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Abstract

This paper is prompted by work of Grandjeian and Ladra on homol-
ogy crossed modules. We define the homology of a crossed module in
dimensions one and two via the equivalence of categories with group
objects in groupoids. We show that for any perfect crossed module, its
second homology crossed module occurs as the kernel of its universal
central extension as defined by Norrie. Our first homology is the same
as that defined by Grandjein and Ladra, but the second homology
crossed modules are in general different. However, they coincide for
aspherical perfect crossed modules. Our methods can in principle be
applied to define a homology crossed module in any dimension.

1. Introduction

Crossed modules are algebraic models of homotopy 2—types and so are important in homo-
topical algebra. They are also of algebraic interest as the first stage in “higher dimensional
group theory” [2]. To develop this theory, we require definitions of basic group concepts,
adapted to the higher dimensional setting and reflecting the extra structure involved, and
generalisations of the key group theorems about these concepts. The Ph.D. thesis of K.J. Nor-
rie [19] pursued this idea, concentrating on the theory of automorphism groups, but including
analogues of the centre, the commutator subgroup, abelianisation, central extensions, and
other related concepts for crossed modules. Norrie’s most important results were published
n [20]. Recent further development has been carried out by Doncel-Judrez, Grandjedn and
Ladra [6, 12, 13] with emphasis on the low-dimensional homology of crossed modules.

The category of crossed modules is equivalent to the category of group objects in the
category of groupoids [4, 16], and using this equivalence, we can regard a crossed module as
a semidirect product C and apply group constructions to C'. When the result of some group
construction is again equivalent to a crossed module, we have a natural candidate for the
construction for crossed modules. This approach may work for non-functorial constructions
such as the centre, as well as for functors such as abelianisation, and Norrie’s definitions of
the centre, the commutator subcrossed module, and abelianisation, all follow from this recipe.
However, the analogue of the automorphism group — Norrie’s actor crossed module — is not
obtained this way. The full automorphism group Aut(C') does not necessarily respect all the
extra structure coming from a crossed module, and Norrie demonstrated that a subgroup A
of Aut(C) identified by Lue [17] was the appropriate “automorphism object”. A category-
theoretic interpretation of A was given in [10].

Grandjedn and Ladra [12, 13] have extended Norrie’s work on central extensions for crossed
modules and have defined the second homology crossed module by means of a Hopf formula
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applied to a projective presentation of a crossed module. However, the direct functorial ap-
proach is available: the homology group H»>(C) is equivalent to an abelian crossed module
that is an alternative candidate for the second homology crossed module. In this paper we
investigate the properties of this candidate and its relationship to the Grandjedn—Ladra con-
struction. We show that our second homology occurs as the kernel of Norrie’s universal central
extension for perfect crossed modules, and coincides with the Grandjein—Ladra construction
when applied to an aspherical perfect crossed module. Finally we relate the second homology
to crossed module descriptions of relative algebraic K—theory.

An alternative approach to the homology and cohomology of crossed modules has been
developed by Carrasco, Cegarra and Grandjedn [5]. They successfully generalise the Barr-
Beck cotriple homology and cohomolgy of groups [1] to crossed modules, based on a tripleable
underlying functor to the category of sets. The Carrasco, Cegarra and Grandjedn second
homology crossed module again coincides with the Grandjedn—Ladra construction (and so with
the second homology developed in the present paper) for aspherical perfect crossed modules.
It would be interesting to know the precise relationships between these three constructions:
we make some remarks on this in section 4.

1.1. Remark on notation
Our chosen convention for a semidirect product with G acting on 7" on the right gives T'x G
the composition (s, g)(¢,h) = (s"t,gh) ,s,t € T,g,h € G. In particular, (s,g) = (1, g)(s, 1).

2. Low-dimensional homology for crossed modules

A crossed module (T, G, 0) consists of a group homomorphism 0 : T — G together with a
group action of G on T satisfying, for all s,¢ € T and g € G,

a(t?) =g o(t)g,
t9(5) — g1,

The survey [2] is a good reference for the theory of crossed modules and their applications in
homotopy theory.

