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CUP PRODUCTS IN HOPF CYCLIC COHOMOLOGY VIA
CYCLIC MODULES

BAHRAM RANGIPOUR

(communicated by J. F. Jardine)

Abstract
We redefine the cup products in Hopf cyclic cohomology.

These cup products were first defined by the author and
M. Khalkhali via a relatively complicated method as a gen-
eralization of Connes’ cup product for cyclic cohomology of
algebras. In this paper we use the generalized Eilenberg-Zilber
theorem and define the cup product using a bicocyclic module
naturally associated to the cocyclic modules of the coalgebras
and the algebras in question. In the last part of the paper we
derive some formulas for the cup products.

1. Introduction

Hopf cyclic cohomology was invented by Connes and Moscovici as part of their
fundamental work of computing the class of the index of the hypoelliptic signature
operator [4]. They showed that the index cocycle is in the range of a characteristic
map. The main ingredient of the characteristic map is an invariant trace. The char-
acteristic map was generalized by Crainic [5] and Gorokhovsky [7] by using the fact
that a cyclic cocycle on an algebra can be seen as a trace on the universal DG algebra
of that algebra. This generalization is used in [3], where it is shown how a cup prod-
uct is applicable in case the algebra under question possesses no invariant trace; as a
replacement one takes advantage of an invariant cyclic cocycle to realize Hopf cyclic
cocycles as cyclic cocycles on the algebra. Hopf cyclic cohomology was generalized to
study Hopf-(co)module (co)algebras and coefficients (partially in [12] and completely
in [8, 9]). It was later generalized to encompass the category of bialgebra-(co)module
(co)algebras [10]. In [9] it was conjectured that any characteristic map as above is
a component of a cup product in Hopf cyclic cohomology. In [11] the author and
M. Khalkhali proved the existence of the cup products via traces and cotraces over
DG algebras and coalgebras.

We construct a cyclic cocycle on an algebra out of a Hopf cyclic cocycle on the
algebra, and a Hopf cyclic cocycle on a coalgebra acting on the algebra. By simply
tensoring the Hopf cocyclic modules of the algebra and coalgebra, we get a bicocyclic
module. We first define a cyclic map from the diagonal of the bicocyclic module to
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the cyclic module of the algebra. Then by using the Eilenberg-Zilber theorem we
identify the cyclic cohomology of the diagonal mixed complex with that of the total
mixed complex of our bicocyclic module. The fact that the equivariant property of
cocycles yields that the produced cocycle will be well-defined on the convolution and
crossed product algebra is nontrivial. There are at least eight kinds of cup products
defined on Hopf cyclic cohomology but only two of them so far are applied in NCG;
the reason could be their lack of classic and/or geometric counterparts. For the first
product, one starts with Hopf cyclic cocycles over an algebra and a coalgebra with
coefficients in a SAYD module. To define the cup product one needs the coalgebra to
act on the algebra. The next step is to construct, via a twisting map, the cup product
as a cocycle over the convolution algebra. But one knows that any cocycle over the
convolution algebra is automatically a cocycle over the algebra. This cup product
generalizes the characteristic map of Connes-Moscovici [4]. Ingredients for the second
cup product are cyclic cocycles on a module algebra over a Hopf algebra and on a
comodule algebra over the same Hopf algebra. Out of the two Hopf cyclic cocycles
one produces a cyclic cocycle over the crossed product algebra. This cup product
generalizes the ordinary cup product in cyclic cohomology of algebras as defined by
Connes [1].

2. Some preliminary definitions

For the reader’s convenience, we briefly recall the definition of Hopf cyclic coho-
mology of coalgebras and algebras under the symmetry of Hopf algebras and with
coefficients in stable anti Yetter-Drinfeld (SAYD) modules [4, 8, 9]. In this note,
H is a Hopf algebra, and µ, η,∆, ε, and S are its product, unit, coproduct, counit
and antipode, which is also assumed to be invertible. We use Sweedler’s notation for
the coproduct, i.e., ∆(h) = h(1) ⊗ h(2) . Let C be an H-module coalgebra, that is, a
coalgebra endowed with an action, say from left, of H such that its comultiplication
and counit are H-linear, i.e.,

∆(hc) = h(1)c(1) ⊗ h(2)c(2) , ε(hc) = ε(h)ε(c).

