
Homology, Homotopy and Applications, vol. 9(2), 2007, pp.1–17

HOMOTOPY SPECTRAL SEQUENCES OF POINTED
SIMPLICIAL SPACES
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(communicated by J. F. Jardine)

Abstract
Using simplicial machinery, which is analogous to that devel-

oped by Bousfield-Kan, we describe a first quadrant homotopy
spectral sequence for a termwise connected pointed simplicial
space X in terms of differential relations on the normalized
homotopy of X and establish the existence of a smash product
pairing.

1. Introduction

As stated by Bousfield-Friedlander [2, Appendix B] “many constructions in alge-
braic topology can be achieved by first forming an appropriate bisimplicial set and
then applying the diagonal functor.” For example Goerss-Jardine [8, IV.5.1] use
this technique to formulate the homology Serre spectral sequence. Following this
approach one readily deduces that the Eilenberg-Zilber chain map ∇ [13, page 234;
15, page 64] induces a pairing on the homology Serre spectral sequence; more-
over, this pairing abuts to the homology cross product pairing (see [13, Ch.9.4;
15, XIII.8]).

Let X be a pointed simplicial space. For simplicity we assume that X is termwise
connected; i.e., Xn is a connected space for each n > 0. By [2, Theorem B.5] there is
a first quadrant spectral sequence with E2

s,t(X) ∼= πs (πtX) converging strongly to
πs+t diag X. Using the basic properties of ∇ (see [9, page 133], where it is called the
Eilenberg-Mac Lane map) one readily deduces that ∇ induces a pairing E2

p,q(X)⊗
E2

s,t(Y )→ E2
p+s,q+t(X ∧ Y ). Here we also assume that Y is a termwise connected

pointed simplicial space. Our key result (Theorem 4.6), which relies heavily on the
seminal work of Bousfield-Kan [3], asserts that there is an induced spectral sequence
pairing. We deduce its existence by analyzing the homological properties of a family
of pointed simplicial spaces which serve as universal examples of relations on the
normalized homotopy of X. The idea of using these examples to demonstrate the
existence of the homotopy spectral sequence smash pairing is due to Pete Bousfield.

In Section 2 we discuss some well-known results relating bisimplicial abelian
groups and first quadrant double chain complexes, and we reformulate the spectral
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sequence of a first quadrant double chain complexes in terms of a family of differ-
ential relations. In Section 3 we construct the homotopy spectral sequence of X
and compare it to the the spectral sequence derived from the spiral exact sequence
of Dwyer-Kan-Stover [5] and to the Bousfield-Friedlander spectral sequence [2].
Finally, in Section 4, we show that ∇ induces a smash pairing of the homotopy
spectral sequence.

Throughout this note we use the term “space” to mean “simplicial set,” and we
assume that the reader is familiar with model categories as defined by Quillen [10].
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2. The homology spectral sequence of a simplicial space

2.1. Simplicial abelian groups and chain complexes
Let sAb denote the category of simplicial abelian groups, and let S (resp. S∗)

denote the category of spaces (resp. pointed spaces). For A ∈ sAb, let N∗A denote
the normalized complex with

NnA = An ∩ ker d1 ∩ · · · ∩ ker dn

and differential ∂ induced by the remaining face operator d0. The complex N∗A is
naturally isomorphic to the complex N ′

∗A defined in positive degrees by

N ′
nA = An/ im s0 + · · ·+ im sn−1

and in degree 0 by N ′
0A = A0 with differential ∂ =

∑n
i=0(−1)idi : N ′

nA→ N ′
n−1A.

Neglecting the binary operation of a simplicial abelian group induces the forgetful
functor sAb→ S∗, and, as is well known (e.g. [8, page 153]), there is a natural
isomorphism H∗(NA) ∼= π∗A. The forgetful functor has a left adjoint Z̃ which sends
a pointed space X to the simplicial abelian group generated by the simplices of X
with the base vertex of X and its degeneracies put equal to zero. For a pointed space
X, we can use Z̃ to obtain the reduced homology H̃∗(X) = H∗(N Z̃X); moreover,
the adjunction map X → Z̃X induces the Hurewicz homomorphism h : π∗(X)→
H̃∗(X) (e.g. [8, III.3]).

2.2. Bisimplicial abelian groups and double chain complexes
Let bisAb denote the category of bisimplicial abelian groups. One can think of

a bisimplicial abelian group B as a collection of abelian groups Bm,n for m,n > 0
together with horizontal and vertical simplicial operators (αh, αv)∗ : Bm,n → Bp,q

for (αh, αv) : ([p], [q])→ ([m], [n]) ∈∆×∆ such that each horizontal operator com-
mutes with each vertical operator. Here ∆ is the skeletal subcategory of finite
ordered sets and non-decreasing maps consisting of objects [n] = {0, 1, . . . , n} for
n > 0. For B ∈ bisAb, the double normalized complex N∗N∗B is supported in the
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first quadrant and is given by

NmNnB = Bm,n ∩ ker dh
1 ∩ · · · ∩ ker dh

m ∩ ker dv
1 ∩ · · · ∩ ker dv

n

with horizontal and vertical commuting differentials ∂h, ∂v induced by the remaining
face operators dh

0 , dv
0. Let tot B denote the total normalized complex with (tot B)n =⊕

i>0 NiNn−iB and differential ∂tot|NiNn−iB = ∂h + (−1)i∂v.

