$. By Proposition 4.2, $\operatorname{ord}\left(\left\langle \pm \epsilon_{p}, \pm \epsilon_{p}\right\rangle\right)=p$ and then, by Proposition $2.2,\left\langle \pm \epsilon_{p}, \pm \epsilon_{p}\right\rangle$ lifts to $S^{3} \subset B_{2}$. Thus we have obtained

Proposition 4.6. $\left\langle \pm \epsilon_{i}, \pm \epsilon_{j}\right\rangle$ falls to $S^{2(i+j-p)+1} \subset \mathrm{SU}(p+t-1)$ if $p+t \leqslant i+j \leqslant$ $2 p-1$ and lifts to $S^{3} \subset B_{2}$ if $i+j=2 p$.

Next we consider $\left\langle \pm \epsilon_{i}, \pm \lambda_{j}\right\rangle$ and $\left\langle \pm \lambda_{j}, \pm \epsilon_{i}\right\rangle$. In the following calculation, we shall assume the homotopy set $[\Sigma X, Y]$ is a group by the comultiplication of ΣX and the induced map $(\Sigma f)^{*}:\left[\Sigma X^{\prime}, Y\right] \rightarrow[\Sigma X, Y]$ from $f: X \rightarrow X^{\prime}$ as a group homomorphism. Now we have the exact sequence induced from the cofiber sequence $S^{2 n+2 p-5}$ $\xrightarrow{\alpha_{1}(2 n-2)} S^{2 n-2} \rightarrow C_{\alpha_{1}(2 n-2)}$ for $n \geqslant 3$:

$$
\pi_{2 n-1}\left(S^{2 n-1}\right) \stackrel{\alpha_{1}(2 n-1)^{*}}{\longrightarrow} \pi_{2 n+2 p-4}\left(S^{2 n-1}\right) \rightarrow\left[C_{\alpha_{1}(2 n-2)}, S^{2 n-1}\right] \rightarrow \pi_{2 n-2}\left(S^{2 n-1}\right) .
$$

It follows from Theorem 2.1 that $\alpha_{1}(2 n-1)^{*}$ is epic. Then, for $\pi_{2 n-2}\left(S^{2 n-1}\right)=0$, we obtain

Proposition 4.7. For $n \geqslant 3,\left[C_{\alpha_{1}(2 n-2)}, S^{2 n-1}\right]=0$.
Corollary 4.8. For $p+2 \leqslant i+j \leqslant p+t-1$, the Samelson products $\left\langle \pm \lambda_{i}, \pm \epsilon_{j}\right\rangle$ and $\left\langle \pm \epsilon_{j}, \pm \lambda_{i}\right\rangle$ lift to $S^{2(i+j-p)+1} \subset B_{i+j-p+1}$.

Proof. We only give a proof for $\left\langle\epsilon_{i}, \lambda_{j}\right\rangle$ since the others are analogous. It follows from Proposition 2.2 that $\left\langle\epsilon_{i}, \lambda_{j}\right\rangle$ falls to $B_{i+j-p+1} \subset \mathrm{SU}(p+t-1)$. Since $S^{2 i-1} \wedge A_{j}=$ $C_{\alpha(2 i+2 j-2)}$, it follows from Proposition 4.7 that $q_{*}\left(\left\langle\epsilon_{i}, \lambda_{j}\right\rangle\right)=0$, where $q: B_{i+j-p+1}$ $\rightarrow S^{2(i+j)-1}$ is the projection. Then $\left\langle\epsilon_{i}, \lambda_{j}\right\rangle$ lifts to $S^{2(i+j-p)+1}$ and the proof is completed.

Let us describe the above lift $f: A_{i} \wedge S^{2 j-1} \rightarrow S^{2(i+j-p)+1}$ of the Samelson product $\left\langle\lambda_{i}, \epsilon_{j}\right\rangle$. Consider the following commutative diagram in which the row and the column sequences are the exact sequences induced from the cofiber sequence $S^{2 n+2 p-4} \rightarrow$ $C_{\alpha_{1}(2 n+2 p-4)} \xrightarrow{q} S^{2 n+4 p-5}$ and the fiber sequence $S^{2 n-1} \rightarrow B_{n} \rightarrow S^{2 n+2 p-3}$ respectively.

Let $\bar{p}: C_{\alpha_{1}(2 n+2 p-4)} \rightarrow S^{2 n+2 p-4}$ be an extension of the degree p self-map of $S^{2 n+2 p-4}$.

Then, by (5) and [12, Proposition 1.9], we have

$$
\delta(\Sigma \bar{p})=\alpha_{1}(2 n-1) \circ \bar{p}=q^{*}\left(\left\{\alpha_{1}(2 n-1), p, \alpha_{1}(2 n+2 p-4)\right\}\right) b=q^{*}\left(\alpha_{2}(2 n-1)\right)
$$

On the other hand, it follows from Theorem 2.1 that

$$
\operatorname{Im} q^{*}=\mathbf{Z} / p\left\langle q^{*}\left(\alpha_{2}(2 n-1)\right)\right\rangle
$$

Then we have established that if $f: C_{\alpha_{1}(2 n+2 p-4)} \rightarrow S^{2 n-1}$ satisfies $\left.f\right|_{S^{2 n+2 p-4}}=0$, then $i_{*}(f)=0$. In particular, it follows from Proposition 4.4 that

Proposition 4.9. For $p+2 \leqslant i+j \leqslant p+t-1$, any lift of $\left\langle\lambda_{i}, \epsilon_{j}\right\rangle$ to $S^{2(i+j-p)+1} \subset$ $B_{i+j-p+1}$, say f, satisfies $\left.f\right|_{S^{2 i-1} \wedge S^{2 j-1}} \neq 0$.

Next we consider the lifting problem of $\left\langle \pm \lambda_{i}, \pm \lambda_{j}\right\rangle$. Recall from [12, Lemma 3.5] that the cell structure of $C_{\alpha_{1}(n)} \wedge C_{\alpha_{1}(n)}$ for $n \geqslant p$ is given by

$$
C_{\alpha_{1}(n)} \wedge C_{\alpha_{1}(n)}=\left(C_{\alpha_{1}(2 n)} \vee S^{2 n+2 p-2}\right) \cup_{\nu_{n}} e^{2 n+4 p-4}
$$

where

$$
\begin{equation*}
\nu_{n}=\left(i_{*}(\alpha)+(-1)^{n} \underline{2 \alpha_{1}(2 n)}\right) \vee \alpha_{1}(2 n+2 p-2) \tag{7}
\end{equation*}
$$

for the inclusion $i: S^{2 n} \rightarrow C_{\alpha_{1}(2 n)}$ and some $\alpha \in \pi_{2 n+4 p-5}\left(S^{2 n}\right)$. Since $n \geqslant p$, it follows from the Serre isomorphism $\pi_{*}\left(S^{2 n}\right) \cong \Sigma \pi_{*-1}\left(S^{2 n-1}\right) \oplus \pi_{*}\left(S^{4 n-1}\right)$ that α is a multiple of $\alpha_{2}(2 n)$.