There is an equivalence between the category of crossed modules and the category of group
objects in the category of groupoids [4] (see also [16]). A crossed module (T, G, 0) is equivalent
to the group C =T x G carrying the groupoid structure with source and target maps

oc:TxG—G;o(t,g) =got),
7:TxG—G;7(t,g) =g
and with composition
(s,h) - (t,g) = (ts,9)

defined whenever h = gd(t).
The centre Z(C) = T x (stabg(T) N Z(G)) is equivalent to the crossed module

O |ra: TY — stabg(T) N Z(G),

which is Norrie’s definition of the centre, and likewise the commutator subgroup of C, [C,C] =
[T,G] x [G, @] is equivalent to the crossed module

8 |zt [T,G] - [G, G,
which is Norrie’s definition of the commutator subcrossed module. The abelianisation of C,
Hy(C)=C" =Tg x G*
is equivalent to the crossed module
0:Ta — G¥ ,
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in which 0 is induced by 8 and G® acts trivially on T5. So we obtain the abelianised , or first
homology crossed module

Hl(TaGaa) = (TG,Gab)g)'

This coincides with the definition of H1(T,G,0) given in [19] and [13]. To define the second
homology crossed module, we proceed in the same way.

Proposition 2.1. The second homology group H>(C) is equivalent to a crossed module o, :
Y — Hy(G) of abelian groups, where o, is induced by o, and X fits into an exact sequence

Proof. The exact sequence for ¥ is a standard result obtained from the Lyndon-Hochschild-
Serre spectral sequence for Hy(C') = Hy(T xG), where Hy(C) splits as ¥® H2(G). Now Hy(C)
carries a groupoid structure with source and target maps o., 7, : H2(C) — H>(G) induced by
o and 7. The equivalent crossed module is o, : ker 7. — H3(G), and since 7, is the projection
to Hy(G) we see that ker 7, = X. O

We denote the second homology crossed module identified in proposition 2.1 by H»(T', G, 9),
to distinguish it from the Grandjean—Ladra version, which we shall discuss below and denote
by HSL(T, G, ).

2.1. Examples

(a) A group G may be regarded as a crossed module in two ways, as the inclusion i : 1 —
G of the trivial subgroup into G, and as the identity map id : G — G. In the first case,
H2(1,G, i) = (0, H2(G), 7). For the second case, we may use the isomorphism G x G — G x G
given by (g,h) — (g7'h,g). Under composition with this isomorphism, ¢ and 7 become the
projections from G x G to G. Hence

Ha(G,G,id) = (H2(G) & (H1(G) ® H1(G)), H2(G), 04),

with o, acting as the identity map on H»(G) and as the zero map on H; (G) ® H1(G).

(b) An abelian group A forms a crossed module (A4,1,0), and we have H2(A,1,0) =
(H5(A),0,0). This contrasts with H$'L (A, 1,0) which is always trivial [13].

(c) A G-module M gives a crossed module (M, G,0), for which o = 7: (m, g) — g. Hence
O |kerr, 18 trivial, and H2 (M, G,0) = (X, H2(G),0).

(d) In any central extension 0 - N — E 5 @ — 1 of groups, (E,Q,7) is a crossed
module. If Q is perfect and E = @ is its universal central extension (see [18], for example)
then Hy(Q) = H»(Q) = 0 and proposition (2.1) shows that ¥ = 0. Hence H2(Q,Q,7) =
(0, H>(Q), ).

(e) Even for free crossed modules over free groups, H» may be non-trivial. Let F' be an
arbitrary non-abelian free group, and let Y be the free crossed F-module with a single basis
element y € F, with G = F/ <y> . If y is not a proper power in F' then Hy(Y) = 0, and by
Lyndon’s Identity Theorem, H; (Y") is the free ZG—module with basis {y}. From (2.1) we see
that ¥ = H(F, Hy(Y)) = H,(F,ZG) = H, (Y, 7).

(f) If G is a classical knot group, then by Theorem 2.2 of [21], id : G — G is a free crossed
module with a one-element basis. From example (a), we have in this case H2(G,G,id) =
(Z,0,0).

(g) By Theorem 4.1 of [21], a superperfect normal subgroup N of a group G gives a projec-
tive crossed module (N, G, ) that is not free. In this case we have Ha(N, G, i) = (0, H2(G), ).

Remark 2.2. Ellis [9] defines the (co)homology groups of a crossed module (T, G, 0) as the
(co)homology of its classifying space B(T, G, 0) (see [2] for an account of the classifying space).
Ellis develops a number of interesting properties of H,.B(T, G, d), showing for example that
H,(B(T,G,0)) = Hi(cokerd), and that H.(B(1,G,i)) = H.(G). However since B(G,G,id)
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is contractible, Ho(B(G, G, id)) is always trivial, in contrast to the crossed module homology
H2(G,G,id) (and to HSE(T, G, 9)).

