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ON THE HOMOTOPY TYPE AND THE FUNDAMENTAL
CROSSED COMPLEX OF THE SKELETAL FILTRATION OF A

CW-COMPLEX

JOÃO FARIA MARTINS

(communicated by Ronald Brown)

Abstract
We prove that if M is a CW-complex, then the homotopy

type of the skeletal filtration of M does not depend on the
cell decomposition of M up to wedge products with n-disks
Dn, when the latter are given their natural CW-decomposition
with unique cells of order 0, (n− 1) and n, a result resembling
J.H.C. Whitehead’s work on simple homotopy types. From the
higher homotopy van Kampen Theorem (due to R. Brown
and P.J. Higgins) follows an algebraic analogue for the fun-
damental crossed complex Π(M) of the skeletal filtration of
M , which thus depends only on the homotopy type of M (as
a space) up to free product with crossed complexes of the
type Dn .= Π(Dn), n ∈ N. This expands an old result (due to
J.H.C. Whitehead) asserting that the homotopy type of Π(M)
depends only on the homotopy type of M . We use these results
to define a homotopy invariant IA of CW-complexes for each
finite crossed complex A. We interpret it in terms of the weak
homotopy type of the function space TOP

(
(M, ∗), (|A|, ∗)),

where |A| is the classifying space of the crossed complex A.

Contents

1 Introduction 296

2 Preliminaries 298
2.1 Cofibred filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
2.2 Crossed complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

3 The homotopy type of the skeletal filtration of a CW-complex 312
3.1 Dimension two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
3.2 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Received April 7, 2006, revised January 12, 2007; published on March 6, 2007.
2000 Mathematics Subject Classification: 55P10, 55Q05, 57M27.
Key words and phrases: CW-complex, skeletal filtration, crossed complex, higher homotopy van
Kampen Theorem, invariants of homotopy types.
Copyright c© 2007, International Press. Permission to copy for private use granted.



Homology, Homotopy and Applications, vol. 9(1), 2007 296

4 On the fundamental crossed complex of a CW-complex 321
4.1 The dependence of Π(M) on the cell decomposition of M . . . . . . 321
4.2 A rational number valued homotopy invariant IA . . . . . . . . . . . 322

1. Introduction

The concept of a crossed complex, a type of group complex, was invented by
A.L. Blakers under the name of group system; see [3]. In [38, 39], J.H.C. White-
head re-introduced them, considering, however, only the important totally free case.
Crossed complexes algebraically describe, for instance, the complex of groups

· · · ∂5−→ π4(M4,M3, ∗) ∂4−→ π3(M3,M2, ∗) ∂3−→ π2(M2,M1, ∗) ∂2−→ π1(M1, ∗),
with the obvious boundary maps ∂n, n ∈ N, together with the standard action of
π1(M1, ∗) on πn(Mn,Mn−1, ∗), n > 1. Here M is a connected CW-complex and Mn

is its n-skeleton. This crossed complex, denoted by Π(M), is called the fundamental
crossed complex of M (provided with its skeletal filtration). More generally, we can
take M to be any filtered space.

What distinguishes a crossed complex from a chain complex of groups, is that a
crossed complex is also provided with an action of the first group on all the others,
satisfying some natural compatibility conditions, which are stronger than merely
requiring that the boundary maps preserve the actions.

Crossed complexes were extensively studied and used, for example, by J.H.C.
Whitehead, H.J. Baues, R. Brown and P.J. Higgins; see [38, 39, 1, 2, 5, 10, 11,
12, 13, 14]. They admit an obvious notion of homotopy, as well as classifying
spaces. Another important feature is that the category of crossed complexes is
a category with colimits. Thus, in particular, the free product of any family of
crossed complexes is well defined. In addition, there exists a general “van Kampen
type property”, stating that, under mild conditions, the crossed complex functor
from the category of filtered spaces to the category of crossed complexes preserves
colimits. This strong result is due to R. Brown and P.J. Higgins, and appeared
in [11, 12]. We will refer to it as the “Higher Homotopy van Kampen Theorem”.
Another usual designation is “Generalised van Kampen Theorem”.1 In particular,
the fundamental crossed complex functor from the category of CW-complexes to
the category of crossed complexes preserves colimits.

Let M be any space which can be given the structure of a CW-complex. The
fundamental crossed complex Π(M) of the skeletal filtration of M is strongly depen-
dent on the chosen cellular structure. However, J.H.C. Whitehead proved (see [38])
that if M is a CW-complex, then the homotopy type of the crossed complex Π(M)
depends only on the homotopy type of M as a space. In fact, the results of J.H.C.
Whitehead that appeared in [38, 39] immediately imply a stronger result: If M
and N are homotopic CW-complexes of dimension 6 n, then Π(M ′) and Π(N ′)
are simply homotopy equivalent. Here M ′ and N ′ are obtained from M and N by

1Jim Stasheff suggested recently to Ronnie Brown that the designation “Higher Homotopy van
Kampen Theorem” would be more informative than the previous “Generalised van Kampen The-
orem”.



Homology, Homotopy and Applications, vol. 9(1), 2007 297

taking wedge products with a certain number of spheres Sn. We refer to [39] for
the definition of simple homotopy equivalence of crossed complexes.

In this article we prove a theorem (see Theorem 4.1) expanding the first of the
results due to J.H.C. Whitehead which we referred to in the previous paragraph; a
result in the direction of the second of them. That is, we show that Π(M) depends
only on the homotopy type of M , as a space, up to free products with crossed com-
plexes of the type Dn .= Π(Dn), where n ∈ N. Here Dn is the n-disk with its natural
CW-decomposition with one 0-cell, one (n− 1)-cell and one n-cell. This theorem
is deduced (making use of the Higher Homotopy van Kampen Theorem) from an
analogous statement on CW-complexes (proved in this article): The homotopy type
of a CW-complex M , as a filtered space (in other words of the skeletal filtration of
M), depends only on the homotopy type of M (as a space), up to wedge products
with CW-complexes of the type Dn (where n ∈ N) provided with their natural cell
decompositions, already described. These results (probably the strongest in this
article) are contained in Theorems 3.3, 3.4 and 3.5. See also Subsection 3.3 for the
less complicated though very suggestive crossed module case. Note that Theorem 4.1
corresponds algebraically to Theorem 3.4, and this follows directly from the Higher
Homotopy van Kampen Theorem.

These types of statements have strong similarities with the following result of
J.H.C. Whitehead on simple homotopy types of CW-complexes: If M and N are
CW-complexes of dimension 6 n, and f : M → N is a (n− 1)-equivalence, then M ′

and N ′ are simply homotopy equivalent, where M ′ and N ′ are obtained from M
and N by taking wedge products with a certain number of spheres Sn. Note that
the previously stated result on the simple homotopy types of Π(M) and Π(N) can
be deduced from this statement together with the Higher Homotopy van Kampen
Theorem.

As an application, we prove that if A is a finite crossed complex, then the num-
ber of morphisms from Π(M) into A can be naturally normalised to a homotopy
invariant IA(M) of CW-complexes M , which is as easy to calculate as the cellu-
lar homology groups of M . This invariant generalises a previous construction for
crossed modules appearing in [20]. There it was proved that, if A is a crossed mod-
ule, then the value of IA on a knot complement defines a non-trivial invariant of
knotted surfaces Σ embedded in S4. Moreover, we elucidated a graphical algorithm
for its calculation from a movie presentation of Σ.

The homotopy invariant IA also upgrades previous constructions of invariants of
manifolds and knots derived from finite crossed modules; see [40, 30, 19]. Another
construction by T. Porter appearing in [31] (from which TQFTs can be defined)
considers finite n-cat groups, which are more general than finite crossed complexes.
Finally, in [25], M. Mackaay defined 4-manifold invariants, conjecturally related to
the n = 3 case of T. Porter’s construction, but considering, furthermore, an addi-
tional twisting by cohomology classes of 3-types. This twisting is similar to the one
R. Dijkgraaf and E. Witten introduced in [16], even though their 3-dimensional
oriented manifold invariant (the well known Dijkgraaf-Witten invariant) considers
only finite 1-types (in other words, finite groups).

At the end of this article, we interpret and give an alternative proof of the
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existence of the invariant IA where A is a finite crossed complex. Namely, we
prove that IA(M) is determined by the number of connected components as well
as the homotopy groups of the function space TOP

(
(M, ∗), (|A|, ∗)), where |A|

is the classifying space of A, using a multiplicative Euler characteristic-type for-
mula. This result is an application of the general theory of classifying spaces of
crossed complexes developed by R. Brown and P.J. Higgins (see [13]), and also
of the non-trivial fact that given two crossed complexes A and B we can define
a crossed complex CRS (A,B), made from all crossed complex morphisms A → B
together with their n-fold homotopies, where n ∈ N. In fact, given a CW-complex M
with a unique 0-cell, there exists a weak homotopy equivalence |CRS (Π(M),A)| →
TOP

(
(M, ∗), (|A, ∗|)); see [11, 12, 13]. Therefore, the weak homotopy type of the

function space TOP
(
(M, ∗), (|A, ∗|)) can be fully described in algebraic terms.

This description of IA enables us to incorporate n-dimensional cohomology class-
es of |A| into it, as long as we consider only n-dimensional closed oriented manifolds.
This therefore yields an extension of Dijkgraaf-Witten’s invariant to crossed com-
plexes. Its full description will appear in a future joint paper; see [21].
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2. Preliminaries

All CW-complexes considered in this article will be connected, with an extra
technical condition imposed, namely that they have a unique 0-cell, taken to be
their base point. The only exception is Subsection 2.1. We will often make the
assumption that they have only a finite number of n-cells for each n ∈ N. If M is a
CW-complex, denote the n-skeleton of M by Mn, where n ∈ N. If f : M → N is a
cellular map, where N is a CW-complex, denote fn .= f|Mn : Mn → Nn. If n is an
integer, then an n-type is a CW-complex M such that πk(M) = {0} if k > n. Set
I = [0, 1].

2.1. Cofibred filtrations
Most issues treated in this subsection are widely known. The specialist should

pass directly to Section 3, and use this subsection, as well as the next one on crossed
complexes, only as a reference.
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Definition 2.1. Let M be some (Hausdorff) space. A filtration of M is a sequence
{Mn}∞n=0 (briefly {Mn}) of subspaces of M such that Mn ⊂Mn+1, ∀n ∈ N, and
also M =

⋃
n∈NMn. A space M provided with a filtration is called a filtered space.

A filtration of M is called finite, of length L ∈ N, if Mn = M , ∀n > L. A filtration
{Mn}n∈N ofM is called cofibred if the inclusionMn →Mn+1 is a cofibration for each
n ∈ N. If M and N are filtered topological spaces, then a filtered map f : M → N is
a continuous map such that f(Mn) ⊂ Nn, ∀n ∈ N. A filtered homotopy between the
filtered maps f, g : M → N is a homotopy H : M × I → N such that H(Mn × I) ⊂
Nn for each n ∈ N. Filtered homotopy is an equivalence relation.