We shall identify $A_{i} \wedge A_{j}$ with $C_{\alpha_{1}(i+j-1)} \wedge C_{\alpha_{1}(i+j-1)}$. Consider the following commutative diagram in which the row sequences are the exact sequence induced from the cofiber sequence $A_{i} \wedge A_{j} \rightarrow S^{2(i+j+2 p-3)} \xrightarrow{f} \Sigma X(i, j)$:

where we put $k=2(i+j)$. When N is large enough, we have $\Sigma^{2 N} f=\Sigma \nu_{i+j+N-1}$. Let $\bar{p}: C_{\alpha_{1}(2(i+j-1))} \rightarrow S^{2(i+j-1)}$ be an extension of the degree p self-map of $S^{2(i+j+N-1)}$. Then, by [12, p.179], we have

$$
\begin{aligned}
\left(\Sigma^{2 N} f\right)^{*}\left(\Sigma^{2 N} \bar{p}\right) & =\left\{p, \alpha_{1}(2(i+j+N)-1), \alpha_{1}(2(i+j+N+p-2))\right\}_{1} \\
& =\frac{1}{2} \alpha_{2}(2(i+j+N)-1)
\end{aligned}
$$

as in the proof of Proposition 2.2. On the other hand, it follows from Theorem 2.1 that $\Sigma^{2 N}: \pi_{2(i+j+2 p-3)}\left(S^{2(i+j)-1}\right) \rightarrow \pi_{2(i+j+2 p-3+N)}\left(S^{2(i+j+N)-1}\right)$ is an isomorphism. Thus we have obtained

Proposition 4.10. The inclusion $X(i, j) \rightarrow A_{i} \wedge A_{j}$ induces an injection $\left[A_{i} \wedge A_{j}\right.$, $\left.S^{2(i+j)-1}\right] \rightarrow\left[X(i, j), S^{2(i+j)-1}\right]$.

Corollary 4.11. For $i+j \leqslant p,\left\langle \pm \lambda_{i}, \pm \lambda_{j}\right\rangle=0$.

Proof. By Proposition 4.4, it is sufficient to consider the case that $t+1 \leqslant i+j \leqslant$ p. In this case, $\left\langle \pm \lambda_{i}, \pm \lambda_{j}\right\rangle$ falls to $S^{2(i+j)-1} \subset \mathrm{SU}(p+t-1)$ and then the proof is completed by Proposition 4.4 and Proposition 4.10.

Corollary 4.12. For $p+1 \leqslant i+j \leqslant 2 p-1$, the Samelson products $\left\langle \pm \lambda_{i}, \pm \lambda_{j}\right\rangle$ can be compressed into $S^{2(i+j-p)+1} \subset \mathrm{SU}(p+t-1)$.

Proof. We only show the case of $\left\langle\lambda_{i}, \lambda_{j}\right\rangle$ since other cases are similar. By Proposition 2.1 and Proposition 2.2, $\left\langle\lambda_{i}, \lambda_{j}\right\rangle$ falls to $B_{i+j-p+1}$. Put $\left.\left\langle\lambda_{i}, \lambda_{j}\right\rangle\right|_{X(i, j)}=f \vee$ $g: X(i, j)=C_{\alpha_{1}(2(i+j)-2)} \vee S^{2(i+j+p-2)} \rightarrow B_{i+j-p+1}$. By Proposition 4.7, we have $q_{*}(f)=0$ for the projection $q: B_{i+j-p+1} \rightarrow S^{2(i+j)-1}$. By Proposition 4.4, f is of order at most p and then, by Proposition 2.2, $q_{*}(g)=0$. Thus, by Proposition 4.10, $q_{*}\left(\left\langle\lambda_{i}, \lambda_{j}\right\rangle\right)=0$ and this implies that $\left\langle\lambda_{i}, \lambda_{j}\right\rangle$ lifts to $S^{2(i+j-p)+1} \subset B_{i+j-p+1}$.

5. Upper bound for $\operatorname{nilSU}(p+t-1)$

Hereafter, we suppose that $p \geqslant 7$.
The aim of this section is to show:
Theorem 5.1. nil $\mathrm{SU}(p+t-1) \leqslant 3$.
First, here is the proof of Theorem 5.1. By Proposition 3.1 and by Proposition 3.3, it is sufficient to show that

$$
\left\langle\theta_{1},\left\langle\bar{\theta}_{2},\left\langle\bar{\theta}_{3}, \bar{\theta}_{4}\right\rangle\right\rangle\right\rangle=0 \text { for } \theta_{1} \in \pm \Lambda \text { and } \bar{\theta}_{2}, \bar{\theta}_{3}, \bar{\theta}_{4} \in \pm \bar{\Lambda}
$$

Let $\omega_{1} \in \Lambda$ and let $\bar{\omega}_{2}, \bar{\omega}_{3}, \bar{\omega}_{4} \in \bar{\Lambda}$. It follows from Proposition 3.2 that if $\left\langle \pm\left\langle \pm \bar{\omega}_{3}\right.\right.$, $\left.\left.\pm \bar{\omega}_{4}\right\rangle,\left\langle \pm \bar{\omega}_{2}, \pm \omega_{1}\right\rangle\right\rangle=\left\langle \pm \bar{\omega}_{2},\left\langle \pm \omega_{1}, \quad \pm\left\langle \pm \bar{\omega}_{3}, \pm \bar{\omega}_{4}\right\rangle\right\rangle\right\rangle=0$, then $\left\langle \pm \omega_{1},\left\langle \pm\left\langle \pm \bar{\omega}_{3}, \pm \bar{\omega}_{4}\right\rangle\right.\right.$, $\left.\left.\pm \bar{\omega}_{2}\right\rangle\right\rangle=0$. By Proposition 3.3, this implies $\left\langle \pm \omega_{1},\left\langle \pm \bar{\omega}_{2},\left\langle \pm \bar{\omega}_{3}, \pm \bar{\omega}_{4}\right\rangle\right\rangle\right\rangle=0$. On the other hand, by Proposition 3.2, if $\left\langle \pm \bar{\omega}_{3},\left\langle \pm \bar{\omega}_{4}, \pm\left\langle \pm \bar{\omega}_{2}, \pm \omega_{1}\right\rangle\right\rangle\right\rangle=\left\langle \pm \bar{\omega}_{4},\left\langle \pm\left\langle \pm \bar{\omega}_{2}, \pm \omega_{1}\right\rangle\right.\right.$, $\left.\left.\pm \bar{\omega}_{3}\right\rangle\right\rangle=0$, then $\left\langle \pm\left\langle \pm \bar{\omega}_{2}, \pm \omega_{1}\right\rangle,\left\langle \pm \bar{\omega}_{3}, \pm \bar{\omega}_{4}\right\rangle\right\rangle=0$. By Proposition 3.2, this implies $\left\langle \pm\left\langle \pm \bar{\omega}_{3}, \pm \bar{\omega}_{4}\right\rangle,\left\langle \pm \bar{\omega}_{2}, \pm \omega_{1}\right\rangle\right\rangle=0$. Thus the proof is completed by the following propositions.

