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ON AFFINE MORPHISMS OF HOPF ALGEBROIDS
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(communicated by Donald M. Davis)

Abstract
The paper considers the FPQC stacks which are associated to
affine groupoid schemes. Using a formulation of a descent datum
in terms of morphisms of affine groupoid schemes, explicit argu-
ments are given which avoid appeal to the general principle of
faithfully flat descent. This theory is applied to consider the
notion of affine morphism.

1. Introduction

Groupoid schemes are a natural generalization of group schemes, in which the
notion of an abstract group is replaced by that of a small groupoid; as such, they
appear in the work of Demazure and Gabriel [1, Chapitre III, Section 2] on alge-
braic groups. An affine groupoid scheme is one in which the objects and morphisms
are represented by affine schemes. Such objects arise for example when considering
deformations of algebraic group schemes.

Affine groupoid schemes arise naturally in algebraic topology, where the equivalent
structure in commutative rings (given by passage to the coordinate ring) is known as
a Hopf algebroid. Namely, if F is a flat ring spectrum which represents the homology
theory E.(—), there is an associated Hopf algebroid (F,, E+E), where E.F denotes
the E,-homology cooperations given by the E-homology of the spectrum FE.

Comodules over the Hopf algebroid (E,, E.E) arise in the calculation of the Fo-
term of the Adams-Novikov spectral sequence, which is usually expressed in terms
of the Ext groups in the category of comodules. It is a fundamental observation,
going back to the work of Morava (|[10] and much unpublished work), that these Ext
groups can be considered in terms of the cohomology of a stack associated to the
Hopf algebroid: in particular, a comodule for a flat Hopf algebroid is equivalent to a
quasi-coherent module on the associated stack.

The interest of the stack theoretic point of view has been underlined by the work
of Hopkins, Rezk, Strickland and others on elliptic cohomology and the theory of
topological modular forms (see the unpublished notes [7], for example). Foundational
work has been carried out on a category of algebraic stacks suitable for the appli-
cation to stable homotopy theory by Hopkins and Miller [8], Goerss [3], Pribble in
his thesis [12], Naumann [11] and by others. There is related foundational work on
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stacks from the homotopy theoretic or derived viewpoint by Hollander in [6), 5, [4].
The algebraic stacks which are considered differ from the usual notion from alge-
braic geometry, in that there are no finiteness assumptions. Moreover, the natural
Grothendieck topology is the flat topology (FPQC: fidélement plat quasi-compact),
essentially because a faithfully flat extension of coefficient rings does not affect the
Bousfield class of a ring spectrum. For the remainder of the paper, all stacks con-
sidered are defined on the category of affine S-schemes, for a fixed affine scheme S
(which can be taken to be Spec(Z)), with respect to the FPQC topology.

To state the relation between algebraic stacks and Hopf algebroids requires the
notion of an affine morphism between stacks, more particularly, the condition that
the diagonal morphism of a stack is affine. A morphism f: .# — A of stacks is affine
if, for any morphism U — A4, where U is a stack represented by an affine S-scheme,
the stack 2-fibre product .# x_y U is equivalent to the stack represented by an affine
scheme. In particular, a stack . is said to be affine if the canonical morphism .#Z — S
is an affine morphism; this is equivalent to the existence of an affine S-scheme V'
such that . is equivalent to the stack represented by V. Affine morphisms between
stacks are important for a number of reasons; for example, they induce continuous
morphisms between the flat sites associated to suitable stacks (see [12], for example).

The category of affine groupoid schemes is equivalent to the category of stacks
over affine schemes with respect to the FPQC topology, subject to the conditions
that the diagonal morphism is affine and the choice of a surjective morphism (a form
of presentation) from an affine scheme to the stack. Hence, there is a contravariant
equivalence between the category of Hopf algebroids and this category of algebraic
stacks.

The purpose of this paper is to study the condition for a morphism of Hopf alge-
broids to induce an affine morphism of stacks. This requires an understanding of the
construction of the associated stack. An explicit construction of the associated stack
is given by analysing descent data in terms of morphisms of affine groupoid schemes;
this allows most of the analysis to be carried out at the level of affine schemes. The
arguments considering affine morphisms are explicit (constructive), without appeal
to a general faithfully flat descent argument. The treatment of descent data given
here is related to the homotopy theoretic approach to stacks, as in the work of Hol-
lander [6, 5, 4].

An affine groupoid scheme X, is defined by its underlying pair of affine schemes
(X0, X1) together with its structure morphisms. The source and target morphisms
X1 = X give rise to the affine scheme X, which is defined as the coequalizer in affine
schemes. Moreover, there is a canonical associated morphism X; — Xg X+ Xo. This
structure is familiar to topologists: an affine groupoid scheme X, corresponds to a
Hopf algebroid (A,T'), where A is the coordiate ring ¢(Xy) and I" the ring 0(X;),
a correspondence which can be indicated by writing X, = Spec(A,T"). The scheme
X identifies with Spec(A'), where AT is the equalizer of the left and right units
A = T'. This appears as the zero cohomology of the Hopf algebroid, and thus in the
Adams-Novikov spectral sequence.

To state the results, the category of sheaves of sets for the FPQC topology on the
category of affine S-schemes is written as Shvg,qc; the stack associated to an affine
groupoid scheme X, is denoted by [X,].



ON AFFINE MORPHISMS OF HOPF ALGEBROIDS 55

Theorem 1.1. Let X, be an affine groupoid scheme. The associated stack [Xo| is
affine if and only if the following equivalent conditions are satisfied.

1. The canonical morphism [Xe] — X is an equivalence of stacks.
2. The following conditions are satisfied
(a) Xo — X induces a surjection in Shvgpqc;

(b) X1 — Xo x5 Xo is an isomorphism of affine S-schemes.

A morphism of affine groupoid schemes X, — Y, is said to be affine if the induced
morphism of associated stacks [X,] — [Y,] is affine. Theorem 1.1/ gives rise to an
explicit criterion for a morphism of affine groupoid schemes to be affine.

Affine groupoid schemes form a 2-category and this 2-category admits 2-fibre prod-
ucts. In particular, a morphism of affine groupoid schemes X, — Y, gives rise to a 2-
fibre product X, Xy, Yy, which has underlying affine schemes (Y1 xy, Xo, Y1 Xy, X1);
there are source and target structure morphisms s,¢ which are defined explicitly in
Section 8.2l Let

S
Yy Xy, Xu T; Y) Xy, Xo——W

denote the coequalizer in the category of affine S-schemes, Aff/S. The morphisms s, ¢
induce a natural morphism

Yi Xyo Xl — (Yi XYO Xo) Xw (Yi Xyo Xo)
Theorem 1.2. A morphism Xo — Y, of affine groupoid schemes is affine if and only
if the following two conditions are satisfied:

1. The morphism Y1 xy, Xog — W induces a surjection in Shvgpgc.

2. The induced morphism

Y1 Xy, X1 — (Y1 Xy, Xo) xw (Y1 Xy, Xo)
is an isomorphism of affine S-schemes.

The notion of affine morphism depends on the choice of Grothendieck topology on
affine S-schemes which is used in defining the stacks. There is a stronger condition
on a morphism of affine groupoid scheme which is independent of the Grothendieck
topology.

The result is stated using the notion of a split coequalizer, which is recalled in Defi-
nition|7.4. The morphism €: Y7 xy, Xo — Y7 Xy, X1 is induced by the unit morphism
€: X(] — Xl.

Corollary 1.3. Let X, — Y, be a morphism of affine groupoid schemes such that

1. the diagram

g S
Y1 Xy, Xo —=Y1 Xy, X1 T; Y1 xy, Xo

is an equalizer in Aff/S;
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2. the coequalizer diagram in Aff/S
S
Y1 Xy, Xu *ti Y1 Xy, Xo —=W

is a split coequalizer.
Then the morphism Xo — Y, is affine.

The category of Hopf algebroids is independent of any Grothendieck topology,
whereas the category of stacks with presentation seemingly depends on the choice of
the FPQC topology. It is therefore reassuring to note that the fact that the diagonal
morphism of the stack [X,] associated to the affine groupoid scheme X, is affine is
independent of the Grothendieck topology by the following observation.

Proposition 1.4. Let X, be an affine groupoid scheme. Then the diagonal morphism
Xo — Xo X5 X, satisfies the hypotheses of Corollary|1.5.

Organization of the paper

Section 2 is devoted to a survey of the background material which is required in
the paper. The key definition of the paper, that of an affine morphism, is given in
Section 13l

Section 4| develops an explicit description of the stack associated to an affine
groupoid scheme by reconsidering descent data; namely a descent datum for an affine
groupoid scheme is shown to be equivalent to a morphism of affine groupoid schemes
of a certain form and a similar description of morphisms between descent data is
available. These results are used in the paper to make explicit certain arguments
which are frequently given by appeal to faithfully flat descent techniques.

The structure of the 2-fibre products in the 2-category of affine groupoid schemes
is explained in Section 5. This material is fundamental for the consideration of affine
morphisms between affine groupoid schemes.

Section (6l develops the theory of the affine groupoid schemes which have discrete
associated stack (a stack is discrete if it is isomorphic to the stack associated to
a sheaf). An explicit argument is given to show how this behaves with respect to
faithfully flat descent. Section [7l applies this material to consider the affine groupoid
schemes which are affine.

Section 8 applies the previous results to consider affine morphisms. This gives
an explicit criterion for a morphism of affine groupoid schemes to induce an affine
morphism of stacks. However, this condition seems to be difficult to check in practice.

The appendix applies the material developed within the paper to sketch a proof
of the equivalence between the 2-category of affine groupoid schemes and a suitable
2-category of stacks with presentation. This recovers the result of Pribble [12] and
Naumann [11], which is also contained in the work of Hollander [4].
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this paper to the associated stack construction in [9] obscured the explicit nature of
the results.
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2. Background

This section reviews the foundational material on affine groupoid schemes, the
FPQC topology, and stacks; references to the literature are given for the basic notions.

2.1. Affine schemes and the flat topology

Throughout this paper, R denotes a fixed commutative, associative ring with unit
and S denotes the associated affine scheme, Spec(R). The category Aff/S of affine
schemes over S is equivalent to the opposite of the category of R-algebras; the R-
algebra associated to an affine S-scheme U will be written €'(U). The inverse functor
associates to an R-algebra A the affine scheme Spec(A) equipped with the morphism
to S induced by R — A. (An introduction suitable for the study of affine groupoid
schemes is given in the introduction to affine group schemes by Waterhouse [15].)

Remark 2.1. The category Aff/S is a full subcategory of the category of schemes over
S and has fibre products, coproducts, products and a final object S. (The latter two
exist because the scheme S is taken to be affine.)

Definition 2.2. The FPQC topology (fidélement plat quasi-compact) on the cate-
gory Aff/S is the Grothendieck topology with covers which are finite families of flat
morphisms {X; — X} in Aff/S such that the morphism II; X; — X is faithfully flat.

Remark 2.3. This is the correct definition when working with affine schemes, noting
that a morphism between affine schemes is quasi-compact. The general definition
in schemes is more subtle, since Zariski covers should be FPQC covers; a suitable
definition is given in [14} Section 2.3.3].