Obviously filtered topological spaces and filtered maps form a category. If f :
M → N is a filtered map, we set fn

.= f|Mn
: Mn → Nn, where n ∈ N. There exists

a category whose objects are filtered topological spaces, with morphisms being the
filtered homotopy classes of filtered maps.

Example 2.2. Let M be a CW-complex. Then M has a natural cofibred filtration
{Mn}n∈N, where Mn is the n-skeleton of M , the skeletal filtration of M . More
generally, if {Mn}n∈N is a filtration of M , such that each Mn is a CW-complex
included in Mn+1, cellularly, for any n ∈ N, then {Mn}n∈N is a cofibred filtration.
In fact, all the filtrations that we consider in this article will be of this particular
type, called filtrations by subcomplexes.

2.1.1. Some results on cofibre homotopy equivalence
The following result is well known:

Theorem 2.3. Let M and N be spaces provided with some cofibred filtrations, say
{Mn}n∈N and {Nn}n∈N, which we suppose to be finite (we will eliminate this con-
dition later, in the cellular case). Let F : M → N be a filtered map. Suppose that
each map Fn : Mn → Nn, n ∈ N is a homotopy equivalence. Then it follows that F
is a filtered homotopy equivalence.

This is shown in [26, end of chapter 6], and in [6, 7.4] for the case in which
both filtrations of M and N have length L = 1. The proof given in [6] extends
immediately to the general case, inductively, as we will indicate below. Later we
will give an alternative proof of Theorem 2.3 for the particular case of filtrations
by subcomplexes, which adapts to infinite filtrations, a generality we will need in
order to be able to work with infinite dimensional CW-complexes.

It is convenient to recall the following result appearing in [6, 7.4], which leads
immediately to a proof of Theorem 2.3.

Lemma 2.4 (R. Brown). Let F : (M1,M0) → (N1, N0) be a map between cofi-
bred pairs. Suppose that F = F1 : M1 → N1 and F0 : M0 → N0 are homotopy equiv-
alences. Let G0 : N0 →M0 be a homotopy inverse of F0, and consider homotopies
(in M0 and N0);

K : G0F0 → idM0 and H : F0G0 → idN0 .

Then G0 extends to a homotopy inverse G of F such that there exists not only a
homotopy FG→ idN1 which extends H, but also a homotopy GF → idM1 extending
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the concatenation J of the following homotopies:

G0F0
G0F0K

−1

−−−−−−→ G0F0G0F0
G0HF0−−−−−→ G0F0

K−→ idM0 .

Note that if G0, F0,H,K are filtered, for some filtrations of M0 and N0, then so is
the homotopy J : G0F0 → idM0 .

Theorem 2.3 can therefore be strengthened in the following way.

Corollary 2.5. Under the conditions of Theorem 2.3, if

GL : (NL, NL−1, . . . , N0) → (ML,ML−1, . . . ,M0)

is a filtered homotopy inverse of the filtered map

FL = F|ML
: (ML,ML−1, . . . ,M0) → (NL, NL−1, . . . , N0),

then there exists a filtered homotopy inverse G of F extending GL.

The following is the main lemma of this subsection, crucial for the proof of the
main theorem of this article, Theorem 3.3:

Lemma 2.6. Let {Mn}n∈N and {Nn}n∈N be filtrations of the CW-complexes M
and N , so that each Mn (respectively Nn) is also a CW-complex, included in M
(respectively N), cellularly, for each n ∈ N. Suppose that M is embedded in N ,
cellularly, and that2 Mn = M ∩Nn, ∀n ∈ N. If, for each n ∈ N, the inclusion of
Mn in Nn is a homotopy equivalence, then there exists a deformation retraction
from N onto M , say ρ : N × I → N , such that the restriction of ρ to Nn × I is a
deformation retraction of Nn in Mn, for each n ∈ N. In fact ρ can be chosen to be
cellular, in the sense that the map ρ : N × I → N is cellular.

Definition 2.7. Deformation retractions with this property will be called filtered.

Proof of Lemma 2.6. Suppose first that the filtrations of M and N have length
L = 1. There exists a deformation retraction ρ0 : N0 × I → N0, of N0 in M0, which
we can suppose to be cellular. Let r : N1 × I → N1 be a deformation retraction ofN1

in M1, also chosen to be cellular. Consider the CW-complex N1 × I. Let us define a
function ρ1 : N1 × I → N1, in such a way that ρ1 is a cellular deformation retraction
from N1 onto M1, extending ρ0 (thus permitting the argument to be extended to
the general case by induction). We define ρ1(m1, t) = m1, ∀m1 ∈M1, ∀t ∈ I. Define
also ρ1(n0, t) = ρ0(n0, t), ∀n0 ∈ N0, ∀t ∈ I, and ρ1(n1, 0) = n1, ∀n1 ∈ N1. There is
no contradiction since M1 ∩N0 = M0, and ρ0 is a deformation retraction of N0 in
M0.

Let us now extend ρ1 to all of N1 × I. Let k ∈ N. Suppose we have already
extended the function ρ1 to (Nk−1

1 × I) ∪ (N0 × I) ∪ (M1 × I)∪(N1 × {0}), yielding
a cellular map, with ρ1(Nk−1

1 × {1} ∪N0 × {1} ∪M1 × {1}) ⊂M1. Let ek be a k-
cell of N1 not belonging to M1 ∪N0. The function ρ1 is already defined in ∂ek × I
and ek × {0}. Moreover ρ1(∂ek × {1}) ⊂M1. We can extend ρ1 to all ek × I by

2Recall that if A and B are subcomplexes of a CW-complex C, then A ∩B is a subcomplex of
C with a cell decomposition consisting of the cells of C occurring in both A and B.
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using the cellular deformation retraction r : N1 × I → N1 (from N1 to M1). Let us
be explicit. Choose a homeomorphism

f : ek × I → (∂ek × I ∪ ek × {0})× I

such that f(ek × {1}) ⊂ (∂ek × I ∪ ek × {0})× {1} ∪ (∂ek × {1})× I, and f sends
(∂ek × I ∪ ek × {0}) ⊂ ek × I identically to its copy (∂ek × I ∪ ek × {0})× {0} ⊂
(∂ek × I ∪ ek × {0})× I. In particular, f is cellular. Then we extend ρ1 to ek × I
in the following way:

ρ1(x, s) = r((ρ1 × id) ◦ f(x, s)), x ∈ ek, s ∈ I.
Therefore ρ1(ek × {1}) ⊂M1, and the function obtained is still cellular. The result
for L = 2 follows from induction in k. As we have seen, the general case follows from
the proof of the case L = 1 by an inductive argument.

Let M and N be CW-complexes. Suppose that they have unique 0-cells, which
we take to be their base points ∗. Give both M and N filtrations {Mn} and {Nn}
by subcomplexes. Let f : (M, ∗) → (N, ∗) be a filtered map, which we suppose, fur-
thermore, to be cellular. Consider the mapping cylinder

Mf = M × I
⋃

(x,1)7→f(x)

N

of f . Recall that Mf has a natural deformation retraction onto N , say ρ : Mf × I →
Mf , obtained by sliding the segment {x} × I (where x ∈M) along itself, towards the
endpoint f(x) ∈ N . Therefore there exists a natural retraction r : Mf → N , where
r(x) = ρ(x, 1), ∀x ∈ Mf ; in other words r(a, t) = f(a) ∀a ∈M , ∀t ∈ I and r(b) = b,
∀b ∈ N . Note that f : M → N is r composed with the inclusion map i : M → Mf .

The mapping cylinder Mf of f : M → N has a natural cell decomposition, with
M and N contained in Mf , cellularly. Additionally, we have an (n+ 1)-cell of Mf ,
for each n-cell en of M , connecting en with f(en). This makes sense since f is
cellular.

The reduced mapping cylinder M′
f of f is obtained from the CW-complex Mf by

collapsing the 1-cell of Mf connecting ∗ ∈M with ∗ ∈ N to a point. Therefore M′
f

has a unique 0-cell (which we also call ∗), and both M and N are included in M′
f ,

cellularly, although intersecting in ∗ ∈ M′
f . If f is a homotopy equivalence, then M

is a deformation retract of M′
f .

The CW-complex M′
f is filtered, in a natural way, by the reduced mapping cylin-

ders M′
fn

of the restrictions fn : Mn → Nn of f to Mn, where n ∈ N. Note that
M′
fn

is included in M′
f , cellularly, for any n ∈ N. In addition, both Mn and Nn are

embedded in M′
fn

, cellularly, and, moreover, Mn = M′
fn
∩M and Nn = M′

fn
∩N ,

for any n ∈ N. From Lemma 2.6 it follows that:

Corollary 2.8. Let M and N be CW-complexes with a unique 0-cell, provided with
filtrations {Mn} and {Nn} by subcomplexes. Let f : M → N be a filtered map, which
we assume to be cellular, such that the restriction fn of f to Mn is a homotopy equiv-
alence fn : Mn → Nn, for each n ∈ N. There exist filtered deformation retractions
of M′

f onto M (respectively of M′
f onto N), say ρ, ρ′ : M′

f × I → M′
f (respectively).
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In other words, the restrictions of ρ and ρ′ to M′
fn
× I are deformation retractions

from M′
fn

to Mn (respectively from M′
fn

to Nn), for any n ∈ N.

Irrespectively of f : M → N being a homotopy equivalence or not, the reduced
mapping cylinder M′

f of f always deformation retracts onto N , in the same way that
the mapping cylinder Mf of f does. This deformation retraction ρ : M′

f × I → M′
f ,

induced by the natural deformation retraction of Mf onto N , is filtered. There-
fore the obvious retraction R : M′

f → N , such that R(x) = ρ(x, 1), ∀x ∈ M′
f (thus

R(a, t) = f(a), ∀a ∈M , ∀t ∈ I and R(b) = b, ∀b ∈ N), is a filtered homotopy inverse
of the inclusion map j : N → M′

f . As before, we have f = R ◦ i, where i : M → Mf

is the inclusion map. These very simple facts will be essential later.
Note that Corollary 2.8 is valid without the assumption that the CW-complexes

M and N have unique 0-cells, considering mapping cylinders instead of reduced
mapping cylinders. As a consequence, we obtain an extension of Theorem 2.3 for
infinite filtrations, as long as they are filtrations by subcomplexes of CW-complexes
and all maps considered are cellular.

Corollary 2.9. Let M and N be CW-complexes equipped with filtrations {Mn}
and {Nn} by subcomplexes of M and N respectively. Let f : M → N be a filtered
map, which we suppose, furthermore, to be cellular. Suppose that fn : Mn → Nn is
a homotopy equivalence for each n ∈ N. Then f is a filtered homotopy equivalence.

Proof. Consider the filtration of the mapping cylinder Mf of f by the mapping
cylinders Mfn of the restrictions fn : Mn → Nn of f to Mn, where n ∈ N. Then,
by the previous corollary, there exist filtered homotopy equivalences M ∼= Mf

∼=
N . Specifically, the inclusions i : M → Mf and j : N → Mf are filtered homotopy
equivalences. The obvious retraction r : Mf → N is a filtered homotopy inverse of
j : N → Mf . The result follows from the fact that r ◦ i = f .