Proposition 5.2. $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{3}, \theta_{4}\right\rangle\right\rangle\right\rangle=0$ for $\theta_{1}, \theta_{2} \in \pm \Lambda$ and $\theta_{3}, \theta_{4} \in \pm \bar{\Lambda}$.
Proposition 5.3. $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{3}, \theta_{4}\right\rangle\right\rangle\right\rangle=\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{4}, \theta_{3}\right\rangle\right\rangle\right\rangle=0$ for $\theta_{1}, \theta_{3} \in \pm \Lambda, \theta_{2}, \theta_{4} \in$ $\pm \bar{\Lambda}$ and $\left|\theta_{3}\right|+\left|\theta_{4}\right| \neq 2 p$.

Proposition 5.4. $\left\langle \pm \lambda_{p},\left\langle \pm \bar{\lambda}_{p},\left\langle\theta_{1}, \theta_{2}\right\rangle\right\rangle\right\rangle=0$ for $\theta_{1}, \theta_{2} \in \pm \bar{\Lambda}$.
We will calculate iterated Samelson products in $\pm \bar{\Lambda}$ from those in $\pm \Lambda$ by using the following lemma.

Lemma 5.5. Let

$$
X=\left(\bigvee_{i=1}^{n_{1}} S_{i}^{2 n p-3}\right) \cup\left(\bigcup_{i=1}^{n_{2}} e_{i}^{2 n p-3+2(p-1)}\right) \cup \cdots \cup\left(\bigcup_{i=1}^{n_{k}} e_{i}^{2 n p-3+2(k-1)(p-1)}\right)
$$

and let $f: X \rightarrow \mathrm{SU}(p+t-1)$. If $n+k \leqslant p$, then f can be compressed into $S^{2 n-1} \subset$ $\mathrm{SU}(p+t-1)$ and $\Sigma^{2 k} f=0$.

Proof. If f falls to B_{n}, it follows from Theorem 2.1 that $q_{*}(f)=0$ for the projection $q: B_{n} \rightarrow S^{2 n+2 p-3}$ and then f lifts to $S^{2 n-1} \subset B_{n}$. Thus we assume that f is a map from X to $S^{2 n-1}$. Consider the exact sequence induced from the cofiber sequence $\bigvee_{i=1}^{n_{1}} S_{i}^{2 n p-3} \xrightarrow{j} X \xrightarrow{q^{\prime}} X /\left(\bigvee_{i=1}^{n_{1}} S_{i}^{2 n p-3}\right)=Y:$

$$
\left[Y, S^{2 n-1}\right] \stackrel{\left(q^{\prime}\right)^{*}}{\longrightarrow}\left[X, S^{2 n-1}\right] \xrightarrow{j^{*}} \bigoplus_{i=1}^{n_{1}} \pi_{2 n p-3}\left(S_{i}^{2 n-1}\right)
$$

It follows from Theorem 2.1 that $\left(\Sigma^{2} j\right)^{*}\left(\Sigma^{2} f\right)=0$, and then there exists $g: \Sigma^{2} Y \rightarrow$ $S^{2 n+1}$ such that $\left(\Sigma^{2} q^{\prime}\right)^{*}(g)=\Sigma^{2} f$. By induction, we obtain $\Sigma^{2 k} f=0$.

Corollary 5.6. Let $X=S^{2 n-1}$ or $S^{2 n-1} \cup e^{2 n+2 p-3}$ for $n \leqslant 5 p-3$ and let $f: X \rightarrow$ $\mathrm{SU}(p+t-1)$. Then $\langle\theta, f\rangle=\langle f, \theta\rangle=0$ for each $\theta \in \pm \bar{\Lambda}$.

Proof. By Corollary 2.3, we only have to consider the case $2 n-1=6 p-3,8 p-5$, $8 p-3,10 p-7$. Then it follows from Lemma 5.5 that f can be compressed into S^{5} or $S^{7} \subset \mathrm{SU}(p+t-1)$, and that $\Sigma^{4} f=0$. By Proposition 4.4, we assume $|\theta| \geqslant$ $p-2$. Since $p \geqslant 7, X(\theta)$ is a 6 -suspension and then $1_{X(\theta)} \wedge f=f \wedge 1_{X(\theta)}=0$. Thus Proposition 3.3 completes the proof.

We give candidates for non-zero 2-iterated Samelson products in $\pm \bar{\Lambda}$.
Proposition 5.7. Let $\theta_{1}, \theta_{2}, \theta_{3} \in \pm \bar{\Lambda}$. If $\left|\theta_{1}\right|+\left|\theta_{2}\right|+\left|\theta_{3}\right| \neq 2 p+1,2 p+2,2 p+3$, $3 p$, then $\left\langle\theta_{1},\left\langle\theta_{2}, \theta_{3}\right\rangle\right\rangle=0$.

Proof. Suppose that $\left|\theta_{1}\right|+\left|\theta_{2}\right|+\left|\theta_{3}\right| \neq 2 p+1,2 p+2,2 p+3,3 p$. By Proposition 3.3, it is sufficient to show that $\left\langle\theta_{1},\left\langle\theta_{2}, \theta_{3}\right\rangle\right\rangle=0$ for $\theta_{1} \in \pm \Lambda$ and $\theta_{2}, \theta_{3} \in \pm \bar{\Lambda}$.

By Corollary 2.3, $\left\langle\theta_{1},\left\langle\theta_{2}, \theta_{3}\right\rangle\right\rangle=0$ if $\theta_{1}, \theta_{2}, \theta_{3} \in \pm \Lambda$. Then by Proposition 3.2 and Proposition 3.3, it is sufficient to show that $\left\langle\theta_{1},\left\langle\theta_{2}, \pm \bar{\lambda}_{i}\right\rangle\right\rangle=\left\langle\theta_{1},\left\langle \pm \bar{\lambda}_{i}, \theta_{2}\right\rangle\right\rangle=0$ for $\theta_{1}, \theta_{2} \in \pm \Lambda$. Since other cases are analogous, we only show $\left\langle\lambda_{i},\left\langle\lambda_{j}, \bar{\lambda}_{k}\right\rangle\right\rangle=0$. When $j \geqslant 3, A_{j}$ is a suspension by (3). Then it follows from (4) that $\left\langle\lambda_{j}, \bar{\lambda}_{k}\right\rangle=\left\langle\lambda_{j}, \lambda_{k}\right\rangle \vee$ $f: A_{j} \wedge B_{k}=\left(A_{j} \wedge A_{k}\right) \vee\left(A_{j} \wedge S^{4 k+2 p-4}\right) \rightarrow \mathrm{SU}(p+t-1)$. By Corollary 2.3, we have $\left\langle\lambda_{i},\left\langle\lambda_{j}, \lambda_{k}\right\rangle\right\rangle=0$ and, by Corollary $5.6,\left\langle\lambda_{i}, f\right\rangle=0$. Then we have established $\left\langle\lambda_{i},\left\langle\lambda_{j}, \bar{\lambda}_{k}\right\rangle\right\rangle=0$.