The complex tot B has an increasing canonically bounded [14, page 132] filtra-
tion with Fm(tot B)n =

⊕m
i>0 NiNn−iB. Thus the associated first quadrant spectral

sequence with

E1
s,t(B) = Hs+t(NsN∗B) ∼= NsHt(B)

E2
s,t(B) ∼= Hs(N∗Ht(B)) ∼= πsHt(B)

dr : Er
s,t(B)→ Er

s−r,t+r−1(B),

where NsHt(B) = Ht(Bs) ∩ ker d1 ∩ · · · ∩ ker ds, converges strongly to the homol-
ogy of tot B. By the Eilenberg-Zilber-Cartier theorem [4, 2.9] there is a natural
isomorphism H∗(tot B) ∼= H∗(N diag B), where diag B is the diagonal simplicial
abelian group given by (diag B)n = Bn,n.

2.3. Differential relations
As in [3, 3.1] we shall find it more convenient to work with an explicit formulation

of the homology spectral sequence of a bisimplicial abelian group rather than the
implicit construction obtained from the filtration (cf. [1, page 14]).

Let B be a bisimplicial abelian group. For m > r > 1, let

δr ⊆ NmHn(B)×Nm−rHn+r−1(B)

denote the relation defined by (x, y) ∈ δr if and only if there is a zig-zag of elements
connecting x and y, in the sense that there are elements xi ∈ Nm−iNn+iB for 0 6
i < r such that 0 = ∂vx0, 0 = ∂hxi + (−1)m−i−1∂vxi+1 for 0 6 i < r − 1, x = [x0]
and y = [∂hxr−1]. We view δr as the graph of a multivalued function

dr : NmHn(B) Ã Nm−rHn+r−1(B),

and write drx = y if (x, y) ∈ δr. Further details regarding relations can be found
in [15, Appendix B]. Working in this spirit we define, respectively, the domain,
image, kernel and indeterminacy of dr by

dom dr = {x ∈ NmHn(B) | drx = y for some y ∈ Nm−rHn+r−1(B)},
im dr = {y ∈ Nm−rHn+r−1(B) | drx = y for some x ∈ NmHn(B)},
ker dr = {x ∈ NmHn(B) | drx = 0},
ind dr = {y ∈ Nm−rHn+r−1(B) | dr0 = y}.

A straightforward calculation shows that these relations have the following proper-
ties:

(i) d1 corresponds to the differential of N∗Hq(B),

(ii) dr is natural in B,
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(iii) dr is additive, i.e., δr is a subgroup,
(iv) dom dr+1 = ker dr,
(v) ind dr+1 = im dr and
(vi) im dr ⊆ ker dr.
Moreover

Er
s,t(B) = (NsHtB ∩ ker dr−1) / (NsHtB ∩ im dr−1) , for r > 1,

and the relation dr induces the differential dr : Er
s,t(B)→ Er

s−r,t+r−1(B) of the
homology spectral sequence.

2.4. Convergence relations
The target of the homology spectral sequence carries an induced filtration defined

by
FnH∗(N diag B) = im[H∗(Fn totB)→ H∗(N diag B)].

Let en : NnHt(B) Ã Hn+t(N diag B) denote the relation obtained by putting
enx = y whenever there is a cycle b = (b0, . . . , bn) ∈ Fn(tot B)n+t such that x = [bn]
and y = [∇b], where ∇ : (tot B)∗ → N∗ diag B is the Eilenberg-Mac Lane shuffle
map [4, page 217; 9, pages 133–134]. These relations have the following properties:

(i) en is natural in B,
(ii) en is additive,
(iii) e0 : N0Ht(B) Ã Hn(N diag B) is the homomorphism induced by the canonical

map B0 → diag B and the natural isomorphism N0Ht(B) = Ht(B0),
(iv) im en = FnHn+t(N diag B),
(v) ind en = im en−1,
(vi) dom en contains only infinite cycles in the sense that enx = y =⇒ drx = 0

for all r,
(vii) ker en contains only infinite boundaries in the sense that enx = 0 =⇒ ∃q > 1

such that x ∈ im dr for all q 6 r 6 n.
Using these properties we deduce that each relation en induces an isomorphism

E∞
n,t(B) en−→ FnHn+t(N diag B)/Fn−1Hn+t(N diag B).

2.5. The homology spectral sequence
For a pointed simplicial space X, let Z̃X denote the bisimplicial abelian group

generated by the simplices of X with the base point and its degeneracies put equal
to zero. Let {Er(X; Z̃)} denote the first quadrant spectral sequence obtained from
Z̃X. We have

E1
s,t(X; Z̃) = Hs+t(NsN∗ Z̃X) ∼= NsH̃t(X)

E2
s,t(X; Z̃) ∼= Hs(N∗H̃t(Z̃X)) ∼= πsH̃t(X)

dr : Er
s,t(X; Z̃)→ Er

s−r,t+r−1(X; Z̃),

converges strongly to the reduced homology of diag X.
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3. The homotopy spectral sequence

For a pointed cosimplicial space, Bousfield-Kan [3] constructed a homotopy spec-
tral sequence generalizing the spectral sequence of a horizontally filtered second
quadrant double chain complex. Here we present a simplicial analog of their con-
struction. Let s S∗ denote the category of pointed simplicial spaces.