2.2. Crossed complexes
This subsection will only be needed in Section 3. We gather some results on

crossed complexes which we will use. Nothing here is new, and most is due to
R. Brown and P.J. Higgins. The exceptions are Subsections 2.2.1 and 2.2.4, whose
results are mainly due to J.H.C. Whitehead.

Let G and E be groups. Recall that a crossed module with base G and fibre E,
say G = (G,E, ∂, .), is given by a group morphism ∂ : E → G and an action . of G
on E on the left by automorphisms. The conditions on . and ∂ are

1. ∂(X . e) = X∂(e)X−1, ∀X ∈ G, ∀e ∈ E,

2. ∂(e) . f = efe−1, ∀e, f ∈ E.

Notice that the second condition implies that ker ∂ commutes with all of E. We call
G the base group and E the principal group. A morphism F = (φ, ψ) between the
crossed modules G and G′ = (G′, E′, ∂′, .′) is given by a pair of group morphisms
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φ : G→ G′ and ψ : E → E′, making the diagram

E
ψ−−−−→ E′

∂

y
y∂′

G −−−−→
φ

G′

commutative. In addition we must have:

φ(X) .′ ψ(e) = ψ(X . e), ∀X ∈ G, ∀e ∈ E.
There exists an extensive literature on crossed modules. We refer, for example

to [1, 2, 5, 8, 9, 15, 14, 20]. A natural generalisation of the concept of a crossed
module is a crossed complex:

Definition 2.10. A (reduced) crossed complex A is given by a complex of groups

· · · → An
∂n=∂−−−→ An−1

∂n−1=∂−−−−−→ An−2 → · · · → A2
∂2=∂−−−→ A1

(
p−→ A→ {1}

)

such that:

1. There exists a left action . = .n of the group A1 on An, by automorphisms,
for any n ∈ N, and all the boundary maps ∂ are A1-module morphisms. In
addition, we suppose that A1 acts on itself by conjugation.

2. The map A2
∂2−→ A1 together with the action . of A1 in A2 defines a crossed

module. In other words, to (1) we add the condition ∂(e) . f = efe−1, ∀e, f ∈
A2.

3. The group An is abelian if n > 2.
4. The action of A1 on An factors through the projection p : A1 → A = coker(∂2),

for n > 2, and, in particular, A acts on An, n > 2, on the left, by automor-
phisms.

If L > 1 is integer, an L-truncated crossed complex is a crossed complex such that
An = {0} if n > L.

A natural example of a crossed complex is the following one, introduced by A.L.
Blakers in [3]:

Example 2.11. LetM be a path-connected space, and let {Mn}, n ∈ N be a filtration
of it, where all spaces Mn, n ∈ N are path-connected and M0 is a singleton, which
we take to be the base point ∗. Then the sequence of groups πn(Mn,Mn−1, ∗),
where n = 2, 3, . . ., together with π1(M1, ∗), with the obvious boundary maps and
left actions of π1(M1, ∗) on them is a crossed complex, which we denote by Π(M)
and call the fundamental crossed complex of the filtered space M . If the filtration of
M is finite, of length L ∈ N, then Π(M) is an L-truncated crossed complex, which
we denote by ΠL(M,ML−1, . . . ,M2,M1, ∗).

If M and N are filtered spaces and f : M → N is a filtered map, we denote
the induced map on crossed complexes by f∗ : Π(M) → Π(N). Note that if f and
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g are filtered homotopic, then the induced maps on crossed complexes coincide.
However this is not the case when f and g are merely homotopic as maps (but see
Theorem 2.26).

Remark 2.12. Let M be a CW-complex with a unique 0-cell, which we take to
be its base point. The notation Π(M) will always mean the fundamental crossed
complex of the skeletal filtration of M . If L ∈ N, we will also denote ΠL(M) .=
ΠL(M,ML−1, . . . ,M1,M0 = ∗). This type of crossed complex was considered by
J.H.C. Whitehead in [38, 39].

It is easy to show that crossed complexes and their morphisms, defined in the
obvious way, form a category. Crossed complexes are studied or used extensively
in [1, 2, 5, 8, 10, 11, 12, 13, 14, 38, 39], for example. Notice that H.J. Baues
calls them “crossed chain complexes”. J.H.C. Whitehead considered only totally free
crossed complexes, to be defined below, referring to them as “homotopy systems”.

We will usually denote a crossed complex A by A = (An, ∂n, .n), or more simply
by (An, ∂n), or even (An). A morphism f : A → B of crossed complexes will normally
be denoted by f = (fn).

The category of crossed complexes is a category with colimits. See [10, 11, 12].
In particular, we can consider the free product A ∨ B of two crossed complexes,
defined as the pushout of the diagram

{1} −−−−→ A
y
B

and analogously for free products of infinite families of crossed complexes. Here
{1} is the trivial crossed complex, so that {1}n = {1}, ∀n ∈ N. Therefore, if C is a
crossed complex, there exists a one-to-one correspondence between Hom(A ∨ B, C)
and Hom(A, C)×Hom(B, C).

We will not need the explicit construction of A ∨ B, although we will use the
concept of free product extensively.

Remark 2.13. The definition of crossed complexes we gave is a particular case of a
more general definition. Indeed, we can consider that A1 is a groupoid with set of
objects C, and that each An is a totally disconnected groupoid over the same set
C. In addition, all group actions must be substituted by groupoid actions, in the
obvious way. See [5, 7, 10, 11], for example, for a discussion of crossed complexes
in the groupoid context. This full generality will be needed later for the definition of
CRS (A,B) in 2.2.5. We will use the designations “reduced” and “non-reduced”, to
distinguish between the group and groupoid-based definitions of crossed complexes,
respectively, whenever ambiguity may arise.

It is important to note that the inclusion of the category of reduced crossed
complexes into the category of (non-reduced) crossed complexes preserves colimits
of connected diagrams, thus, in particular, pushouts.
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2.2.1. Totally free crossed complexes
Definition 2.14. Consider a group G. Let K be a set and ∂0 : K → G be a map.
A crossed module G = (G,E, ∂, .) is said to be the free crossed module on K and
∂0 : K → G if there exists an injective map i : K → E such that ∂ ◦ i = ∂0, and the
following universal property is satisfied:

For any crossed module G′ = (G′, E′, ∂′, .′), any group morphism φ : G→ G′,
and any map ψ0 : K → E′ for which ∂′ ◦ ψ0 = φ ◦ ∂0, there exists a unique crossed
module map (φ, ψ) : G → G′ such that ψ ◦ i = ψ0.

For more details on the construction of these free crossed modules (defined up
to isomorphism), we refer the reader, for example, to [14, 8, 15, 20].

Recall the following theorem, due to J.H.C. Whitehead. For the original proof,
see [35, 36, 38]. See also [14, 5.4] and [7, 10, 22].

Theorem 2.15 (Whitehead’s Theorem). Let M be a path-connected space with
a base point ∗. Let N be a space obtained from M by attaching some 2-cells s1, . . . ,
sn. Each 2-cell si therefore induces an element φ(si) of π1(M, ∗) (defined up to
conjugation by an element of π1(M, ∗)) through its attaching map. Then the crossed
module Π2(N,M, ∗) is the free crossed module over the map φ : {s1, . . . , sn} →
π1(M, ∗).
Definition 2.16. A (reduced) crossed complex A of the form

· · · → An
∂n=∂−−−→ An−1

∂n−1=∂−−−−−→ An−2 → · · · → A2
∂2=∂−−−→ A1

p−→ A→ {1}
is said to be totally free if:

1. A1 is the free group on a set C1.

2. The map A2
∂2−→ A1, together with the action of A1 on A2, is the free crossed

module on a map ∂0
2 : C2 → A1, where C2 is some set.

3. If n > 3 then An is the free Z(A)-module on a set Cn. In particular, ∂n is
determined in the obvious way from a certain map ∂0

n : Cn → An−1.

Notice that the action of an a ∈ A1 on ker(∂2) ⊂ A2 depends only on the projection
p(a) of a in coker(∂2) = A by the second condition of the definition of crossed
complexes.

The sets Cn, n ∈ N will collectively be called a basis of A.

Let M be a CW-complex with a unique 0-cell, which we take to be its base point.
Then Π(M) is a totally free crossed complex. This is proved, for example, in [37, 38,
5], and is a consequence of the relative Hurewicz Theorem, as well as Whitehead’s
Theorem 2.15. Let us be more explicit. For a more careful treatment of these issues
we refer the reader to [4]. If n ∈ N, we can take each Cn to be the set {en1 , . . . , enlMn }
of n-cells of M . Each of these n-cells attaches to Mn−1 along an element ∂(enin) ∈
πn−1(Mn−1, ∗), in = 1, . . . , lMn , defined up to acting by an element of π1(M1, ∗).
Therefore, if n > 2, then ∂0

n is the image of this element on πn−1(Mn−1,Mn−2, ∗).
It is well known that πn(Mn,Mn−1, ∗) is the free Z(π1(M2, ∗))-module on the set
of n-cells of M , by the relative Hurewicz Theorem. See [34, Chapter V] or [5], for
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example. We can see that for dimensions higher than 3, a lot of information about
the CW-complex M is lost through passing to the fundamental crossed complex of
its skeletal filtration.

If n = 2, then C2 is the set of 2-cells of M , and by Whitehead’s Theorem, the
crossed module Π2(M2,M1, ∗) is the free crossed module on the attaching maps
∂0
2 : C2 → π1(M1, ∗), defined up to conjugation by an element of π1(M1, ∗).

We have:

Lemma 2.17. Let M be a CW-complex with a unique 0-cell which we take to be its
base point ∗. Let Cn be the set of cells of M of dimension n, where n ∈ N. For each
en ∈ Cn, choose an element of πn−1(Mn−1, ∗) (defined up to acting by an element
of π1(M1)) along which en attaches to Mn−1, therefore defining maps ∂0

n : Cn →
πn−1(Mn−1,Mn−2, ∗), n > 3 and ∂0

2 : C2 → π1(M1, ∗). These choices also define
identifications F (Cn) → πn(Mn,Mn−1, ∗) and F (C1) → π1(M1, ∗). Here F (Cn) is
the free Z(π1(M))-module on Cn, if n > 3, F (C2) is the principal group of the free
crossed module on ∂0

2 : C2 → π1(M1, ∗), and F (C1) is the free group on C1.
Let A = (An, ∂n) be a (reduced) crossed complex. There exists a one-to-one cor-

respondence between crossed complex morphisms Π(M) → A and sequences of maps
fn : Cn → An such that fn−1 ◦ ∂n0 = ∂n ◦ fn for any n ∈ N.

2.2.2. The cotruncation functor
Let M be a CW-complex. As usual, for any k ∈ N, let Mk denote the k-skeleton of
M . Suppose that M has a unique 0-cell, which we take to be its base point ∗. Let
L > 1. Note that from the Cellular Approximation Theorem we have

ΠL(M,ML−1,ML−2, . . . , ∗) ∼= ΠL(ML+1,ML−1,ML−2, . . . , ∗).
Consider the fundamental crossed complex

· · · ∂4−→ π3(M3,M2, ∗) ∂3−→ π2(M2,M1, ∗) ∂2−→ π1(M1, ∗) p−→ π1(M, ∗) → {1}
of the skeletal filtration of M . The following is well known:

Lemma 2.18. Let L > 1. We have:

πL(M,ML−1, ∗) = πL(ML,ML−1, ∗)/im(∂L+1).