When $j=2$, we assume $k=p-1$ or p by Proposition 4.4. It follows from Theorem 2.1 and Proposition 2.2 that $\left\langle\lambda_{2}, \bar{\lambda}_{p-1}\right\rangle$ falls to B_{2}. By Corollary 4.12 and Theorem 2.1, we have $q_{*}\left(\left\langle\lambda_{2}, \bar{\lambda}_{p-1}\right\rangle\right)=0$ for the projection $q: B_{2} \rightarrow S^{2 p+1}$. Then $\left\langle\lambda_{2}, \bar{\lambda}_{p-1}\right\rangle$ lifts to $f: A_{2} \wedge B_{p-1} \rightarrow S^{3}$. Hence, by Proposition 4.4, $\left\langle\lambda_{i}, f\right\rangle=0$ if $i \leqslant p-1$ and this shows that $\left\langle\lambda_{i},\left\langle\lambda_{j}, \bar{\lambda}_{k}\right\rangle\right\rangle=0$ when $(j, k)=(2, p-1)$. One can analogously show that $\left\langle\lambda_{i},\left\langle\lambda_{j}, \bar{\lambda}_{k}\right\rangle\right\rangle=0$ when $(j, k)=(2, p)$.

Proof of Proposition 5.4. As in the above proof of Theorem 5.1, Proposition 5.2 implies that it is sufficient to prove $\left\langle \pm\left\langle\theta_{1}, \theta_{2}\right\rangle,\left\langle \pm \bar{\lambda}_{p}, \pm \lambda_{p}\right\rangle\right\rangle=0$.

By Proposition 5.7, we have only to consider the case that $\left|\theta_{1}\right|+\left|\theta_{2}\right|=p+1, p+2$, $p+3$ or $2 p$. When $\left|\theta_{1}\right|+\left|\theta_{2}\right|=p+1,\left\langle\theta_{1}, \theta_{2}\right\rangle$ falls to $B_{2} \times S^{5} \times S^{7}, B_{2} \times B_{3} \times S^{7}$ or $B_{2} \times B_{3} \times B_{4}$ by Theorem 2.1 and Proposition 2.2. On the other hand, $\left\langle \pm \bar{\lambda}_{p}, \pm \lambda_{p}\right\rangle$ falls to $B_{2} \times S^{5}$ or $B_{2} \times B_{3}$ by Theorem 2.1 and Proposition 2.2. Then, by Proposition 3.2, Proposition 4.4 and Corollary 4.11, we have obtained that $\left\langle \pm \lambda_{p},\left\langle \pm \bar{\lambda}_{p},\left\langle\theta_{1}\right.\right.\right.$, $\left.\left.\left.\theta_{2}\right\rangle\right\rangle\right\rangle=0$. Other cases are quite analogous.

Now we proceed with the calculation to show all 3-iterated Samelson products in $\bar{\Lambda}$ vanish. As a first step, we show:

Proposition 5.8. $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{3}, \theta_{4}\right\rangle\right\rangle\right\rangle=0$ for $\theta_{1}, \ldots, \theta_{4} \in \pm \Lambda$.

Proof. By Proposition 5.7, we assume that $\left|\theta_{2}\right|+\left|\theta_{3}\right|+\left|\theta_{4}\right|=2 p+1,2 p+2,2 p+3$ or $3 p$. We only show the case that $\left(\theta_{2}, \theta_{3}, \theta_{4}\right)=\left(\lambda_{i}, \lambda_{j}, \lambda_{k}\right)$ for $i+j+k=2 p+3$ since the other cases are analogous. By Corollary 2.3, there is a homotopy commutative diagram:

where q pinches the $(8 p-4)$-skeleton of $A_{i} \wedge A_{j} \wedge A_{k}$. It follows from Lemma 5.5 that f can be compressed into $S^{7} \subset \mathrm{SU}(p+t-1)$ and that $\Sigma^{4} f=0$. Then, by Proposition 4.4, we assume that $i \geqslant p-2$ and this implies that $X\left(\theta_{1}\right)$ is a 6 -suspension. Hence we have $1_{A_{i}} \wedge f=0$ and this completes the proof.

Corollary 5.9. $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{3}, \theta_{4}\right\rangle\right\rangle\right\rangle=\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{4}, \theta_{3}\right\rangle\right\rangle\right\rangle=0 \quad$ for $\quad \theta_{1}, \theta_{3}, \theta_{3} \in \pm \Lambda \quad$ and $\theta_{4} \in \pm \bar{\Lambda}$.

Proof. By Proposition 5.8, we put $\theta_{4}= \pm \bar{\lambda}_{i}$.
We first consider the case that $\theta_{3} \neq \pm \lambda_{2}$. Since $X\left(\theta_{3}\right)$ is a suspension, we have the following homotopy commutative diagram by (4).

Then, by using the homotopy equivalence

$$
\bigwedge_{j=1}^{3} X\left(\theta_{j}\right) \wedge B_{i} \simeq\left(\bigwedge_{j=1}^{3} X\left(\theta_{j}\right) \wedge A_{i}\right) \vee\left(\bigwedge_{j=1}^{3} X\left(\theta_{j}\right) \wedge S^{4 i+2 p-4}\right)
$$

we have

$$
\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{3}, \pm \bar{\lambda}_{i}\right\rangle\right\rangle\right\rangle=\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{3}, \pm \lambda_{i}\right\rangle\right\rangle\right\rangle \vee\left\langle\theta_{1},\left\langle\theta_{2}, f\right\rangle\right\rangle .
$$

Thus, by Corollary 5.6 and Proposition 5.8 , we have established $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle\theta_{3}, \pm \bar{\lambda}_{i}\right\rangle\right\rangle\right\rangle=$ 0 . It is analogous to show $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle \pm \bar{\lambda}_{i}, \theta_{3}\right\rangle\right\rangle\right\rangle=0$.

We next consider the case that $\theta_{3}= \pm \lambda_{2}$. By Corollary 4.11 and Proposition 5.8, we assume that $i=p-1, p$. It follows from Corollary 4.12 that we also assume
$\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{i}\right\rangle: A_{2} \wedge B_{i} \rightarrow S^{2(2+i-p)+1}$. Then, by (4), we have a homotopy commutative diagram

By Proposition 5.7, we also assume that $\left|\theta_{2}\right|+\left|\theta_{3}\right|+\left|\lambda_{i}\right|=2 p+1,2 p+2,2 p+3$ or $3 p$ and this implies that $X\left(\theta_{2}\right)$ is a 6 -suspension. Then, by applying the homotopy equivalence

$$
\left(X\left(\theta_{2}\right) \wedge A_{2} \wedge A_{i}\right) \vee\left(X\left(\theta_{2}\right) \wedge A_{2} \wedge S^{2(2+i-p)+1}\right)
$$

we have

$$
\left\langle\theta_{2},\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{i}\right\rangle\right\rangle=\left\langle\theta_{2},\left\langle \pm \lambda_{2}, \pm \lambda_{i}\right\rangle\right\rangle \vee\left(\left\langle\theta_{2}, \epsilon_{3+i-p}\right\rangle \circ\left(1_{\Sigma^{-2} X\left(\theta_{2}\right)} \wedge g\right)\right)
$$

By Corollary 5.6, we also have $1_{\Sigma^{-2} X\left(\theta_{1}\right)} \wedge g=0$ and then by Proposition 5.8 we have obtained $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{i}\right\rangle\right\rangle\right\rangle=0$. We can similarly see that $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle \pm \bar{\lambda}_{i}, \pm \lambda_{2}\right\rangle\right\rangle\right\rangle$ $=0$

Proof of Proposition 5.2. By Proposition 5.8 and Corollary 5.9, we put $\theta_{3}= \pm \bar{\lambda}_{i}$ and $\theta_{4}= \pm \bar{\lambda}_{j}$.