A presheaf of sets on Aff/S can be considered either as a functor (Aff/S)°P — Set
or as a functor R — Alg — Set. Thus, the presheaf represented by an affine S-scheme
X can be considered as Homag/s(—, X) or as Homp_ajg(0(X), —).

Every such representable presheaf is a sheaf, by the following

Proposition 2.4. The FPQC topology is subcanonical.

The category of sheaves of sets on Aff/S for the FPQC topology will be denoted
by Shvgpqc; this can be considered as a category of spaces (cf. [9, Chapitre 1]). The
Yoneda embedding provides a fully faithful embedding

Aff/S — Shvgpge,
by the above proposition; it also implies the following

Lemma 2.5. A morphism of affine S-schemes f: U — V induces an isomorphism
in Shvipqe if and only if f is an isomorphism in Aff/S.

Definition 2.6. Let & be a class of morphisms in Aff/S. (Such a class will always
be taken implicitly to be closed under composition with isomorphisms.)

1. The class & is closed under base change if, for p: X - Y in Zand A - Y a
morphism in Aff/S, the morphism obtained by base change, p': A xy X — A,
is in &.
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2. The class & is local for the FPQC topology if p: X — Y lies in &2 if and only
if there exists a faithfully flat morphism Y’ — Y such that p’: X xy Y’ — Y’
lies in £2.

Faithfully flat descent is a fundamental tool when considering the FPQC topology
(see the notes on descent theory by Vistoli [14, Chapter 4], where the fundamen-
tal result is [14, Theorem 4.33]). However the arguments of this paper seek to be
constructive, making all descent arguments explicit.

2.2. Affine groupoid schemes

An affine groupoid scheme is the structure in Aff/S which represents a presheaf
with values in (small) groupoids. This corresponds to a pair of affine S-schemes
(X0, X1), equipped with structure morphisms s,¢: X; = Xo, m: X1 xx, X1 — X1,
e: Xo — X7 and i: X7 — X; which satisfy the usual axioms (cf. [9, Définition 2.4.3]
and [1, Section III, §2]). Here X, represents the objects and X; represents the mor-
phisms of the groupoid. The morphism m: X; xx,X; — X corresponds to the com-
position, the fibre product being taken in the sense X; x¢ x,,s Xi. The relevant fibre
product is usually clear from the context and, in this case, such precision is omitted
from the notation.

Notation 2.7. An affine groupoid scheme as above will frequently be denoted simply
by X,.

Proposition 2.8. (Cf. [11]) Affine groupoid schemes form a 2-category, denoted
Gpdg, such that:
1. a 1-morphism fe: X¢ — Y, is a pair of morphisms (fo: Xo — Yo, f1: X1 — Y1)
which induce a morphism of groupoid-valued presheaves;

2. a 2-morphism between morphisms fe, e: Xe — Yo is a morphism a: Xg — Y
such that sa = fo, ta = go and the following diagram is commutative:

(g1,08x)

X i —=Yixy, 1

(Oétx,fl)l le

Yixyy Vi ——V1.

Finite coproducts and products exist in the category of affine groupoid schemes.
Fibre products in the sense of 2-categories also exist; these are considered in Section 5l

Proposition 2.9. The category of affine groupoid schemes has finite coproducts and
products. Let X,o, Yo be affine groupoid schemes; then:
1. the product X4 x g Y, has underlying affine schemes (Xo xg Yo, X1 Xg Y1), with
structure morphisms given by the product of the structure morphisms of Xo and
Ys;
2. the coproduct X4 1Y, has underlying affine schemes (Xo I Yy, X1 11Y7), with

structure morphisms given by the coproduct of the structure morphisms of X,
and Y.
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Proof. The product (respectively the disjoint union) of two groupoids is defined by
the usual product (resp. disjoint union) of categories. These constructions can be
performed pointwise for a presheaf of small groupoids; in the representable case, the
constructions are represented by the given structures. The only part of the argument
which is not entirely formal is the identification of the fibre products given by the
natural isomorphism

(X1 XXO Xl) X (Y1 Xyo Yl) = (X1 X Yl) XXOXYU (Xl X Yl)
and the respective isomorphism in the category of R-algebras. O

The 2-category of affine groupoid schemes in Aff/S is equivalent to the opposite
of the 2-category of R-Hopf algebroids. An R-Hopf algebroid is given by a pair of R-
algebras (A,T) together with structure morphisms n,ngp: A - T, e: T — A, x: T —
Fand A: T =T ®4 I (cf. [13, Appendix Al]). As above, the diagonal represents
the composition of the groupoid and the tensor product I' ® 4 I is taken in the sense
I' ®yg,An. I The 1-morphisms and 2-morphisms of the category of R-Hopf algebroids
are defined as above (up to change of variance).

Definition 2.10.

1. An affine groupoid scheme X, is flat if the morphism s: X; — X is flat (equiv-
alently ¢: X; — Xj is flat).

2. An R-Hopf algebroid (A4,T") is flat if the associated affine groupoid scheme is
flat; this is equivalent to the morphism of R-algebras ny: A — I' being flat
(equivalently nr: A — T being flat).

The following lemma is clear.

Lemma 2.11. There is a fully faithful embedding
Aff/S — Gpd/S

which associates to an affine S-scheme U the affine groupoid scheme (U,U) with all
structure morphisms being the identity.

Notation 2.12. The affine groupoid scheme (U, U) associated to an affine S-scheme
U will be denoted simply by U.

The following simple example arises naturally in considering the factorization of a
morphism of affine schemes in Example 2.36 below. It is of fundamental importance
in descent theory, as exhibited in Section 4l

Ezample 2.13. Let f: U — V be a morphism of Aff/S. There is an associated affine
groupoid scheme with underlying affine schemes (V,V x V) and with structure
morphisms given as follows. The morphisms s,t are given by the projections, € is
the diagonal morphism V' — V x ¢V, the inverse i: V x yV — V Xy V is given by
transposition of factors and the composition

m:(VXUV)Xv(VXUV)gVXUVXUV—)VXUV

is induced by projection onto the outer factors. There are canonical morphisms of
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affine groupoid schemes
V- WV,VxyV)—=U.
This affine groupoid scheme is flat if and only if the morphism V' — U is flat.

2.3. Stacks and prestacks

One can consider prestacks and stacks for the FPQC topology on Aff/S. The stan-
dard reference for algebraic stacks is the monograph of Laumon and Moret-Bailly [9],
and a useful introduction sufficient for the current purposes is the introductory text
by Vistoli [14]; the reader is referred to these texts for further details.

Recall that a category ¢ fibred in groupoids over Aff/S is a functor 7: 4 — Aff/S
which has fibres which are groupoids and which satisfies a base-change condition
(see [9, Chapitre 2]). The fibre ¥x over an affine S-scheme X is the inverse image of
the discrete subcategory of Aff/S with single object X. The base-change condition
provides, for each morphism V' — U of Aff/S, a functor ¢*: 9y — 4.

Notation 2.1/4. Henceforth the only stacks (respectively prestacks) considered will be
(pre)stacks over Aff/S for the FPQC topology; these will be referred to simply as
(pre)stacks (over Aff/S).

Definition 2.15. A prestack over Aff/S is a category ¢ fibred in groupoids over
Aff/S such that, for any affine S-scheme U and objects x,y of ¢, the presheaf on
Aff /U which associates to a morphism V — U the set Homg, (¢*z, ¢*y) is a sheaf
for the FPQC topology.

Definition 2.16. Let ¢ be a category fibred in groupoids over Aff/S.

1. A descent datum for ¢ is a triple (p: U’ — U,a’,¢’), where p: U' — U is a
faithfully flat morphism in Aff/S, 2’ is an object of 4 and 1’ is an isomorphism

Y pix! ipgaz’ in¥ U where p1,po: U xy U’ = U’ are the projections,
such that the cocycle condition holds in ¢, ’ ’
xpU'xgU

pi,31/)/ = (P3,3¢/) 0 (pT,2¢/)
where p; j: U x gU’ x yU" — U’ x U’ is the projection onto the ith and jth
factors.

2. The descent datum (p: U’ — U,z’,¢’) is effective if there exists an object
T € 9y and an isomorphism ~: p*x = 2 which is compatible with the descent
datum

p5y =1 opiy
(observing that pop; = pops).
Definition 2.17. A stack over Aff/S is a prestack for which every descent datum is

effective.

Remark 2.18. Stacks and prestacks over Aff/S form 2-categories; the category of mor-
phisms is written as Hom.

Definition 2.19. [9, Section 2.2] A 1-morphism g: ¢4 — # of categories fibred in
groupoids over Aff/S is
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1. a monomorphism if the functor on fibres ¥x — 5% 1is fully faithful for each
affine S-scheme X;

2. an equivalence if the functor on fibres ¥x — #x is an equivalence of categories
for each affine S-scheme X.

These definitions apply to the 2-category of prestacks over Aff/S, by considering
the underlying category fibred in groupoids.

Definition 2.20. A 1-morphism f: .# — 4 of stacks over Aff/S is a monomor-
phism if the underlying 1-morphism of categories fibred in groupoids is a monomor-
phism.

The notion of 1-epimorphism between stacks is local for the FPQC topology:

Definition 2.21. A 1-morphism f: .# — 4 of stacks over Aff/S is an epimorphism
if, for each section z € A%, X an affine S-scheme, there exists a faithfully flat mor-
phism ¢: X’ — X and a section y € .#x: such that f(y) is isomorphic to ¢*z in the
groupoid #x:.

Definition 2.22. Let 2 be a prestack. An associated stack for 2" is a 1-morphism
L2 X — X of prestacks such that, for every stack %/, the functor

Hom(Z',%) > Hom(Z,%)
is an equivalence of categories.

An explicit formulation of the existence of the associated stack is given in Section 4.
Existence and uniqueness is stated in the following result.

Proposition 2.23. (Cf. [9, Lemme 3.2]) Let 2" be a prestack.
1. There exists an associated stack v: 2 — X .
2. The 1-morphism ¢ is a monomorphism of prestacks.
3. If Z is a stack, then v is an equivalence of stacks.
4

CIf VX — 2 is a second associated stack, then the stacks 2 and 2 are
equivalent.

A thorough exposition of the construction of an associated stack is given in the
monograph of Giraud on non-abelian cohomology, [2, Chapitre II, Section 2]. This
reference treats the more general case of the stack associated to a category fibred in
groupoids and also is more explicit on the functorial nature of the construction.

Ezample 2.24. An affine S-scheme X represents a stack on Aff/S which will be
denoted abusively by X. The underlying category fibred in groupoids has fibre Xy,
for V an affine S-scheme, the discrete category with objects the set of sections
Homag,g(V, X) of the sheaf associated to X.

Ezample 2.25. An affine groupoid scheme X, defines a prestack [X,]" on Aff/S which
has underlying category fibred in groupoids with fibre [X,]{, (V an affine S-scheme)
the groupoid HomAff/S(V7 X,). This is a prestack because the FPQC topology is
subcanonical.
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The associated stack construction given in Section 4/ provides a 1-monomorphism
[Xo]' — [X.o] and [X,] is referred to as the stack associated to the affine groupoid
scheme X,.