3. The Grandjean—Ladra homology

The Grandjedn—Ladra second homology HS'(T,G,0) of a crossed module (T,G,0) is a
crossed module (J, Ho(G), p«), where J is an abelian group given by a Hopf-type formula.
More precisely, if (T, G, 0) is presented by an £—projective presentation

(V.R,p) = (Y, F,p) = (T, G, 0)
(see [12] for the notion of E-projectives) then
g Vnly, F
- [V,R][V. F]

with the map
VNI, F] | RO[FF]
bW RV, F] (R F

induced by pu.
We replace the E—projective presentation above by the equivalent group extension

VXR—-YXF—-TxG

and consider the 5-term homology sequence (writing VR for V x R etc.)
VR
HQ(Y><F)—>H2(T><1G)%m—)Hl(YxF)%Hl(TxG)%O.

Each term splits: Hy(T' x G) = £ @ H»(G) as above, and likewise Hy((Y X F)) = B @® H»(F)
for some abelian group B, whilst H1(T x G) = Te & H1(G) and H (Y x F) =Yr ® H,(F).
Finally,

VR VR
[VR,YF] [V,Y][V,F][R,Y][R, F]
= VI (since [V,Y] C [R,Y])
[V, F][R,Y]|R, F] S
B 1% R
SWARY] R

this last splitting arising since

RN [V,Y][R,Y][R, F] = (RN[V,Y][R, Y])[R, F] (modular law)

= [R)F]
The 5-term homology sequence then splits into the direct sum of the sequences
R
Hy(F) —» H»(G) — R, F] — H{(F) - H(G) >0 (3.1
(the standard 5-term sequence for G presented as F//R) and
v
B—-Y 2 == —2Yr =Tz —0. 3.2
V.FRY] " 2

Proposition 3.1. Let (T, G, 0) be a crossed module and consider the second homology crossed
modules H2(T,G,0) = (%, H2(G),0.) and HSE(T,G,0) = (J, H2(G), ps), the latter defined
by an E-projective presentation

(V,R,p) = (Y, F,p) = (T,G,0).



Homology, Homotopy and Applications, vol. 2, No. 4, 2000 45

If Hy(Y x F) = B @ Ho(F) then there exists an exact sequence of abelian groups
B—+Y—=J—=0.
Moreover, we may assume that B fits into a short exact sequence
0— H(Y)p - B— H((F,H,(Y)) = 0,
with F a free group and Y a free crossed F—module.

Proof. The exact sequence B — ¥ — .J — 0 follows from the definition of J and the sequence
(3.2). Since HS'E(T, G, 9) is independent of the chosen £-projective presentation [12] we may
take F to be a free group mapping to G and Y to be a free crossed F—module. Then the short
exact sequence for B follows from the Lyndon-Hochschild-Serre spectral sequence for the split
extension Y x F. |

4. TUniversal central extensions

One of the achievements of [19] was the identification of the universal central extension of
a crossed module in terms of the Brown-Loday non-abelian tensor product, generalising the
description given by Brown and Loday for the group case [3]. Given two groups M and N
acting upon one another (on the right), their tensor product is the group generated by symbols
m®n,m € M,n € N subject to relations (in the modified form given in [11]):

mmo ®@n = (mp @ n™)(m n),
m®nng = (m@n)(m" ®ng).

If M and N are crossed P—-modules acting on one another via P, then they also act on M ® N
by
(m@n)™ =m'mm; ®n™, (men)™ =m™ @nj 'nn,.

Given a perfect crossed module (T, G, d), that is one that satisfies Hy (T, G,9) = (1,1,1),
Norrie [19] shows that the crossed module (T ® G,G ® G,0® id) is the universal central
extension of (T, G, d), where G acts on itself by conjugation, and G ® G acts on T'® G via the
commutator map G ® G = G ,g® h+— g th~tgh.