Applying the homotopy extension property of the inclusion $\Sigma A_{i} \wedge A_{j} \rightarrow \Sigma A_{i} \wedge B_{j}$, we replace a homotopy retraction $\Sigma A_{i} \wedge B_{j} \rightarrow \Sigma A_{i} \wedge A_{j}$ with a strict retraction. We also replace a homotopy retraction $\Sigma A_{i} \wedge B_{j} \rightarrow \Sigma A_{i} \wedge A_{j}$ with a strict one.

Let $Y(i, j)$ be the $(4 i+4 j+4 p-7)$-skeleton of $B_{i} \wedge B_{j}$, that is, $Y(i, j)$ is $B_{i} \wedge B_{j}$ minus the top cell. Since we have strict retractions $\Sigma A_{i} \wedge B_{j} \rightarrow \Sigma A_{i} \wedge A_{j}$ and $\Sigma A_{i} \wedge$ $B_{j} \rightarrow \Sigma A_{i} \wedge A_{j}$, the proof of Corollary 5.9 implies that we can choose contractions of $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle \pm \bar{\lambda}_{i}, \pm \lambda_{j}\right\rangle\right\rangle\right\rangle$ and $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle \pm \lambda_{i}, \pm \bar{\lambda}_{j}\right\rangle\right\rangle\right\rangle$ to coincide on $X\left(\theta_{1}\right) \wedge X\left(\theta_{2}\right) \wedge A_{i} \wedge$ A_{j}. Then, by gluing the above contractions, we obtain

$$
\begin{equation*}
\left\langle\theta_{1},\left\langle\theta_{2},\left.\left\langle \pm \bar{\lambda}_{i}, \pm \bar{\lambda}_{j}\right\rangle\right|_{Y(i, j)}\right\rangle\right\rangle=0 \tag{8}
\end{equation*}
$$

for $\theta_{1}, \theta_{2} \in \pm \Lambda$.
Now we consider first the case $\theta_{2} \neq \pm \lambda_{2}$. As in the proof of Corollary 5.9, we have

$$
\left\langle\theta_{2},\left\langle \pm \bar{\lambda}_{i}, \pm \bar{\lambda}_{j}\right\rangle\right\rangle=\left\langle\theta_{2},\left.\left\langle \pm \bar{\lambda}_{i}, \pm \bar{\lambda}_{j}\right\rangle\right|_{Y(i, j)}\right\rangle \vee f
$$

for some map $f: X\left(\theta_{2}\right) \wedge S^{4(i+j+p-2)} \rightarrow \mathrm{SU}(p+t-1)$, where we use the homotopy equivalence

$$
X\left(\theta_{2}\right) \wedge B_{i} \wedge B_{j} \simeq\left(X\left(\theta_{2}\right) \wedge Y(i, j)\right) \vee\left(X\left(\theta_{2}\right) \wedge S^{4(i+j+p-2)}\right)
$$

Then for $\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \neq\left(\pm \lambda_{p}, \pm \bar{\lambda}_{p}, \pm \bar{\lambda}_{p}\right)$, we have $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle \pm \bar{\lambda}_{i}, \pm \bar{\lambda}_{j}\right\rangle\right\rangle\right\rangle=0$ by Corollary 5.6 and (8).

By Proposition 2.2, $\left\langle \pm \bar{\lambda}_{p}, \pm \bar{\lambda}_{p}\right\rangle$ falls to $B_{2} \times B_{3} \subset \mathrm{SU}(p+t-1)$. Then by Proposition 3.2, it is sufficient to show that $\left\langle\theta_{1},\left\langle \pm \lambda_{p}, \lambda_{i} \circ \pi_{i} \circ\left\langle \pm \bar{\lambda}_{p}, \pm \bar{\lambda}_{p}\right\rangle\right\rangle\right\rangle=0$ for $i=2,3$
for $\theta_{1} \in \pm \Lambda$. Analogously to the above case, we have

$$
\left\langle \pm \lambda_{p}, \lambda_{i} \circ \pi_{i} \circ\left\langle \pm \bar{\lambda}_{p}, \pm \bar{\lambda}_{p}\right\rangle\right\rangle=\left\langle \pm \lambda_{p},\left.\lambda_{i} \circ \pi_{i} \circ\left\langle \pm \bar{\lambda}_{p}, \pm \bar{\lambda}_{p}\right\rangle\right|_{Y(p, p)}\right\rangle \vee f_{i}
$$

for some map $f_{i}: A_{p} \wedge S^{12 p-8} \rightarrow \mathrm{SU}(p+t-1)$, where we use the homotopy equivalence

$$
A_{p} \wedge B_{p} \wedge B_{p} \simeq\left(A_{p} \wedge Y(p, p)\right) \vee\left(A_{p} \wedge S^{12 p-8}\right)
$$

By (8), it is sufficient to show $\left\langle\theta_{1}, f_{i}\right\rangle=0$ for $i=2,3$. By [13], we have $\pi_{14 p-9}\left(S^{3}\right)=$ $\pi_{16 p-11}\left(S^{3}\right)=0$ and then $\pi_{14 p-9}\left(B_{2}\right)=\pi_{16 p-11}\left(B_{2}\right)=0$ by the homotopy exact sequence of the fibration $S^{3} \rightarrow B_{2} \rightarrow S^{2 p+1}$ and Theorem 2.1. Thus $f_{2}=0$. Similarly, we have $f_{3}=0$.

We next consider the case $\theta_{2}= \pm \lambda_{2}$. By Proposition 5.7, we put $(i, j)=(p-$ $1, p),(p, p-1),(p, p)$. When $(i, j)=(p, p)$, it follows from Proposition 5.7 that $\left|\theta_{2}\right|=2$ or 3. By Proposition 2.2, $\left\langle \pm \lambda_{p}, \pm \lambda_{p}\right\rangle$ falls to $B_{2} \times B_{3} \subset \mathrm{SU}(p+t-1)$. Then, by Proposition 3.2 and Corollary 4.11, we have $\left\langle\theta_{2},\left\langle \pm \bar{\lambda}_{p}, \pm \bar{\lambda}_{p}\right\rangle\right\rangle=0$. We shall prove the case $(i, j)=(p-1, p)$. The case $(i, j)=(p, p-1)$ is proved quite analogously. By Proposition 2.2, $\left\langle \pm \bar{\lambda}_{p-1}, \pm \bar{\lambda}_{p}\right\rangle$ falls to B_{p} and then $\left\langle \pm \lambda_{2},\left\langle \pm \bar{\lambda}_{p-1}, \pm \bar{\lambda}_{p}\right\rangle\right\rangle$ falls to $B_{3} \times B_{4}$. Moreover, by Theorem 2.1 and Corollary 4.12 , we can see that π_{i} 。 $\left\langle \pm \lambda_{2},\left\langle \pm \bar{\lambda}_{p-1}, \pm \bar{\lambda}_{p}\right\rangle\right\rangle$ can be compressed into $S^{2 i-1}$ for $i=3,4$. Then, by Proposition 3.2, we assume $\left|\theta_{1}\right| \geqslant p-2$ and then $X\left(\theta_{1}\right)$ is a 6 -suspension. By an analogous argument as above, there are maps $g_{i}: \Sigma^{2}\left(A^{2} \wedge S^{12 p-12}\right) \rightarrow S^{2 i+1}$ such that

$$
\Sigma^{2} \pi_{i} \circ\left\langle \pm \lambda_{2},\left\langle \pm \bar{\lambda}_{p-1}, \pm \bar{\lambda}_{p}\right\rangle\right\rangle=\Sigma^{2} \pi_{i} \circ\left\langle \pm \lambda_{2},\left.\left\langle \pm \bar{\lambda}_{p-1}, \pm \bar{\lambda}_{p}\right\rangle\right|_{Y(p-1, p)}\right\rangle \vee g_{i}
$$

for $i=3,4$, where we use the homotopy equivalence

$$
\Sigma^{2} A_{2} \wedge B_{p-1} \wedge B_{p} \simeq \Sigma^{2}\left(A_{2} \wedge Y(p-1, p)\right) \vee \Sigma^{2}\left(A^{2} \wedge S^{12 p-12}\right)
$$