There is a canonical 1-epimorphism of stacks Xy — [X,]. Moreover, there is a
2-commutative diagram

X1*t>X0

|

XO - [Xo]

Ezample 2.26. For (A,T') an R-Hopf algebroid, the above constructions give rise to a
stack .#( 4,1, equipped with a 1-epimorphism Spec(A4) = .# 4 r). If (A,T') — (B, X)
is a morphism of R-Hopf algebroids, there is a (strictly) commutative diagram of
1-morphisms of stacks

Spec(B) — Spec(A)

L

M (B,5) —> M(ar)-

The fact that the diagram can be taken to be strictly commutative depends on the
functorial nature of the associated stack construction.

Remark 2.27. The stacks arising from affine groupoid schemes have two fundamental
properties (as will be explained below): the diagonal morphism A: 2" — 2 xg 2
is affine and there is a canonical presentation X — 2~ which is a 1-epimorphism from
the stack represented by an affine scheme X.

It should be noted that such stacks are not in general algebraic in the usual sense
of algebraic geometry. In particular, no finiteness or smoothness hypothesis is placed
on the presentation X — 2~ of the stack. Moreover, algebraic spaces do not intervene
explicitly in the theory developed here: the only algebraic spaces considered are those
represented by affine schemes.

Morphisms from a stack to an affine scheme are understood by the following result.

Lemma 2.28. Let ./ be a prestack and M — M be an associated stack. For an
affine S-scheme U, the categories Hom(.#,U) and Hom(.#,U) are discrete and
there is a bijection of the underlying sets

Hom(.#Z,U) = Hom(.#,U)
induced by M — M .

2.4. The epi-mono factorization

A I-morphism of stacks over Aff/S factorizes canonically as a 1-epimorphism fol-
lowed by a 1-monomorphism by the following result. If f: .# — .4 is a 1-morphism
of stacks, an object z of .4, is said to be locally in the essential image of f if there
exists a faithfully flat morphism ¢: U’ — U in Aff/S, an object y of .4y, and an
isomorphism between f(y) and ¢*(2) in Ag.
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Proposition 2.29. [9, Proposition 3.7] Let f: # — N be a 1-morphism of stacks
over Aff/S.

1. The full subcategory Z~ of N of objects which are locally in the essential image
of [ is a substack of N .

2. The morphism f factorizes canonically as
f i
M= X — N
where f' is an epimorphism and i is the canonical monomorphism of stacks.

3. If My N s a factorization of f as an epimorphism followed by a
monomorphism, then there exists a 2-commutative diagram

Ay

LA

&

in which k is an equivalence of stacks.
This implies the following fundamental result.

Corollary 2.30. [9, Corollaire 3.7.1] A 1-morphism of stacks is an equivalence if
and only if it is a monomorphism and an epimorphism of stacks.

2.5. Groupoid spaces and induced groupoids
The Yoneda embedding of Aff/S in Shvg,ge allows the definition of an affine
groupoid scheme to be generalized to a groupoid space as follows.

Definition 2.31. A groupoid space is a presheaf on Aff/S with values in small
groupoids such that the pair of presheaves (Y, Y1) corresponding to the objects and
morphisms respectively belong to Shvgyqc.

Remark 2.32.

1. A groupoid space is defined by the pair of sheaves (Yp,Y7) together with the
usual structure morphisms. An affine groupoid scheme is a representable group-
oid space.

2. A groupoid space Y, induces a prestack [Y,]" and an associated stack [Y,], as in
the representable case.

Lemma 2.33. Let X, be an affine groupoid scheme and Y, be a groupoid space. A
pair of morphisms of sheaves fo: Xg — Yy, f1: X1 — Y71 induces a morphism of affine
groupoid spaces if and only if the following identities hold

1. sy fi = fosx and ty f1 = fotx as morphisms X1 — Yp;
2. my(f1 x f1) = fimx as morphisms X1 xx, X1 — Y1.

Proof. The forward implication is immediate. For the converse, suppose that the
morphisms satisfy the given conditions. It is necessary to establish the identities
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1. fiex = ey fo, as morphisms Xy — Y7i;

2. fiix =iy f1 as morphisms X; — Y.

These conditions correspond to the condition on the unit and on the inverse respec-
tively. By Yoneda’s lemma, the first condition is a property of the groupoid [Ys]'x,
and the second condition is a property of the groupoid [Y,]'y, .

This reduces the proof to a property of morphisms of (small) groupoids: a map
between the sets of morphisms of two groupoids defines a morphism of groupoids if
and only if it induces a map on the set of objects which is compatible with the source
and target of morphisms and the map commutes with composition of morphisms. [

Discrete stacks are considered in Section [6] (the definition of discrete is given in
Definition 16.1). The following result can be proved using the methods of Section [6}
alternatively, a direct approach using the definition of the 2-fibre product in stacks
can be used.

Lemma 2.34. Let Y1 — A4 «— Y3 be a diagram of 1-morphisms, where Y1, Ya are
stacks associated to sheaves. The 2-fibre product Y1 X 4 Yo is a stack associated to a
sheaf.

The following general result gives a way of defining an induced groupoid space.

Proposition 2.35. [9, Proposition 3.8] Let % be a stack and f: Y — & be a 1-
morphism of stacks, where Y is the stack associated to a sheaf.

1. The pair (Yo :=Y,Y1 :=Y Xa Y) has the structure of a groupoid space, where
the morphisms s,t: Y Xo Y Y are given by the canonical projections, the
morphism i: Y Xa Y =Y Xa Y is induced by transposition of the factors Y
and the morphisme: Y — Y Xa Y is induced by the diagonal. The composition

VixXyy N (Y xgY)Xy VY XagY) =Y x9Y
is induced by the projection on the two outer factors and the composition of
morphisms in ¥ .

2. There is a canonical 1-monomorphism of stacks ®: [Yo| — % and a factoriza-
tion of f as

N AR
3. The morphism ® is an equivalence of stacks if and only if f is an epimorphism.

Ezxample 2.36. A morphism of affine S-schemes V' — U induces a morphism between
representable stacks. The previous construction defines a factorization

Vo[V oU

where V, is the groupoid space represented by the affine groupoid scheme (V,V x
uvV), as in Example 2.13]

The stack [V4] is equivalent to the affine stack U if and only if the morphism of
representable sheaves V' — U is surjective for the FPQC topology. The latter con-
dition is equivalent to the existence of a morphism U’ — V of Aff/S such that the
composite morphism U’ — V — U is faithfully flat. This example is fundamental in
the theory of faithfully flat descent.
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3. Definition of affine morphisms

The notion of an affine morphism between FPQC stacks is fundamental. In partic-
ular, any property of morphisms of Aff/S which is local for the FPQC topology and
stable by base change gives rise to a property of affine morphisms between FPQC
stacks.

Moreover, stacks with affine diagonal morphism have good properties; for example,
there is a standard way to associate a (small) FPQC site to a stack with affine diagonal
(see [8,12]). An affine morphism between FPQC stacks (with affine diagonal) induces
a continuous morphism between the associated small FPQC sites.

3.1. Affine morphisms of stacks
The notion of an affine morphism is important since the fundamental geometric
objects which are considered here are affine S-schemes.

Definition 3.1.
1. A l-morphism f: .# — 4 is affine if, for any 1-morphism U — A4 with U
represented by an affine scheme, the 2-fibre product .# x 4 U is isomorphic to
a stack represented by an affine scheme.
2. A stack . is affine (or an affine stack) if the canonical morphism .# — S is
affine (so that .# is equivalent to the stack represented by an affine scheme).

Remark 3.2. Tt should be stressed that if 4" = A for a prestack J#, the section
represented by U — 5 need not correspond to a 1-morphism of prestacks U — 2.
This is where descent data enter the picture (see Section [4).

Remark 3.3. The notion of affine morphism is analogous to that of morphisme sché-
matique used in the theory of algebraic stacks, which is a special case of the standard
notion of a representable morphism. The definition of a representable morphism is
similar to that of an affine morphism, but replacing affine scheme by algebraic space.
Here, no use is made of algebraic spaces (which are the basic geometric objects in the
study of algebraic stacks, defined with respect to the étale topology) and the only
schemes which are considered are affine.

The following result is analogous to general results on representable morphisms of
stacks (cf. [9, Lemme 3.11] and [9, Lemme 3.12]).

Lemma 3.4.

L Lt L2 % be 1-morphisms of stacks. If f,g are affine, then go f is
affine.
2. Let 2 2 & % be 1-morphisms of stacks and

%ng@%%

q

be the associated 2-cartesian diagram. If p is affine, then the morphism p’ is

affine.
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Definition 3.5. Let & be a class of morphisms of Aff/S which is local for the FPQC
topology and stable by base change. An affine 1-morphism of stacks f: .# — .4 has
property £ if, for each 1-morphism of the form V — 4", with V represented by
an affine scheme, the 1-morphism .# x_y V — V defined by the 2-fibre product has
property <.

The following descent property for affine morphisms of stacks is useful and gives
a partial converse to the second property of Lemma [3.4.

Proposition 3.6. [12, Proposition 3.16] Let 2 Ll viea diagram of 1-mor-
phisms of stacks, where p is an epimorphism, and let

X xwW L g

Lk

& Z

be the associated 2-cartesian diagram.
1. If ' is affine, then [ is affine.

2. If f' is affine and possesses the stable and local property &2, then f is affine
and possesses the stable and local property &.

3.2. Stacks with affine diagonal

The stack associated to the affine scheme S is terminal in stacks over Aff/S. In
particular, if .#Z is a stack, then there is a canonical 1-morphism .# — S of stacks
and hence a diagonal morphism

A%:%H%XS///.

The condition that the diagonal morphism of a stack be affine is a fundamental
property.

Proposition 3.7. (Cf. [12, Proposition 3.14]) Let .4 be a stack over Aff/S. The
stack A has affine diagonal if and only if each 1-morphism of the form U — A,
with U an affine stack, is affine.

Proof. Let U — 4,V — .# be 1-morphisms of stacks with U,V affine. There is a
product 1-morphism of stacks

UXV — M xg M

and the stacks (U X V)_gxg.a-# and U X 4 V are isomorphic. Hence, if the diagonal
is affine, then U x_4 V is affine.

Conversely, suppose that each 1-morphism U — .# is affine when U is affine;
this implies that U x 4 U is affine. Consider a 1-morphism of stacks U — 4 xg .
this morphism factorizes canonically as U — U x U — # xg .# , where the second
morphism is the product of the two projections. The 2-fibre product A& X _yx .0 U
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is equivalent to the 2-fibre product
U xyxu ((UXU) X,//lxs./////f) U

| |

(UXU) x.//[Xs.///% UXU

The stack (U X U) X_gxq.u A is equivalent to U x_g U as above, hence is affine, by
hypothesis. Hence the fibre product above is affine, as required. O

4. Descent and the associated stack

The definition of a stack is phrased in terms of descent data, as recalled in Def-
inition 2.17, and the standard construction of the stack associated to a prestack, as
sketched in [9], Lemme 3.2], uses descent data. In the interest of making the arguments
explicit at the level of affine groupoid schemes, a descent datum for an affine groupoid
scheme is interpreted in this section as a morphism of groupoid schemes. This gives
an explicit construction of the stack associated to an affine groupoid scheme.