3.1. Partial matching spaces
For a space K and a pointed space Y the external half-smash product K

˜
nY is the

pointed simplicial space given by (K
˜
nY )n = ∨KnY . The functor K

˜
n− : S∗ → s S∗

has a right adjoint MK which sends X to the equalizer

MKX →
∏

[n]∈∆

hom(Kn, Xn) ⇒
∏

[m]→[n]∈∆

hom(Kn, Xm).

Simple calculations show that M∆[n]X = Xn and M∂∆[n]X = MnX is the usual
matching space defined by

MnX = {(x0, . . . , xn) | xi ∈ Xn−1 and dixj = dj−1xi for 0 6 i < j 6 n}.
Furthermore, the inclusion ∂∆[n] ↪→ ∆[n] induces the map d = (d0, . . . , dn) : Xn →
MnX.

For a model category C, Reedy [11] showed that the category sC of simplicial
objects over C carries the structure of a model category. In the Reedy model struc-
ture a map f : X → Y of pointed simplicial spaces is (i) a weak equivalence if the
map fn is a weak equivalence of spaces for each n > 0, (ii) a cofibration if it is injec-
tive and (iii) a fibration if the induced map d : Xn → Yn

∏
MnY MnX is a fibration

of spaces for each n > 0. If X is a fibrant pointed simplicial space, then Xn ∈ S∗ is
fibrant for each n > 0.

Theorem 3.1 (Reedy). The category s S∗ is a proper simplicial model category,
where the simplicial structure is defined termwise.

Although Reedy does not actually consider proper model categories, in the sense
of Bousfield-Friedlander [2, 1.2], the proof that s S∗ is proper is not difficult, cf. [2,
3.5; 8, page 219].

3.2. The Reedy model structure and the external half-smash product
For a pointed space X, the pointed simplicial space ∆[0]

˜
nX is “constant”, i.e.,

(∆[0]
˜
nX)n = X for all n > 0. The map di : ∆[0]→ ∆[1] for i = 0, 1 is a trivial

cofibration, yet the induced map

X = ∆[0]
˜
nX → ∆[1]

˜
nX ∈ s S∗

is not a trivial cofibration of pointed simplicial spaces. Thus the external half-smash
product functor −

˜
n− : S× S∗ → s S∗ does not necessarily carry trivial cofibrations

of spaces and cofibrations of pointed spaces to trivial cofibrations. The following
relates the external half-smash product functor and the model structures of S× S∗
and s S∗.
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Lemma 3.2. For a cofibration (resp. trivial cofibration) f : X → Y ∈ S∗ and a cofi-
bration i : K → L ∈ S, the induced map

(K
˜
nY ) tK

˜
nX (L

˜
nX)→ L

˜
nY

is a cofibration (resp. trivial cofibration) of pointed simplicial spaces.

Proof. For a cofibration (resp. trivial cofibration) f : X → Y ∈ S∗, the induced map
∆[0]

˜
n f : X → Y ∈ s S∗ is a cofibration (resp. trivial cofibration) of pointed simpli-

cial spaces. The proof now follows from [12, Corollary 7.4].

For a model category C and objects X, Y ∈ C, let [X,Y ] = HomHoC(X, Y ). If X
is cofibrant and Y is fibrant, then [X, Y ] = HomC(X,Y )/ ∼, where ∼ is a suitable
homotopy relation on maps.

3.3. External smash products
For pointed spaces X,Y the external smash product X ∧̃Y is the pointed sim-

plicial space given by (X ∧̃Y )n = Xn ∧ Y . Note that if K → L ∈ S is a cofibration
and X = L/K, then there is a cocartesian square

K
˜
nY //

²²

L
˜
nY

²²

∗ // X ∧̃Y

of pointed simplicial spaces in which the horizontal maps are cofibrations for each
pointed space Y . The functor X ∧̃−, like the external half-smash product functor
K

˜
n−, has a right adjoint CX which sends a pointed simplicial space Z to the end

CXZ →
∏

[n]∈∆

hom∗(Xn, Zn) ⇒
∏

[m]→[n]∈∆

hom∗(Xn, Zm),

where hom∗(−,−) : S∗ × S∗ → S∗ is the pointed mapping space functor and Xn is
the “discrete” pointed space of n-simplices of X. The functors CX and MX are
related by the cartesian square of pointed spaces

CXZ //

²²

MXZ

b∗

²²

∗ // Z0,

where b : ∆[0]→ X corresponds to the base point.
Let K → L ∈ S∗ be a cofibration. By Lemma 3.2 the induced map MLZ →

MKZ ∈ S∗ is a fibration for each fibrant pointed simplicial space Z, and as indicated
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by Goerss-Hopkins [7, 3.1.1] there is a cartesian diagram

CL/KZ //

²²

CLZ

²²

// MLZ

²²

∗ // CKZ // MKZ

of pointed space in which the vertical maps are fibrations. Moreover, K ∧̃− pre-
serves cofibrations and trivial cofibration. Thus K ∧̃− : S∗ ¿ s S∗ : CK are Quillen
adjoints, and for Y a pointed fibrant simplicial space, there is a canonical isomor-
phism

[K ∧̃X,Y ] ∼= [X, CKY ]. (1)

3.4. Universal examples for dr and en

We now define pointed simplicial spaces Dr
m,n and Sm,n which will serve as

universal examples for relations dr : NmπnX Ã Nm−rπn+r−1X and en : NnπtX Ã
πn+t diag X for a termwise connected pointed simplicial space X. For non-negative
integers m,n, let Sm,n = Sm ∧̃Sn, and let D1

0,n = S0,m. For m > 1 and n > 0, let
D1

m,n denote the cofiber of

V [m, 0]+ ∧̃Sn → ∆[m]+ ∧̃Sn.