Then, as in the proof of Corollary 5.9, we obtain $\left\langle\theta_{1},\left\langle \pm \lambda_{2},\left\langle \pm \bar{\lambda}_{p-1}, \pm \bar{\lambda}_{p}\right\rangle\right\rangle\right\rangle=0$.
In order to calculate other Samelson products, we will use
Lemma 5.10. Let $g: V \rightarrow W_{1} \vee W_{2}$ and let $f_{i}: W_{i} \rightarrow X$ for $i=1,2$. Suppose that $f_{i} \circ p_{i} \circ g=0$ for $i=1,2$ and that X is an H-space, where $p_{i}: W_{1} \vee W_{2} \rightarrow W_{i}$ is the i-th projection. Then $\left(f_{1} \vee f_{2}\right) \circ g=0$.

Proof. Define $f_{1} \cdot f_{2}: W_{1} \times W_{2} \rightarrow X$ by $f_{1} \cdot f_{2}(x, y)=f_{1}(x) f_{2}(y)$ for $(x, y) \in W_{1} \times$ W_{2}. Then we have a homotopy commutative diagram

where j is the inclusion. This completes the proof.
Proof of Proposition 5.3. We first consider the case $\theta_{3} \neq \pm \lambda_{2}$. If $\theta_{4}= \pm \bar{\lambda}_{i}$, we have

$$
\left\langle\theta_{3}, \theta_{4}\right\rangle=\left\langle\theta_{3}, \pm \lambda_{i}\right\rangle \vee f
$$

for some map $f: X\left(\theta_{3}\right) \wedge S^{4 i+2 p-4} \rightarrow \mathrm{SU}(p+t-1)$, where we use the homotopy
equivalence

$$
X\left(\theta_{3}\right) \wedge B_{i} \simeq\left(X\left(\theta_{3}\right) \wedge A_{i}\right) \vee\left(X\left(\theta_{3}\right) \wedge S^{4 i+2 p-4}\right)
$$

We also have an analogous decomposition of $\left\langle \pm \bar{\lambda}_{i}, \theta_{3}\right\rangle$. Then by Corollary 5.6 and Proposition 5.8, it is sufficient to show that $\left\langle\theta_{1},\left\langle \pm \bar{\lambda}_{j},\left\langle\theta_{3}, \theta_{4}\right\rangle\right\rangle\right\rangle=0$ for $\theta_{1}, \theta_{3}, \theta_{4} \in \pm \Lambda$. Since $\left|\theta_{3}\right|+\left|\theta_{4}\right| \neq 2 p$, we have $\left\langle\theta_{3}, \theta_{4}\right\rangle: X\left(\theta_{3}\right) \wedge X\left(\theta_{4}\right) \rightarrow S^{2(i+j-p)+1}$ by Proposition 4.6, Corollary 4.8 and Corollary 4.12. Since we have

$$
\left\langle \pm \bar{\lambda}_{j}, \epsilon_{i+j-p+1}\right\rangle=\left\langle \pm \lambda_{j}, \epsilon_{i+j-p+1}\right\rangle \vee g
$$

for some map $g: S^{2 i+6 j-3} \rightarrow \mathrm{SU}(p+t-1)$ by applying the homotopy equivalence

$$
B_{j} \wedge S^{2(i+j-p+1)-1} \simeq\left(A_{j} \wedge S^{2(i+j-p+1)-1}\right) \vee S^{2 i+6 j-3} \rightarrow \mathrm{SU}(p+t-1)
$$

Then by Corollary 5.6, Proposition 5.8 and Lemma 5.10, we obtain $\left\langle\theta_{1},\left\langle \pm \bar{\lambda}_{j},\left\langle\theta_{3}, \theta_{4}\right\rangle\right\rangle\right\rangle$ $=0$.

We next consider the case $\theta_{3}= \pm \lambda_{2}$. By Corollary 4.11, $\theta_{4}= \pm \bar{\lambda}_{p-1}$ or $\pm \bar{\lambda}_{p}$ and then by Proposition 5.8, $\theta_{2}= \pm \bar{\lambda}_{p}$ and $\theta_{2}=\bar{\lambda}_{p-1}$ or $\bar{\lambda}_{p}$ as $\theta_{4}= \pm \bar{\lambda}_{p-1}$ or $\pm \bar{\lambda}_{p}$. Now we consider the case $\theta_{4}= \pm \bar{\lambda}_{p-1}$. By Proposition $2.2,\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{p-1}\right\rangle$ falls to $B_{2} \subset \mathrm{SU}(p+$ $t-1)$. By Theorem 2.1, we have $\left[A_{2} \wedge S^{6 p-8}, S^{2 p+1}\right]=0$ and then the inclusion $A_{2} \wedge$ $A_{p-1} \rightarrow A_{2} \wedge B_{p-1}$ induces an injection $\left[A_{2} \wedge B_{p-1}, S^{2 p+1}\right] \rightarrow\left[A_{2} \wedge A_{p-1}, S^{2 p+1}\right]$. On the other hand, it follows from Corollary 4.12 that $q_{*}\left(\left\langle \pm \lambda_{2}, \pm \lambda_{p-1}\right\rangle\right)=0$ for the projection $q: B_{2} \rightarrow S^{2 p+1}$ and then $q_{*}\left(\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{p-1}\right\rangle\right)=0$ which is equivalent to that $\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{p-1}\right\rangle$ can be compressed into $S^{3} \subset B_{2}$. Note that

$$
\left\langle \pm \bar{\lambda}_{p}, \epsilon_{2}\right\rangle=\left\langle \pm \lambda_{p}, \epsilon_{2}\right\rangle \vee f: B_{p} \wedge S^{3} \simeq\left(A_{p} \wedge S^{3}\right) \vee\left(S^{6 p-4} \wedge S^{3}\right) \rightarrow \mathrm{SU}(p+t-1)
$$

By Corollary 5.6, we have $\left\langle\theta_{1}, f\right\rangle=0$. Then by Lemma 5.10 , it is sufficient to show that $\left\langle\theta_{1},\left\langle \pm \lambda_{p},\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{p-1}\right\rangle\right\rangle\right\rangle=0$ and this is done by Corollary 5.9. The equality $\left\langle\theta_{1},\left\langle \pm \lambda_{p},\left\langle \pm \bar{\lambda}_{p-1}, \pm \lambda_{2}\right\rangle\right\rangle\right\rangle=0$ can be shown in an analogous way.