This lemma can also be shown using the Higher Homotopy van Kampen Theorem
(see Theorem 2.21).

Proof. This follows from the homotopy sequence of (ML+1,ML,ML−1). Indeed,
the following sequence is exact:

· · · → πL+1(ML+1,ML, ∗) ∂L+1−−−→ πL(ML,ML−1, ∗) →
→ πL(ML+1,ML−1, ∗) → πL(ML+1,ML, ∗) → · · · ,

and, moreover, πL(ML+1,ML, ∗) ∼= {0}. Recall that we have πL(M,ML−1, ∗) =
πL(ML+1,ML−1, ∗).
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For any L ∈ N, there exists a cotruncation functor cotruncL from the category
of crossed complexes to the category of L-truncated crossed complexes. If A =
(An, ∂n, .n) is a crossed complex, then cotruncL(A) is equal to A up to dimension
L− 1, whereas AL is substituted by AL/im(∂L+1). Therefore, we can rephrase our
previous lemma as:

Proposition 2.19. Let M be a CW-complex with a unique 0-cell, which we take to
be its base point. Let L ∈ N. We have:

ΠL(M,ML−1,ML−2, . . . , ∗) = cotruncL(Π(M)).

2.2.3. Colimit theorems: the Higher Homotopy van Kampen Theorem
Let M be a connected space equipped with a filtration {Mn}n∈N.

Definition 2.20. We say that {Mn}n∈N is connected if all the spaces Mn, n ∈ N
are connected, and, moreover, πn(Mk,Mn, ∗) = 0 if k > n, for any n ∈ N.

Therefore, if M is a connected CW-complex with a unique 0-cell, then its skeletal
filtration is connected. Similarly, if L > 1 is an integer, then any filtration of the
type (M,ML,ML−1, . . . ,M0) is connected as well. The following beautiful theorem
is due to R. Brown and P.J. Higgins. See [10, 11, 14, 5, 8]. We will refer to it as
the “Higher Homotopy van Kampen Theorem”.

Theorem 2.21 (R. Brown and P.J. Higgins). Let M = {Mn} and N = {Nn}
be filtered spaces such that M0 and N0 are singletons, taken to be the base points of
M and N . Let U ⊂M , and let i : U →M be the inclusion map. Let U inherit the
filtration {Un} induced by the filtration of M . Suppose that the filtrations of M,N
and U are connected. In addition, we suppose that the inclusions in

.= i|Un
: Un →

Mn are closed cofibrations, for any n ∈ N. Let f : U ⊂M → N be a filtered map.
Therefore the adjunction space

V
.= M

⋃

u∈U 7→f(u)

N

is naturally filtered by the set

Vn
.= Mn

⋃

u∈Un 7→f(u)

Nn, n ∈ N,

and V0 has a unique element. We thus have a commutative diagram of filtered spaces:

U
f−−−−→ N

i

y
yi′.

M
f ′−−−−→ V.

The following hold:

1. The filtered space V is connected.
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2. The diagram

Π(U)
f∗−−−−→ Π(N)

i∗

y
yi′∗

Π(M) −−−−→
f ′∗

Π(V )

is a pushout of crossed complexes.

This theorem also holds for infinite adjunction spaces. In particular, it follows:

Corollary 2.22. Let {Mλ, λ ∈ Λ} be a family of CW-complexes. Suppose that they
all have unique 0-cells, which we take to be their base points ∗. Form the wedge
product ∨

λ∈Λ

(Mλ, ∗)

along ∗, which is also a CW-complex
∨
λ∈ΛMλ, having a unique 0-cell. The obvious

map
∨

λ∈Λ

Π(Mλ) → Π

( ∨

λ∈Λ

Mλ

)
,

induced by the inclusions, is an isomorphism of crossed complexes. In addition, if
L ∈ N, the natural map

∨

λ∈Λ

ΠL(Mλ) → ΠL

( ∨

λ∈Λ

Mλ

)

is also an isomorphism.

This is Theorem 7.1 of [10].

Remark 2.23. The fact that the fundamental crossed complex of a CW-complex is
totally free (referred to in 2.2.1) is also a corollary of the Higher Homotopy van
Kampen Theorem.

2.2.4. Homotopy of crossed complexes
The main references here are [5, 11, 12, 13, 38, 39]. Let G and G′ be groups.
Suppose that G′ has a left action .′ on the group E′ by automorphisms. Let φ : G→
G′ be a group morphism. A map s : G→ E′ is said to be a φ-derivation if

s(XY ) =
(
φ(Y )−1 .′ s(X)

)
s(Y ), ∀X,Y ∈ G.

Notice that if G is a free group, then a φ-derivation can be uniquely specified by its
value on the set of free generators of G. More precisely, any map from the set of free
generators of G into E′ extends uniquely to a φ-derivation, and any φ-derivation
arises in this way. This is easy to show, but see [38, Lemma 3], for example.

Definition 2.24. Let A = (An, ∂n, .n) and B = (Bn, ∂′n, .
′
n) be crossed complexes,

and let f = (fn) : A → B be a morphism. If L > 1 is a positive integer, an L-fold
f -homotopy is a sequence H = (Hn) of maps Hn : An → Bn+L such that:



Homology, Homotopy and Applications, vol. 9(1), 2007 309

1. If n > 1 then Hn is a group morphism and moreover

Hn(a1 . an) = f1(a1) .′ Hn(an), ∀a1 ∈ A1, ∀an ∈ An.
2. H1 is an f1-derivation.

A 1-fold f -homotopy will be simply called an f -homotopy. Note that there are
no compatibility relations between the boundary maps of A and B and the maps
Hn, where n ∈ N, whenever H = (Hn) is an L-fold f -homotopy. Note also that the
notion of an L-fold f -homotopy depends only on f1 : A1 → B1 and the actions of
A1 in An and B1 on Bn, where n ∈ 2, 3, . . ..

We have (see [38, 5, 12]):

Lemma 2.25. Under the conditions of the previous definition, if H is an f -homo-
topy, where f : A → B, then the sequence of maps g = (gn) such that

gn(an) = fn(an)(Hn−1 ◦ ∂)(an)(∂′ ◦Hn)(an), an ∈ An, n > 2

and

g1(a1) = f1(a1)(∂′ ◦H1)(a1), a1 ∈ A1

is a morphism of crossed complexes, in which case we say that H realises a homotopy
f

H−→ g.

We can consider the category of crossed complexes with homotopy classes of
morphisms of crossed complexes as morphisms. The following result is due to J.H.C.
Whitehead, see [38, Theorem 5], and gives us one answer as to how Π(M) depends
on the CW-decomposition of M , if M is a CW-complex.

Theorem 2.26 (J.H.C. Whitehead). Let M and N be CW-complexes with a
unique 0-cell. Let F,G : M → N be homotopic cellular maps. Then the induced maps
F∗, G∗ : Π(M) → Π(N) are homotopic. In particular, if M and N are homotopic (as
spaces) then it follows that Π(M) and Π(N) have the same homotopy type.

This result can be proved using R. Brown and P.J. Higgins’s framework on ω-
groupoids and the tensor product of crossed complexes, and is, ultimately, a con-
sequence of the Cellular Approximation Theorem. See [12, 13]. It is not difficult
to show directly that a homotopy H : F → G, chosen to be cellular, will induce a
crossed complex homotopy F∗ → G∗.

Remark 2.27. In fact, Whitehead’s results imply a stronger statement: Suppose that
M and N are finite of dimension 6 L. Then Π(M ′) and Π(N ′) are simply homotopy
equivalent. HereM ′ and N ′ are obtained fromM and N by making a wedge product
with a certain finite number of spheres SL. This is a consequence of Theorem 16
of [39]. For the definition of simple homotopy equivalence of crossed complexes, we
refer the reader to [39].

One of our main results (Theorem 4.1) extends (J.H.C. Whitehead’s) Theo-
rem 2.26 in a direction very similar to the one indicated in the previous remark.
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2.2.5. The definition of CRS (A,B)
Given crossed complexes A and B, there exists a groupoid CRS 1(A,B) whose
objects are the morphisms of crossed complexes A → B, and whose morphisms
are the homotopies connecting them, in the manner shown in Lemma 2.25, with
pointwise product of maps as composition. We denote the set of all f -homotopies
by CRS f1 (A,B). Therefore CRS f1 (A,B) is the set of morphisms of CRS1(A,B) with
source f ∈ Hom(A,B).

In fact, a far stronger result is true: Let A and B be crossed complexes, and
let f = (fn) : A → B be a morphism. Let n > 2. An n-fold f -homotopy H deter-
mines naturally a (n− 1)-fold f -homotopy ∂fn(H), in the same way that a 1-fold
f -homotopy determines a morphism A → B. Let CRS fn(A,B) be the set of n-fold
f -homotopies. It is a group with pointwise multiplication as product. In particular,
for any n > 1,

CRSn(A,B) =
⋃

f∈Hom(A,B)

CRS fn(A,B)

is a totally disconnected groupoid with the same object set as CRS 1(A,B). There
exist also natural left groupoid actions of CRS 1(A,B) on CRSn(A,B), for any
n > 2. The following theorem is shown in [5, 11, 12, 13], where the details of this
description can be found.

Theorem 2.28 (R. Brown and P.J. Higgins). Let A and B be (reduced) crossed
complexes. Then the sequence CRS (A,B) = (CRSn(A,B)) can be given the struc-
ture of a (non-reduced) crossed complex.

Once again this is part of a much more general theory. There also exists a tensor
product in the category of crossed complexes, making it a monoidal closed category;
see [12].

Remark 2.29. Actually R. Brown and P.J. Higgins considered a more general notion
of homotopy (free homotopy), also considered in [38]. The restricted notion of homo-
topy shown here was called pointed homotopy by them. We will not need to consider
the full generality.

2.2.6. Counting homotopies
The following lemma will be extremely useful. It is due to the fact that there are
no constraint relations between a homotopy and the boundary maps of the crossed
complexes involved. It appears in [12].

Lemma 2.30. Let F = (Fn, ∂n) be a totally free (reduced) crossed complex. Let
Cn denote the set of free generators of Fn, n = 1, 2, . . ., as a free group if n = 1,
as a free crossed module if n = 2, and as a free Z(coker(∂2))-module if n > 2. Let
A = (An, ∂′n) be a (reduced) crossed complex, and let f : F → A be a crossed complex
morphism. An L-fold f -homotopy can be specified, uniquely, by its value on each set
Cn, n ∈ N, in the sense that any sequence of maps Cn → An+L uniquely extends
to an L-fold f-homotopy, and any L-fold crossed complex homotopy arises in this
way.
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Proof. The only bit that needs discussion is the definition of H2 : F2 → AL+2, from
the known form of H2 restricted to C2. This follows from the universal prop-
erty defining free crossed modules (Definition 2.14), applied to the crossed mod-
ule A2+L

a 7→1−−−→ A = coker(∂′2). Note condition (4) of the definition of crossed com-
plexes.