We can also obtain a tensor product formulation of H» (T, G, d) by using a truncated version
of the 8term homology sequence from [3]. If N is a normal subgroup of P such that N =
[N, P], and if @ = P/N, there is an exact sequence

Hs(P) = H3(Q) = ker(k : N® P - N) —» Hy(P) —» H2(Q) = 0

where K : N ®@ P — N by n® p — [n,p]. Note that following [3], we expect to see a non-
abelian ezterior product N A P in the third term. However, Theorem 2.12 of [3] shows that
ift N =[N,P] then N AP = N ® P. Moreover, the right-hand 0 arises from truncation of
the sequence at the term N/[N,P] = 0. If in addition we have a splitting @ — P, so that
P =N xQ and Hy(P) = A® H»(Q), then we obtain an isomorphism A = ker(N ® P — N).
Note that if we take N = T<T'xG = P, then  : s®(t,g9) = [(s,1),(t,9)] = (s 1t 1s9t, 1) € T.

Proposition 4.1. If (T, G, 0) is a perfect crossed module with second homology crossed module
Ho(T,G,0) = (X, H2(G),04), then there exists an isomorphism

Y2ker(T® (T xG)—>T).

In order to relate H2(T', G, 0) to Norrie’s universal central extension of crossed modules, we
need to understand the tensor product T ® (T' x G).

Proposition 4.2. For any crossed module (T, G, ), the tensor product T ® (T x G) has an
abelian normal subgroup K such that T @ (T x G) splits as the direct product

T[T xG) =K x (T ®Gq).
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Proof. A check on the preservation of defining relations shows that the mapping
id®o :s® (t,9) = s ® go(t)

defines a homomorphism T'® (T x G) — T ® G which is split by the map v : s®g — s® (1, g).
Set K = ker(id ®0). Now if &' : T ® G — T maps t ® g — t 19, we have k' o (id ®0) = &, and
Proposition 2.3 of [3] shows that (T'® (T x G), T, k) is a crossed module and so has central
kernel. Since K C ker k, the proposition follows. O

4.1. Examples

(a) Let A be an abelian group and set T = A = G with d = id and A acting trivially on
itself. Then £ = A @ A.

(b) Let M be a G—module, and let C = M x G. Then M is also a C-module, with M acting
trivially on itself. Guin [14] shows that M ® C' & M ®zc ¢ (where ¢ is the augmentation ideal
of Z(C), and under this isomorphism, the map id ®c becomes a map M ®zc ¢ - M Qza g
given by m ® (1 — (n,g)) = m® (1 — g).

Theorem 4.3. If (T,G,0) is a perfect crossed module, then the subgroup K of T ® (T x Q)
is trivial, and the map

doo: T[T xG) - ToG

is am isomorphism.
Proof. We first show that the splitting v : T®G — T®(T xG) from the proof of Proposition 4.2
is T—equivariant. Since (T',G,0) is a perfect crossed module, the map ' : T ® G — T is

surjective, and so given s € T' we may write s = k'(y) for some y € T ® G. Since (T ® G, T, k')
is a crossed module, we have, for all t € T', g € G that

(t®9)° =(t®g)" W =y (t®g)y.

Now ko v = k' and it follows that

v((t®9)”)

vy 't ®g)y) = vy r(t®g)v(y)
v(t® g)N(V(y)) =v(t® g)n'(y)
v(t® g)°.

We now claim that v is surjective. In fact we shall show that in T ® (T x G) we have, for
all s,t € T and g € G,

s® (t,9) = s® (1, go(t)). (4.1)
Rewriting (4.1) as
s© (1,9)(t,1) = s © (1,9)(1,0(t))
and expanding both sides, we see that (4.1) is equivalent to
s® (t,1) =s® (1,0(t)) (4.2)

for all s,t € T. Since T is generated by elements of the form v 'u?, (u € T, g € G), it suffices
to establish (4.2) for ¢t = u~tu9, so that 8(t) = [0(u), g].

We let A : T ® G — G be the map defined by ¢t ® g — [0(t), g]. By Proposition 2.3 of [3],
(T ®G,G, N is a crossed module. Moreover, again using Proposition 2.3 of [3], we have (with
due allowance for the change of notation from the left actions in [3]),

s@w tud1)=s0kru®(1,9)=(ue(l,9) *(ue(1,g). (4.3)
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whereas

5 © (L,[0(u), g]) = v

=wueyg) vlu®g) (by T-equivariance)
=(w®(1,9) (e (1,9). (4.4)
Comparing (4.3) and (4.4) completes the proof. O

Remark 4.4. Since K is generated by all elements s ® (¢71,8(t)), the proof of Theorem 4.3
also shows directly that K is trivial when (T',G,0) is perfect. Moreover, the proof is valid if
we assume only that 7" is G—perfect, that is T = 1.