4.1. Explicit construction of the associated stack

Let X, denote an affine groupoid scheme in Aff/S. Tautologically, X, defines a
presheaf of groupoids on Aff/S, which is a prestack since the FPQC topology is
subcanonical; this prestack is denoted [X,]'.

The key step in constructing an associated stack for X, is the definition of the fibre
category [Xe]u over an affine S-scheme U; this is provided by the following lemma.

Lemma 4.1. Let U be an affine S-scheme and Xo be an affine groupoid scheme
over S. There is a category [Xe|y with objects pairs (p': U' — U, V'), where p’ is a
faithfully flat morphism in Aff/S and O’ is a 1-morphism of affine groupoid schemes

(U/, U/ X UU’) — X..

A morphism between objects (p',¥') and (p”, V") is a morphism f:U' x yU" —
X1 which makes the following diagrams commute:

1.
U<y U g
L
Xo — X1 — Xo,
in which p1 and py denote the projections;
2.

Uy

U x yU" <= (U x yU") xgr (U x yU")

fi |y

Xl Xl XX() Xl
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where m; is induced by the projection onto the outer factors;

(U/ x UU”) X (U// x UU//) _ T U x yU"

| |

X1 xXx, Xa — X4

where m, is induced by the projection onto the outer factors.

Remark 4.2. Some remarks are in order upon the definition implicit in the statement
of Lemma 4.1
1. The definition depends only upon the small FPQC site of U.

2. The condition (1)) states that f is a morphism in the groupoid [X,]

between the pullbacks pi(p’, ¥’) and p5(p”, ¥").

3. The conditions (2), (3) give compatibility with the morphisms associated to the
objects (p’, ¥') and (p”, ¥"). There is an alternative way to view these diagrams,
in terms of groupoid actions.

The affine groupoid scheme (U’,U’ x yU’) acts on the left upon U’ xy U”;
the structure morphism is analogous to the definition of the structure of the
groupoid (U’,U’ x yU’) given in Example 2.13| namely

(U’ X UU’) Xy (U/ X UU”) — (U/ X UU”),

/
U/><UU”

the morphism induced by the projection onto the two outer factors. Similarly
the affine groupoid scheme (U”,U"” x yU") acts upon the right upon U’ x¢ U”;
moreover, these left and right actions commute.

Similarly, the morphism ¥’ induces a left action of (U',U’ x yU’) upon X;
and the morphism ¥” induces a right action of (U”,U” x yU”) upon X7, and
these two actions commute. The compatibility conditions are equivalent to the
condition that f: U’ x yU"” — X; is a morphism of left U’ x yU’ and right
U"” x yU" groupoid actions.

Proof. Tt is necessary to show that there is a well-defined composition operation,
which defines the structure of a category. For this, let

\I/jl (Uj,Uj XU U]) — X
be morphisms of affine groupoid schemes, for j € {1, 2,3}, where U; — U are faithfully
flat morphisms. Suppose further that fio: Uy Xy Uy — X1 and fo3: Us Xy Uz — X3
satisfy the compatibility conditions of the statement of the lemma with respect to

(U1, ¥s) and (U, U3) respectively. The composite should be a morphism U; x ¢y Us —
Xi. The diagram

(Ul XU UQ) XU,y (Ug XU Ug) i> U1 XU U2 XU U3

f12><.f23l \LF

X1 X X, X1 Xl

m

defines a morphism F: U; Xy Us xy Us — X;. One uses faithfully flat descent to
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show that this descends to the required morphism; this uses the elementary fact that
the presheaf represented by X; is a sheaf for the FPQC topology, since the topology
is subcanonical. Explicitly, it is sufficient to show that the two composites in the
diagram

q1
Uy xu Uy xy Uy Xy Us —2 Uy xy Uy Xy Us —— X
q2
coincide, where the morphisms g1, g2 are induced by the projections

U2 XU U2 :>>U2

This fact follows from the compatibility conditions for fi2 and fo3 by using the
following diagram:

(U1 XU Ug) XU, (U2 Xu Ug) XUy (UQ Xu U3) i>U1 XU UQ Xu U2 XU U3

f12><‘112><f23l FOQQLLFOQI

X1 XXO X1 XXO X1 Xla

m°?

where m°? corresponds to the iterated product. The diagram commutes in the sense

that all composites are the same; this follows by associativity of the product m
together with the fact that fio satisfies condition (3) and fo3 satisfies condition (2) of
Lemma 4.1, these conditions corresponding to the respective right and left groupoid
actions by (Us,Us xy Us). This implies that the morphism F' factorizes canonically
across the required morphism

faz o fia: Uy xy Us — X7.

From the construction, it can be shown that this satisfies the required compatibility
conditions, hence the composition is defined.

It remains to show that the composition satisfies the axioms for a category. This
is straightforward, upon noting that the identity morphism for an object represented
by a morphism of affine groupoid schemes (U’,U’ xy U') — X, is the underlying
morphism U’ x yU" — Xj. O

Lemma 4.3. For X, an affine groupoid scheme in Aff /S, there is an associated cat-
egory fibred in groupoids [Xe| with

1. fibre category over an object U of Aff/S the category [Xe|u of Lemmal|].1);

2. base change for a morphism ¢: V — U of affine S-schemes the functor o*:
[Xe]u — [Xe]v induced by the base change from the small FPQC site of U to
the small FPQC site of V.

Proof. The result is standard. Namely, if U’ — U is a faithfully flat morphism, then
base change along ¢: V — U gives a faithfully flat morphism V' :=U’ x ;V — V.
If U” — U is a second faithfully flat morphism and V" — V the morphism obtained
by base change, then there is an induced morphism V' xy V" — U’ x yU”, which
is compatible with the projections. In particular, these observations are sufficient
to define a base change functor ¢*: [Xe]y — [Xe]v; the fact that this gives rise to a
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category fibred in groupoids follows from general considerations, as in [14], Chapter 3].
O

Recall that X, defines a presheaf of groupoids [X,]’, which is a prestack since
the FPQC topology is subcanonical. The relationship between the cocycle condition
given in the definition of a descent datum and morphisms of affine groupoid schemes
is given by the following lemma.

Lemma 4.4. Let p': U' — U be a faithfully flat morphism, ' be an object of [Xa|7;
represented by a morphism x’': U’ — X, and ¢': U’ x yU’' — X1 represent a mor-
phism between pix’ and pix’, where py,pa: U' x yU' = U’ are the projections. Then
' satisfies the cocycle condition if and only if the morphisms (x',1') induce a mor-
phism of affine groupoid schemes

U U x yU') — X..

Proof. Consider the forward implication; by hypothesis the morphisms ' and 1)’ are
compatible with the source and target morphisms of the affine groupoid scheme X,.
The cocycle condition implies that the morphism 1)’ is compatible with composition.
This is sufficient to show that z’,’ induce a morphism of affine groupoid schemes,
by Lemma 2.33.

Conversely, the compatibility with composition implies the cocycle condition. [

The following lemma introduces notation used below and is important in transi-
tivity arguments involving descent data.

Lemma 4.5. Let U” — U’ — U be morphisms in Aff/S (not necessarily faithfully
flat). The canonical morphism induced by the universal property of fibre products

v:U" xg U = U" x U
induces a morphism of affine groupoid schemes which factorizes canonically as
U U" xy: U") — (U x gU', (U" x gU") xy (U" x gU")) — (U",U" x ycU")
in which the second morphism is induced by pullback along U — U.
Proof. Straightforward. O
The key step in the proof that [X,] is a stack is isolated in the following lemma.

Lemma 4.6. Let X, be an affine groupoid scheme in Aff/S. A descent datum for X,
of the form (p': U — U, 2’ € [Xo|y/,0'), where &' is defined by a morphism of affine
groupoid schemes O (U" U" xy: U") — X,, where q: U" — U’ is a faithfully flat
morphism, is equivalent to a commutative diagram of morphisms of affine groupoid
schemes

(U, 0" xp U") (1)

]
(U//’ U// XU U//) X.’

N4

associated to faithfully flat morphisms U"” % U' % U.
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Proof. Suppose given a descent datum as in the statement of the lemma; by the
definition of the category [X,], the object 2’ is defined by a morphism of affine
groupoid schemes ¥": (U", U" xy: U") — X,, where q: U” — U’ is a faithfully flat
morphism. The morphism ¢’ is a morphism between the restrictions piz’, p3z’ of «’
to [X.]U’XUU/ along the projections p1,ps: U’ x yU’ = U’, such that 1)’ satisfies the
cocycle condition.

The restriction of z’ along the projection py: U’ x yU’ — U’ is defined as in
Lemma 4.3, using the pullback

p1
U’ x gU ——U"

Lok

U/ X UU/?U/.

Thus, the underlying object in [X,] oU’ of pia’ is defined by the composite

U’ x
g ‘II//
U// % UU/ E) U// v, XO-

Similarly, the restriction of 2’ along ps is defined using the pullback

D2
U x gU"——y"

Lok

U/ X UU/?U/.

It follows from the definition of morphisms in the category [X']U’XUUI that v’ is
defined by a morphism

(U// X UU/) X (U/ X UUII) N )(1

U ’><UU !
which satisfies the conditions of Lemma 4.1. The fibre product on the left is canoni-
cally isomorphic to U” xy U”, hence this gives a morphism

’(/JI UN X UU” — X1~

The cocycle condition for v’ implies that v defines a descent datum with respect
to the cover U” — U, hence by Lemma 4.4/ defines an object x of [Xe]y, which is
represented by a morphism

U (U, U" x yU") — X,

of affine groupoid schemes. It remains to establish that ¥ factorizes across ¥ via the
morphism ¢.
The morphism ¢ is defined by the morphism 1" in the category [X.],, wy U hence

satisfies the condition (3) of Lemma 4.1, which corresponds to a commutative diagram

(U// % UU//) X (U// Xy U//) P U XU U’ (2)
wX‘I’"l ld)
X1 X Xo X1 Xl
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in which P is induced by projection on the outer factors.

L . di .
The projection py: U” xy U” — U” and the diagonal U” ¥ U” x ¢ U” induce a
morphism §: U” xy U” — U"” x yU"” and hence a morphism

c=6x1:U" Xy U’ — (U// X UU”) Xy (U// Xy U”)

such that the composite P o ¢ is the morphism ¢: U” x¢ U" — U” x U”.
The composite

dia,
U// _)g U// % UU// i Xl

coincides with the composite U” N Xo = X1, since U is a morphism of affine group-
oid schemes. Composing the diagram (2) with the morphism o, one concludes that
the composite 1 o ¢ is equal to the morphism ¥”. This establishes the commutativity
of the diagram (1) of morphisms of affine groupoid schemes.