Let us consider the case $\theta_{4}= \pm \bar{\lambda}_{p}$. As above, $\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{p}\right\rangle$ can be compressed into $S^{5} \times S^{7}$ and then, by Proposition 3.2, it is sufficient to show that $\left\langle\theta_{1},\left\langle\theta_{2}, \epsilon_{i} \circ \pi_{i} \circ\right.\right.$ $\left.\left.\left\langle \pm \lambda_{2}, \pm \bar{\lambda}_{p}\right\rangle\right\rangle\right\rangle=0$ for $i=3,4$. This is done quite analogously to the above case. We can also see that $\left\langle\theta_{1},\left\langle\theta_{2},\left\langle \pm \bar{\lambda}_{p}, \pm \lambda_{2}\right\rangle\right\rangle\right\rangle=0$ as well.

6. Proof of Theorem 1.1

6.1. $t=2$

We shall show $\left\langle\epsilon_{p-1},\left\langle\lambda_{2}, \epsilon_{p}\right\rangle\right\rangle \neq 0$ and then, by Theorem 5.1, the proof of Theorem 1.1 is completed. By Theorem 2.1 and Proposition $2.2,\left\langle\lambda_{2}, \epsilon_{p}\right\rangle$ falls to $S^{5} \subset$ $\mathrm{SU}(p+1)$. Since $\left\langle\epsilon_{2}, \epsilon_{p}\right\rangle \neq 0$ by Proposition 4.2, we have $\left\langle\lambda_{2}, \epsilon_{p}\right\rangle=a \overline{\alpha_{1}(5)}$ for some integer a such that $a \not \equiv 0(p)$, where $\overline{\alpha_{1}(5)}: C_{\alpha_{1}(2 p+2)} \simeq A_{2} \wedge S^{2 p-1} \rightarrow S^{5}$ is an extension of $\alpha_{1}(5)$. Analogously, we have $\left\langle\epsilon_{p-1}, \epsilon_{3}\right\rangle=b \alpha_{1}(5)$ for an integer b such that $b \not \equiv 0$ (p). Then, by [12, Proposition 1.9],

$$
\begin{equation*}
\left\langle\epsilon_{p-1},\left\langle\lambda_{2}, \epsilon_{p}\right\rangle\right\rangle=a b \alpha_{1}(5) \circ \Sigma^{2 p-3} \overline{\alpha_{1}(5)}=a b q^{*}\left(\left\{\alpha_{1}(5), \alpha_{1}(2 p+2), \alpha_{1}(4 p-1)\right\}\right) \tag{9}
\end{equation*}
$$

where $q: S^{2 p-3} \wedge A_{2} \wedge S^{2 p-1} \rightarrow S^{6 p-3}$ pinches the bottom cell.

Consider the exact sequence induced from the cofiber sequence $S^{2 p-3} \wedge A_{2} \wedge S^{2 p-1}$ $\xrightarrow{q} S^{6 p-3} \xrightarrow{\alpha_{1}(4 p)} S^{4 p}:$

$$
\pi_{4 p}\left(S^{5}\right) \xrightarrow{\alpha_{1}(4 p)^{*}} \pi_{6 p-3}\left(S^{5}\right) \xrightarrow{q^{*}}\left[S^{2 p-3} \wedge A_{2} \wedge S^{2 p-1}, S^{5}\right]
$$

By Theorem 2.1, $\alpha_{1}(4 p)^{*}=0$ and then q^{*} is monic. It is known that $\left\{\alpha_{1}(5), \alpha_{1}(2 p+\right.$ 2), $\left.\alpha_{1}(4 p-1)\right\} \neq 0$ (see, for example, $[\mathbf{4}, \mathrm{p} .38]$) and thus, by (9), we have established $\left\langle\epsilon_{p-1},\left\langle\lambda_{2}, \epsilon_{p}\right\rangle\right\rangle \neq 0$.

6.2. $3 \leqslant t \leqslant \frac{p-1}{2}$

By Proposition 4.4, possible non-trivial 2-iterated Samelson products in $\pm \bar{\Lambda}$ are:

1. $\left\langle \pm \epsilon_{p},\left\langle \pm \epsilon_{p}, \pm \epsilon_{p}\right\rangle\right\rangle$.
2. $\left\langle \pm \bar{\lambda}_{i},\left\langle \pm \epsilon_{j}, \pm \epsilon_{k}\right\rangle\right\rangle,\left\langle \pm \epsilon_{i},\left\langle \pm \bar{\lambda}_{j}, \pm \epsilon_{k}\right\rangle\right\rangle,\left\langle \pm \epsilon_{i},\left\langle \pm \epsilon_{j}, \pm \bar{\lambda}_{k}\right\rangle\right\rangle$ for $i+j+k=2 p+1$, $2 p+2,2 p+3$.

We shall show these Samelson products are all trivial and then, by Proposition 3.1, the proof is completed.

1. By the Jacobi identity of Samelson products, we have $3\left\langle \pm \epsilon_{p},\left\langle \pm \epsilon_{p}, \pm \epsilon_{p}\right\rangle\right\rangle=0$ and then, for $p>3,\left\langle \pm \epsilon_{p},\left\langle \pm \epsilon_{p}, \pm \epsilon_{p}\right\rangle\right\rangle=0$.
2. By Proposition 3.2, it is sufficient to show $\left\langle \pm \epsilon_{i},\left\langle \pm \bar{\lambda}_{j}, \pm \epsilon_{k}\right\rangle\right\rangle=\left\langle \pm \epsilon_{i},\left\langle \pm \epsilon_{j}, \pm \bar{\lambda}_{k}\right\rangle\right\rangle$ $=0$ for $i+j+k=2 p+1,2 p+2,2 p+3$. Let us consider $\left\langle \pm \epsilon_{i},\left\langle \pm \bar{\lambda}_{j}, \pm \epsilon_{k}\right\rangle\right\rangle$ for $i+j+k=2 p+1$. By (4), we have $\left\langle \pm \epsilon_{i},\left\langle \pm \bar{\lambda}_{j}, \pm \epsilon_{k}\right\rangle\right\rangle=\left\langle \pm \epsilon_{i},\left\langle \pm \lambda_{j}, \pm \epsilon_{k}\right\rangle\right\rangle \vee$ $\left\langle\epsilon_{i}, f\right\rangle$ for some $f: S^{4 j+2 p-4} \wedge S^{2 k-1} \rightarrow \mathrm{SU}(p+t-1)$. Then, by Corollary 5.6, it is sufficient to show $\left\langle \pm \epsilon_{i},\left\langle \pm \lambda_{j}, \pm \epsilon_{k}\right\rangle\right\rangle=0$.