As the coefficients in this cohomology theory the notion of a SAYD module is defined
in [8] and recalled as follows: It is said that a right module M , which is also a
left comodule, is a right-left SAYD module over a Hopf algebra H if it satisfies the
following conditions for any h ∈ H and m ∈M :

m
<0>

m
<−1>

= m,

(mh)
<−1>

⊗ (mh)
<0>

= S(h(3))m
<−1>

h(1) ⊗m
<0>

h(2) ,

where the coaction of H is denoted by ∆M (m) = m
<−1>

⊗m
<0>

.
Having the datum (H, C,M), one defines [9] the cocyclic module

{CnH(C,M), ∂i, σj , τ}n>0

as follows:

Cn := CnH(C,M) = M ⊗H C⊗n+1, n > 0,
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with the following cocyclic structure:

∂i : Cn → Cn+1, 0 6 i 6 n+ 1

σj : Cn → Cn−1, 0 6 j 6 n− 1,
τ : Cn → Cn,

defined explicitly as follows, where we abbreviate c̃ = c0 ⊗ · · · ⊗ cn:

∂i(m⊗H c̃) = m⊗H c0 ⊗ · · · ⊗∆(ci)⊗ · · · ⊗ cn,

∂n+1(m⊗H c̃) = m
<0>

⊗H c0(2) ⊗ c1 ⊗ · · · ⊗ cn ⊗m
<−1>

c0(1) ,

σi(m⊗H c̃) = m⊗H c0 ⊗ · · · ⊗ ε(ci+1)⊗ · · · ⊗ cn,

τ(m⊗H c̃) = m
<0>

⊗H c1 ⊗ · · · ⊗ cn ⊗m
<−1>

c0.

It is checked that the above defines a cocyclic module [9].
As the motivating example of the above theory, one recovers the cyclic complex

of a Hopf algebra H endowed with a modular pair in involution (MPI) (δ, σ), which
we recall from [4]. The character δ is an algebra map H → C, and the group-like
element σ ∈ H is a coalgebra map C→ H, i.e., σ := σ(1) satisfies ∆(σ) = σ ⊗ σ. The
pair (δ, σ) is called MPI if δ(σ) = 1, and S̃δ = Ad σ, where the twisted antipode S̃δ
is defined by

S̃δ(h) = (δ ∗ S)(h) = δ(h(1))S(h(2)).

Similarly, an algebra which is anH-module withH-linear algebra structure is called
an H-module algebra. Let A be an H-module algebra. Then one endows M ⊗A⊗n+1

with the diagonal action of H and forms

CnH(A,M) = HomH(M ⊗A⊗n+1,C)

as the space of H-linear maps. It is checked that the following defines a cocyclic
module structure on Cn(A,M):

(∂iϕ)(m⊗ ã) = ϕ(m⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1), 0 6 i < n,

(∂n+1ϕ)(m⊗ ã) = ϕ(m
<0>

⊗ (S−1(m
<−1>

)an+1)a0 ⊗ a1 ⊗ · · · ⊗ an),

(σiϕ)(m⊗ ã) = ϕ(m⊗ a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an−1), 0 6 i 6 n− 1,

(τϕ)(m⊗ ã) = ϕ(m
<0>

⊗ (S−1(m
<−1>

)an)⊗ a0 ⊗ · · · ⊗ an−1).

The cyclic cohomology of this cocyclic module is denoted by HC∗H(A,M).
An algebra is called an H-comodule coalgebra if it is an H-comodule and its coal-

gebra structure is H colinear. Similar to the other case, one defines HCn(A,M) to
be the space of all colinear maps from A⊗n+1 to M . One checks that the following
defines a cocyclic module structure on HCn(A,M):

(∂iϕ)(ã) = ϕ(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1), 0 6 i < n,

(∂n+1ϕ)(ã) = ϕ(an+1
<0>a

0 ⊗ a1 · · · ⊗ an−1 ⊗ an)an+1
<−1> ,

(σiϕ)(ã) = ϕ(a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an−1), 0 6 i 6 n− 1,

(τϕ)(a0 ⊗ · · · ⊗ an) = ϕ(an<0> ⊗ a0 ⊗ · · · ⊗ an−1 ⊗ an−1)an<−1> .

The cyclic cohomology of this cocyclic module is denoted by HHC∗(A,M).
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Let (Cn, δi, σi, τn) and (C ′n, δi, σi, τn) be two cocyclic objects in the category
of vector spaces. Their product is the cocyclic object (C × C ′)n, δi, σi, τn) with
(C × C ′)n = Cn ⊗ C ′n and δi = δi ⊗ δi, σi = σi ⊗ σi and τn = τn ⊗ τn.

Their tensor product is the bicocyclic module C ⊗ C ′ defined by (C ⊗ C ′)m,n =
Cm ⊗ Cn with horizontal and vertical structure borrowed from C and C ′, respectively.
The Eilenberg-Zilber theorem states that the cyclic cohomology of mixed complexes
C × C ′ and Tot(C ⊗ C ′) are the same via the shuffle map [13].

3. Module algebras paired with module coalgebras

Let H be a Hopf algebra, A be an H-module algebra and (δ, σ) be a modular pair
in involution on H. Connes and Moscovici [4] showed that the following defines a map
of cocyclic modules χ : H\

(δ,σ) → C∗(A):

χ(h1 ⊗ · · · ⊗ hn)(a0 ⊗ · · · ⊗ an) = τ(a0h1(a1) · · ·hn(an)).
Here τ : A→ C is a δ-invariant σ-trace, i.e., for all a, b and h

τ(ha) = δ(h)τ(a),
τ(ab) = τ(bσa).