Conversely, given a commutative diagram (1) of morphisms of affine groupoid
schemes, the morphism ¥ defines the required descent morphism 1)’ for the object
represented by U”. O

Remark 4.7. 1t is important to note that the diagram [1! of Lemma [4.6! does not cor-
respond to the identification of the object ' with the pullback (p')*z, along the
morphism p’: U’ — U, of the object x represented by W. This is the point of the
factorization which is provided by Lemma 4.5l

Proposition 4.8. Let X, be an affine groupoid scheme in Aff/S. Then the cat-
egory fibred in groupoids [Xe] over Aff/S is a stack and there is a canonical 1-
monomorphism of prestacks:

X)X,

Proof. The fact that [X,] is a prestack and that [X,] < [X,] is a fully faithful
functor (and hence a monomorphism) is a straightforward verification. For example,
to show that [X,] is a prestack, observe that the set of morphisms between two objects
(p': U = U, V) and (p”: U' — U,¥") is defined as an equalizer of a diagram of the
form

HOHI(UI X UU”,Xl) = HOHI(UI X UU” X UU”,Xl) X HOHI(U/ X UU/ X UU”,Xl)
xHom(U’, Xo) x Hom(U", Xo)

where the morphisms are defined in terms of (p’, ¥’) and (p”, ¥”). This extends to a
diagram of sheaves on the small FPQC site of U by base change. If follows that the
equalizer is a sheaf, hence that [X,] is a prestack, as required.

It remains to verify that [X,] is a stack; this is largely a question of interpreting
the definitions. Recall from Definition 2.17 that a prestack is a stack if and only
if every descent datum is effective. A descent datum for [X,] is given by a faith-
fully flat morphism p’: U’ — U in Aff/S, an object =’ of [Xe]y» and a morphism ¢’
between the restrictions pia’, piz’ of 2’ to [X.}U’XUU, along the projections pi, po:
U' x yU’' = U’, such that 1’ satisfies the cocycle condition. Lemma 4.6 shows that
this is equivalent to a commutative diagram of morphisms of affine groupoid
schemes (1). In particular, the morphism ¥ defines an object = of [X]y .

It remains to verify that x restricts up to isomorphism to the object 2’ of [X,]y
and satisfies the coherence condition of Definition 2.16 (2). This follows from the
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commutative diagram (1) of Lemma 4.6| together with the factorization provided by
Lemma 4.5,

That is, an isomorphism between z’ and (p’)*z is defined by a morphism h which
fits into a commutative diagram

U" x U <—— (U" x yU') xpr U" —— U

| ! |

X _ X, Xo.

t

There is a canonical isomorphism (U” x yU’) xy U”" 2 U" x yU”, hence h is a mor-
phism of the form U"” x yU"” — X.

The isomorphism is given by ¢ : U” x yU"” — X. The conditions of Definition 2.16
follow from the factorization provided by Lemma 4.5l O

The sequence of results above, culminating in Proposition 4.8, has established that
there is a functorial construction of a stack [X,] associated to the affine groupoid
scheme X,, which is equipped with a canonical 1-morphism of prestacks:

[Xo]' = [X.].

Theorem 4.9. Let X, be an affine groupoid scheme in Aff/S. Then the 1-mono-
morphism of prestacks

[Xo)' = [X.]
is an associated stack construction for [ X, .

Proof. (Outline) The theorem asserts that the 1-morphism has the universal property
which characterizes the associated stack up to equivalence. Suppose that [X,] — .#
is a l-morphism of prestacks, where .# is a stack. Let ' = (p': U’ — U, V'), 2" =
(p": U" — U, ¥") be two objects of [X,]y; these give rise to descent data for the stack
A , and hence to sections x1, xo of .4y respectively together with the coherence data,
since . is a stack. This is used to define a 1-morphism [X,] — .# on objects.

It remains to define the 1-morphism on morphisms. The key point is the verifica-
tion that a morphism f between (p’, ¥’) and (p”, ¥”) in [X.]y induces a morphism
between x1 and x4 in .#y. By definition, the morphism f is induced by a morphism
U' xy U” — X; and hence gives rise to a morphism of .#yx,y». The canonical
morphism U’ x yU” — U is faithfully flat, hence the required morphism in .#; can
be constructed by using the fact that .# is a prestack.

This depends upon an analysis based on the following diagram, which is induced
from the coequalizer diagrams U’ x yU’' = U’ — U and U” x ¢yU"” = U"” — U by
forming pullbacks:

U/ X UU/ X UU// % UU// —_— U/ X UU// X UU// > U/I X UUII

I I !

U/ X UU/ % UU// D — U/ % UU// > U//

| | |

U/XUU/ U’ U,
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where all morphisms are induced by one of p’, p” on a single factor of the product.
Commutativity of the upper left hand square should be understood as the existence
of two commuting squares which correspond to the two projections (U’ x yU") x
v(U" x yU") =3 U’ x yU" (after reordering factors).

The descent data together with the morphism f give rise to a morphism 7*z; —
T xe in M, U where 7: U’ xy U” — U denotes the common projection. The
respective compatibility conditions of the morphism f with the descent data and of
the objects £; and zo with the descent data for 2’ and z” can be used to show that
this morphism descends as required to a unique morphism f: z; — x», using the fact
that . is a prestack. O

4.2. Generalization to arbitrary prestacks
The techniques of the previous section can be generalized to arbitrary prestacks;
the purpose of this section is to indicate the necessary modifications.

Lemma 4.10. Let U’ — .# be a 1-morphism of prestacks, where U’ is represented by
an affine S-scheme. Then there exists an associated groupoid space (U',U’" X 5 U').

Proof. This result is analogous to Proposition 2.35. If the existence of an associated
stack is assumed, then the result can be proved as a consequence of the proposition,
as follows.

Proposition 2.35/ gives a groupoid space (U’,U’ x_,;U’), where M is the stack
associated to .#. The sheaf U’ x_,; U’ is isomorphic to the sheaf defined by the 2-fibre
product U’ x_4 U’, hence there is a groupoid space of the form (U', U’ x _, U’). O

The associated stack construction for the prestack .# proceeds as in Section 4.1
the essential part of the construction is to specify the fibre category .4 for an affine
S-scheme U. This is the category with objects given by pairs (p': U’ — U, ¥’), where
p': U’ — U is a faithfully flat morphism in Aff/S and ¥’ is a 1-morphism of groupoid
spaces

(U, U x yU') — (U, U x_ 4 U").

A morphism between objects (p': U’ — U, ¥’) and (p”: U” — U, V") is a mor-
phism of sheaves U’ x yU"” — U’ x_4 U" for which the following diagram commutes

U/ < U/ X U// > U/l
U/ < U/ X 4 U// > U/l

and which satisfies the analogues of the conditions (2) and (3) of Lemma 4.1l

5. Fibre products of affine groupoid schemes

This section is devoted to an explicit identification of the 2-fibre product in the
category of affine groupoid schemes. Section [5.2] establishes a technical result which
is used in later descent arguments.
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5.1. Affine groupoid schemes and 2-fibre products

The 2-category of affine groupoid schemes admits 2-fibre products; for a diagram
of morphisms of affine groupoid schemes

X. — Z. — Y.7 (3)

the 2-fibre product is denoted by Xo Xz, Ye. The existence and structure is estab-
lished below by Lemma /5.1l and Proposition [5.2.

Lemma 5.1. The affine groupoid scheme Xo X z, Yo has underlying affine S-schemes
(Xo Xz, Z1 X 7, Yo, X1 X7, Z1 X 7, Y1)-

There are canonical morphisms of affine groupoid schemes Xo +— Xo Xz, Yo — Yo
and the diagram

X. X Ze Yo H}/o

L

Xe —— 2,

is 2-commutative.

Proof. 1t is a straightforward exercise to give the structure morphisms of this affine
groupoid scheme explicitly, by considering the structure which it represents as a
category fibred over Aff/S. O

Proposition 5.2. Let Xq — Zo < Y, be morphisms of affine groupoid schemes. The
affine groupoid scheme Xo X z, Yo is a 2-fibre product of the diagram.

Proof. This result is essentially a consequence of Yoneda’s lemma. The universal
property can be established explicitly as follows.

]

Xe —>Zo

Suppose that

L]

is a 2-commutative diagram of morphisms of affine groupoid schemes. Namely, there
are morphisms (fO»fl): (AOaAl) - (XOaXl) and (90391): (AO,Al) - (Ybayl) such
that the composite morphisms (A, A1) = (Zy, Z1) are 2-isomorphic via a morphism
a: Ag — Z; which satisfies the conditions given in Proposition 2.8. In particular,
there is a morphism A; — Z; which is given as the composite

A g1,asx m
a: AT Y Xy, Y1 2

(or, equivalently, as the composite A; *x.f1 Y1 xy, Y1 oy Y7y).
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The required morphism (Ag, A1) — (Xo Xz, Z1 Xz, Yo, X1 Xz, Z1 Xz, Y1) is de-
fined by the morphisms

foXaxgo

AO—>X() X Zo Z1 XZOYO

Jixaxg:

Al X1 XZO Zl XZO Yl.

The verification that this defines a morphism of affine groupoid schemes is left to the
reader. O

The diagram (3) gives rise to a diagram of prestacks
[Xo) = 2] < [

The 2-fibre product [X,]" x|z} [Ys] (defined in the category of groupoids fibred
over Aff/S) is equivalent to the prestack associated to the affine groupoid scheme
X. X Zo Y..

Corollary 5.3. Let Xy — Zo < Y, be morphisms of affine groupoid schemes. The
stack [Xeo] X[z,] [Ye] is equivalent to the stack [Xe X z, Y]

Proof. This result is a special case of a general result on 2-fibre products of diagrams
of 1-morphisms of prestacks. An explicit approach is available by using the results
of Section 4; this allows the results to be expressed in terms of morphisms of affine
groupoid schemes. The key point is to verify that a morphism of descent data gives
rise to an appropriate 2-morphism in the 2-category of groupoids.

There is a canonical 1-morphism of stacks

[(Xe Xz, Yo] = [Xo] X[z, [Ye] (4)

which is a 1-monomorphism of stacks. (The fact that this is a monomorphism before
passage to the associated stacks is clear; the associated stack construction preserves
monomorphisms.) It is therefore sufficient to show that the morphism is a 1-epimor-
phism of stacks. This is seen as follows.

Consider descent data (U', U’ x yU’) — X4 and (U"”,U"” x yU") — Y, equipped
with a 2-morphism between the descent data provided by composition with X, — Z,
and Y, — Z, respectively. It is sufficient to show that the corresponding section of
([Xeo] X[z, [Ye])u is in the image of the morphism (4).

The projections U’ «+ U’ x yU"” — U"” give rise to morphisms of affine groupoid
schemes

(U U x gU") «— (U x gU", U x yU" x yU" x zU") — (U",U" x zU").
The morphism of descent data is defined by a morphism «: U’ x yU" — Z7. Tt
remains to verify that this defines a 2-morphism between the two composite mor-
phisms

f.: (U’ X UU”,U’ X UU” X UU/ X UU”) — (U',U' X UU’) — Xo — Zo

Je: (U’ X UU”,U’ X UU” X UU/ X UU”) g (UN,U” X UU”) — Yy — Z,.
To show that the composition with the source and target morphisms s,t: Z3 = Zj
behaves correctly is straightforward. The remaining condition is to verify that the
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following diagram is commutative:

Wl (91,a8x) Zl XZO Zl

(atx,fl)l lmZ

Zl XZO Zl T)Zl’

where W, = (U/ X UU//,U/ X UU” X UUI X UU”).
The conditions (2)), (3) of Lemma 4.1/ upon « show that both composites coincide
with the composite morphism

U'x yU" x gU' x gU" S U x yU" = Zy,

where 7 denotes the projection onto the first and the last factors of U’ x yU"” X
vU’ x yU”. In particular, the square is commutative, as required. O

5.2. A technical lemma

Recall that a morphism of affine S-schemes U’ — U has factorization as a mor-
phism of affine groupoid schemes U’ — (U", U’ x yU’) — U. If the morphism U’ — U
induces a surjection of FPQC sheaves (for example, if U’ — U is faithfully flat), then
the morphism (U’, U’ x yU’) — U induces an equivalence of stacks.