Let us consider the case $i+j+k=2 p+1$. By Proposition 4.12, $\left\langle \pm \lambda_{j}, \pm \epsilon_{k}\right\rangle$ can be compressed into $S^{2(j+k-p)+1} \subset \mathrm{SU}(p+t-1)$ and then we have

$$
\left\langle \pm \epsilon_{i},\left\langle \pm \lambda_{j}, \pm \epsilon_{k}\right\rangle\right\rangle=\left\langle \pm \epsilon_{i}, \epsilon_{j+k-p+1}\right\rangle \circ\left(1_{S^{2 i-1}} \wedge f\right)
$$

where $f: A_{j} \wedge S^{2 k-1} \rightarrow S^{2(j+k-p)+1}$. Since $i+j+k-p+1=p+2 \leqslant p+t-1$, we have $\left\langle \pm \epsilon_{i}, \epsilon_{j+k-p+1}\right\rangle=0$ and then $\left\langle \pm \epsilon_{i},\left\langle \pm \lambda_{j}, \pm \epsilon_{k}\right\rangle\right\rangle=0$. Analogously, we can see $\left\langle \pm \epsilon_{i},\left\langle \pm \epsilon_{j}, \pm \bar{\lambda}_{k}\right\rangle\right\rangle=0$.

When $i+j+k=2 p+2,2 p+3$, it follows from Corollary 2.3 that $\left\langle \pm \epsilon_{i},\left\langle \pm \lambda_{j}\right.\right.$, $\left.\left.\pm \epsilon_{k}\right\rangle\right\rangle=0$.

6.3. $\frac{p+1}{2} \leqslant t \leqslant p$

Put $t \neq p$. We shall show $\left\langle\lambda_{p-t+1},\left\langle\lambda_{t}, \epsilon_{p}\right\rangle\right\rangle \neq 0$ and this completes the proof of Theorem 1.1 by Theorem 5.1. Let X be the ($8 p-4$)-skeleton of $A_{p-t+1} \wedge A_{t} \wedge S^{2 p-1}$, that is, $A_{p-t+1} \wedge A_{t} \wedge S^{2 p-1}$ minus the top cell. Then, as in Section 4, the cofiber sequence $S^{2(p-t)+1} \wedge A_{t} \wedge S^{2 p-1} \rightarrow X \xrightarrow{q} S^{6 p-3}$ splits. We denote a homotopy section of q by s, where q is the restriction of the pinch map $A_{p-t+1} \wedge A_{t} \wedge S^{2 p-1} \rightarrow$ $S^{2(2 p-t)-1} \wedge A_{t} \wedge S^{2 p-1}$. Then, by Proposition 4.8, we have a homotopy commutative
diagram:

By Theorem 2.1 and Proposition 4.2, we have $1_{S^{2(2 p-t)-1}} \wedge\left\langle\epsilon_{t}, \epsilon_{p}\right\rangle=a \alpha_{1}(4 p)$ for some integer a such that $a \not \equiv 0(p)$.

Let $\alpha_{1}(2 p+2): S^{4 p} \rightarrow A_{3}$ be a coextension of $\alpha_{1}(2 p+2)$. Then, as in Section 2, we have $f=b i_{*}\left(\alpha_{1}(2 p+2)\right)$ for some integer b, where $i: A_{3} \rightarrow B_{3}$ is the inclusion. Suppose that $b=\overline{b^{\prime} p \text {. Then, by [12, Proposition 1.8], we have }}$

$$
f=b^{\prime} i_{*}\left(\underline{\alpha_{1}(2 p+2)} \circ p\right)=-b^{\prime} i_{*} \circ j_{*}\left(\left\{\alpha_{1}(5), \alpha_{1}(2 p+2), p\right\}\right)=-\frac{b^{\prime}}{2} i_{*} \circ j_{*}\left(\alpha_{2}(5)\right)
$$

where $j: S^{5} \rightarrow A_{3}$ is the inclusion. In particular, f lifts to $S^{5} \subset B_{3}$ and this contradicts Proposition 4.9. Thus we have $b \not \equiv 0(p)$.

On the other hand, it follows from [12, Proposition 1.8] that

$$
\alpha_{1}(2 p+2) \circ \alpha_{1}(2 p+2)=-j_{*}\left\{\alpha_{1}(5), \alpha_{1}(2 p+2), \alpha_{1}(4 p-1)\right\}
$$

It is known that $\left\{\alpha_{1}(5), \alpha_{1}(2 p+2), \alpha_{1}(4 p-1)\right\} \neq 0$ as above and then we have established

$$
\begin{aligned}
f \circ\left(1_{S^{2(2 p-t)-1}} \wedge\left\langle\epsilon_{t}, \epsilon_{p}\right\rangle\right) & =f \circ\left(1_{S^{2(2 p-t)-1}} \wedge\left\langle\epsilon_{t}, \epsilon_{p}\right\rangle\right) \circ \bar{q} \circ s \\
& =\left\langle\lambda_{p-t+1},\left\langle\lambda_{t}, \epsilon_{p}\right\rangle\right\rangle \circ s \\
& \neq 0
\end{aligned}
$$

This implies $\left\langle\lambda_{p-t+1},\left\langle\lambda_{t}, \epsilon_{p}\right\rangle\right\rangle \neq 0$.
When $t=p$, the proof is completed by the homotopy exact sequence induced from the fiber sequence $\mathrm{SU}(2 p-2) \rightarrow \mathrm{SU}(2 p-1) \rightarrow S^{4 p-3}$.

References

[1] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), 249-256.
[2] A.K. Bousfield and D.M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Mathematics 304, Springer-Verlag, Berlin-New York, 1972.
[3] H. Hamanaka, On Samelson products in p-localized unitary groups, Topology Appl. 154 (2007), no. 3, 573-583.
[4] J.R. Harper, Secondary Cohomology Operations, Graduate Studies in Mathematics 49, American Mathematical Society, Providence, RI, 2002.
[5] S. Kaji and D. Kishimoto, Homotopy nilpotency in p-compact groups, preprint.
[6] C.A. McGibbon, Some properties of H-spaces of rank 2, Proc. Amer. Math. Soc. 81 (1981), no. 1, 121-124.
[7] C. McGibbon, Homotopy commutativity in localized groups, Amer. J. Math. 106 (1984), 665-687.
[8] C.A. McGibbon, Higher forms of homotopy commutativity and finite loop spaces, Math. Z. 201 (1989), no. 3, 363-374.
[9] M. Mimura and H. Toda, Cohomology operations and homotopy of compact Lie groups I, Topology 9 (1970), 317-336.
[10] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[11] L. Saumell, Higher homotopy commutativity in localized groups Math. Z. 219 (1995), no. 2, 203-213.
[12] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies 49, Princeton Univ. Press, Princeton N.J., 1962.
[13] H. Toda, On iterated suspensions I, J. Math. Kyoto Univ. 5 (1966), 87-142.
[14] F.D. Williams, Higher homotopy-commutativity, Trans. Amer. Math. Soc. 139 (1969), 191-206.
[15] A. Zabrodsky, Hopf Spaces, North-Holland Mathematics Studies 22, NorthHolland, Amsterdam, 1976.

Daisuke Kishimoto kishi@math.kyoto-u.ac.jp
Department of Mathematics, Kyoto University, Kyoto, Japan

[^0]: Received April 9, 2008, revised September 25, 2008; published on March 23, 2009.
 2000 Mathematics Subject Classification: 55P60, 55Q15.
 Key words and phrases: homotopy nilpotency, localization.
 This article is available at http://intlpress.com/HHA/v11/n1/a4
 Copyright © 2009, International Press. Permission to copy for private use granted.