The above map then induces the following characteristic map on the level of coho-
mology:

χ : HCn(δ,σ)(H) → HCn(A).

Hopf cyclic cohomology and SAYD (stable anti-Yetter-Drinfeld) modules generalize
cyclic cohomology of Hopf algebras and MPI (modular pair in involution), respec-
tively. Now a δ-invariant σ-trace is exactly a closed cyclic cocycle in C0

H(A,σ Cδ).
These facts prompted us, in [9], to conjecture that there should exist a generalization
of characteristic map as a pairing between Hopf cyclic cohomology of module algebras
and module coalgebras:

HCnH(A,M)⊗HCmH (C,M) → HCn+m(A,M),

where M is a left-right SAYD module over H and C is an H module coalgebra acting
on A in the sense that there is a map

C ⊗A→ A, (1)

such that for any h ∈ H, any c ∈ C and any a, b ∈ A one has

(hc)a = h(ca), (2)
c(ab) = (c(1)a)(c(2)b), (3)
c(1) = ε(c)1. (4)

Although there is a proof of the above conjecture in [11], we would like to give
a more direct proof based on the theory of cyclic modules instead of traces on DG
algebras. The advantage of this new view is its simplicity.

One constructs a convolution algebra B = HomH(C,A), which is the algebra of all
H-linear maps from A to C. The unit of this algebra is given by η ◦ ε, where η : C→ A



CUP PRODUCTS IN HOPF CYCLIC COHOMOLOGY VIA CYCLIC MODULES 277

is the unit of A. The multiplication of f, q ∈ B is given by

(f ∗ g)(c) = f(c(1))g(c(2)).

Now consider two cocyclic modules

(C∗H(A,M), δi, σj , t), and (C∗H(C,M), di, sj , τ)

and let us make a new bicocyclic module by tensoring these over C. The bicocyclic
module has in bidegree (p, q)

Cp,q := HomH(M ⊗A⊗p+1,C) ◦⊗ (M ⊗H C⊗q+1),

with horizontal structure
→
∂ i = di ⊗ Id,

→
σ j = sj ⊗ Id, and

→
τ = t⊗ Id, and vertical

structure ↑∂i = δi ⊗ Id, ↑σj = σj ⊗ Id, and ↑τ = τ ⊗ Id. Here ◦⊗ := ⊗, which we use
to separate HomH(M ⊗A⊗p+1,C) and (M ⊗H C⊗q+1). Obviously,

(Cn,m,
→
∂ ,

→
σ ,

→
τ , ↑∂, ↑σ, ↑τ)

defines a bicocyclic module.
Now let us define the map Ψc : Cn,n → Hom(B⊗n+1,C) by

Ψc(φ ◦⊗m⊗ c0 ⊗ · · · ⊗ cn)(f0 ⊗ · · · ⊗ fn) = φ(m⊗ f0(c0)⊗ · · · ⊗ fn(cn)), (5)

which is obviously well-defined due to the facts that f is H-linear, φ is equivariant
and (2) holds.

Proposition 3.1. The map Ψc defines a cyclic map between the diagonal of C∗,∗ and
the cocyclic module C∗(B).

Proof. We have to show that Ψ commutes with the cyclic structures of the two sides.
Indeed we just check it for the first face and cyclic operator and leave the rest to the
reader. We have

Ψc(
→
∂ 0 ↑∂0(φ ◦⊗m⊗ c0 ⊗ · · · ⊗ cn))(f0 ⊗ · · · ⊗ fn+1)

= Ψc(d0φ ◦⊗ δ0(m⊗ c0 ⊗ · · · ⊗ cn))(f0 ⊗ · · · ⊗ fn+1)

= φ(m⊗ f0(c0(1))f1(c0(2))⊗ f2(c1)⊗ · · · ⊗ fn+1(cn)

= φ(m⊗ (f0 ∗ f1)(c0)⊗ f2(c1)⊗ · · · ⊗ fn+1(cn))

= (d0Ψc(φ ◦⊗m⊗ c̃))(f0 ⊗ · · · ⊗ fn+1)

and

Ψc(
→
τ ↑τ(φ ◦⊗m⊗ c0 ⊗ · · · ⊗ cn))(a0 ⊗ · · · ⊗ an)

= Ψc(tφ ◦⊗ τ(m⊗ c0 ⊗ · · · ⊗ cn))(f0 ⊗ · · · ⊗ fn)

= tφ(m
<0>

f0(c1)⊗ · · · ⊗ fn−1(cn))⊗m
<−1>

fn(c0))

= φ(m
<0>

⊗ S−1(m
<−1>

)m
<−2>

fn(c0)⊗ f0(c1)⊗ · · · ⊗ fn−1(cn))

= φ(m⊗ fn(c0)⊗ f0(c1)⊗ · · · ⊗ fn−1(cn))

= (tΨc(φ ◦⊗m⊗ c0 ⊗ · · · ⊗ cn))(f0 ⊗ · · · ⊗ fn).
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One can take advantage of properties (2), (3), and (4) to prove that there exists a
natural unital algebra map \ : A→ HomH(A,C), explicitly defined by \(a)(c) = c(a).
As a result, one obtains a cyclic map \ : C∗(B,C) → C∗(A,C). One then composes \
with Ψc to get a cyclic map

Ψ = \ ◦Ψc : C∗(D(C∗,∗)) → C∗(A,C).

