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Abstract
Working in the context of categorical groups, we show

that the semidirect product provides a biequivalence between
actions and points. From this biequivalence, we deduce a
two-dimensional classification of split extensions of categori-
cal groups, as well as the universal property of the holomorph
of a categorical group. We also discuss the link between the
holomorph and inner autoequivalences.

1. Introduction

A categorical group is a monoidal groupoid in which the objects are invertible,
up to isomorphism, with respect to the tensor product. Using categorical groups,
several well-known notions and results which classically hold for groups can be
raised to a categorical level. For example, the correspondence between actions of
a group H on a group G and split extensions of G by H has a categorical version
established by Garzón and Inassaridze [15]. More precisely, following [7], they define
a split extension as a diagram of categorical groups and monoidal functors

G F // A
G // H
S

oo

together with a monoidal natural transformation ϕ : GF=⇒0 such that G is a
Grothendieck dense fibration, the factorization of F through the kernel of G is
an equivalence and GS = 1H. Then, they prove that equivalence classes of split
extensions bijectively correspond to equivalence classes of actions of H on G (where
an action of H on G is defined as a monoidal functor H→ Eq(G), Eq(G) being the
categorical group of monoidal autoequivalences of G).

The quoted paper [15] is one of a series of papers devoted to extensions and
derivations in the context of categorical groups, see [6, 7, 8, 9, 10, 11, 12], [15, 16,
17, 18], [23]; these papers contain a number of examples showing that categorical
groups provide a unifying framework for studying classical homological algebra.
Despite its interest, the paper [15] suffers from a mixture of one-dimensional and
two-dimensional arguments, and the aim of this note is to put some of the results
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by Garzón and Inassaridze into their proper 2-categorical context. More precisely,
the aim of this note is to improve the results by Garzón and Inassaridze, observing
that:

• The assumption that G : A→ H is a Grothendieck fibration can be avoided
and, consequently, the equation GS = 1H can be replaced by an invertible 2-
cell. The notion of morphism of extensions can also be weakened, and (split)
extensions can be organized in a 2-category (in fact, a 2-groupoid).

• The bijection between classes of split extensions and actions is induced by
a biequivalence between the 2-category of split extensions and a locally dis-
crete 2-category of actions. (Let us point out here that in [23, Theorem 2],
Rousseau establishes a complete classification of not necessarily split exten-
sions of categorical groups. Rousseau’s classification is based on the notion of
monoidal fibration of bitorsors and is quite far from what we propose here for
split extensions.)

• The biequivalence between split extensions and actions is just the restriction
of a more fundamental biequivalence between the 2-category of actions and
a suitable 2-category whose objects are “points”, i.e. diagrams of categorical
groups of the form

H
1H //

B &&MMMMMM H

A A

88qqqqqq
α

KS

Moreover, we introduce the holomorph of a categorical group G as the semidirect
product

HolG = Go Eq(G)

(where the action Eq(G)×G→ G is the evaluation) and we deduce the univer-
sal property of HolG directly from the biequivalence between split extensions and
actions. Finally, we explain in what sense the holomorph is the universal solution
to the problem of converting autoequivalences into inner autoequivalences.

The paper is organized as follows. In Section 2, for the convenience of the
reader, we recall the classification of split extensions of groups following the modern
approach due to Bourn and Janelidze [5], [19]. We also discuss various universal
properties of the holomorph; the first of them has been studied in the more general
context of semi-abelian categories by Borceux, Janelidze and Kelly in [3], [4]. In
Section 3, we recall basic definitions and properties of categorical groups and fix
notations. The content of Section 4 is the biequivalence between points and actions,
and its restriction to split extensions. The final section is devoted to the holomorph
of a categorical group.
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2. The case of groups

2.1. The equivalence between actions and points
Let us first describe the category Act of actions in the category Grp of groups. An
object is given by a group G, a group H and an action of H on G, that is, a map

H ×G→ G (x, a) 7→ xa

such that x·ya = x(ya), 1a = a and x(a+ b) = xa+ xb (we use multiplicative nota-
tion for H and additive notation for G). Given two actions H ×G→ G and H ′ ×
G′ → G′, a morphism is a pair of equivariant group homomorphisms g : G→ G′ and
h : H → H ′, that is, g(xa) = h(x)g(a).

We pass now to the category Pt of points in the category of groups. An object
is a diagram of groups and homomorphisms

A
α //

H
β

oo

such that αβ = 1H . An arrow from (A,H,α, β) to (A′,H ′, α′, β′) is a pair of group
homomorphisms f : A→ A′ and h : H → H ′ such that fβ = β′h and hα = α′f .

There is a functor
K : Pt → Act

which sends a point (A,H,α, β) to the action of H on Ker α, the kernel of α, given
by

H ×Ker α→ Ker α (x, a) 7→ β(x) + a− β(x).

This functor is an equivalence, with quasi-inverse given by semidirect product

o : Act → Pt.

Indeed, if H ×G→ G is an action, the semidirect product GoH is the carte-
sian product G×H equipped with a group structure given by (a, x) + (b, y) =
(a+ xb, x · y), 0 = (0, 1), −(a, x) = (−x−1

a, x−1). Moreover, we get a point

GoH
p //

H
i

oo

with p(a, x) = x and i(x) = (0, x).