Lemma 5.4. Let U' — U be a faithfully flat morphism of affine S-schemes. The
commutative diagram

U/ —_— U/
Xe—— (U, U xyU)——U
of morphisms of affine groupoid schemes induces an isomorphism

Y, := X, x U S X, xp U

wuxgU”
on the associated 2-fibre products.
Proof. By definition, the affine schemes Y and Y7 identify as follows:
Yo = Xy xyr (U/ x gU") xy U = Xy x ygU’
YY) &2 X, Xy (U/ X UUI) Xy’ U' = X1 x UU/-

Correspondingly, the affine groupoid scheme X, x yU’ has objects represented by
Xo x yU’ and morphisms represented by X1 x yU’. The result follows by verifying
that the induced morphism corresponds to the isomorphisms given above. O

6. Discrete stacks

This section analyses the condition that a stack is discrete and shows that the
condition is amenable to explicit descent arguments.
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6.1. The discreteness condition

A presheaf of sets X on Aff/S naturally gives rise to a prestack, with underlying
fibre category above an affine S-scheme U the set of sections Xy, regarded as a
discrete category. This is a stack if X is a sheaf.

Definition 6.1. A stack 2 is discrete if it is equivalent to a stack associated to a
sheaf X.

Proposition 6.2. [9, (3.4.1)] Let 2 be a stack on Aff/S. The stack Z is discrete
if and only if the diagonal morphism Ag: X — X xg Z is a monomorphism.

Remark 6.3. The condition provided by Proposition 6.2 can be interpreted in terms
of the fibre categories. Namely, the stack 2 is discrete if and only if, for each pair
of sections z, 2’ of 2y, for U € ObjAff/S, the cardinality of Hom g, (2, 2’) is at most
one. Equivalently, using the fact that all morphisms are invertible, Aut g, (z) = {1.},
for each section z of 2.

This gives rise to a straightforward criterion for a groupoid scheme to induce a
discrete stack.

Notation 6.4. For X, an affine groupoid scheme, let X be the affine S-scheme defined
by the coequalizer in Aff/S:
X=X, — X.
If X, = Spec(A,T") for a Hopf algebroid (A, T), then X = Spec(Al), where A is the
equalizer of the left and right units A = I'.
The universal property of the fibre product implies the following:

Lemma 6.5. Let X, be an affine groupoid scheme. The morphisms s, t: X1 = X
induce a morphism

X1 — XO Xx Xo.

In terms of the associated Hopf algebroid (A,T), the morphism is of the form
A®ar A — T, induced by the left and right units.

Remark 6.6. The canonical morphism Xy x5 Xo < X¢ x X is a closed immersion
of affine schemes. This corresponds to the surjection A ® A - A ®4r A of rings.

Lemma 6.7. The morphism X1 — Xo X+ X¢ induces a morphism of affine groupoid
schemes
X. — (X07X0 XyXo).

Proof. Straightforward. O

In terms of the Hopf algebroid (A4,T"), this morphisms corresponds to a morphism
(A, A@4r A) — (A, T).

For a stack associated to an affine groupoid scheme, the criterion of Proposition 6.2
simplifies to give the following.

Proposition 6.8. Let X, be an affine groupoid scheme. The stack [X,] is discrete if
and only if the following equivalent conditions are satisfied



80 GEOFFREY M.L. POWELL

1. the morphism X; — Xg x5 Xo induces a monomorphism of presheaves on
Aff/S;

2. the morphism X1 — Xo X+ Xo induces a monomorphism in Shvgpgc.

Proof. The equivalence of the two numbered conditions follows from the fact that
the FPQC topology is subcanonical and the inclusion of the category of sheaves in
presheaves is left exact.

Hence it suffices to prove the result using the presheaf condition (1). That this
condition is necessary follows from Remark 6.3l

Sufficiency follows from general considerations for the passage from a prestack to
the associated stack. This can be seen explicitly here using the results of Section 4l
Namely, using the notation of Lemma 4.1, a morphism between descent data is equiv-
alent to a commutative diagram

U/ < U/ XU U// > UI/

|

Xy
XO %XO XYXO HXO-

The hypothesis that X; — X¢ x5 X induces a monomorphism of presheaves implies
that this diagram is uniquely determined by the morphisms U’ — Xy and U"” — X,.
Hence there exists at most one morphism between the corresponding sections. O

Proposition [6.8 has an alternative formulation in terms of an equalizer diagram.

Proposition 6.9. The stack [X,] associated to an affine groupoid scheme X, is dis-
crete if and only if the diagram

€ S
Xo—= X1 —=Xp
t
is an equalizer diagram.

Proof. The result follows from Proposition 6.8, by using the final observation of
Remark 6.3. O

Definition 6.10. An affine groupoid scheme X, is said to be discrete if it satisfies
the equivalent conditions of Proposition [6.9.

This condition can be translated in terms of R-Hopf algebroids.

Corollary 6.11. The stack .# () associated to an R-Hopf algebroid (A,T") is dis-
crete if and only if the diagram

nr €
A4>‘77>F—>A
R

is a coequalizer diagram in R-algebras.
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6.2. An explicit descent argument

The following result can be seen directly by the construction of the 2-fibre product.
However the purpose here is to give a reduction to an argument in affine groupoid
schemes.

Proposition 6.12. The stack [Xo| associated to an affine groupoid scheme X, is
discrete if and only if there exists an affine stack U, a 1-morphism [X¢] — U and a
faithfully flat morphism U' — U of S-schemes such that [Xe¢] x U’ is discrete.

Proof. The result follows by using the criterion provided by Proposition [6.9/in con-
junction with Lemmas 6.13 and 6.14 below. O

Recall that X denotes the coequalizer of X; = X, in Aff/S.

Lemma 6.13. Let X, be an affine groupoid scheme and U an affine S-scheme.

1. There is an equivalence of discrete categories
Hom([X,],U) = Homgpq, (Xe, U) = Homags(X, U).

2. IfV — U is a morphism of affine S-schemes, the stack 2-fibre product [Xo| X vV
is equivalent to the stack associated to the affine groupoid scheme (Xo X yV).

Proof. The first statement follows from Lemma [2.28 and standard considerations.
The second statement is a special case of the result on 2-fibre products of groupoids
in Section /5l given in Corollary [5.3. (Alternatively, it can be proved directly by ele-
mentary considerations.) O

Lemma 6.14. Let X, be an affine groupoid scheme and X — U be a morphism of
affine schemes. The diagram Xo — X1 = Xg is an equalizer if and only if there exists
a fully faithful morphism U’ — U such that Xo xy U’ — X1 xy U’ = Xy x gU’ is an
equalizer.

Proof. 1t is sufficient to show that, for any morphism g: V — X; which equalizes
X1 = Xg, the common composite ¢: V' — X induces a commutative triangle

e
X() *e> X1 .
This can be checked after faithfully flat base change. O
6.3. Identifying the sheaf
Proposition 6.15. Let X, be a discrete affine groupoid scheme. The stack [Xo| is

equivalent to the stack associated to the sheaf X which is defined by the coequalizer
diagram in sheaves:

X1 *s> Xo—X.
t
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Proof. Let W be the coequalizer in presheaves of the diagram X; = X. There is
a canonical 1-morphism of prestacks [X,]" — W which is induced by the morphism
Xy — W. The hypothesis that X, is discrete implies that the morphism is a monomor-
phism.

Passage to the associated stacks yields a monomorphism of stacks [Xe] < X where
X is induced by the sheaf associated to W. The composite morphism Xy — [X¢] — X
is an epimorphism of stacks, hence [X,] — X is an epimorphism as well. Thus the
morphism [X,] — X is an equivalence, as required. O

7. Affine stacks

The concept of an affine stack is introduced and studied in this section. The main
result, Theorem [7.16), gives an explicit criterion for a stack to be affine.

7.1. The sheaf criterion
Recall that the stack associated to an affine groupoid scheme X, is discrete if and
only if the diagram

Xo N X1 = Xo (5)

is an equalizer in Aff/S. Moreover, X denotes the coequalizer in Aff/S of the diagram
X1 = Xo, so that there is a coequalizer diagram

Proposition 7.1. Let X, be an affine groupoid scheme. The stack [X,] is affine if
and only if the following two conditions hold:

1. the diagram (5) is an equalizer in Aff/S;
2. the diagram (6) defines a coequalizer in the category of FPQC sheaves on Aff/S.

Proof. The first condition is necessary and sufficient for [X,] to be discrete, by Propo-
sition [6.12. Moreover Proposition [6.15 implies that, if [X,] is discrete, it is isomorphic
to the stack induced by the sheaf coequalizer X of X; = Xy. Hence, [X,] is affine if
and only if X is representable.

The Yoneda lemma shows that, if X is representable, it is represented by X. Thus,
the discrete stack [X,] is affine if and only if X; = Xy — X is a coequalizer in
sheaves. O

7.2. Explicit descent for affine stacks
The following lemma gives an explicit descent argument for a coequalizer diagram
in affine schemes to induce a coequalizer diagram in sheaves.

Lemma 7.2. The coequalizer X1 = Xo — X in Aff/S induces a coequalizer in
sheaves if and only if there exists a morphism of affine schemes X — V and a faith-
fully flat morphism V' — V such that the diagram in Aff/S given by faithfully flat
base change

X1XVV/:§XOXVV/—>YXVV/

induces a coequalizer diagram in Shvgpqc.
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Proof. The forward implication is trivial, hence consider the reverse implication.
The diagram

X1XVV/:§XOXVV/—>YXVV/

is associated to the affine groupoid scheme X, X vV’ which is given by faithfully flat
base change. It is a coequalizer in Aff/S, since V' — V is faithfully flat.

Consider a sheaf X; we are required to prove that the diagram X(X) — X(Xo) =
X(X;) is an equalizer in sets. There is a commutative diagram

x(X) X(Xo) X(X1)

f | |

XX x yV)———X(Xo x v V') ——= X(X1 xvV’)

I I I

X(Y X VV/ X VV/)(—> %(Xo X VV/ X VV/) :;x(Xl X VV/ X VV/)

in which the lower two rows are equalizers, following from the hypothesis, and the ver-
tical diagrams are equalizers using the fact that X is a sheaf applied to the coequalizer
diagrams of the following form in Aff/S

Y xyV)xy (Y xy V)XY x V' xy V' 2Y XV =Y,

(natural in the affine S-scheme Y), for Y € {X, Xo, X1 }.