Let K be a sub Hopf algebra of H. Although A is an H-module algebra, the
coalgebra C = C(H,K) = H⊗K C does not inherit this property from H since the
action of C on A is not well-defined. One cures this problem by letting C act on the
invariant subalgebra of A under the action of K. Let

AK = {a ∈ A | ka = ε(k)a}.

One checks that the action of C on AK is well-defined and satisfies (2), (3), and (4).
One notes that it is not possible to write the map (5) for the case AK and C because
AK is not anH-module algebra. Instead one writes the invariant form of (5) as follows.
Let us introduce

Cp,qr = CpH(A,M) ◦⊗CqH(H,K;M)

with its standard cyclic structure. Let us recall CqH(H,K;M) from [2]. It is the cyclic
module computing the Hopf cyclic cohomology of H relative to K with coefficients in
M and is defined as HCH(C,M), where H acts on C via h · (g ⊗ 1) = hg ⊗ 1. Then
one has a cyclic map Ψr : D(C∗,∗r ) → C∗(AK) defined by

Ψr(φ ◦⊗m⊗ c0 ⊗ c1 ⊗ · · · ⊗ cn)(a0 ⊗ · · · ⊗ an) = φ(m⊗ c0(a0)⊗ · · · ⊗ cn(an)).

It is easily checked as in the absolute case that the above map defines a cyclic map.
Note that it does not land in C∗(A).

Corollary 3.2. The map Ψ induces the following maps on cyclic cohomology groups:

Ψ: HCn(D(C∗,∗)) → HCn(A),
Ψc : HCn(D(C∗,∗c )) → HCn(HomH(C,A)),
Ψr : HCn(D(C∗,∗r )) → HCn(AK).

We know [13], via the Eilenberg-Zilber theorem, that the total and diagonal mixed
complexes are quasi isomorphic. Let us call this quasi isomorphism Φ. One composes
Ψ, Ψc, and Ψr with Φ to obtain the following cup products in the level of cyclic
cohomology:

∪ = Ψ ◦ Φ: HCpH(A,M)⊗HCqH(C,M) → HCp+q(A),

∪ = Ψc ◦ Φ: HCpH(A,M)⊗HCqH(C,M) → HCp+q(HomH(C,A)),

∪ = Ψr ◦ Φ: HCpH(A,M)⊗HCqH(H,K;M) → HCp+q(AK).
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Proposition 3.3. The above cup products are precisely given by the following formula
in the level of Hochschild cohomology:

∪ : CpH(A,M)⊗ CqH(C,M) → Cp+q(A),

(φ ∪ (m⊗ c0 ⊗ · · · ⊗ cq))(a0 ⊗ · · · ⊗ ap+q) =

φ(m
<0>

⊗ c0(p+1)(a0) c1(a1) · · · cq(aq)⊗m
<−p>

c0(1)(aq+1)⊗ · · · ⊗m
<−1>

c0(p)(ap+q)).

Proof. The map Φ is a matrix map

Φ :=



f0 f1 0 0 · · ·
0 f0 f1 0 · · ·
...

...
...

...
. . .


 .

The first component

f0 : Cp(A,M)⊗ Cq(C,M) → Cp+q(A,M)⊗ Cp+q(C,M)

is defined by d0 · · · d0︸ ︷︷ ︸
q times

⊗ dp+q · · · dq+1.

By composing f0 and Ψ, one obtains the above formula. However, we prove that
the formula defines a Hochschild cocycle by direct computation as we could not find
a proof for it elsewhere. Indeed, one notes that if φ ∈ CpH(A,M) and x ∈ CqH(C,m)
are two Hochschild cocycles, then φ⊗ x is a Hochschild cocycle of degree p+ q in the
total complex. We show that b(φ ∪ x) = 0. Indeed, one uses the fact that b(x) = 0 to
see that

q∑

i=0

(−1)im⊗ c0 ⊗ · · · ⊗ ci(1) ⊗ ci(2) ⊗ · · · ⊗ cq =

(−1)qm
<0>

⊗ c0(2) ⊗ c1 ⊗ · · · ⊗ cq ⊗m
<−1>

c0(1) .