2.2. The classification of split extensions
There are two forgetful functors:

U∗ : Pt → Grp (A,H,α, β) 7→ H

O : Act → Grp H ×G→ G 7→ H

making the diagram

Pt
K //

U∗ ""EE
EE

EE
EE

Act

O{{xxxxxxxx

Grp
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commutative. If we fix a group H and consider the fibers over H of these forgetful
functors, the equivalence K restricts to an equivalence K′ : Pt(H) → Act(H).

Now we can define two other functors:

N : Pt(H) → Grp (A,α, β) 7→ Ker α
U : Act(H) → Grp H ×G→ G 7→ G

Once again, the diagram

Pt(H) K′ //

N ##HH
HH

HH
HH

H
Act(H)

Uzzuuuuuuuuu

Grp

commutes and, if we fix a group G, the equivalence K′ restricts to an equivalence

K′′ : Extsplit(H,G) → Act(H,G)

on the fibers. Explicitly, Act(H,G) is the set (=discrete category) of actions of H
on G, and Extsplit(H,G) is the groupoid whose objects are split extensions of G
by H, that is, points (A,H,α, β) such that G is the kernel of α, and arrows are
homomorphisms f : A→ A′ such that α′f = α, fβ = β′ and inducing the identity
on G.

2.3. First universal property of the holomorph
If we denote by EXTsplit(H,G) the set of isomorphism classes of split extensions,
the equivalence K′′ : Extsplit(H,G) → Act(H,G) induces a bijection

EXTsplit(H,G) ' Act(H,G).

Moreover, Act(H,G) is also in bijection with the set of group homomorphisms from
H to the group of automorphisms of G

Act(H,G) ' Hom(H,AutG).

Putting together these bijections and letting the group H vary, we get a natural
isomorphism of functors:

θ : EXTsplit(−, G)=⇒Hom(−,AutG): Grpop → Set,

where EXTsplit(−, G) is defined on a morphism h : H → H ′ by the following pull-
back

A //

α

²²

A′

α′

²²
H

h
// H ′,

which is a split-pullback; the section β of α is the one induced by the section β′ of
α′.

It is a general fact, coming from Yoneda’s lemma, that a functor F : Cop →
Set is representable, that is, there is an object R ∈ C and a natural isomorphism
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θ : F=⇒C(−, R), if and only if there is an element a ∈ F (R), given by θ−1
R (1R), sat-

isfying the following universal property: for all H ∈ C and for all x ∈ F (H), there
is a unique h : H → R such that x = F (h)(a).

If we apply this general fact to θ : EXTsplit(−, G)=⇒Hom(−,AutG), we get as
element θ−1(1AutG) the (isomorphism class of) the holomorph Hol(G) = GoAutG
of G

G
in1 // GoAutG

pr // AutG
in2

oo

Accordingly, the following is its universal property: for any groupH and for any split
extension G // A

//
Hoo , there is a unique homomorphism h : H → AutG

such that A
//
Hoo is the split-pullback of GoAutG // AutGoo along h.

2.4. Second universal property of the holomorph
Since inner automorphisms are easier to handle than general automorphisms, a
natural question is if a group G can be embedded into a group G′ in such a way
that each automorphism of G is the restriction of an inner automorphism of G′. This
is the way the holomorph is classically introduced [22]: the canonical injections

G
in1 // Hol(G) = GoAut(G) Aut(G)

in2oo

are such that the diagram

G
in1 //

f

²²

Hol(G)

Iin2(f)

²²
G

in1

// Hol(G)

commutes for any f ∈ Aut(G), where Iin2(f) ∈ Aut(Hol(G)) is the inner automor-
phism associated with the element in2(f) ∈ Hol(G). In fact, more is true: the holo-
morph is the universal solution for such a problem. Given a group A and two
morphisms

G
g // A Aut(G)hoo

such that, for every f ∈ Aut(G), the diagram

G
g //

f

²²

A

Ih(f)

²²
G g

// A

(1)

commutes, there is a unique morphism γ : Hol(G) → A such that γ · in1 = g and
γ · in2 = h (just put γ(x, f) = g(x)h(f) for x ∈ G, f ∈ Aut(G)).
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This second universal property of the holomorph is a special case of a more
general fact: the functor

o : Act → Grp

has a right adjoint
C : Grp → Act

which associates to a group A the conjugation A×A→ A: (x, y) 7→ xyx−1. Indeed,
equivariant pairs (g : G→ A, h : H → A) bijectively correspond to group homomor-
phisms γ : GoH → A: given (g, h), put γ(a, x) = g(a)h(x); conversely, precompose
γ with the canonical injections in the semidirect product. Now, if one specializes this
situation taking Aut(G) as group H and the evaluation Aut(G)×G→ G as action,
then the condition on (g, h) to be equivariant precisely says that for all f ∈ Aut(G),
diagram (1) commutes. (Note that, via the equivalence Act ' Pt, the adjunction
o a C corresponds to the adjunction U∗ a ∆: Pt → Grp, where U∗(A,H,α, β) = A
and ∆(A) is the diagonal point.)

2.5. Holomorph and the Mal’tsev operation
The holomorph of a group G can be described also via the canonical Mal’tsev
operation. For the sake of completeness, we recall this description here, but leave
the generalization to categorical groups as an exercise for the reader. Recall that
the canonical Mal’tsev operation on G is the ternary operation defined by

m : G×G×G→ G m(x, y, z) = x− y + z

Let us call Mal(G) the subgroup of the group of transformations on G given by
those bijections t : G→ G such that t(x− y + z) = t(x)− t(y) + t(z). There is an
equivariant pair

g : G→Mal(G) gx(y) = x+ y; h : Aut(G) →Mal(G) h = inclusion.