Here V [m, 0] ⊆ ∂∆[m] is the standard 0-horn spanned by the faces d1ιm, . . . , dmιm,
and Sn = ∆[n]/∂∆[n].

Using the Quillen adjoints ∆[m]+ ∧̃− : S∗ ¿ s S∗ : −n, where −n is the evalua-
tion at [n] functor, one readily proves

Proposition 3.3. For a fibrant pointed simplicial space X and n > 1, there is a
canonical isomorphism NmπnX ∼= [D1

m,n, X]. Moreover, the morphism

[D1
m,n, X]→ [D1

m−1,n, X]

induced by d0 : ∆[m− 1]/V [m− 1, 0]→ ∆[m]/V [m, 0], for m > 0, or by d0 : S0 →
∆[1]/V [1, 0], for m = 0, corresponds to the differential

∂ : NmπnX → Nm−1πnX

of the normalized complex.

Let j : D1
m−1,n → D1

m,n denote the map induced by d0. For m > 0, d0 factors as
∆[m− 1]/V [m− 1, 0]→ Sm−1 → ∆[m]/V [m, 0], and hence the map j factors as

D1
m−1,n → Sm−1,n j′−→ D1

m,n,

with j′ a cofibration. Clearly the cofiber of j′ is Sm,n, and we may view D1
m,n as

the extension of Sm,n by Sm−1,n that determines ∂ : NmπnX → Nm−1πnX.
For m > r > 1 and n > 0, we use the familiar zig-zag of differentials of a first

quadrant homology spectral sequence and define Dr
m,n ∈ s S∗ as the analogous
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extension of Sm,n by Sm−r,n+r−1. In more precise terms Dr
m,n is the pointed sim-

plicial space with base vertex ∗ and non-degenerate simplices

{ιs,t | (s, t) = (m− i, n + i) or (m− i− 1, n + i) for 0 6 i < r},
where ιs,t ∈ (Dr

m,n)s is a t-simplex. Horizontal and vertical face maps are defined
by

dh
j ιm−i,n+i =

{
∗ if j > 0
ιm−i−1,n+i if j = 0

dvιm−i,n+i =

{
∗ if j > 0
ιm−i,n+i−1 if j = 0.

There is a cofibration

j′ : Sm−r,n+r−1 → Dr
m,n (2)

and a weak equivalence Dr
m,n/Sm−r,n+r−1 → Sm,n. Indeed, by the explicit descrip-

tion of the non-degenerate simplices of Dr
m,n, we see that (Dr

m,n)s is isomorphic
to


 ∨

σ : [s]³[m]

Sn


 ∨




∨

σ : [s]³[m−k]
16k6r−1

∆[n+k]
V [n+k,0]


 ∨


 ∨

σ : [s]³[m−r]

Sn+r−1


 , (3)

where σ : [s] ³ [n] ranges over the surjective maps for each s > n > 0.

3.5. Homotopy cofiberings of pointed simplicial spaces
We say that

A
g−→ X

h−→ Y (4)

is a homotopy cofibering in s S∗ if there is a commutative square

A
g

//

f

²²

X

h

²²

∗ // Y

in s S∗, and for some factorization A
i−→ B

p−→ ∗ of the canonical map f , with i a
cofibration and p a weak equivalence, the canonical map B tA X → Y is a weak
equivalence. Since s S∗ is a proper model category [2, Appendix A], it is not hard to

verify that if (4) is a homotopy cofibering and if A
j−→ X̌

q−→ X is a factorization of
g with j a cofibration and q a weak equivalence, then the canonical map X̌/A→ Y
is a weak equivalence.

For r > 1 the cofiber of the inclusion i : D1
m,n → Dr

m,n is Dr−1
m−1,n+1, and we have

a homotopy cofibering

D1
m,n

i−→ Dr
m,n → Dr−1

m−1,n+1. (5)

For m > r > 1, let j : D1
m−r,n+r−1 → Dr

m,n ∈ s S∗ denote the composition of the
projection D1

m−r,n+r−1 → Sm−r,n+r−1 and (2).
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Lemma 3.4. There is a commutative diagram in s S∗ in which the diagonal maps
are homotopy cofibering

D1
m−r,n+r−1

Sm−r,n+r−1 Dr+1
m,n

Sm,n

Dr
m,n

OO

²²

j′

++WWWWWWWWWWWW

i′

++WWWWWWWWWWWWWWW

33ggggggggggggggg
j

33gggggggggggg
.