Applying the last face of CnH(C,M) repeatedly we get,

m
<0>

⊗ c0(p+1) ⊗ c0(p+2) ⊗ c1 ⊗ · · · ⊗ cq ⊗m
<−p−1>

c0(1) ⊗ · · · ⊗m
<−1>

c0(p)

+
q∑

i=1

(−1)im
<0>

⊗ c0(p+1) ⊗ c1 ⊗ · · · ⊗ ci(1) ⊗ ci(2) ⊗ · · · ⊗ cq ⊗

m
<−p−1>

c0(1) ⊗ · · · ⊗m
<−1>

c0(p)

= (−1)qm
<0>

⊗c0(p+2) ⊗ c1 ⊗ · · · ⊗ cq ⊗m
<−p−2>

c0(1) ⊗ · · · ⊗m
<−1>

c0(p+1) .

(6)
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On the other hand, one has

b(φ ∪ x)(a0 ⊗ · · · ⊗ ap+q+1) =

φ(m
<−1>

c0(p+1)(a0a1)c1(a2) · · · cq(aq+1)⊗
m

<−p>
c0(1)(aq+2)⊗ · · · ⊗m

<−1>
c0(p)(ap+q+1))

+
q∑

i=1

(−1)iφ(m
<−1>

c0(p+1)(a0)c1(a1) · · · ci(aiai+1)cq(aq+1)⊗

m
<−p>

c0(1)(aq+2)⊗ · · · ⊗m
<−1>

c0(p)(ap+q+1))

+
p∑

i=1

(−1)q+iφ(m
<0>

⊗ c0(p+1)(a0)c1(a1) · · · cq(aq)⊗

m
<−p>

c0(1)(aq+2)⊗ · · · ⊗m
<−p−i−1>

c0(i)(aq+iaq+i+1)⊗
m

<−p−i>
c0(i+1)(aq+i+2)⊗ · · · ⊗

<−1>
c0(p)(ap+q+1))

+ (−1)p+q+1φ(m
<−1>

c0(p+1)(ap+q+1a0)c1(a2) · · · cq(aq+1)⊗
m

<−p>
c0(1)(aq+2)⊗ · · · ⊗m

<−1>
c0(p)(ap+q)).

(7)

We use (2) and (6) to identify part of b(φ ∪ x)(a0 ⊗ · · · ⊗ ap+q+1), which appears
above in (7), with the following expression:

(−1)qφ
(
m

<0>
⊗ c0(p+2)(a0)c1(a1) · · · cq(aq)m

<−p−2>
c0(1)(aq+1) ⊗

m
<−p−1>

c0(2)(aq+2)⊗ · · · ⊗m
<−1>

c0(p+1)(ap+q+1)
)
,

which yields that

b(φ ∪ x)(a0 ⊗ · · ·⊗ap+q+1) =

(−1)q(bφ)(m
<0>

⊗ c0(p+2)(a0)c1(a1) · · · cq(aq) ⊗m
<−p−2>

c0(1)(aq+1) ⊗
m

<−p−1>
c0(2)(aq+2)⊗ · · · ⊗m

<−1>
c0(p+1)(ap+q+1) = 0.

Remark 3.4. For a modular pair in involution (δ, σ), it is shown that τ ∈ C0(A, σCδ)
if and only if τ is a δ-invariant σ-trace on A [9]. In addition, the above formula
coincides with the characteristic map defined in [4]. As another example, let C = H :=
H1, the Connes-Moscovici Hopf algebra [4], where it is shown that 1⊗ δ1 ∈ C1

H(H,Cδ)
is a cyclic cocycle. Here δ is the character on H defined in [4]. If φ ∈ C1(A,Cδ) is a
Hopf cyclic cocycle, then the above cup product formula φ ∪ (1⊗ δ1) coincides with
the cocycle gv constructed in [3], which is constructed via the cup product defined
in [7]. These two coincidences hint to us that there should be another term in the
general formula which makes the above a b+B cocycle and disappears in special
cases such as the above. By definition this term is the image of f1.

4. Module algebras paired with comodule algebras

Let H be a Hopf algebra, A a left H-module algebra, B a left H-comodule algebra
and M be a right-left SAYD module overH. One constructs a crossed product algebra
whose underlying vector space is A⊗B with the 1 >C 1 as its unit and the following
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multiplication:
(a >C b)(a′ >C b′) = ab<−1>(a′) >C b<0>b

′.