By the second universal property of the holomorph, from the pair (g, h), we get a
morphism

γ : Hol(G) →Mal(G) γ(x, f) = gx · f.
The morphism γ is an isomorphism: if we put t = gx · f, we can obtain x and f
using the formulae x = t(0) and f = g−1

t(0) · t.

3. Preliminaries on categorical groups

3.1. The 2-category of categorical groups
Basic facts on categorical groups can be found in [1, 7, 14, 20, 21, 24, 26].
Let us recall that a categorical group G = (G,⊗, I, . . .) is a monoidal groupoid in
which the objects are invertible, up to isomorphism, with respect to the tensor
product. This means that for each object A in G, there is an object A∗ and a
morphism εA : A∗ ⊗A→ I. One can then choose a morphism ηA : I → A⊗A∗ so
that (A∗, A, ηA, εA) is a duality. Extending this to arrows, one gets an op-monoidal
equivalenceG→ Gop. Categorical groups are the objects of a 2-category CG. Homo-
morphisms of categorical groups are just monoidal functors, and 2-cells are monoidal
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natural transformations (which always are natural isomorphisms). A point of nota-
tion: if F : G→ H is a monoidal functor, its monoidal structure is denoted by
µF = µF

X,Y : F (X ⊗ Y ) → F (X)⊗ F (Y ) (a canonical arrow µ0 = µF
0 : F (I) → I can

be deduced).

3.2. The 2-category of split extensions
The kernel (N (F), eF, λ

F) of a homomorphism F : G→ H (see [21]) is the universal
solution, in the sense of a bilimit, to the problem of finding a categorical group K, a
homomorphism G and a 2-cell φ as in the following diagram, where 0 is the functor
sending each arrow of K on the identity of the unit object of H,

K
G

//

0

##
G

F
//

φ
KS

H

An explicit description of the kernel is provided by the comma-category whose
objects are pairs (A ∈ G, a : F (A) → I) and whose arrows are arrows f : A→ B
in G such that a = bF (f). The monoidal structure of N (F) is defined from those
of G and F in the only sensible way. The functor eF : N (F) → G is the canonical
forgetful functor, and the 2-cell λF : FeF ⇒ 0 is λF

(A,a) = a.
Using kernels, we can define 2-exactness and extensions [21], [23].

Definition 3.1. Consider the following diagram in CG

A
F

//

0

##
B

G
//

η
KS

C

1. The triple (F, η,G) is 2-exact if the factorization of F through the kernel of
G is a full and essentially surjective functor.

2. The 2-exact triple (F, η,G) is an extension of categorical groups if F is faithful
and G is essentially surjective on objects.

Observe that if (F, η,G) is an extension, the factorization of F through the kernel
of G is an equivalence.

Extensions of a categorical group C by a categorical group A are the objects of
the 2-category Ext(C,A). If (F, η,G) and (F′, η′,G′) are two such extensions, an
arrow between them is a triple (σ,E, τ) in CG as in the following diagram,

B
G

%%JJJJJJJJJJJ

E

²²

A

F

99ttttttttttt

F′ %%JJJJJJJJJJJ C

B′
G′

99ttttttttttt

σ

£­ ±
±±
±±

±±
±±
±

τ

BJ
±±±±±

±±±±±

with σ and τ compatible with η and η′. Finally, if (σ,E, τ) and (σ′,E′, τ ′) are arrows
as above, a 2-cell θ between them is a 2-cell θ : E=⇒E′ in CG compatible with σ, σ′
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and with τ, τ ′. In analogy with the case of groups, the 2-category Ext(C,A) is a
2-groupoid [23], [6]: 1-cells are equivalences and 2-cells are isomorphisms.

For our purposes, we are interested in a sub-2-category of Ext(C,A), namely,
that of split extensions. A split extension is an extension for which the epi part
admits a (not necessarily strict) section in CG. More precisely, a split extension is
a 5-tuple (F, η,G,S, ς), where (F, η,G) is a categorical group extension, S : C→ B
is a homomorphism and ς : GS=⇒1C is a 2-cell in CG. An arrow between two split
extensions is a 4-tuple (σ,E, τ, s) : (F, η,G,S, ς) → (F′, η′,G′,S′, ς ′), where (σ,E, τ)
is an arrow in Ext(C,A), and s : ES=⇒S′ is a 2-cell of CG making commutative
the following diagram

G′ES
G′s +3

τS

®¶

G′S′

ς′

®¶
GS ς

+3 1C

A 2-cell θ : (σ,E, τ, s) → (σ′,E′, τ ′, s′) is a 2-cell of Ext(C,A) compatible with s, s′.
The 2-category of split categorical group extensions of C by A will be denoted by
Extsplit(C,A).