Therefore:

Corollary 2.31. Let M be a CW-complex with a unique 0-cell, which we take to
be its base point. Also let A be a reduced crossed complex, and let f : Π(M) → A
be a morphism of crossed complexes. An n-fold f-homotopy is uniquely specified by
its value on each cell of M , in the sense shown above. In fact, if A is L-truncated,
then an n-fold homotopy ΠL(M) to M is also uniquely specified by its value on the
cells of M of dimension 1, 2, . . . , L− 1.

The following simple quantification of the previous corollary will have an impor-
tant role later:

Corollary 2.32. Let M be a CW-complex with a unique 0-cell, which we take to
be its base point, and a finite number of n-cells for any n ∈ N. Also let A = (An)
be a (reduced) crossed complex, which we suppose to be finite, in the sense that A is
l-truncated, for some l ∈ N, and each An, n ∈ N is finite. Then CRS (Π(M),A) is
a finite crossed complex and, moreover, for any L ∈ N and any f ∈ Hom(Π(M),A)
we have

#(CRS fL(Π(M),A)) =
∞∏

k=1

(#(Ak+L))l
M
k ,

where lMk denotes the number of cells of M of order k ∈ N.

2.2.7. The classifying space of a crossed complex
There exists a functor, the classifying space functor, from the category of (reduced
or non-reduced) crossed complexes to the category of filtered spaces. This functor,
due to R. Brown and P.J. Higgins, was described in [13]. It generalises the concept
of the classifying space of a group. A similar construction of classifying spaces of
crossed complexes appeared in [3].

For a crossed complex A = (An), let |A| denote its classifying space. It is a CW-
complex, with one 0-cell for each element of C, where C is the set of objects of the
groupoid A1. A very strong result appearing in [13] is the following one:

Theorem 2.33 (R. Brown and P.J. Higgins). Let M be a CW-complex, pro-
vided with its skeletal filtration. Suppose M has a unique 0-cell which we take to
be its base point. Also let A be a reduced crossed complex; thus |A| has a unique
0-cell ∗. There exists a map

ψ : |CRS (Π(M),A)| −−→
'w

TOP
(
(M, ∗), (|A|, ∗)),

which is a weak homotopy equivalence.
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In particular, ifM is a finite CW-complex, then ψ is a homotopy equivalence. This
is because in this case the function space TOP

(
(M, ∗), (|A|, ∗)) has the homotopy

type of a CW-complex. See [27].
The proof of Theorem 2.33 which appears in [13] makes great use of the monoidal

closed structure of the category of crossed complexes constructed in [12]. A version
of the Eilenberg-Zilber Theorem for crossed complexes, representing Π(|C ×D|) as
a strong deformation retract of Π(|C|)⊗Π(|D|), if C and D are simplicial sets,
is also required. An approach to this is sketched in [13]. A direct proof appears
in [32, 33]. A theorem of J. Milnor establishing that a Kan Complex is a strong
deformation retract of the singular complex of its geometric realisation is implicitly
used; see [28].

Let A be a crossed complex. We will now consider the full generality in the
definition of crossed complexes, as sketched in Remark 2.13. Let C be the object
set of the groupoid A1. Denote by Acn the set of morphisms of An whose source is c.
Therefore Acn is a group if n > 1. Also let A(c,d)

1 be the set of morphisms of A1 with
source and target c, d ∈ C, respectively. Let ∂cn = ∂n|Ac

n
. Consider the complex Ac =

(Acn, ∂
c
n), n > 1, considering the group Ac,c1 at index 1. Define π1(A, c) = H1(Ac),

and Hn(A, c) = Hn(Ac) if n > 2. Notice that these homotopy and homology groups
with base c ∈ C depend only on the connected component in the groupoid A1 to
which c belongs, up to isomorphism.

If M is a CW-complex with a unique 0-cell, then π1(M, ∗) ∼= π1(Π(M), ∗). On
the other hand, Hn(M̂) ∼= Hn(Π(M)), for n > 2. Here M̂ is the universal covering
of M .

Theorem 2.34 (R. Brown and P.J. Higgins). Let A be a crossed complex. Let
C be the set of objects of the groupoid A1. Then the classifying space |A| of A is a
CW-complex with one 0-cell c for each element of c ∈ C. Moreover,

π1(|A|, c) ∼= π1(A, c)
πn(|A|, c) ∼= Hn(A, c), n > 2,

for any c ∈ C. Furthermore, there exists a one-to-one correspondence between con-
nected components of the groupoid A1 and connected components of |A|.

3. The homotopy type of the skeletal filtration of a CW-
complex

Let M be a space which can be given a CW-complex structure. In this chapter
we analyse to what extent the homotopy type of the skeletal filtration {Mn}n∈N of
M depends on the cellular decomposition of M .

Throughout this chapter, Dn denotes the n-disk and Sn denotes the n-sphere.
As usual, we set I = [0, 1].

3.1. Dimension two
Let (N,M) be a pair of CW-complexes such that the inclusion of M in N is a

homotopy equivalence. For simplicity, assume that M and N have a finite number
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of 1-cells. Our whole discussion will remain valid without this restriction, with the
obvious modifications.

Let M1 and N1 be, respectively, the 1-skeletons of M and N . Suppose that N
and M have a unique 0-cell, which we take to be their common base point ∗, so
that both M and N are well pointed.

The group π1(M1, ∗) is the free group on the set {X1, . . . , Xm} of 1-cells of M .
Let Y1, . . . , Yn be the 1-cells of N which are not in M . Then π1(N1, ∗) is the free
group F (X1, . . . , Xm, Y1, . . . , Yn) on the set {X1, . . . , Xm, Y1, . . . , Yn}.

Theorem 3.1. There exists a filtered homotopy equivalence

(N,N1, ∗) ∼= (M,M1, ∗) ∨ (D2, S1, ∗)∨n.

Proof.3 Since M is a subcomplex of N , and N is homotopic to M , it follows that
M is a strong deformation retract of N . By the Cellular Approximation Theorem,
we can suppose, furthermore, that there exists a retraction r : N →M sending N1

to M1, and such that r ∼= idN , relative to M . In particular, if k ∈ {1, . . . , n} then
we have Ykr∗(Yk)−1 = 1π1(N,∗) (though this relation does not hold in π1(N1, ∗)).
Define a map

f : (P, P 1, ∗) .= (M,M1, ∗) ∨
n∨

k=1

(D2
k, S

1
k, ∗) → (N,N1, ∗)

in the following way: First of all, send (M,M1, ∗) identically to its copy (M,M1, ∗) ⊂
(N,N1, ∗). Then we can send each (S1

k, ∗), k = 1, . . . , n to the element Ykr∗(Yk)−1 ∈
π1(N1, ∗). Since these elements are null homotopic in (N, ∗), this map extends to
the remaining 2-cells of (P, P 1, ∗).

Let us prove that f : (P, P 1, ∗) → (N,N1, ∗) is a homotopy equivalence. It suf-
fices to prove that f : (P, ∗) → (N, ∗) and f1 .= f|P 1 : (P 1, ∗) → (N1, ∗) are based
homotopy equivalences, by Theorem 2.3.

We first show that f is a homotopy equivalence (P, ∗) → (N, ∗). Let r′ : (P, ∗) →
(M, ∗) be the obvious retraction, thus r′ ∼= id(P,∗). We have r ◦ f ∼= r ◦ f ◦ r′ = r′ ∼=
id(P,∗), and f ◦ r = r ∼= id(N,∗).

We now show that f1 is a homotopy equivalence (P 1, ∗) → (N1, ∗). It is enough
to prove that the induced map f1

∗ : π1(P 1, ∗) → π1(N1, ∗) is an isomorphism. Note
that π1(P 1, ∗) is (similar to π1(N1, ∗)) isomorphic to the free group on the set
{X1, . . . , Xm, Y1, . . . , Yn}. The induced map on the fundamental groups has the
form

f1
∗ (Xk) = Xk, k = 1, . . . ,m, and f1

∗ (Yk) = Ykr∗(Yk)−1, k = 1, . . . , n.

Notice that r∗(Yk) ∈ F (X1, . . . , Xm), k = 1, . . . , n. Consider the morphism g of the

3This argument arose in a discussion with Gustavo Granja.
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group F (X1, . . . , Xm, Y1, . . . , Yn) on itself such that

g(Xk) = Xk, k = 1, . . . ,m and g(Yk) = Ykr∗(Yk), k = 1, . . . , n.

Therefore (f1
∗ ◦ g)(Xk) = Xk, k = 1, . . . ,m, and

(f1
∗ ◦ g)(Yk) = f1

∗ (Ykr∗(Yk))

= f1
∗ (Yk)f

1
∗ (r∗(Yk))

= Ykr∗(Yk)−1r∗(Yk)
= Yk, k = 1, . . . , n.

Analogously, (g ◦ f∗)(Xk) = Xk, k = 1, . . . ,m, and

(g ◦ f1
∗ )(Yk) = g(Ykr∗(Yk)−1)

= Ykr∗(Yk)g(r∗(Y −1
k ))

= Ykr∗(Yk)r∗(Y −1
k ) = Yk, k = 1, . . . , n.

This proves that g−1 = f1
∗ , which finishes the proof.

Corollary 3.2. Let M and N be CW-complexes with unique 0-cells, which we take
to be their base points, both denoted by ∗. Let m1 and n1 be the number of 1-cells
of M and N , respectively. Suppose that M and N are based homotopic, as spaces.
There exists a filtered homotopy equivalence

f : (M,M1, ∗) ∨ (D2, S1, ∗)∨n1 → (N,N1, ∗) ∨ (D2, S1, ∗)∨m1 .

Moreover, f can be chosen cellular.

Proof. Let F : M → N be a pointed homotopy equivalence. We can suppose that
F is a cellular map. The reduced mapping cylinder P of F is a CW-complex with
a unique 0-cell, containing M and N as subcomplexes. Moreover P is homotopic to
both M and N . The complex P has n1 1-cells which are not in M and m1 1-cells
which are not in N . By the previous theorem, it thus follows that there exists a
filtered homotopy equivalence

F ′ : M .= (M,M1, ∗) ∨ (D2, S1, ∗)∨n1 → (N,N1, ∗) ∨ (D2, S1, ∗′)∨m1 .= N .
Let f be a map, homotopic to F ′, which is cellular. We can suppose that F

coincides with F ′ in (M1, ∗) ∨ (S1, ∗)∨n1 = (M1, ∗). Then f is a homotopy equiva-
lence f : M→N , and, therefore, by Theorem 2.3, f is a filtered homotopy equiva-
lence.

3.2. The general case
Let M and N be CW-complexes, homotopic as (based) spaces. For simplicity,

we suppose that they only have a finite number of cells at each dimension. The
main results that we obtain in this subsection (Theorems 3.3, 3.4 and 3.5) are valid
without this restriction, although they need to be re-written in the natural way. The
proof we will give will remain valid, as long the obvious modifications are made. As
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usual, we suppose M and N to have a unique 0-cell, which we choose to be the base
points of each, so that M and N are well pointed.