Now consider the two cocyclic modules

(C∗H(A,M), δi, σj , t), and (HC∗(B,M), di, sj , τ)

introduced in [9], and let us make a new bicocyclic module by tensoring these together.
Its (p, q) component Cp,q is given by

HomH(M ⊗A⊗p+1,C)⊗H Hom(B⊗q+1,M),

with horizontal structure
→
∂ i = di ⊗ Id,

→
σ j = sj ⊗ Id, and

→
τ = t⊗ Id, and vertical

structure ↑∂i = δi ⊗ Id, ↑σj = σj ⊗ Id, and ↑τ = τ ⊗ Id. Obviously,

(Cn,m,
→
∂ ,

→
σ ,

→
τ , ↑∂, ↑σ, ↑τ)

defines a bicocyclic module. Now let us define a map

Ψ: Cn,n → Hom((A >C B)⊗n+1,C)

by

Ψ(φ⊗ ψ)(a0 >C b0 ⊗ · · · ⊗ an >C bn) =

φ(ψ(b0
<0> ⊗ · · · ⊗ bn

<0>)⊗ S−1(b0
<1> · · · bn<−1>) a0 ⊗ · · · ⊗ S−1(bn

<−n−1>) an). (8)

Proposition 4.1. The map Ψ defines a cyclic map between the diagonal of C∗,∗ and
the cocyclic module C∗(A >C B).

Proof. We have to show that Ψ commutes with the cyclic structures. We shall check
it for the first face operator and the cyclic operator and leave the rest to the reader.

Ψ(
→
∂ 0 ↑∂0(φ⊗ ψ))(a0 >C b0 ⊗ · · · ⊗ an+1 >C bn+1)

= Ψ(d0φ⊗ δ0ψ))(a0 >C b0 ⊗ · · · ⊗ an+1 >C bn+1)

= δ0φ(δ0ψ(b0<0> ⊗ · · · ⊗ bn+1
<0>) ⊗

S−1(b0
<−1> · · · bn+1

<−1>) a0 ⊗ · · · ⊗ S−1(bn+1
<−n−2>) an+1)

= φ(ψ(b0<0>b
1

<0> ⊗ · · · ⊗ bn+1
<0>) ⊗

S−1(b0<−1> · · · bn+1
<−1>) a0S−1(b1<−2> · · · bn+1

<−2>) a1 ⊗ · · ·⊗
S−1(bn+1

<−n−2>) an+1)

= φ(ψ(b0<0>b
1

<0> ⊗ · · · ⊗ bn+1
<0>) ⊗

S−1(b0<−1> · · · bn+1
<−1>) a0S−1(b1<−2> · · · bn+1

<−2>) a1 ⊗ · · ·⊗
S−1(bn+1

<−n−2>) an+1)

= φ(ψ(b0<0>b
1

<0> ⊗ · · · ⊗ bn+1
<0>) ⊗

S−1(b0<−1>b
1

<−1> · · · bn+1
<−1>)(a0b0<−2>a

1)⊗ · · ·⊗
S−1(bn+1

<−n−1>) an+1)

= Ψ(φ⊗ ψ)(a0b0<−1>a
1 >C b0<0>b

1 ⊗ a2 >C b2 ⊗ · · · ⊗ an+1 >C bn+1)

= d0Ψ(φ⊗ ψ)(a0 >C b0 ⊗ · · · ⊗ an+1 >C bn+1).
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Using the facts that φ is H equivariant, ψ is H colinear and M is SAYD one has:

Ψ(
→
τ ↑τ(φ⊗ ψ))(a0 >C b0 ⊗ · · · ⊗ an >C bn)

= Ψ(tφ⊗ τψ)(a0 >C b0 ⊗ · · · ⊗ an >C bn)

= tφ(τψ(b0
<0>

⊗ · · · ⊗ bn
<0>

)⊗ S−1(b0
<1>

· · · bn
<−1>

)a0 ⊗ · · · ⊗ S−1(bn
<−n−1>

)an)

= tφ(ψ(bn
<0>

⊗ b0
<0>

⊗ · · · ⊗ bn−1
<0>

)bn
<−1>

⊗
S−1(b0

<1>
· · · bn−1

<−1>
bn

<−2>
)a0 ⊗ · · · ⊗ S−1(bn

<−n−2>
)an)

= φ([ψ(bn<0> ⊗ b0<0> ⊗ · · · ⊗ bn−1
<0>)bn<−1> ]<0> ⊗

S−1([ψ(bn
<0>

⊗ b0
<0>

⊗ · · · ⊗ bn−1
<0>

)bn
<−1>

]
<−1>

(S−1(bn
<−n−2>

)an) ⊗
S−1(b0

<1>
· · · bn−1

<−1>
bn

<−2>
)a0 ⊗ · · · ⊗ S−1(bn−1

<−n+1>
bn

<−n−1>
)an−1)

= φ(ψ(bn<0> ⊗ b0<0> ⊗ · · · ⊗ bn−1
<0>)bn<−3> ⊗

S−1(S(bn
<−2>

)bn
<−1>

b0
<−1>

· · · bn−1
<−1>

)bn
<−4>

)(S−1(bn
<−n−2>

)an) ⊗
S−1(b0<1> . . . b

n−1
<−1>b

n
<−5>)a0 ⊗ · · · ⊗ S−1(bn−1

<−n+1>b
n

<−n−4>)an−1)