3.3. Actions and semidirect product
Let H be a categorical group. Recall from [15] that an H-categorical group is a
categorical group G equipped with a homomorphism

Σ : H→ Eq(G)

or, equivalently, equipped with an action, that is, a functor

ac : H×G→ G , (X,A) 7→ XA = ΣX(A)

and three natural isomorphisms

ψ = ψX,A,B : X(A⊗B) →X A⊗ XB, φ = φX,Y,A : X⊗YA→X (YA),

φ0 = φ0,A : IA→ A

satisfying suitable coherence conditions. Note that a categorical group always acts
on itself by conjugation [7], [23]

I : G→ Eq(G),

where IX is the monoidal auto-equivalence A 7→ (X ⊗A)⊗X∗.
Let G be an H-categorical group. The semidirect product GoH has the prod-

uct G×H as underlying groupoid. The tensor product is (A,X)⊗ (B, Y ) = (A⊗
XB,X ⊗ Y ), and constraints and inverses are constructed using ψ, φ, φ0 and those
of G and H. Semidirect product provides the typical example of split extension.
Indeed,

(Q,=,P,S,=): G
Q // GoH

P // H
S

oo

is a split extension, where Q,S,P are the canonical injections and projections.
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4. Actions and points

In this section, we introduce the 2-category Pt(CG) of points in CG and the
2-category Act(CG) of categorical group actions and prove that they are biequiv-
alent.

4.1. The general setting
The 2-category Pt(CG) consists of the following data: objects are 5-tuples
(A,H,A,B, α) in CG:

A
A // H
B

oo , α : AB=⇒1H.

Arrows are 4-tuples (F,H, ϕ, χ) : (A,H,A,B, α) → (A′,H′,A′,B′, α′) in CG:

F : A→ A′, H : H→ H′, ϕ : FB=⇒B′H, χ : A′F=⇒HA

such that the following diagram commutes

A′FB

A′ϕ
®¶

χB +3 HAB

Hα

®¶
A′B′H

α′H
+3 H.

Finally, a 2-cell (δ, ε) : (F,H, ϕ, χ)=⇒(F′,H′, ϕ′, χ′) is a pair of 2-cells δ : F=⇒F′

and ε : H=⇒H′ in CG such that the following diagrams commute

FB
δB +3

ϕ

®¶

F′B

ϕ′

®¶
B′H

B′ε
+3 B′H′

A′F
A′δ +3

χ

®¶

A′F′

χ′

®¶
HA

εA
+3 H′A.

Extending the definition of the 2-category of H-categorical groups, given in [11],
in order to let H change, we get the 2-category Act(CG) of categorical groups
actions. It consists of the following data: the objects are categorical group actions;
a morphism between the H-categorical group G and the H′-categorical group G′ is
a pair of homomorphisms

R : H→ H′ T : G→ G′

in CG, equivariant with respect to the actions, that is, equipped with a natural
transformation ρ

H×G ac //

R×T

²²

G

T

²²

ρ

wÄ vv
vv

v
vv

vv
v

H′ ×G′
ac′

// G′
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making the following diagrams commute:

T (X⊗YA)
ρ //

T (φ)

²²

R(X⊗Y )TA
µR

TA // R(X)⊗R(Y )TA

φ′

²²
T (X(YA)) ρ

// RXT (YA) ρ
// RX(RYA)

T (IA)
Tφ0 //

ρ

²²

TA

RITA
µR
0 TA

// ITA

φ′0

OO

T (X(A⊗B))
Tψ //

ρ

²²

T (XA⊗X B)
µT

// T (XA)⊗ T (XB)

ρ⊗ρ
²²

RXT (A⊗B)
RXµT

// RX(TA⊗ TB)
ψ′

// RXTA⊗RX TB

Finally, a 2-cell (R,T, ρ)=⇒(R′,T′, ρ′) is a pair of 2-cells α : R=⇒R′ and
β : T=⇒T′ in CG such that the following diagram commutes:

T (XA)
βX A //

ρX,A

²²

T ′(XA)

ρ′X,A

²²
RXTA αX βA

// R′XT ′A

4.2. The main biequivalence
The semi-direct product described in Section 3.3 is part of a 2-functor

o: Act(CG) → Pt(CG),

which may be viewed as follows:

H×G ac //

R×T

²²

G

T

²²

ρ

wÄ vv
vv

v
vv

vv
v

H′ ×G′
ac′

// G′

7→
GoH

P //

ToR

²²
(ϕ,χ)

H
S

oo

R

²²
G′ oH′

P′ // H′
S′

oo

More precisely, given an action ac : H×G→ G, its image is the point

GoH
P // H
S

oo , PS = 1H
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Given a 1-cell (R,T, ρ) from H×G→ G to H′ ×G′ → G′ in Act(CG), we get a
1-cell (ToR,R, ϕ, χ) in Pt(CG), with

ToR((A,X)⊗ (B, Y ))
µToR

(A,X),(B,Y ) // ToR((A,X))⊗ ToR((B, Y ))

T (AXB), R(XY )
(µ1,µ2)

// (TARXTB,RX RY )

(where µ1 = (TA⊗ (ρX,B)) ◦ µT
A,XB and µ2 = µR

X,Y ) ϕX = (µT
0 , id) : (TI,RX) →

(I,RX) and χ(A,X) = id : RX → RX. Finally, the image of a 2-cell (α, β) of
Act(CG) is the 2-cell ((β, α), α) of Pt(CG).

Proposition 4.1. The 2-functor

o : Act(CG) → Pt(CG)

is a biequivalence of 2-categories.

Proof. We split the proof into two lemmas. Recall that a 2-functor F : A → B is a
biequivalence if it induces equivalences on hom-categories, and if it is biessentially
surjective, that is, for every object Y of B, there exists an object X of A and an
equivalence F(X) → Y .