For a k ∈ N, let lMk and lNk be the number of cells of M and N (respectively) of
dimension k. Define the integer numbers

lM{M,N}(1) = lN1 ,

lN{M,N}(1) = lM1 .

And, in general, if k > 1,

lM{M,N}(k + 1) = lN{M,N}(k) + lNk+1,

lN{M,N}(k + 1) = lM{M,N}(k) + lMk+1.

Define, for each L > 2, the filtered space

ML = (M,ML−1, . . . ,M1, ∗) ∨
lM{M,N}(L−1)∨

j(L−1)=1

(DL
j(L−1)

, S
(L−1)
j(L−1)

, ∗, . . . , ∗)∨

∨
lM{M,N}(L−2)∨

j(L−2)=1

(D(L−1)
j(L−2)

, D
(L−1)
j(L−2)

, S
(L−2)
j(L−2)

, ∗, . . . , ∗) ∨ · · ·

· · · ∨
lM{M,N}(2)∨

j2=1

(D3
j2 , . . . , D

3
j2 , S

2
j2 , ∗, ∗) ∨

lM{M,N}(1)∨

j1=1

(D2
j1 , . . . , D

2
j1 , S

1
j1 , ∗).

Analogously, define

NL = (N,NL−1, . . . , N1, ∗) ∨
lN{M,N}(L−1)∨

i(L−1)=1

(DL
i(L−1)

, S
(L−1)
i(L−1)

, ∗, . . . , ∗)∨

∨
lN{M,N}(L−2)∨

i(L−2)=1

(D(L−1)
i(L−2)

, D
(L−1)
i(L−2)

, S
(L−2)
i(L−2)

, ∗, . . . , ∗) ∨ · · ·

· · · ∨
lN{M,N}(2)∨

i2=1

(D3
i2 , . . . , D

3
i2 , S

2
i2 , ∗, ∗) ∨

lN{M,N}(1)∨

i1=1

(D2
i1 , . . . , D

2
i1 , S

1
i1 , ∗).

Therefore ML (as a CW-complex) has lML + lM{M,N}(L− 1) = lN{M,N}(L) cells of
dimension L, and, analogously, NL has lNL + lN{M,N}(L− 1) = lM{M,N}(L) cells of
dimension L, for L = 2, 3, . . .. Define also M1 = (M, ∗) and N1 = (N, ∗).

For each positive integer L, the CW-complex ML is embedded cellularly in
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ML+1, and analogously for NL. Therefore the spaces

M =
∞⋃

L=1

ML

= M ∨
∞∨

L=1



lM{M,N}(L)∨

iL=1

DL+1
iL




and

N =
∞⋃

L=1

NL

= N ∨
∞∨

L=1



lN{M,N}(L)∨

jL=1

DL+1
jL




are CW-complexes. Filter M and N by their skeletal filtrations. Notice that we
regard each (L+ 1)-disk DL+1, where L ∈ N, as having the obvious cellular decom-
position with a unique 0-cell, an L-cell and an (L+ 1)-cell.

It is important to note that the following holds for each L ∈ N:

ML−1 = ML−1
L ,

NL−1 = NL−1
L .

We want to prove the following theorem:

Theorem 3.3. In the above situation, for any L ∈ N there exists a filtered homotopy
equivalence

FL : ML −→∼= NL,
which can be taken cellular. Moreover, if we are provided with a filtered homotopy
equivalence FL : ML → NL which is a cellular map, then there exists a filtered homo-
topy equivalence FL+1 : ML+1 → NL+1 which extends the map FL−1

L , the restriction
of FL to ML−1

L = ML−1
L+1.

Since ML−1
L = ML−1 and NL−1

L = NL−1 for any L ∈ N, it follows (using Corol-
lary 2.9):

Theorem 3.4. Let M and N be CW-complexes with unique 0-cells, taken to be
their base points. Suppose that M and N are homotopic as (based) spaces. There
exists a filtered homotopy equivalence

F : M−→∼= N .

The proof of Theorem 3.3 is by an obvious induction on L. Notice that we
have already proved it for L = 2, dealt with in Subsection 3.1. The general proof
follows immediately from Theorem 3.5 below, and the fact, already stated, that
ML has lML + lM{M,N}(L− 1) = lN{M,N}(L) cells of dimension L, for any L ∈ N, and
analogously for NL.
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3.2.1. An auxiliary discussion
Let M and N be CW-complexes. As usual, we suppose that they have unique 0-
cells, which we take to be their base points, both denoted by ∗. Suppose that for
some L > 1 there exists a filtered homotopy equivalence

F : (M,ML−1,ML−2, . . . ,M0 = ∗) → (N,NL−1, NL−2, . . . , N0 = ∗),
which, furthermore, is a cellular map. Let mL and nL be, respectively, the number
of cells of M and N of dimension L.

Theorem 3.5. There exists a filtered homotopy equivalence

F ′′ : (M,ML,ML−1, . . . ,M0 = ∗) ∨
nL∨

iL=1

(DL+1
iL

, SLiL , ∗, . . . , ∗)
.= M̄

→ (N,NL, NL−1, . . . , N0 = ∗) ∨
mL∨

jL=1

(DL+1
jL

, SLjL , ∗, . . . , ∗)
.= N̄ ,

which agrees with F over ML−1. Moreover, F ′′ can be taken cellular.

Remark 3.6. This result, as well as Theorem 3.3, is reminiscent of the following
result of J.H.C. Whitehead on simple homotopy types: If A and B are finite CW-
complexes of dimension n with the same (n− 1)-type and if f : A→ B realises
an (n− 1)-homotopy equivalence, then there exist p, q ∈ N and a simple homotopy
equivalence A ∨ (Sn)∨p → B ∨ (Sn)∨q. In fact, this simple equivalence can be chosen
so that it agrees with f over An−1. This is Theorem 14 of [39].

Proof of Theorem 3.5. Consider the filtered space

P = (P, PL, PL−1, . . . , P0 = ∗),
where P is the reduced mapping cylinder of F : M → N (which has a natural CW-
decomposition), and Pk is the reduced mapping cylinder of F k = F|Mk : Mk → Nk,
for k = 1, . . . , L− 1. We further define

PL = ML ∪ PL−1 ∪NL = PL.

Therefore each Pk is embedded cellularly in Pk+1 and P , for k = 0, . . . , L− 1.
We want to prove that there exist filtered homotopy equivalences

M̄ ∼= P ∼= N̄ .

By Lemma 2.8, there exists a deformation retraction of P ontoM , say ρ : P × I →
P , which we can suppose to be cellular, such that the restriction of ρ to Pk × I
realises a deformation retraction of Pk in Mk, for k = 0, . . . , L− 1. Define

r(u) = ρ(u, 1), u ∈ P.
Therefore r is a cellular map P →M .
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Let {eL1 , . . . , eLnL
} be the set of L-cells of N . Each of these cells attaches to NL−1

along a certain map:

φLiL : SL−1
iL

.= ∂(eLiL) → NL−1, iL = 1, . . . , nL.

The CW-complex PL is obtained from ML ∪ PL−1 by attaching these L-cells to it
in the obvious way. Notice that NL−1 is included in PL−1, cellularly.

The deformation retraction ρ from P onto M gives us a homotopy (in PL−1)
connecting φLiL : SL−1

iL
→ NL−1 ⊂ PL−1 with (r ◦ φLiL) : SL−1

iL
→ML−1 ⊂ PL−1, for

iL = 1, . . . , nL, since the restriction of ρ to PL−1 × I is a deformation retraction
from PL−1 onto ML−1. On the other hand, the restriction r|eL

iL

of r to the L-cell

eLiL will provide a null homotopy (r ◦ φLiL) → ∗ (in ML) for iL = 1, . . . , nL (recall
that r is cellular, thus r(eLiL) ⊂ML). Note that we denote by ∗ both the base point
and any function with values in {∗}, and the same for any singleton {a}. We have
proved that each attaching map φLiL : ∂(eLiL) →ML ∪ PL−1, where iL = 1, . . . , nL,
is null homotopic.

Note that the CW-complex ML is a deformation retract of ML ∪ PL−1, since
ML−1 ⊂ML is a deformation retract of PL−1, and ML−1 = PL−1 ∩ML. In par-
ticular the inclusion map ML i−→ML ∪ PL−1 is a homotopy equivalence. Therefore,
there exist homotopy equivalences

(ML, ∗) ∨
nL∨

iL=1

(SLiL , ∗) −→∼= (ML ∪ PL−1, ∗) ∨
nL∨

iL=1

(SLiL , ∗) −→∼= (PL, ∗),

the second one being implied by the fact that the attaching maps φLiL , iL = 1, . . . , nL
of the L-cells of N are null homotopic in ML ∪ PL−1. Let GL be their composition,
thus GL defines a homotopy equivalence

GL : (ML, ∗) ∨
nL∨

iL=1

(SLiL , ∗) → (PL, ∗).

Note that the restriction of GL to ML is (or can be chosen to be) the inclusion
map ML → PL. By Corollary 2.8, the restriction of this inclusion map to ML−1

defines a filtered homotopy equivalence (ML−1, . . . ,M0 = ∗) ∼= (PL−1, . . . , P0 = ∗).
Therefore it follows from Theorem 2.3 that GL is also a filtered homotopy equiva-
lence

GL : (ML,ML−1, . . . ,M0 = ∗) ∨
nL∨

iL=1

(SLiL , ∗, . . . , ∗) → (PL, PL−1, . . . , P0 = ∗).

Given that the restriction of GL to ML is the restriction of the inclusion map
M → P to ML, we can conclude that the map GL extends to a filtered map (which
we also call GL)

GL : (M,ML,ML−1, . . . ,M0 = ∗) ∨
nL∨

iL=1

(SLiL , S
L
iL , ∗, . . . , ∗)

→ (P, PL, PL−1, . . . , P0 = ∗),
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which when restricted to M is the inclusion map M → P .
We want to prove that GL extends to a map G : M ∨ (

DL+1
)∨nL = M̄ → P . To

do so, we need to prove that the restriction of GL to each SLiL
∼= DL

iL
/∂DL

iL
is null

homotopic.
Let us be more explicit about the construction of GL. It is important to remember

that the map GL depends explicitly on the null homotopies

HiL : ∗ → (
φLiL : ∂(eLiL) → NL−1 ⊂ML ∪ PL−1

)
,

which we choose. Here iL = 1, . . . , nL. These homotopies are taken in ML ∪ PL−1.
Let us describe each HiL : ∂(eLiL)× I →ML ∪ PL−1 in full detail, as follows.

Let iL ∈ {1, . . . , nL}. Recall SL−1
iL

.= ∂(eLiL). Define HiL : SL−1
iL

× I →ML ∪
PL−1 in the following way: Let aLiL be the central point of the closure eLiL

∼= DL

of eLiL . Therefore there exists a path γLiL in ML connecting the base point ∗ with
r(aLiL). When t ∈ [0, 1

3 ] ⊂ I, we define HiL directly from γLiL , in the obvious way.
This yields a homotopy J1

iL
: ∗ → r(aLiL), in ML. Specifically

J1
iL(x, t) = γLiL(t), ∀x ∈ SL−1

iL
, ∀t ∈ I.