= φ(ψ(bn<0> ⊗ b0<0> ⊗ · · · ⊗ bn−1
<0>)bn<−1> ⊗

S−1(b0
<−1> · · · bn−1

<−1>)bn
<−2>)(S−1(bn

<−n−2>)an) ⊗
S−1(b0

<1> · · · bn−1
<−1>b

n
<−3>)a0 ⊗ · · · ⊗ S−1(bn−1

<−n+1>b
n

<−n−2>)an−1)

= φ(ψ(bn
<0> ⊗ b0

<0> ⊗ · · · ⊗ bn−1
<0>)⊗ S−1(bn

<−1>b
0

<−1> · · · bn−1
<−1>)an) ⊗

S−1(b0
<1> · · · bn−1

<−1>)a0 ⊗ · · · ⊗ S−1(bn−1
<−n+1>)an−1)

= Ψ(φ⊗ ψ)(an >C bn ⊗ a0 >C b0 ⊗ · · · ⊗ an−1 >C bn−1)

= tΨ(φ⊗ ψ)(a0 >C b0 ⊗ · · · ⊗ an >C bn).

Corollary 4.2. The map Ψ defined in (8) induces a map on cyclic cohomology:

Ψ: HCn(D(C∗,∗)) → HCn(A >C B).

Now by composing Ψ with the corresponding AW map one proves the existence
of the following map:

∪ = Ψ ◦ Φ: HCpH(A,M)⊗ HHCq(B,M) → HCp+q(A >C B).

One uses the formula for the AW map [13] to find the following expression for the
above cup product.

Proposition 4.3. The above cup product has the following formula at the level of
Hochschild cohomology.

φ ∪ ψ(a0 >C b0 ⊗ · · · ⊗ ap+q >C bp+q) =

φ(ψ(bq+1
<0> · · · bp+q<0>b

0
<0> ⊗ b1<0> ⊗ · · · ⊗ bq<0>)<−1> ⊗

S−1(b0<−1> · · · bq<−1>) a0 · · ·S−1(bq<−q−1>) aq ⊗ aq+1 ⊗
bq+1

<−p−1>a
q+2 ⊗ · · · ⊗ bq+1

<−1> · · · bp+q−1
<−1>a

p+q).

Proof. The proof is similar to that of Proposition 3.3.
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Example 4.4. Let G be a discrete group acting by unital automorphisms on an algebra
A and let k be a field of characteristic zero. In [12], the Hopf cyclic cohomology groups
of the Hopf algebra H = kG were computed in terms of group cohomology with trivial
coefficients:

kGHCp(kG,C) =
⊕

i>0

Hp−2i(G,C).

By considering the trivial SAYD C, the cohomology groups HCqCG(A,C) are by def-
inition the cohomology of the subcomplex of invariant cyclic cochains on A:

ϕ(ga0, ga1, · · · , gan) = ϕ(a0, a1, · · · , an),
for all g ∈ G and ai ∈ A.

We denote this cohomology theory by HCqG(A); thus we have a pairing

Hp(G)⊗HCqG(A) −→ HCp+q(AoG).

5. Cup product via traces

In this section we derive some formulas for the cup products defined in [11].
Let us briefly recall it here. Let A be a left H module algebra, B a left H-comodule

algebra and M a SAYD module on H. Also let ΩA be a DG H-module algebra over
A and ΓB be a DG H-comodule algebra over B. We recall that a closed M -trace on
ΩA is a linear map

∫
: M ⊗ ΩA→ C such that

∫
(h(1)m⊗ h(2)ω) = ε(h)

∫
(m⊗ ω),

∫
(m⊗ dω) = 0,

∫
(m⊗ ω1 ⊗ ω2) = (−1)deg(ω1)deg(ω2)

∫
(m

<0>
⊗ S−1(m

<−1>
)ω2ω1).

Similarly, a closed M -trace on ΓB is defined as a linear map
∫

: ΓB →M such that
( ∫

γ
)

<−1>
⊗

( ∫
γ

)
<0>

= γ<−1> ⊗
∫

(γ<0>),
∫

(dγ) = 0,
∫

(γ1γ2) =
∫

(γ2
<0>γ

1)γ2
<−1> .

One identifies closed cyclic cocycles φ ∈ CpH(A,M) and ψ ∈ HHCq(B,M) with
closed M -traces on Ω(A) and Γ(B), the universal H-module DG algebra and
H-comodule algebra respectively, as follows:∫

φ

m⊗ a0da1 · · · dani = φ(m⊗ a0 ⊗ · · · ⊗ ap),
∫

ψ

(b0db1 · · · dbn) = ψ(b0 ⊗ · · · ⊗ bq).

Then one forms a DG algebra over A >C B as the crossed product of Ω(A) and
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Γ(B), which we denote by Ω(A) >C Γ(B). For any two closed M -traces
∫
1

and
∫
2

on
Ω(A) and Γ(B), one defines [11] the closed trace

∫
1
∪ ∫

2
on Ω(A) >C Γ(B) by

( ∫

1

∪
∫

2

)
(ω >C η) =

∫

1

( ∫

2

(ω)⊗ η
)
;

hence the cup product of two cyclic cocycles is defined by

(φ ∪ ψ)(a0 >C b0 ⊗ a1 >C b1 ⊗ · · · ⊗ ap+q >C bp+q) =
( ∫

φ

∪
∫

ψ

)
(a0 >C b0d(a1 >C b1) · · · d(ap+q >C bp+q)).