Observe that the above diagram implies that the morphism X(X) — X(Xj) is
a monomorphism. The result now follows by a diagram chase. Namely, a section
x € ¥(Xp) which maps to the same element under the morphisms X(Xy) = X(X;)
defines a section 2’ of X(X x V'), using the fact that the middle row is an equalizer.

The section 2’ is in the image of the monomorphism X(X) — X(X x V') since
the left hand column is an equalizer, using the fact that the morphism X(X x V' x
vV') = X(Xo x vV’ x V') is a monomorphism, the commutativity of the left hand
lower square (as a diagram of equalizers) and the construction of ' from z. It is
straightforward to verify that this lift maps to = in X(Xjy), as required. O

The previous lemma yields the following explicit descent criterion:

Proposition 7.3. The stack [X.] is affine if and only if there exists a 1-morphism
of stacks [Xe] — V', where V is affine, and a faithfully flat morphism V' — V such
that [Xe] X vV’ is affine.

Proof. The forward implication is clear, hence consider the reverse one. Proposi-
tion 6.12/implies that a stack is discrete if and only if it is discrete after faithfully flat
base change. Hence suppose that there exist morphisms [X,] — V, V' — V having
the stated properties.

There is a canonical morphism [X,] — X induced by the morphism of affine
groupoid schemes X, — X and the morphism [X,] — V factorizes naturally as [X]
- X -=V.
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The 2-fibre product [X,] x vV’ is the stack associated to the affine groupoid
scheme given by base change, (Xo x V', X1 x V), using the fact that all structure
morphisms of X, are defined in Aff/X.

The result follows from Lemma [7.2, by Proposition 7.1l O

7.3. A splitting criterion

A coequalizer diagram in Aff/S does not in general induce a coequalizer diagram
in Shvg,qe. The stronger criterion of having a coequalizer diagram in the category
of presheaves of sets is equivalent to the notion of having a split coequalizer, when
the diagram corresponds to an equivalence relation. This is the case in the example
of interest, where the diagram corresponds to s,t: X7 = Xy and, for example, the
transitivity of the relation is induced by the composition.

Definition 7.4. A diagram

k h
LT B
A——=B——>

is a split coequalizer if there exists morphisms h: C — B and k: B — A such that
gh=1¢, fk=1g and ek = hg: B — B.

When considering the sheaf theoretic analogue, it is necessary to take into account
the topology on Aff/S. The basic argument is the following:

Lemma 7.5. Let X, be an affine groupoid scheme and let
X1 = Xo — X

be the coequalizer diagram in the category Shvipqe. Two sections ai,as in Xo(U)
have the same image in X(U) if and only if there exists a faithfully flat morphism
p: U — U of affine schemes and a section 6 € X1(U’) such that s§ = a} and té = a},
where a},ay € Xo(U') are the images of the sections ay,as and s,t: X, (U") — Xo(U")
are the structure morphisms.

Proof. The result follows from the construction of the sheaf associated to the presheaf
coequalizer of X1 = Xj. O

Remark 7.6. The data in the lemma corresponds, by Yoneda’s lemma, to a commu-
tative diagram of the form

v —L sy

|

X1 —= X,.
t

Here, commutativity has to be interpreted in the appropriate way: namely, the dia-
gram corresponds to a pair of commutative squares. (This convention will be adopted
in the following without further comment.)

The following lemma is useful in determining whether a given diagram is a coequal-
izer.



ON AFFINE MORPHISMS OF HOPF ALGEBROIDS 85

Lemma 7.7. Let X =Y — Z be a coequalizer diagram in a category 2 and let
A=Y - 7 (7)

be a diagram in which the composites are equal.

The diagram (7) is a coequalizer if there exists a categorical surjection X - X and
a morphism X — A which makes the following diagram commute:

X

X _—
A—/=Y.

Proof. The hypothesis that X>»Xisa categorical surjection implies that, for a
morphism Y — W such that the composites A =Y — W are equal, the composites

X 3Y — W are equal. The required canonical factorization follows from the fact
that X =Y — Z is a coequalizer. O

A fundamental result in the theory of stacks is the following, which is essentially
contained within the statement of Proposition 2.35. A direct proof is given here, so
as to maintain the explicit nature of the arguments.

Lemma 7.8. Let X — Y be a morphism of affine S-schemes which induces a sur-
jection of FPQC sheaves. Then the diagram of affine S-schemes

Xxy X=X —Y (8)

induces a coequalizer diagram in Shvgqc.

Proof. The hypothesis that X — Y induces a surjection of flat sheaves is equivalent
to the existence of a morphism Y’ — X such that the composite Y/ — X — Y is
faithfully flat.

The result now follows by the faithfully flat base change argument which is used in
the proof of Proposition [7.3. Namely, it is straightforward to verify that the diagram

X' Xy X/:§X/—>Y/

is a split coequalizer in affine schemes, and hence induces a coequalizer in sheaves,
where X’ = X xy Y’ and this diagram corresponds to the base change via the faith-
fully flat morphism Y’ — Y of the diagram (R), using the isomorphism X’ xy» X' &
(X Xy X) Xy Y’. The argument used in the proof of Proposition 7.3/ now applies to
this situation. O

Remark 7.9. In the case that X — Y is a faithfully flat morphism of affine S-schemes,
this result is tautological.

Lemma 7.10. Let X, be an affine groupoid scheme and let X1 = Xo — X be the
associated coequalizer in affine S-schemes.
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There is a canonical morphism X1 — Xo X< Xo induced by the morphisms X; =
Xo such that a diagram

A—Q>X1

|l

Xo XYXO :; Xo

is commutative if and only if the triangle

A—-=X,
ﬂi /
Xo x5 Xo
18 commutative.
Proof. A direct consequence of the universal property of the fibre product. O

Definition 7.11. Let Xo be an affine groupoid scheme. The coequalizer diagram
X1 = Xg — X is FPQC split if the following conditions are satisfied.

1. There exists a faithfully flat morphism p: C' — X and a morphism h: C' — X
which makes the following diagram commute:

i
p
Xo—>X.

2. There exists a faithfully flat morphism U — Xy X+ X and a morphism U — X;
which makes the following diagram commute:

U4>>X0 XyXO

.

X —=< X,

Remark 7.12. The definition of an FPQC split coequalizer can be given an equiva-
lent formulation in terms of surjectivity of certain morphisms between representable
sheaves (cf. Lemma [7.13| below).

The previous condition has been maintained because of its relation to the notion
of a split coequalizer diagram, which corresponds to the presheaf version. Namely, to
consider presheaves, one must replace the faithfully flat morphisms by isomorphisms;
then the morphism Xy — X admits a section h and this gives rise to a morphism
A: Xo — Xo x5 Xo, induced by the identity on X, and the composite Xy — X —
Xo. The second part of the hypothesis now provides a morphism Xy X+ Xo — X;
and the composite morphism

XO é>_XP0 XYX() — X1

plays the role of k in the definition of a split coequalizer.
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Lemma 7.13. The diagram X1 = Xo — X is FPQC split if and only if the mor-
phisms _

XO — X

Xl — XO X¥ Xo
induce surjective morphisms in Shvepqc.

Proof. The result follows from the usual criterion for a morphism of affine S-schemes
to induce a surjection of FPQC sheaves. O

Proposition 7.14. Let Xo be an affine groupoid scheme. The coequalizer diagram
X1 = Xg — X induces a coequalizer in sheaves if and only if the following equivalent
conditions hold:

1. the diagram is an FPQC split coequalizer in affine S-schemes;

2. the morphisms Xo — X and X1 — Xo X+ Xo induce surjections of FPQC
sheaves.

Proof. The equivalence of the numbered conditions is proved in Lemma [7.13. Hence
it suffices to prove that the diagram induces a coequalizer diagram in sheaves if and
only if it is an FPQC split coequalizer diagram.

First, suppose that the diagram is an FPQC split coequalizer diagram. The first
hypothesis implies, by Lemma [7.13 and Lemma (7.8, that the coequalizer diagram in
affine S-schemes

Xo XyXono - X

induces a coequalizer in Shvi,qc.

This fact, together with the second hypothesis, means that Lemma [7.7 can be
applied to deduce that the diagram X; = Xy — X is a coequalizer in sheaves.

For the reverse implication, suppose that the diagram induces a coequalizer in
FPQC sheaves. Yoneda’s lemma implies that the diagram is a coequalizer in Aff/S,
by restriction to the representable sheaves. The remainder of the proof relies on the
explicit construction of the sheaf coequalizer of the diagram X; = X as the sheaf
associated to the presheaf coequalizer (cf. Lemma [7.5). Let X denote this explicit
sheaf, which is isomorphic to the sheaf represented by X, by hypothesis.

The first condition for an FPQC split coequalizer is equivalent to the fact that the
morphism Xy — X induces a surjection of sheaves, as in Lemma [7.13!

For the second condition for an FPQC split coequalizer, consider the sections
P12 € Xo(Xo x5 Xo) which are represented by the projections p1,p2: Xo X+ Xo —
Xo. It is clear that these define the same element in X(Xo X+ Xo) = X (Xo X+ Xo).
Hence, Lemma 7.5 applies to give the required diagram, since X is the sheaf coequal-
izer, by definition. O

Proposition [7.14! gives an explicit criterion for the coequalizer diagram in affine
S-schemes

X13X0—>Y

to induce a coequalizer in FPQC sheaves. The hypothesis that Xy — X is surjective
in sheaves is clearly necessary, however it is not sufficient. This problem is already
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evident in the consideration of homogeneous spaces for algebraic groups, as indicated
by the following example.

Ezample 7.15. [15, Section 16.2] Fix a field K and consider the following algebraic
groups over K: the general linear group GLs and H C G L5 the subgroup correspond-
ing to the upper triangular matrices. Thus, the group H occurs in a split extension

Gy = H = G X Gy,

where G, is the additive group and G,, the multiplicative group.

The coordinate rings are given by € (GLs) = K[x11, T22, T12, T21](det) ™ and O(H)
= K[acﬁl,xégl,xlg] respectively, where det = w11720 — x19791. There is a surjective
morphism of Hopf algebras ¢(GL2) — €(H) corresponding to the inclusion of the
subgroup, and the action of H on G corresponds to the coaction

O(GLs) — 6(GLy) ® O(H).

This leads to a split Hopf algebroid (¢0(GLs), 0(GLs) ® O(H)), corresponding to the
split affine groupoid scheme (G,G x H).

From the construction it is clear that the stack associated to (G, G x H) is discrete.
However, the equalizer of the diagram &(GLs) = 0 (GLy) ® O(H) can be seen to be
K. Hence, in the notation of Proposition [7.14, the surjection Xy — X corresponds
to the canonical morphism GLs — S = Spec(K), which has a section induced by the
identity section, hence induces a surjection of FPQC sheaves.

However, the sheaf equalizer corresponds to the sheaf represented by the projective
line P'. The difficulty in this example is clearly the restriction to the affine setting,
as explained in [15, Chapter 16].

7.4. Affine stacks
The results of Section 6/ and Section 7.3 give rise to the following criterion for a
stack to be affine. Recall that X denotes the coequalizer in Aff/S of X; = Xj.