When t ∈ [ 13 ,
2
3 ] ⊂ I, we consider HiL to be defined in the natural way from the

restriction r|eL
iL

of r to eLiL . This defines a homotopy J2
iL

: r(aLiL) → (r ◦ φLiL), in ML.

Explicitly (note eLiL
∼= DL = [−1, 1]L),

J2
iL(x, t) = r|eL

iL

(xt), ∀x ∈ SL−1
iL

, ∀t ∈ I = [0, 1].

Recall that eLiL attaches along φLiL : SL−1
iL

→ NL−1 ⊂ML ∪ PL−1.
Finally, the deformation retraction ρ : P × I → P (of P onto M) will define a

homotopy J3
iL

(in PL−1) connecting (r ◦ φLiL) : SL−1
iL

→ML−1 ⊂ML ∪ PL−1 with
φLiL : SL−1

iL
→ NL−1 ⊂ML ∪ PL−1. Explicitly,

J3
iL(x, t) = ρ(φLiL(x), 1− t), ∀x ∈ SL−1

iL
, ∀t ∈ I.

It is important to remember that the restriction of ρ to PL−1 × I defines a defor-
mation retraction of PL−1 in ML−1. This is an extremely crucial fact.

We thus define HiL : ∗ → φLiL as the concatenation

HiL =
(
J1
iLJ

2
iLJ

3
iL

)
: SL−1

iL
× I →ML ∪ PL−1,

for iL = 1, . . . , nL.
As we have seen, when restricted to ML, the map GL is the restriction of the

inclusion map M → P to ML. For each iL = 1, . . . , nL, the restriction KL
iL

of GL
to SLiL = DL

iL
/∂DL

iL
is given, in the obvious way, from4:

1. The homotopy, HiL : SL−1
iL

× I →ML ∪ PL−1 (connecting ∗ with the map
φLiL : SL−1

iL
→ NL−1 ⊂ML ∪ PL−1), for 1

3 6 |x| 6 1, x ∈ DL
iL
/∂DL

iL
.

4This is the standard homotopy equivalence A ∪f Dn → A ∪g Dn, where A is some space, con-

structed from a homotopy H : Sn−1 × I → A connecting f : Sn−1 → A with g : Sn−1 → A. See
for example [23, proof of Proposition 0.18].
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2. The obvious re-scaling of the restriction id|eL
iL

of the identity map id: N → N

to the cell eLiL , for 0 6 |x| 6 1
3 , x ∈ DL

iL
/∂DL

iL
. (Recall that the cell eLiL attaches

along φLiL : SL−1
iL

→ NL−1.)

We will make precise the construction of KL
iL

below. The main point is that when
KL
iL

= GL|SL
iL

is considered to be a map SLiL = DL
iL
/∂DL

iL
→ P , it is homotopic

(modulo the border) to the map K ′L
iL

which is defined, in the natural way, from:

1. the homotopy J1
iL
J2
iL

(connecting ∗ with (r ◦ φLiL)), for 2
3 6 |x| 6 1 ,

2. the constant homotopy (r ◦ φLiL) → (r ◦ φLiL), for 1
3 6 |x| 6 2

3 ,

3. the obvious re-scaling of the function r|eL
iL

, for 0 6 |x| 6 1
3 . (Recall again that

eLiL attaches along φLiL : SL−1
iL

→ NL−1.)

Indeed, a homotopy WL
iL

: DL
iL
/∂DL

iL
× I → P connecting KL

iL
with K ′L

iL
is given

by

WL
iL(x, t) =





J1
iL
J2
iL

(x/|x|, 3(1− |x|)), if 2
3 6 |x| 6 1, ∀t ∈ I,

ρ
(
φLiL(x/|x|), t+ (3− 3t)(|x| − 1

3 )
)

if 1
3 6 |x| 6 2

3 , ∀t ∈ I,
ρ

(
id|eL

iL

(3x), t
)
, if 0 6 |x| 6 1

3 , ∀t ∈ I.

This also gives an explicit definition of KL
iL

(x) = WL
iL

(x, 0) as well as K ′L
iL

(x) =
WL

iL
(x, 1), where x ∈ DL

iL
/∂DL

iL
.

The map K ′L
iL

: DL
iL
/∂DL

iL
→ML ⊂ML ∪ PL−1 is obviously null homotopic.

This follows from the same argument that shows that the concatenation of a path
with its reverse is null homotopic.

We have, therefore, proved that GL extends to a map

G : M̄ .= (M,ML,ML−1, . . . ,M0 = ∗) ∨
nL∨

iL=1

(DL+1
iL

, SLiL , ∗, . . . , ∗)

→ (P, PL, PL−1, . . . , P0 = ∗).
Let us prove that G is a filtered homotopy equivalence. Let Gk be the restric-

tion of G to M̄k, for k = 0, . . . , L. As we have seen, for k = 0, . . . , L− 1, the map
Gk : Mk = M̄k → Pk is a homotopy equivalence. By construction, GL is a homo-
topy equivalence as well. Not considering filtrations, the map G : M̄ → P is also
a homotopy equivalence, since its restriction to M is the inclusion map M → P ,
which is a homotopy equivalence. Therefore by Theorem 2.3 it follows that G is a
filtered homotopy equivalence.

Repeating the same argument for the inclusion of N in P , we can prove that
there exists a filtered homotopy equivalence

Q : N̄ .= (N,NL, NL−1, . . . , N0 = ∗) ∨
mL∨

jL=1

(DL+1
jL

, SLjL , ∗, . . . , ∗)

→ (P, PL, PL−1, . . . , P0 = ∗).
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Here mL is the number of cells of M of order L. Note that both G and Q, when
restricted to NL−1 and ML−1, are the inclusion maps in P .

The naturally defined retraction R : PL−1 → NL−1 = N̄L−1 (see the discussion
following Corollary 2.8) is a filtered homotopy inverse of QL−1 : (NL−1, . . . , N0) →
(PL−1, . . . , P0). Therefore there exists a filtered homotopy inverse R′ of Q extending
R, by Corollary 2.5. Note that (R ◦G)|ML−1 = F|ML−1 . In particular there exists a
filtered homotopy equivalence

F ′ = R′ ◦G : M̄ = (M,ML,ML−1, . . . ,M0 = ∗) ∨
nL∨

iL=1

(DL+1
iL

, SLiL , ∗, . . . , ∗)

→ (N,NL, NL−1, . . . , N0 = ∗) ∨
mL∨

jL=1

(DL+1
jL

, SLjL , ∗, . . . , ∗) = N̄

with F ′|ML−1 = F|ML−1 . We now need to prove that F ′ can be chosen to be cellular.
By definition, F ′|M̄L : M̄L → N̄L is cellular. The map F ′ is homotopic (modulo M̄L)
to a cellular map F ′′; thus F ′′ is a homotopy equivalence. Since the restriction of F ′′

to each M̄k is a homotopy equivalence for k = 0, . . . , L, it follows that F ′′ : M̄ → N̄
is a filtered homotopy equivalence, by Theorem 2.3. The map F ′′ agrees with F
over ML−1 = M̄L−1. This finishes the proof of Theorem 3.5.

4. On the fundamental crossed complex of a CW-complex

4.1. The dependence of Π(M) on the cell decomposition of M
Let M be a CW-complex, equipped with its skeletal filtration. As we have men-

tioned before in Subsection 2.2.4, even though the crossed complex Π(M) depends
strongly on the cellular decomposition of M , J.H.C. Whitehead proved that the
homotopy type of Π(M) depends only on the homotopy type of M ; see [38]. See
also Remark 4.3, below. The following result (Theorem 4.1) strengthens this sub-
stantially. We freely use the results and notation of Subsection 2.2.

If n ∈ N, define Dn = (Dnm, ∂m) as the crossed complex, which is the trivial group
for dimensions not equal to n or n− 1, whilst Dnn = Z and Dnn−1 = Z, the border
map ∂n : Z→ Z being the identity. For n = 2, the action of Z in Z is defined to be
the trivial action. Therefore Dn ∼= Π(Dn), where the n-disk Dn is given its natural
CW-structure with one 0-cell, one (n− 1)-cell, and one n-cell.

Let M be a CW-complex with a unique 0-cell. Recall that by definition we have
that ΠL(M) = ΠL(M,ML−1,ML−2, . . . ,M0 = ∗).

Theorem 4.1. Let M and N be CW-complexes, each with a unique 0-cell which
we take to be their base points. Give M and N their skeletal filtrations. Suppose
that M and N are homotopic as topological spaces. There exists an isomorphism of
crossed complexes

Π(M)
∞∨
n=1

(
(Dn+1)∨(l

M
{M,N}(n))

) ∼= Π(N)
∞∨
n=1

(
(Dn+1)∨(l

N
{M,N}(n))

)
.
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Moreover, if L ∈ N we also have

ΠL(M)
L−1∨
n=1

(
(Dn+1)∨(l

M
{M,N}(n))

) ∼= ΠL(N)
L−1∨
n=1

(
(Dn+1)∨(l

N
{M,N}(n))

)
.

The constants lN{M,N}(n) and lM{M,N}(n), where n ∈ N, were defined at the begin-
ning of Subsection 3.2. They also make sense, though they may be infinite, if M or
N have infinite cells of order L, for some L ∈ N.
Proof. This follows immediately from Theorem 3.3 and (R. Brown and P.J. Hig-
gins’s) Corollary 2.22.

One simple consequence of this theorem is a new proof of (J.H.C. Whitehead’s)
Theorem 2.26:

Corollary 4.2. Let M and N be CW-complexes with unique 0-cells. Suppose that
they are homotopic as (based) spaces. There exists a homotopy equivalence Π(M) ∼=
Π(N). In fact, for any L ∈ N, the crossed complexes ΠL(M) and ΠL(N) are also
homotopy equivalent.

Proof. This result is an easy consequence of Corollary 2.31 and the previous the-
orem. Also needed is the universal property defining free products of crossed com-
plexes, as well as Lemma 2.25.

Remark 4.3. Theorem 4.1 has a broad intersection with Theorem 16 of [39]. Roughly
speaking, this result due to J.H.C. Whitehead says that if f : A → B is a homomor-
phism of finite, L-truncated, totally free crossed complexes inducing an isomorphism
on the homotopy and homology groups of A and B up to dimension L− 1, then
it follows that there exists a simple homotopy equivalence f ′ : A′ ⊃ A → B′ ⊃ B,
which when restricted to A ⊂ A′ is f . Here A′ and B′ are obtained from A and B
by making a certain number of free products with ΠL(SL), where the L-sphere SL is
given a cell decomposition with unique cells of order 0 and L. The notion of simple
homotopy equivalence of totally free crossed complexes is also defined in [39]. It is
very similar to the relation between crossed complexes indicated by Theorem 4.1.