Now we want to derive a formula for the above cup product. To this end we need to
know the (p, q) component of the form

θn = a0 >C b0d(a1 >C b1) · · · d(an >C bn).

For a permutation σ ∈ Sh(q, p), we use σ̄(i) = σ(i)− 1, and σ̂(i) = σ(i) + 1, and
define the following p+ q form

θnσ = a0(b0 · · · bn−1)<−n>a
1 · · · (bσ̄(q+1)−1 · · · bn−1)

<−n+σ(q+1)−2>
aσ̄(q+1)

d((bσ̄(q+1) · · · bn−1)
<−n+σ̄(q+1)>

aσ(q+1) · · · (bσ̄(q+2)−1 · · · bn−1)
<−n+σ(q+2)−2>

aσ̄(q+2))

· · · d((bσ̄(n) · · · bn−1)
<−n+σ̄(n)>

aσ(n) · · · bn−1
<−1>a

n) >C

b0
<0> · · · bσ̄(1)

<0>d(b
σ(1)

<0> · · · bσ̄(2)
<0>) · · · d(bσ(q)

<0> · · · bn−1
<0>b

n).

Lemma 5.1. The (q, p)th component of the above form θp+q is given by the following
formula:

∑

σ∈Sh(q,p)

(−1)σθp+qσ .

Proof. We prove it by induction. Obviously it is true for (p, q) = (0, 0). Assume that
the lemma is true for all (p, q) such that p+ q = n We prove it for all (p, q) that
p+ q = n+ 1.

The (p, q)th component of

a0 >C b0d(a1 >C b1) · · · d(ap+q >C bp+q)

is

θ(dap+q >C bp+q) + θ′(ap+q >C dbp+q),

where θ and θ′ are the (p− 1, q)th and (p, q − 1)th components of

a0 >C b0d(a1 >C b1) · · · d(ap+q−1 >C bp+q−1),
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respectively. Now let µ ∈ Sh(q, p− 1). One observes that
∑

σ∈Sh(q−1,p)

(−1)σθp+q−1
σ (ap+q >C dbp+q) +

∑

σ∈Sh(q,p−1)

(−1)σθp+q−1
σ (dap+q >C bp+q)

=
∑

σ∈Sh(q,p) σ(q)=p+q

(−1)σθp+qσ +
∑

σ∈Sh(q,p) σ(p+q)=p+q

(−1)σθp+qσ

=
∑

σ∈Sh(q,p)

(−1)σθp+qσ .

As a result one has the following formula for a cup product via traces:

Proposition 5.2. Let φ ∈ CpH(A,M) and ψ ∈ HCq(B,M), respectively, be two Hopf
cyclic cocycles on A and B with coefficients in a SAYD module M . Then φ ∪ ψ ∈
Cp+q(AoB) is a cyclic cocycle, which is given precisely by the following formula:

(φ ∪ ψ)(a0 >C b0 ⊗ a1 >C b1 ⊗ · · · ⊗ ap+q >C bp+q) =
∑

σ∈Sh(q,p)

(−1)σ∂σ̄(q) · · · ∂σ̄(1)φ(∂σ̄(q+p) · · · ∂σ̄(q+1)ψ(b0<0> ⊗ · · · ⊗ bp+q−1
<0>b

p+q) ⊗

a0 ⊗ b0<−p−q>a
1 ⊗ · · · ⊗ b0<−1> · · · bp+q−1

<−1>a
p+q).

Similarly, by following [11], one uses cotraces on DG coalgebras to define a cup
product that generalizes the characteristic map in Hopf cyclic cohomology. Indeed let
C be anH-module coalgebra and A be anH-module algebra satisfying conditions (1)–
(4).

Proposition 5.3. Let φ ∈ CqH(A,M) and x := m⊗H c0 ⊗ · · · ⊗ cp ∈ CpH(C,M) be
Hopf cyclic cocycles. Then the following defines a cyclic cocycle in Cp+q(A):

x ∪ φ(a0 ⊗ a1 ⊗ · · · ⊗ ap+q) =
∑

σ∈Sh(q,p)

(−1)σ∂σ̄(q) · · · ∂σ̄(1)φ(∂σ̄(q+p) · · · ∂σ̄(q+1)x(a0 ⊗ · · · ⊗ ap+q)),

where (m⊗ c0 ⊗ · · · ⊗ cn)(a0 ⊗ · · · ⊗ cn) := m⊗ c0(a0)⊗ · · · ⊗ cn(an).

Proof. The proof is similar to that of Proposition 5.2.
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