Lemma 4.2. Consider two objects ac : H×G→ G and ac′ : H′ ×G′ → G′ in
Act(CG). The induced functor on hom-categories

Γ = oac,ac′ : HomAct(CG)




H×G
ac

²²
G

,

H′ ×G′

ac′

²²
G′




→ HomPt(CG)




GoH

P

²²
H

S

OO
,

G′ oH′

P′

²²
H′

S′

OO




is an equivalence.

Proof. Γ is clearly faithful. As far as fullness is concerned, consider (R,T, ρ) and
(R′,T′, ρ′) in HomAct(CG)(ac, ac′), and (δ, ε) : Γ(R,T, ρ)=⇒Γ(R′,T′, ρ′). Observe
that δ has two components, say

δA,X = (δ(1)A,X , δ
(2)
A,X) : (TA,RX) → (T ′A,R′X).

Therefore, we get α : R=⇒R′ by αX = δ
(2)
I,X , and β : T=⇒T′ by βA = δ

(1)
A,I . Using

that δ is monoidal, one checks that (α, β) : (R,T, ρ)=⇒(R′,T′, ρ′) is a 2-cell in
Act(CG). Moreover, using that (δ, ε) is a 2-cell in Pt(CG), one checks that δ(2)A,X =

εX and δ(1)A,X = δ
(1)
(A,I), so that Γ(α, β) = (δ, ε).
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We now prove that Γ is essentially surjective. Consider

(F,H,ϕ, χ) ∈ HomPt(CG)




GoH

P

²²
H

S

OO
,

G′ oH′

P′

²²
H′

S′

OO




We look for (R,T, ρ) ∈ HomAct(CG)(ac, ac′) and a 2-cell (δ, ε) : Γ(R,T, ρ)=⇒
(F,H, ϕ, χ) in Pt(CG). One can choose R = H : H→ H′ and T = F1Q : G→ Go
H→ G′, where F1, F2 are the components of F : GoH→ G′ oH′. The monoidal
structure of T is given by the first component of the following chain of natural
isomorphisms:

(F1(A, I)⊗ F1(B, I), I) ' (F1(A, I), I)⊗ (F1(B, I), I) '
' (F1(A, I), F2(A, I))⊗ (F1(B, I), F2(B, I)) = F (A, I)⊗ F (B, I) '
' F ((A, I)⊗ (B, I)) ' F (A⊗B, I) = (F1(A⊗B, I), F2(A⊗B, I)),

where the second isomorphism is provided by χ, and the other isomorphisms are
canonical. Similarly, the 2-cell ρ is the first component of the following chain of
natural isomorphisms:

(F1(XA, I), F2(XA, I)) = F (XA, I) ' F ((I,X)⊗ (A, I)⊗ (I,X∗)) '
' F (I,X)⊗ F (A, I)⊗ F (I,X∗) =

= (F1(I,X), F2(I,X))⊗ (F1(A, I), F2(A, I))⊗ (F1(I,X∗), F2(I,X∗)) '
' (I,H(X))⊗ (F1(A, I), I)⊗ (I,H(X∗)) ' (H(X)F1(A, I), I),

where the third isomorphism is provided by ϕ on the first component of the first and
third objects, by χ on the second component of the first and third objects and by
χ again on the second object. The other isomorphisms are canonical. It remains to
construct the 2-cell (δ, ε): one takes for ε the identity, and δ is given by the following
chain of natural isomorphisms:

(F1(A, I),H(X)) ' (F1(A, I), F2(I,X)) ' (F1(A, I), I)⊗ (I, F2(I,X)) '
' (F1(A, I), F2(A, I))⊗ (F1(I,X), F2(I,X)) = F (A, I)⊗ F (I,X) '

' F ((A, I)⊗ (I,X)) ' F (A,X)

where the first isomorphism is provided by χ, the third isomorphism is provided by
χ on the first object and by ϕ on the second object, and the other isomorphisms
are canonical. We leave to the reader the (quite long) verification that (R,T, ρ) is
a 1-cell in Act(CG) and (δ, ε) is a 2-cell in Pt(CG).

Lemma 4.3. The 2-functor

o : Act(CG) → Pt(CG)

is biessentially surjective.
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Proof. Consider an object

A
A // H
B

oo , α : AB=⇒1H

in Pt(CG). There is an action H×N (A) → N (A) which sends a pair (X, (A, a))
on the object B(X)⊗A⊗B(X)∗ with structural map

A(B(X)⊗A⊗B(X)∗) ' A(B(X))⊗A(A)⊗ A(B(X)∗)
1⊗a⊗1 // A(B(X))

⊗A(B(X)∗) ' I.

We look for homomorphisms F and H as in the following diagram

N (A)oH
P //

F

²²

H
S

oo

H

²²
A

A // H
B

oo

together with 2-cells ϕ : FS=⇒BH and χ : AF=⇒HP. We take as H the identity
functor and we define F(A, a,X) = A⊗B(X). The monoidal structure of F comes
from that of B in the following way:

F((A, a,X)⊗ (B, b, Y )) = A⊗B(X)⊗B ⊗B(X)∗ ⊗B(X ⊗ Y )
' A⊗B(X)⊗B ⊗B(X)∗ ⊗B(X)⊗B(Y )
' A⊗B(X)⊗B ⊗B(Y )
= F(A, a,X)⊗ F(B,B, Y )

Finally, we put

ϕX : F(S(X)) = I ⊗B(X) ' B(X)

χ(A,a,X): A(F(A, a,X)) ' A(A)⊗ A(B(X))
a⊗αX // I ⊗X ' X

= P(A, a,X).