Proof. For r > 1 the cofacial operator d0 : [n + r − 1]→ [n + r] induces a pointed
cofibration Sn+r−1 ↪→ ∆[n + r]/V [n + r, 0], and for m > r we obtain a push-out
square

D1
m−r,n+r−1

j
//

²²

Dr
m,n

²²
∆[m−r]

V [m−r,0] ∧̃ ∆[n+r]
V [n+r,0]

// Dr+1
m,n

in which the vertical maps are pointed cofibrations. The proof of the lemma follows
by a simple calculation and the observation that

(∆[m− r]/V [m− r, 0]) ∧̃ (∆[n + r]/V [n + r, 0])→ ∗
is a weak equivalence.

3.6. Differential relations in terms of Dl
m,n

Let γ : s S∗ → HosS∗ be a localization functor which is the identity on objects.
For a pointed termwise connected simplicial space X, we use Proposition 3.3 to
identify NmπnX and [D1

m,n, X], and we define the pointed relation

dl : NmπnX Ã Nm−lπn+l−1X, for m > l > 1,

by dlx = y if and only if there is a map f : Dl
m,n → X ∈ HosS∗ such that f ◦ γ(i) =

x and f ◦ γ(j) = y.
In general a weak equivalence Sn+t → Sn ∧ St ∈ S∗ does not exist; neverthe-

less, using the geometric realization functor | − | and its right adjoint, the sin-
gular complex functor sing [9, §14], as well as the standard homeomorphism [15,
page 107] |Sn| ∧ |St| ∼= |Sn+t|, one can construct a canonical zig-zag of weak equiv-
alences Sn+t → · · · ← Sn ∧ St ∈ S∗. Thus we may identify [Sn ∧ St, diag X] and
πn+t diag X. Since diag : s S∗ → S∗ carries cofibrations and weak equivalences to
cofibrations and weak equivalences respectively, a total left derived functor L diag
exists; moreover, we may assume that L diag X = diag X for each X ∈ s S∗.

For a termwise connected pointed simplicial space X, we define

en : NnπtX Ã πn+t diag X, for 0 6 n and 1 6 t,

by enx = y if and only if there is a map f : Sn,t → X ∈ HosS∗ such that

x = f ◦ γ(i′) ∈ [D1
n,t, X] and y = L diag(f).
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Theorem 3.5. For a termwise connected pointed simplicial space X, the relations
dl and en are the unique relations which coincide with the relations of Sections 2.3
and 2.4 whenever X is the underlying pointed simplicial space of a bisimplicial
abelian group and which have the following properties:
(i) d1 : NmπmX Ã Nm−1πnX is the differential of the normalized chain com-

plex N∗πnX and e0 : N0πtX Ã πt diag X is the homomorphism induced by
the canonical map X0 → diag X,

(ii) dl and en are natural in X,
(iii) dl and en are additive,
(iv) im en ⊆ im en+1,
(v) dom dl+1 = ker dl and ind en = im en−1,
(vi) ind dl+1 = im dl and ker en is the image of the differential relation

dt : Nn+tπ1X → NnπtX,

(vii) dom en contains only infinite cycles.

Proof. Property (ii) is obvious. For d1, property (i) follows by Proposition 3.3.
Using the natural isomorphisms S0 ∧ St = St, D1

0,t = ∆[0]
˜
nSt and [S0 ∧̃St, X] =

[Sq, X0] = N0πqX, we obtain (i) for e0. For n > 1,

D1
m,n

γ(i)−−→ Dl
m,n

γ(j)←−− D1
m−l,n+l−1 ∈ HosS∗

are maps of co-groups and L diag : [Sn,t, X]→ πn+t diag X is additive. Property (iii)
follows for dl by the general theory of simplicial groups (e.g. [9, §17]). By the work
of Dwyer-Kan-Stover [5, 5.5 and 5.8], we deduce that there is an exact sequence

[D1
n+t,1, X]

(j′)∗−−−→ [Sn+t−1,1, X]
L diag−−−−→ πn+t diag X → 0 (6)

for each n + t > 1, and (iii) readily follows for en. By the proof of [5, 6.3], we see
that that L diag : [Sn,t, X]→ πn+t diag X factors as

[Sn,t, X] k∗−→ [Sn+1,t−1, X] k∗−→ · · · k∗−→ [Sn+t−1,1, X]→ πn+t diag X,

where k : Sk,l → Sk−1,l+1 is obtained from the homotopy cofibering

Sk−1,l j′−→ D1
k,l

i′−→ Sk,l.

This proves property (iv). Using (5), Lemma 3.4, (6), as well as the homotopy
cofibration sequence

D1
n,t

γ(i′)−−−→ Sn,t → ΣD1
n−1,t ∈ HosS∗,

we deduce properties (v) and (vi). To prove property (vii) we factor the map
i′ : D1

n,t → Sn,t as

D1
n,t → D2

n,t → · · · → Dn
n,t → Sn,t.