Theorem 7.16. Let X, be an affine groupoid scheme. The associated stack [Xo] is
affine if and only if the following equivalent conditions are satisfied:

1. The canonical morphism [Xe] — X is an equivalence of stacks.
2. The following conditions are satisfied:
(a) Xo — X induces a surjection in Shvgpqc;

(b) X1 — Xo x5 Xo is an isomorphism of affine S-schemes.

Proof. The equivalence with the first condition follows from the argument used in
the proof of Proposition [7.1. The equivalence with the second condition follows by
combining Proposition 6.8 and Proposition [7.14, together with Lemma 2.5 to pass
from an isomorphism of flat sheaves to an isomorphism of affine schemes. O

The second condition can be restated to give the following:

Corollary 7.17. Let X, be an affine groupoid scheme. The stack [X,] is affine if and
only if the following conditions are satisfied:

1. the morphism Xo — X induces a surjection of flat sheaves;
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2. the morphism of affine groupoid schemes Xo — (Xo, Xo x5 Xo) is an isomor-
phism.

Remark 7.18. This result can be expressed in terms of Hopf algebroids as follows:
the stack .#( 4 ) associated to a R-Hopf algebroid (A,T) is affine if and only if the
following two conditions are satisfied:

1. there exists a faithfully flat morphism a: A” — B and a commutative diagram
in R-algebras

AT —> A

N

B

in which i: AT — A is the canonical inclusion;
2. there is an isomorphism of Hopf algebroids

(A,T) = (A, A@r A).

Remark 7.19. 1t is possible to give a more direct proof of Corollary [7.17, combining
elements of the proof together with the criterion for a morphism of affine groupoid
schemes to induce an equivalence of the associated stacks. The approach given here,
which treats separately the condition for having a discrete stack and the condition
for a coequalizer diagram of sheaves, has been preferred so as to allow the explicit
consideration of the respective descent questions.

Ezxample 7.20. Let k — K be a field extension. The previous results imply that, up
to isomorphism, the only Hopf algebroid of the form (K, T") which gives a model for
Spec(k), up to equivalence for the associated stack .#(k r), is the Hopf algebroid
(K, K @ K).

8. Affine morphisms of affine groupoid schemes

This section applies the results of Section (7 to derive a criterion for a morphism
of affine groupoid schemes to be affine. The criterion given depends upon the flat
topology. A stronger criterion, depending on the existence of a splitting in affine
schemes, is given.

8.1. Affine morphisms
Definition 8.1. A morphism X, — Y, of affine groupoid schemes is affine if the
morphism of stacks [X,] — [Ys] is affine.

Proposition 8.2. A morphism of affine groupoid schemes Xo — Y, is affine if and
only if the stack associated to Xo Xy, Yo is affine.

Proof. The forward implication is clear, so we consider the reverse implication. Any
morphism of affine groupoid schemes V' — Y, factorizes canonically as

V=Y, —Y,.

Hence, the hypothesis implies that the stack associated to Xo xy, V is affine for every
such morphism V — Y,.
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Consider a 1-morphism of stacks U — [Y4]; this is induced by a morphism of affine
groupoid schemes

U, U x yU") =Y,
for some faithfully flat morphism U’ — U, by Theorem 4.9 (and Lemma 4.1)). Tt is

necessary to show that the stack associated to Xo xvy, (U',U’ x yU’) is affine.
Consider the 2-commutative diagram of morphisms of affine groupoid schemes

X. XY, U/ U/ (9)

| |

Xe Xy, (U U x gU") —— (U, U x yU")

| |

X Y,

in which the squares are given by 2-fibre products.
Lemma 5.4/ implies that the top square is equivalent to the 2-Cartesian diagram

Xe Xy, Ul ———U’

| |

Xe XY, (U’,U’ X UU’) —U

and the hypothesis implies that the stack associated to X, xy, U’ is affine.
The explicit descent result, Proposition [7.3, therefore implies that the stack asso-
ciated to Xo xy, (U, U’ x yU’) is affine, as required. O

8.2. Explicit criteria

A morphism of affine groupoid schemes X, — Y, gives rise to a 2-fibre product
Xe Xy, Yy, which has underlying affine schemes (Y7 Xy, Xo,Y1 Xy, X1). The struc-
ture morphisms s,t: Y7 xy, X1 = Y1 Xy, Xo are induced respectively by the mor-
phism s: X; — Xy and by the composite

my X 1X0
Y1 Xy, X1 = Y1 Xy, Y1 Xy, Xo — Y1 Xy, Xo,

where the first morphism is induced by the identity on Y; and the morphism X; —
Y] xy, Xo induced by the morphism X, — Y.

Theorem [7.16! leads to the following result, in which

Y1 Xy, Xu *ti Y1 Xy, Xo —=W
denotes the coequalizer in Aff/S. The morphisms s,¢ induce a natural morphism
Yi XYO X1 — (Yi XYO X()) Xw (Yi XYO X())

Theorem 8.3. A morphism X, — Y, of affine groupoid schemes is affine if and only
if the following two conditions are satisfied:

1. The morphism Y1 Xy, Xo — W induces a surjection in Shvgpqc.
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2. The induced morphism
Y1 Xy, X1 — (Y1 Xy, Xo) Xw (Yl Xy, Xo)
s an isomorphism of affine S-schemes.

Observe that the unit morphism e: Xy — X; induces a morphism €: Y; xy, Xo —
Yi XY, Xl.

The following weaker result can be easier to apply.
Corollary 8.4. Let X4 — Y, be a morphism of affine groupoid schemes such that

1. the diagram

H s
Yi XY, XO *>Y1 XY, X1 - Z Yl XY, XO

is an equalizer in Aff/S;

2. the coequalizer diagram in Aff/S
Y1 Xy, X1 Ti Y1 xy, Xo —=W

is a split coequalizer.

Then the morphism Xo — Y, is affine.
Proof. Split coequalizers are preserved under passage to sheaves. O

Remark 8.5. The condition given in the corollary is not necessary. For this, the split
coequalizer hypothesis should be replaced by an FPQC-split coequalizer hypothesis.

Appendix A. Stacks and affine groupoid schemes

This section sketches the proof of the equivalence between the 2-category of affine
groupoid schemes and a suitable 2-category of stacks with presentation. This result
is well known to the experts, and versions of the result are given by Pribble in [12],
Naumann in [11] and in the work of Hollander [4]. However, these references restrict
to the situation corresponding to flat affine groupoid schemes.

The proof outlined does not make any usage of general abstract faithfully flat
descent arguments.

A.1. A good 2-category of stacks
The relationship between affine groupoid schemes and stacks is made explicit by
introducing a suitable category of stacks with presentation.

Definition A.1. Let Stacké’Surj denote the 2-category which has the following struc-
ture:

1. Objects are l-epimorphisms Px: X — £, where X is an affine stack and 2~
has affine diagonal.
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2. A l-morphism (fo, f): (Px: X - Z') — (Py: Y — &) is a 2-commutative dia-
gram of 1-morphisms of stacks

fo

HY

NEA

3. A 2-morphism (fo, ) — (g0, 9) is a 2-morphism

in the 2-category of stacks.

Remark A.2. The l-epimorphism Pyx: X — % can be considered as a presentation
of the stack 2 with affine diagonal. However, no flatness condition is imposed, so
this must not be confused with terminology used elsewhere in the literature.

A.2. The groupoid associated to a stack
Recall that Gpdg denotes the 2-category of affine groupoid schemes over S.
Consider Px: X — 27, an object of the 2-category Stack?’surj. The hypothesis
that 2" has affine diagonal implies that the sheaf X7 := X x o X is represented by
an affine S-scheme. Proposition 2.35 implies that (X := X, X; := X X o X) has the
structure of an affine groupoid scheme. Moreover, there is a canonical 1-morphism of
stacks

X = 2
which is an equivalence of stacks, by the hypothesis that the morphism Px is an
epimorphism.
The morphism of affine groupoid schemes Xy — X, induces a surjective 1-mor-
phism of stacks

X - [Xo| 22,

which is equivalent to the 1-morphism Px.
Proposition A.3. There is a 2-functor

Stacks™*™ — Gpdg
which is induced by (Px: X - Z') — (X, X x o X).
Proof. (The proof of this statement is contained in the paper [11], where no usage is
made of the ambient flatness hypothesis.) The functoriality of the construction of the
associated affine groupoid scheme implicit in Proposition 2.35/ shows that the above
definition is a 1-functor, hence it remains to check that the construction defines a

2-functor.
A 2-morphism «: (fo, f) — (g0, 9) induces a 2-morphism between the composites

XBy oy andx Ly o , by using the 2-morphisms which make commutative
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the squares defining the morphisms (fo, f), (g0, g). Hence, by the universal property
of the 2-fibre product, there exists a morphism

Xo=X>V1=Y xgV

which corresponds to this 2-morphism. Moreover, this morphism is canonically de-
fined.

It is straightforward to verify that the morphism Xy — Y7 is a 2-morphism between
the associated morphisms of groupoid schemes and that the construction defines a
2-functor. O

A.3. The stack associated to an affine groupoid scheme

There are a number of proofs available of the fact that the stack associated to an
affine groupoid scheme has affine diagonal. The proof presented below is chosen so as
to make the arguments completely explicit.

Proposition A.4. Let X, be an affine groupoid scheme. Then the associated stack
[Xe] has affine diagonal.

Proof. By Corollary(8.4, it is sufficient to establish the following conditions concerning
the structure of the 2-fibre product Xo x x, xx, (Xo x Xp).
1. The diagram
X0 Xxoxxo (X1 X X1) = X1 Xxoxx, (X1 X X1) = Xo Xx,xx, (X1 % X1)
is an equalizer diagram.
2. There is a split coequalizer diagram
X1 X XoxXo (Xl X X1) = XO X XoxXo (X1 X Xl) — Xl.

(To exhibit a splitting of the above diagram will establish that it is a coequal-
izer.)

Both of these conditions can be checked after passage to the category of presheaves of
sets on Aff/S. In this case the statements become elementary statements concerning
groupoids. The details are left to be supplied by the reader. O

Corollary A.5. There is a 2-functor
Gpdg — Stackg™™"™

which is induced by Xo — (X — [XL]).

Proof. A morphism of affine groupoid schemes X, — Y, induces a commutative dia-
gram of 1-morphisms of stacks

Xo—>Yp

b

[(Xo] —=[¥i]

and this construction defines a functor.



94 GEOFFREY M.L. POWELL

A 2-morphism between morphisms of groupoids X, @ Y, naturally induces
/ —_—

a 2-morphism of prestacks [X.]'_ V¥ _ [Y,], by Yoneda. The passage to the associ-

ated stack is a 2-functor, hence this shows that the functor is indeed a 2-functor, as
required. O

A.4. The equivalence
Theorem A.6. There is an equivalence of 2-categories:
Gpdg = Stackg ™™,
Proof. The equivalence is defined by the 2-functors given in Corollary A.5and Propo-
sition [A.3l The key point of the proof is the fact that a 2-commutative diagram
XO e YO
M ——= N

of 1-morphisms of stacks, where .#Z, .4 have affine diagonal gives rise to a canonical
diagram

X0*>YQ

b

[(Xo] — [Ve]

M —N
in which the upper square is strictly commutative and the lower square is commutative
up to canonical 2-isomorphism. O
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