Since the kernel of P is equivalent to the kernel of A, the short five lemma for
categorical groups [23] implies that (F, 1H, ϕ, χ) is an equivalence in Pt(CG).

From the proof of the previous lemma, we can extract a 2-functor

K: Pt(CG) −→ Act(CG)

quasi-inverse of the 2-functor o: Act(CG) → Pt(CG). The 2-functor K acts as
illustrated in the following diagram:

A
A //

F

²²
(ϕ,χ)

H
B

oo

H

²²
A′

A′ // H′
B′

oo

7→
H×N (A) ac //

H×FI

²²

N (A)

FI

²²

ρ

t| qqqqqq
qqqqqq

H′ ×N (A′)
ac′

// N (A′)
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where FI is the restriction of F to the kernel, that is, FI(A, a) = (F (A),H(a) · χA),
and the component of ρ at (X,A, a) is given by the composition

F (B(X)⊗A⊗B(X)∗)

µF

²²
F (B(X))⊗ F (A)⊗ F (B(X))∗

ϕX⊗1⊗ϕX∗
²²

B′(H(X))⊗ F (A)⊗B′(H(X))∗

Finally, for a 2-cell (δ, ε) in Pt(CG), K(δ, ε) = (ε, δ), where δ is the restriction of δ
to FI.

4.3. Induced biequivalences
There are forgetful 2-functors U∗: Pt(CG) → CG and O: Act(CG) → CG defined
in the following diagrams

U∗ : Pt(CG) −→ CG

A
A //

F

¹¹

F′

©©

H

δ +3

B
oo

H

¹¹

H′

©©

ε +3

A′
A′ // H′
B′

oo

7→

H

H′

©©

H

¹¹
H′

ε +3

O : Act(CG) −→ CG

H×G ac //

R×T

»»

R′×T′

§§

G

(α,β) +3 T

¹¹

T′

©©

β +3ρ

ρ′

u} tttt
tttt

H′ ×G′
ac′

// G′

7→

H

R′

©©

R

¹¹
H′

α +3

If H is a fixed categorical group, the strict 2-fibres Pt(H) and Act(H) of U∗ and O
on H can be described in the following way:

– Objects, 1-cells and 2-cells in Pt(H) are of the form

δ : (F, ϕ, χ)=⇒(F′, ϕ′, χ′) : (A,A,B, α) ⇒ (A′,A′,B′, α′),

where (A,H,A,B, α), (A′,H,A′,B′, α′), (F, 1H, ϕ, χ), (F′, 1H, ϕ′, χ′) and
(δ, 1H) are objects, 1-cells and 2-cells in Pt(CG).

– Objects, 1-cells and 2-cells in Act(H) are of the form

β : (T, ρ)=⇒(T′, ρ′) : (G, ac) ⇒ (G′, ac′),
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where (H,G, ac), (H,G′, ac′), (1H,T, ρ), (1H,T′, ρ′) and (1H, β) are objects, 1-
cells and 2-cells in Act(CG).

Since the diagram

Act(CG)

O %%KKKKKKKKK
Pt(CG)Koo

U∗zzttttttttt

CG

commutes, from Proposition 4.1 we get the following result.

Corollary 4.4. The biequivalence

K : Pt(CG) −→ Act(CG)

restricts to a biequivalence

K′ : Pt(H) −→ Act(H).

Another forgetful 2-functor can be defined now:

U : Act(H) −→ CG

H×G ac //

1H×T

»»

1H×T′

§§

G

(1,β) +3 T

¹¹

T′

©©

β +3ρ

ρ′

v~ ttt
t

ttt
t

H×G′
ac′

// G′

7→

G

T′

©©

T

¹¹
G′

β +3

Composing K′ and U , we get a 2-functor

N : Pt(H) −→ CG

A
A //

F

¹¹

F′

©©

H

δ +3

B
oo

1H

²²
A′

A′ // H
B′

oo

7→

N (A)

FI
′

©©

FI

¹¹
N (A′)

δ +3

where δ : FI=⇒FI
′ are the restrictions of δ : F=⇒F′ to the kernel. Now, let us fix a

categorical group G and look at the 2-fibres of U and N on G:

– The strict 2-fibre of U on G is the groupoid (= locally discrete 2-groupoid)
whose objects are actions ac : H×G→ G of H on G and whose arrows are nat-
ural transformations ρ : ac=⇒ac′ such that (1H, 1G, ρ) is a 1-cell in Act(CG).

– The homotopy 2-fibre of N on G is precisely the 2-groupoid of split extensions
Extsplit(H,G) described in Section 3.2.
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Corollary 4.5. The biequivalence

K′: Pt(H) −→ Act(H)

restricts to a biequivalence

K′′: = Extsplit(H,G) −→ Act(H,G).

Proof. Since N = U · K′, the biequivalence K′ restricts to a biequivalence between
the strict 2-fibres on G. Moreover, the 2-functor N is a fibration of 2-groupoids, so
that the strict fibre and the homotopy fibre are biequivalent [13].

5. Universal properties of the holomorph of a categorical
group

5.1. Birepresentability
To generalize the first universal property of the holomorph to our context, we need
the following birepresentability criterion, established in [25].