To prove these relations coincide with those of Sections 2.3 and 2.4, we use the
fact, which follows from Reedy [11], that the category bisAb has the structure of
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a model category in which a map f : A→ B is a weak equivalence (resp. fibration)
whenever the underlying map f ∈ s S∗ is a weak equivalence (resp. fibration). In
particular the total derived functors L Z̃ : HosS∗ ¿ HobisAb : R exist and form
an adjoint pair. Here R is a total right derived functor of the forgetful functor. Since
each bisimplicial abelian group is fibrant and each simplicial space is cofibrant, there
are natural isomorphisms

[Z̃Dl
m,n, B]HobisAb

∼= [Dl
m,n, B]HosS∗

[Z̃Sn,t, B]HobisAb
∼= [Sn,t, B]HosS∗

for each B ∈ bisAb. Using the explicit description of the non-degenerate simplices
of Dl

m,n and the identity Sn,t = Sn ∧̃St, we see that respective the homotopy differ-
entials of Section 3.6 agree with those of Sections 2.3 and 2.4. By a straightforward
calculation using the pointed simplicial spaces Dl

m,n and Sn,t we deduce unique-
ness.

3.7. The homotopy spectral sequence
We define the homotopy spectral sequence of a termwise connected pointed sim-

plicial space X to be the first quadrant spectral sequence {Er(X)} with

E1
s,t(X) = NsπtX

Er
s,t(X) = NsπtX ∩ ker dr−1/NsπtX ∩ im dr−1 for r > 1.

The differential dr : Er
s,t(X)→ Er

s−r,t+r−1(X) is the homomorphism induced by the
differential of Section 3.6. For r > s we have a surjective homomorphism Er

s,t(X)→
Er+1

s,t (X). Thus the E∞-term is given by E∞
s,t(X) = colimr>s Er

s,t(X). Let

Fnπ∗ diag X = im en ∩ π∗ diag X.

By Theorem 3.5, F is an increasing filtration of πt diag X and en induces an iso-
morphism

E∞
n,t(X) ∼−→ Fnπn+t diag X/Fn−1πn+t diag X.

Thus the homotopy spectral sequence {Er(X)} converges strongly to π∗ diag X.

Corollary 3.6. For a pointed termwise connected simplicial space X, the adjunc-
tion map X → Z̃X induces a map h from the homotopy spectral sequences {Er(X)}
to the reduced homology spectral sequence {Er(X, Z̃)}. At the E1-level h : NmπnX →
NmH̃n(X) is induced by the Hurewicz homomorphism and

h : {Er(X)} → {Er(X, Z̃)}
abuts to the Hurewicz homomorphism h : πt diag X → H̃t(diag X). In particular, the
Hurewicz homomorphism is a morphism of filtered groups.

Let X be a termwise connected pointed fibrant simplicial space. Dwyer-Kan-
Stover [5, 8.2] derive a homotopy exact couple and a spectral sequence with

E1
s,t(X) = πtCSsX ∼= NsπtX

from the family of fibrations C∆[n+1]/V [n+1,0]X → CSnX, induced by the cofibra-
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tion d0 : Sn → ∆[n + 1]/V [n + 1, 0] for n > 0, and show that exact couple extends
naturally to all termwise connected pointed simplicial spaces.

Proposition 3.7. For a termwise connected pointed simplicial space X, the homo-
topy spectral sequence of Section 3.7 and the Dwyer-Kan-Stover spectral sequence
are naturally isomorphic.

Proof. For a termwise connected pointed fibrant simplicial space X, the Dwyer-
Kan-Stover spectral sequence is derived from the fibration sequence

C∆[m+1]/∂∆[m+1]X → C∆[m+1]/∂V [m+1,0]X → C∆[m]/∂∆[m]X.

Using (1) we deduce that this spectral sequence can be derived from the exact
couple

[Sm,n, X] //__________ [Sm−1,n, X]

wwppppppppppp

[D1
m,n, X].

ffMMMMMMMMMM

It follows that the associated differential relations are the same as those of Sec-
tion 3.6. Thus the two spectral sequences are naturally isomorphic.

For a termwise connected fibrant pointed simplicial space X, let (PtX)n ∈ S∗
denote the tth-Postinkov sections of Xn and let (FtX)n denote the fiber of the canon-
ical map (PtX)n → (Pt−1X)n. By [2, B4] there is a homotopy fibration diag FtX →
diag PtX → diag Pt−1X. Thus there is an exact couple

πs+t diag PtX // πs+t diag Pt−1X

vvl l l l l l l

πs+t diag FtX,

hhQQQQQQQQQQQQQ

with πs+t diag FtX ∼= πs (πtX) [2, B5]. The corresponding spectral sequence is a
special case of the Bousfield-Friedlander spectral sequence. By [5, 8.4] the Dwyer-
Kan-Stover spectral sequence is naturally isomorphic to the Bousfield-Friedlander
spectral sequence.

Corollary 3.8. For a termwise connected simplicial space, the homotopy spectral
sequence of Section 3.7 is naturally isomorphic to the Bousfield-Friedlander spectral
sequence.

4. Pairings

4.1. The shuffle map ∇
For m, p > 0 with m + p > 0 an (m, p)-shuffle is a permutation σ of

{0, . . . , m + p− 1} such that σ(i) < σ(j) for 0 6 i < j 6 m− 1 and for
m 6 i < j 6 m + p− 1. Let Σ(m, p) denote the collection of (m, p)-shuffles. The
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signature or sign of σ ∈ Σ(m, p) is the sign of the permutation σ; it is given by
sgn(σ) = (−1)

Pm−1
i=0 σ(i)−i.