4.2. A rational number valued homotopy invariant IA

4.2.1. The definition of IA
We now need to restrict our discussion to CW-complexes which have only a finite
number of L-cells for each L ∈ N, therefore avoiding infinities. As usual, all CW-
complexes that we consider have unique 0-cells, taken to be their base points.

Definition 4.4. A (reduced) crossed complex A = (An) is called finite if A is L-
truncated for some L and, moreover, all groups An, n ∈ N are finite.

Let A = (An) be a finite L-truncated crossed complex. Therefore, if M is a
CW-complex with a finite number of cells of each dimension L ∈ N, then the num-
ber of morphisms Π(M) → A is finite. This follows from Lemma 2.17. Moreover,
by Proposition 2.19, there exists a one-to-one correspondence between morphisms
Π(M) → A and morphisms ΠL(M) → A.
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For a set A, denote its cardinality by #(A). As usual, if M is a CW-complex, we
denote the number of cells of M of dimension n by lMn .

Theorem 4.5. Let M be a CW-complex with a unique 0-cell, such that M as only
a finite number of cells in each dimension (or, alternatively, up to dimension L).
Also let A = (An) be an L-truncated finite crossed complex. Define

IA(M) = # (Hom(Π(M),A))
∞∏
n=1

( ∞∏
m=1

# (Am+n)
lMm

)(−1)n

= # (Hom(ΠL(M),A))
∞∏
n=1

( ∞∏
m=1

#(Am+n)
lMm

)(−1)n

.

Then IA(M) does not depend on the CW-decomposition of M , and it is a homotopy
invariant of M .

Remark 4.6. Note that Lemma 2.17 ensures that IA(M) is, in principle, calculable,
in a combinatorial way.

Theorem 4.5 is a consequence of the following lemma, easy to prove:

Lemma 4.7. Let A = (An) be a crossed complex. There exists a one-to-one corre-
spondence between morphisms Dn → A and elements of An, where n ∈ N.

Recall Dn = Π(Dn), where Dn is provided with its natural cell decomposition
with unique cells of order 0, (n− 1) and n.

Proof of Theorem 4.5. Let M and N be homotopic cellular spaces. Give M and N
CW-decompositions with a unique 0-cell, and such that M and N have only a finite
number of L-cells for each L ∈ N. By Theorem 4.1 we can conclude:

#Hom

(
Π(M)

∞∨
n=1

(
(Dn+1)∨(l

M
{M,N}(n))

)
,A

)

= #Hom

(
Π(N)

∞∨
n=1

(
(Dn+1)∨(l

N
{M,N}(n))

)
,A

)
.

Therefore, from the universal property defining free products of crossed complexes,
as well as the previous lemma, it follows that

# (Hom(Π(M),A))
∞∏
n=1

#(An+1)l
M
{M,N}(n)

= #(Hom(Π(N),A))
∞∏
n=1

#(An+1)l
N
{M,N}(n).

The result follows from some straightforward algebra.
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4.2.2. Geometric interpretation of IA
The results described in Subsections 2.2.4, 2.2.6 and 2.2.7, as well as the notation
introduced, will be used actively.

Let M be a path-connected space. Suppose that M has only a finite number of
non-trivial homotopy groups, all of which are finite. Cellular spaces of this type are
studied in [17, 24], for example. They generalise Eilenberg-McLane spaces of finite
groups. Define the following “multiplicative Euler Characteristic type” invariant:

Xπ(M) =
∞∏

k=1

[#(πk(M))](−1)k

.

In general, if M has a finite number of connected components, define

Xπ(M) =
∑

M0∈π0(M)

∞∏

k=1

[#(πk(M0))]
(−1)k

,

where the sum is extended to all connected components M0 of M .

Let A be a finite (non-reduced) crossed complex as usual, in the sense that A is
L-truncated, for some L ∈ N, and all the groupoids An, n ∈ N, are finite. Then the
classifying space |A| of A is a topological space with a finite number of homotopy
groups, all of which are finite, by (R. Brown and P.J. Higgins’s) Theorem 2.34.
We warn the reader that classifying spaces of crossed complexes do not exhaust all
spaces of this type. Let B be a (reduced) finite crossed complex. If M is a CW-
complex with a finite number of L-cells for any L ∈ N and a unique 0-cell, then
the (non-reduced) crossed complex CRS (Π(M),B) is finite, by Lemma 2.17 and
Corollary 2.32. In particular, the quantity

Xπ(|CRS (Π(M),B)|) = Xπ
(
TOP

(
(M, ∗), (|B|, ∗)))

is finite. Recall (R. Brown and P.J. Higgins’s) Theorem 2.33.

Lemma 4.8. Let A = (An) be a (non-reduced) finite crossed complex. Let C be the
object set of A1. As usual, we denote by Acn the set of morphisms of An with source
c, where n ∈ N and c ∈ C. We have:

Xπ(|A|) =
∑

c∈C

∞∏

k=1

[#(Ack)]
(−1)k

.

Proof. Let π0(A1) be the set of connected components of the groupoid A1. There
exists a one-to-one correspondence between π0(A1) and the set π0(|A|) of connected
components of |A|. Each element of c ∈ C yields a unique 0-cell c of |A|. Also let
[c] denote the connected component of A1 to which c belongs. Recall that ∂cn equals
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∂n restricted to Acn, if c ∈ C and n ∈ N. We have:

Xπ(|A|) =
∑

M∈π0(|A|)

∞∏

k=1

(#(πk(M)))(−1)k

=
∑

c∈C

1
#([c])

∞∏

k=1

(#(πk(|A|, c)))(−1)k

=
∑

c∈C

1
#(π1(|A|, c))#([c])

∞∏

k=2

(
#(ker(∂ck))

#(im(∂ck+1))

)(−1)k

=
∑

c∈C

1
#(π1(|A|, c))#([c])

∞∏

k=2

(
#(ker(∂ck))#(ker(∂ck+1))

#(Ack+1)

)(−1)k

=
∑

c∈C

#(ker(∂c2))
#(π1(|A|, c))#([c])

∞∏

k=2

(
#(Ack+1)

)(−1)(k+1)

.

If c, d ∈ C, recall that A(c,d)
1 denotes the set of morphisms of A1 with source c and

target d. We have π1(|A|, c) = A
(c,c)
1 /im(∂c2). But since A1 is a groupoid, it follows

that #(A(c,c)
1 )#([c]) = #(Ac1), ∀c ∈ C. In particular, we have:

Xπ(|A|) =
∑

c∈C

#(ker(∂c2))#(im(∂c2))
#(Ac1)

∞∏

k=2

(
#(Ack+1)

)(−1)(k+1)

=
∑

c∈C

#(Ac2)
#(Ac1)

∞∏

k=2

(
#(Ack+1)

)(−1)(k+1)

=
∑

c∈C

∞∏

k=1

(#(Ack))
(−1)k

.

From Corollary 2.32 we can deduce the following theorem, which at the same
time interprets and gives an alternative proof of the existence of the invariant IA,
where A is a finite crossed complex.

Theorem 4.9. Let A be a finite crossed complex. Let M be a CW-complex with a
unique 0-cell and a finite number of L-cells for each L ∈ N. We have:

IA(M) = Xπ
(
TOP

(
(M, ∗), (|A|, ∗))) .

Proof. As we have mentioned before (Theorem 2.33), there exists a map

ψ : |CRS (Π(M),A)| → TOP
(
(M, ∗), (|A|, ∗)),

which is a weak homotopy equivalence; a result due to R. Brown and P.J. Higgins,
appearing in [13]. Therefore

Xπ
(
TOP

(
(M, ∗), (|A|, ∗))) = Xπ (|CRS (Π(M),A)|) .

We now need to apply the previous lemma together with Corollary 2.32.
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Remark 4.10. These final results originated from discussions that I had with Ronnie
Brown and Tim Porter. In fact, the argument for the simpler case of crossed modules
was initiated by them.

4.2.3. A short discussion and an extension of IA
Let A = (An, ∂n) be a finite crossed complex. In [40], D. Yetter defined a 3-manifold
invariant for any finite crossed module. The invariant IA explains Yetter’s invari-
ant, in the cellular category, and generalises it to crossed complexes. A previous
systematic study and upgrading of Yetter’s construction was done by T. Porter, and
appeared in [30, 31]. The construction due to M. Mackaay of 4-manifold invariants
which appears in [25] is conjecturally related to 3-types, having a further incorpo-
ration of their cohomology classes in the manner shown below.

The crossed module case was also studied in [19, 20]. The first article considered
only knot complements, while the second article covered general CW-complexes (for
example Subsection 3.1 is almost entirely extracted from [20]). One of the main
conclusions of that work was that in the case of knotted surfaces, the invariant IG
(where G is a finite crossed module) is a non-trivial, very calculable invariant. In
fact, [20] contained an algorithm for the calculation of IG from movie presentations
of knotted embedded surfaces in S4.

Let M be a finite CW-complex. We can easily describe a morphism Π(M) → A.
Recall Lemma 2.17. Roughly speaking, these morphisms are uniquely specified by
their value on the L-cells of M as long as we choose for any L ∈ N and any L-cell
eL an element of πL−1(ML−1, ∗) (defined up to acting by an element of π1(M1, ∗))
along which eL attaches to ML−1. After these choices are made, there exists a
one-to-one correspondence between morphisms Π(M) → A and colourings of each
L-cell of M , where L ∈ N, by an element of AL, with the obvious compatibility
relations with the boundary maps of Π(M) and A. Therefore it is not a difficult
task to calculate IA(M) where M is a CW-complex with a unique 0-cell, and its
calculation is of a combinatorial nature, similar to the calculation of the cellular
homology groups of M . We refer to [20] for some calculations in the crossed module
case.

The invariant IA can be naturally twisted by n-dimensional cohomology classes
ω of |A| (the classifying space of A) to an invariant IM ( , ω), as long as we restrict
IA( , ω) to oriented n-dimensional closed manifolds. Indeed, if ω ∈ Hn(|A|), we
can define

IA(M,ω) =
∑

f∈[(M,∗),(|A|,∗)]
〈oM , f∗(ω)〉

∞∏

k=1

#
(
πk

(
TOP

(
(M, ∗), (|A|, ∗)), f) )(−1)k

=
∑

F∈Hom(Π(M),A)

〈
oM , F

∗
g (ω)

〉 ∞∏
n=1

( ∞∏
m=1

#(Am+n)
lMm

)(−1)n

,

where oM is the orientation class of M , and, as usual, lMn denotes the number of cells
of M of order n ∈ N. In addition, if F ∈ Hom(Π(M),A), then Fg : (M, ∗) → (|A|, ∗)
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denotes a geometric realisation of F which is uniquely defined up to homotopy.
See [13]. The algebraic description of the cohomology of the classifying space of
crossed modules (particular cases of crossed complexes) appears, for example,
in [18, 29].

From its definition, the invariant IA( , ω) is a generalisation of the Dijkgraaf-
Witten invariant of manifolds (see [16]). If M is provided with a triangulation,
then IA( , ω) can be calculated in a similar form to the Dijkgraaf-Witten, but
considering colourings on any simplex of M , rather than only on the edges of M , at
least in the untwisted case. We will consider these issues in a subsequent publication;
see [21].
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