Proposition 5.1. Let C be a bicategory. Consider the 2-category Cat of small cat-
egories and a morphism

F : Cop → Cat,

i.e. F preserves composition and identities up to natural coherent invertible 2-cells
(superscript “op” refers to notation in [25], meaning that F inverts 1-cells but not
2-cells). The following conditions are equivalent:

1. there exist an object R of C and a natural equivalence θ : F=⇒C(−, R), i.e. an
equivalence θ in Hom(Cop,Cat)

2. there exist an object R of C and an object a ∈ F(R) such that

• for every object H of C, and for every object x ∈ F(H), there exist an
arrow h : H → R in C and an isomorphism u : x→ F(h)(a) in F(H)

• given two arrows h′ : H → R, α: F(h)(a) → F(h′)(a), there exists a unique
2-cell σ : h=⇒h′ such that the component at a of the natural transforma-
tion F(σ) is α.

The aim of this section is to show that split extensions of categorical groups are
represented by the holomorph split extension. In order to present the result, a few
preliminary notions are needed.

5.2. Pullbacks of categorical groups
Given two homomorphisms of categorical groups F : B→ A and G : C→ A, what we
call here their pullback is a universal (in the sense of bilimits) 4-tuple (P,F′,G′, $)
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represented by the following diagram in CG

P F′ //

G′

²²

B
$

{¤ ÄÄ
ÄÄ

ÄÄ
Ä

ÄÄ
ÄÄ

ÄÄ
Ä

F

²²
C

G
// A

This means that for any other diagram

D H //

K

²²

B
ϕ

{¤ ÄÄ
ÄÄ

ÄÄ
Ä

ÄÄ
ÄÄ

ÄÄ
Ä

F

²²
C

G
// A

there is a homomorphism D : D→ P, and two 2-cells ϕH : H=⇒F′D and
ϕK : K=⇒G′D such that the following diagram commutes

FH
FϕH +3

ϕ

®¶

FF′D

$D

®¶
GK

GϕK

+3 GG′D

Moreover, for any other triple (D′, ϕ′H , ϕ
′
K) satisfying the same property, there is a

unique 2-cell ψ : D=⇒D′ such that the following diagrams commute

F′D
F′ψ +3 F′D′

H

ϕH

]e DDDDDDD

DDDDDDD ϕ′H

8@yyyyyyyy

yyyyyyyy

G′D
G′ψ +3 G′D′

K

ϕK

^f DDDDDDDD

DDDDDDDD ϕ′K

8@yyyyyyyy

yyyyyyyy

In [6], an explicit description of the pullback is given: P is the comma-groupoid
whose objects are triples (B ∈ B, u : FB → GC,C ∈ C); an arrow in P is a pair
fB : B → B′, fC : C → C ′ such that the following square commutes

FB
u //

FfB

²²

GC

GfC

²²
FB

u′
// GC

Tensor products of B and C extend naturally to P, so that P is indeed a categorical
group. Homomorphism F′ forgets the C side and G′ forgets the B side, and the
2-cell $ is given by $(B,u,C) = u.

Many properties of pullbacks can be revisited in dimension 2 just using the
universal property of the bilimit. The relevant one for our purpose is that, given a
homomorphism F : K→ H of categorical groups and a point

A
A // H
B

oo , α : AB=⇒1H
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over H, pulling back along F produces a point over K. Once an explicit description
of the pullback is chosen, this produces a 2-functor

F∗ : Pt(H) → Pt(K).

Moreover, such a 2-functor induces a 2-functor

Extsplit(F,G) : Extsplit(H,G) → Extsplit(K,G).

5.3. The holomorph of a categorical group
LetG be a categorical group. The holomorph ofG, denotedHol(G), is the semidirect
product Go Eq(G), with action given by evaluation. In other words, the holomorph
of G fits into a split extension of categorical groups

H = (G // Hol(G) // Eq(G)oo ),

that is, an object of Extsplit(Eq(G),G).
Recall from [2] that the classifying category of a bicategory C has the same

objects of C, and arrows are 2-isomorphism classes of 1-cells of C. Let us denote by
EXTsplit(H,G) the classifying category of Extsplit(H,G) (in fact, EXTsplit(H,G)
is a groupoid, since it is the classifying category of a 2-groupoid). The biequivalence

K′′ : Extsplit(H,G) −→ Act(H,G)

of Corollary 4.5 induces an equivalence of groupoids

EXTsplit(H,G) −→ Act(H,G).

Moreover, the previous discussion on pullbacks of categorical groups allows us to
convert this equivalence into a natural equivalence

EXTsplit(−,G)=⇒Act(−,G).

Finally, let us observe that the correspondence between actions of H on G and
homomorphisms H→ Eq(G), already quoted in Section 3.3, is indeed part of an
equivalence

Act(H,G) → HomCG(H, Eq(G)).

Once again, this equivalence can be converted into a natural equivalence

Act(−,G) → HomCG(−, Eq(G)).

Putting together the previous natural equivalences and applying the birepresentabil-
ity criterion of Section 5.1 to the 2-functor

EXTsplit(−,G) : CGop → Cat,

we get the following universal property of the holomorph.