For simplicial abelian groups A and B, the collection of shuffle maps induces
an injective quasi-isomorphism [4, 2.9 and 2.15; 9, page 134] ∇ : N∗A⊗N∗B →
N∗ (A⊗B) which sends a ∈ NmA, b ∈ NpB to

∑

σ∈Σ(m,p)

sgn(σ)sσ(m+p−1) · · · sσ(m)a⊗ sσ(m−1) · · · sσ(0)b.

The map ∇ is graded commutative in the sense that

τ∗∇(a⊗ b) = (−1)mp∇(b⊗ a),

where τ : A⊗B → B ⊗A the twist map and a ∈ NmA, b ∈ NpB. Moreover, for
maps of simplicial abelian groups f : A→ A′ and g : B → B′ we clearly have

(f ⊗ g) ◦ ∇(a⊗ b) = ∇(f(a)⊗ g(b)).

Thus ∇ induces a natural graded commutative pairing

Hm(A)⊗Hp(B) ∇−→ Hm+p(A⊗B).

Note that this pairing also is associative.
For bisimplicial abelian groups A and B the composition

NmHnA⊗NpHqB
∇g

−−→ Nm+pHn(A)⊗Nm+pHq(B) ∇−→ Nm+pHn+q(A⊗B), (7)

where ∇g is the graded shuffle map given by

∇g(a⊗ b) = (−1)np
∑

σ∈Σ(m,p)

sgn(σ)sσ(m+p−1) · · · sσ(m)a⊗ sσ(m−1) · · · sσ(0)b,

is an associative and graded commutative pairing.

Theorem 4.1. The pairing (7) induces a pairing of spectral sequences

Er
m,n(A)⊗ Er

p,q(B) −∧−−−−→ Er
m+p,n+q(A⊗B)

with the following properties:
(i) the pairing on E1 is the pairing (7),
(ii) the differential dr satisfies the Leibniz relation

dr(x ∧ y) = drx ∧ y + (−1)m+nx ∧ dry

for x ∈ Er
m,n(A),

(iii) the pairing on Er+1 is induced by the pairing on Er,
(iv) the pairing on E∞ is compatible with the filtration of Section 2.4,
(v) the pairing is associative and graded commutative with sign (−1)(m+n)(p+q)

for r > 1.

Proof. The proof of the theorem follows readily from the observations that the
pairing of two cycles is a cycle, the pairing of a boundary and a cycle is a boundary,
and the shuffle maps carry Fm(tot A)t ⊗ Fn(tot B)s to Fm+n(tot(A⊗B))s+t.
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4.2. The induced pairing
Using the natural isomorphism

D1
m,n ∧D1

p,q
∼=

(
∆[m]

V [m,0] ∧ ∆[p]
V [p,0]

)
∧̃ (Sn ∧ Sq) for m, n, p, q > 0

and the Hurewicz isomorphism theorem, we obtain an isomorphism

[D1
m+p,n+q, D

1
m,n ∧D1

p,q] ∼= Nm+p Z̃
(

∆[m]×∆[p]
V [m, 0]×∆[p] ∪ V [m, 0]×∆[p]

)
.

Let
D1

m+p,n+q
∇−→ D1

m,n ∧D1
p,q ∈ HosS∗ (8)

denote the element corresponding to the image of (−1)np[ιm]⊗ [ιp] under the shuffle
map

N∗ Z̃
(

∆[m]
V [m, 0]

)
⊗N∗ Z̃

(
∆[p]

V [p, 0]

)
∇−→ N∗ Z̃

(
∆[m]×∆[p]

V [m, 0]×∆[p] ∪ V [m, 0]×∆[p]

)
.

Let X and Y be fibrant pointed simplicial spaces. Using the natural isomorphism
of Proposition 3.3 and (8) we obtain a natural map

NmπnX ∧NpπqY
∇∗−−→ Nm+pπn+q(X ∧ Y ).

Proposition 4.2. For fibrant pointed simplicial spaces X, Y , ∇∗ is a bilinear asso-
ciative graded commutative pairing of complexes in the sense that

τ∗∇∗(x ∧ y) = (−1)(m+n)(p+q)∇∗(y ∧ x)

d1∇∗ (x ∧ y) = ∇∗ (d1x ∧ y) + (−1)m+n∇∗ (x ∧ d1y) ,

where τ : X ∧ Y → Y ∧X is the standard twist map and x ∈ NmπnX, y ∈ NpπqY ;
moreover, the Hurewicz map carries this pairing to the pairing of (7).

Proof. Using the familiar properties of the relative form of the (graded) Eilenberg-
Zilber-Cartier map (cf. [13, pages 232–234]) one readily deduces that ∇∗ is a bilin-
ear, associative and graded commutative pairing of complexes. To prove the last
assertion we use the fact that for each (m, p)-shuffle σ, the map

sσ(m+p−1) · · · sσ(m) : NmH̃n(X)→ Nm+pH̃n(X),

corresponds to

D1
m+p,n

sσ(m)···sσ(m+p−1) ∧̃ id−−−−−−−−−−−−−−−→ D1
m,n → Z̃X ∈ HosS∗

under the canonical isomorphism [D1
m,p, Z̃X] ∼= NmH̃q(X).

By Proposition 4.2 we obtain an induced associative and graded commutative
pairing

E2
p,q(X)⊗ E2

s,t(Y )→ E2
p+s,q+t(X ∧ Y ) (9)

which is compatible with the homology pairing of Theorem 4.1.
In order to show that there is a pairing on the homotopy spectral sequence it

suffices to analyze the homotopy spectral sequences of Dr
p,q ∧Dr

s,t in a limited region
of the first quadrant.
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Lemma 4.3. For m > 0, the pointed spaces πm(Sp,q ∧ Ss,t) and πmSp+s,q+t are
weakly equivalent.

Proof. Let Γ0 denote the skeletal subcategory of pointed sets and pointed maps
consisting of objects n+ = {0, 1, . . . , n}, for n > 0, pointed by 0. Consider the func-
tor F : Γ0 → S∗ defined by F (n+) = πm (∨n

i=1S
q+t). Here we view the pointed set

πm (∨n
i=1S

q+t) as a “constant” pointed space. The functor F prolongs to a func-
tor F : S∗ → S∗ with F (K) the pointed space whose set of n-simplices is F (K)n =
πm (Kn ∧ Sq+t) for K ∈ S∗. By [2, Proposition 4.9] each weak equivalence f : K →
L ∈ S∗ induces a weak equivalence f∗ : F (K)→ F (L). Since the pointed spaces
Sp+s and Sp ∧ Ss have the same weak homotopy type, the proof of the lemma
follows.

Consider the homotopy cofibering Sp−r,q+r−1 j′−→ Dr
p,q

i′−→ Sp,q of Lemma 3.4.

Lemma 4.4. The map (i′ ∧ i′)∗ : πn(Dr
p,q ∧Dr

s,t)→ πn(Sp,q ∧ Ss,t) is an isomor-
phism for 0 6 n 6 q + t + r − 1 and onto for n = q + t + r.

Proof. This follows from the Hilton-Milnor theorem [1, page 131] and (3).

Let Cyl(i′ ∧ i′) ∈ s S∗ denote the mapping cylinder of i′ ∧ i′ constructed in the
usual manner [15, page 23] using the termwise simplicial structure. Using (3) one
readily deduces that there is a short exact sequence

πn

(
Cyl(i′ ∧ i′), Dr

p,q ∧Dr
s,t

)
½ πn−1

(
Dr

p,q ∧Dr
s,t

)
³ πn−1

(
Sp,q ∧ Ss,t

)

of simplicial abelian groups for each n > 2.

Proposition 4.5.

E2
m,n

(
Dr

p,q ∧Dr
s,t

) ∼=





Z if m = p + s and n = q + t,

0 if

{
p + s− r < m < p + s and
q + t < n < q + t + r − 1,

Z⊕ Z if m = p + s− r and n = q + t + r − 1.

Proof. By Lemmas 4.3 and 4.4 we see that

E2
m,n(Dr

p,q ∧Dr
s,t) ∼= H̃m(Sp+s, πnSq+t) for n < q + t + r − 1.

Using the relative Hurewicz isomorphism theorem we obtain an isomorphism

πq+t+r

(
Cyl(i′ ∧ i′), Dr

p,q ∧Dr
s,t

) ∼= Hq+r+t(Cyl(i′ ∧ i′), Dr
p,q ∧Dr

s,t).

By the long exact homology sequence of (Cyl(i′ ∧ i′), Dr
p,q ∧Dr

s,t)) and the weak
equivalence Cyl(i′ ∧ i′) ' Sp,q ∧ Ss,t we get E2

p+s−r,q+t+r−1(D
r
p,q ∧Dr

s,t) ∼= Z⊕ Z.

Theorem 4.6. For termwise connected pointed simplicial spaces X and Y , there is
a natural pairing of spectral sequences

Er
p,q(X)⊗ Er

s,t(Y )→ Er(X ∧ Y ), r > 2

such that
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(i) dr(x ∧ y) = (drx ∧ y) + (−1)p+q(x ∧ dry),
(ii) the pairing on E2 is the pairing (9),
(iii) the pairing on Er induces the pairing on Er+1,
(iv) the pairing is associative and graded commutative with sign (−1)(m+n)(p+q)

for r > 1,
(v) the pairing on E∞ is compatible with the filtration of Section 3.7.

Proof. It suffices to consider the cases

X = Dr
p,q, Y = Dr

s,t, for r > 1, and X = St−m,m, Y = Ss−n,n.

By Lemma 4.5, its proof and Proposition 4.2 we have a commutative diagram

πp+sπq+t(Dr
p,q ∧Dr

s,t)
∼ //

²²

πp+sH̃s+t(Dr
p,q ∧Dr

s,t)

²²

πp+s−rπq+t+r−1(Dr
p,q ∧Dr

s,t)
∼ // πp+s−rH̃s+t+r−1(Dr

p,q ∧Dr
s,t)

in which the left vertical map is obtained from the homotopy pairing (9) and the
right vertical map is obtained from the homology pairing of Theorem 4.1. Properties
(i)–(iv) follow readily. The last property follows from Lemmas 4.3 and 4.4.
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