Proposition 5.2. Consider two categorical groups G and H.
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1. For any split extension

E = ( G // A
A // H
B

oo , α : AB=⇒1H),

there is a 1-cell Σ : H→ Eq(G) in CG and an isomorphism between the given
split extension and the split extension obtained pulling back the holomorph split
extension

H = ( G // Hol(G) // Eq(G)oo )

along Σ, say u : E → EXTsplit(Σ,G)(H).
2. Moreover, for any other 1-cell Σ′ : H→ Eq(G) in CG and for any other iso-

morphism u′ : E → EXTsplit(Σ′,G)(H), there is a unique 2-cell σ : Σ=⇒Σ′ in
CG such that EXTsplit(σ,G)(H) · u = u′.

Remark 5.3. In spite of the fact that CG is a 2-category, in order to apply the 2-
dimensional representability criterion of Section 5.1, it is necessary to pass through a
quotient that identifies isomorphic 1-cells. Indeed, representability of Extsplit(−,G)
lives in a 3-categorical context when categorical groups are seen as bicategories
with only one object. Nevertheless, we decided to avoid 3-categorical complications
because the 2-dimensional representability recaptures the universality of the holo-
morph construction we are interested in. The reason is that the wider flexibility
available in 3-categories trivializes because of local discreteness of categorical group
actions.

5.4. Holomorph and inner autoequivalences
Composing the biequivalence o : Act(CG) → Pt(CG) of Section 4.2 with the for-
getful 2-functor U∗ : Pt(CG) → CG, U∗(A,H,A,B) = A, we get a 2-functor

o : Act(CG) −→ CG.

Moreover, the conjugation of a categorical group described in Section 3.3 plainly
extends to a 2-functor

C : CG −→ Act(CG).

Proposition 5.4. The 2-functor C : CG → Act(CG) is a right biadjoint to the
2-functor o : Act(CG) → CG.

Proof. We refer to [25] for the definition of biadjunction and we limit ourselves to
the description of the natural equivalence between hom-categories

HomAct(CG)(ac : H×G→ G, C(A)) ' HomCG(GoH,A).

Given a morphism of actions

H×G ac //

R×T

²²

G

T

²²

ρ

x¡ xx
xx

x
xx

xx
x

A× A
conj

// A



Homology, Homotopy and Applications, vol. 8(1), 2006 164

we define Γ : GoH→ A by Γ(A,X) = T(A)⊗R(X). The monoidal structure of
Γ is given by

T(A⊗ XB)⊗R(X ⊗ Y ) ' // TA⊗TXB ⊗RX ⊗RY

1⊗ρX,B⊗1⊗1

²²
TA⊗RX ⊗TB ⊗RY

' // TA⊗RX ⊗TB ⊗RX∗ ⊗RX ⊗RY

Given a 2-cell (α : R ⇒ R′, β : T ⇒ T′) in Act(CG), we get a 2-cell Γ ⇒ Γ′ in CG
by βA ⊗ αX : TA⊗RX → T′A⊗R′X. Conversely, given a morphism Γ : GoH→
A, we get R : H→ A and T : G→ A precomposing Γ with the canonical injections of
H and G into the semidirect product. Finally, consider (X,B) ∈ H×G. We obtain
the natural transformation ρ tensoring the following composition with RX∗, which
is constructed using the monoidal structure of Γ

TXB ⊗RX = Γ(XB, I)⊗ Γ(I,X) // Γ((XB, I)⊗ (I,X))

'
²²

RX ⊗TB = Γ(I,X)⊗ Γ(B, I) Γ((I,X)⊗ (B, I))oo

Now, observe that the canonical morphisms

G
in1 // Hol(G) Eq(G)

in2oo

are equipped with a natural family of 2-cells

G
in1 //

F

²²

Hol(G)
ϕF

x¡ yy
yy

yy
yy

y

yy
yy

yy
yy

y
Iin2(F)

²²
G

in1

// Hol(G)

where F varies in Eq(G). If, in the equivalence described in the proof of Proposition
5.4, we take as the action the evaluation Eq(G)×G→ G, we obtain the second
universal property of the holomorph: for any triple

G T // A Eq(G)Roo

in CG equipped with a natural family of 2-cells

G T //

F

²²

A
ρF

{¤ ~~
~~

~~
~

~~
~~

~~
~

IR(F)

²²
G

T
// A
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there is a triple (α,Γ, β) in CG

Hol(G)

Γ

²²

α

⇓G

in1

<<yyyyyyyyy

T
##FF

FF
FF

FF
FF

Eq(G)

in2

ddIIIIIIIII

R
yytttttttttt

A

β

⇓

which renders commutative the following diagram of 2-cells, where the unlabelled
2-cell is determined by the monoidal structure of Γ

IΓ(in2(F)) Γ in1

IβF
Γ in1 +3 IR(F) Γ in1

IR(F) α +3 IR(F) T

ρF

®¶
Γ Iin2(F) in1

KS

ΓϕF

+3 Γ in1 F
αF

+3 TF

Moreover, if (α′,Γ′, β′) is another such a triple, then there is a unique 2-cell ω : Γ ⇒
Γ′ in CG making commutative the following diagrams

Γ in1
ω in1 +3

α
Á&

DD
DD

DD
DD

DD
DD

DD
DD

Γ′ in1

α′x¡ yy
yy

yy
yy

yy
yy

yy
yy

T

Γ in2
ω in2 +3

β Á&
DD

DD
DD

DD

DD
DD

DD
DD

Γ′ in2

β′x¡ yy
yy

yy
yy

yy
yy

yy
yy

R
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