Proposition 4.1 and Theorem 4.3 combine to show that the kernel of Norrie’s universal
central extension of a perfect crossed module is the second homology Ho of that crossed
module:

Corollary 4.5. [19] If (T, G,0) is a perfect crossed module, then the central extension
0— H2(T,G,0) » (T®GE GG I®id) = (T,G,0) = 1
1S universal.

A crossed module (T,G,0) is aspherical if O is injective. Grandjedn and Ladra [13] show
that for an aspherical, perfect crossed module (T, G, 9), in the notation of section 3, the central
extension

0—>H2GL(T,G,8)—>< £ Y] [F’F]u>—>(T,G,6)—>1 (4.5)

[ YIE V] (R F] ™
is universal. As a corollary, they deduce that for an aspherical, perfect crossed module (T, G, 9)
there is an isomorphism

[F,Y]

Te6= Ry VT

For the second homology we have the following consequence of the universal property of (4.5).

Corollary 4.6. If (T, G, ) is an aspherical, perfect crossed module then HS (T, G, ) is iso-
morphic to Ha(T, G, 0). In particular the groups J and ¥ are isomorphic.

Remark 4.7. A far-reaching general approach to the homology and cohomology of crossed
modules has been developed recently by Carrasco, Cegarra and Grandjedn [5]. They define
a cotriple homology and cohomology theory based on the underlying functor from crossed
modules to sets that takes a crossed module (T, G, ) to the set T' x G. The result, analogous
to the Barr-Beck theory for groups [1], yields homology crossed modules and cohomology
groups for crossed modules.

The homology crossed module Hy(T,G,0), (n > 1) defined by Carrasco, Cegarra and
Grandjedn is an abelian crossed module of the form Z,, — H,,(G) for some abelian group Z,.
For n = 1, Hy(T,G,0) is again the abelianised crossed module (T, G,d). For n = 2, it
is shown in [5] that for a perfect crossed module (7', G, d), the homology group Hs(T,G,0)
is the kernel of the universal central extension of (T',G,d), and it follows that if (T,G,0) is
perfect then Hy(T,G,0) = H2(T, G, 0).

However, the constructions do not always coincide. By proposition 8(iv) of [5], for a projec-
tive crossed module (T, G, 9), the homology crossed module H3 (T, G,0) is zero. However, if
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F = F(z,y) is a free group of rank 2 and if NV is the normal closure in F' of {z}, then (N, F1)
is free (relative to the underlying functor from crossed modules to sets) but as in Example
2.1(e), Ha(N, F,i) is non-zero in general.

Since a computation of the Barr-Beck homology of the semidirect product 7' x G involves
the underlying functor T'x G — T x G from groups to sets, there is a direct connection between
the Carrasco, Cegarra and Grandjean approach and that in the present paper. It would be
very interesting to clarify the relationships beween the results of the two approaches.

Remark 4.8. Using the Brown-Loday non-abelian tensor product, Guin [14] studied the low
dimensional homology of a group G with coefficients in a crossed G-module 7'. He defined

Ho(G,T)=T¢ ,H,(G,T) =ker(x' : T®G —T).
Hence we have an isomorphism of crossed modules
Hi(T,G,0) = (Ho(G,T), Hi(G),0)
and if (T, G, 9) is perfect,

Ho(T,G,0) = (H (G, T),H2(G),04).

It would be interesting to pursue higher-dimensional versions of these isomorphisms.

5. An application to relative algebraic K—theory

It is well known that universal central extensions can be used to frame the definition of K5
of a ring R. Let E(R) be the subgroup of GL(R) generated by the elementary matrices: the
Steinberg group St(R) is the universal central extension of E(R) and Milnor [18] defined K»(R)
as the kernel of ¢ : St(R) — E(R). It follows that K2(R) can be identified with the second
homology group H»(E(R)). Now given a two-sided ideal I of R , there are relative groups
K;(R,I) ,i > 1, most easily defined by setting K;(R,I) = m;K(R,I) where K(R,I) is the
homotopy fibre of BGL(R)* — BGL(R/I)*. Loday [15] studied K> (R, I) by the construction
of a relative universal central extension of the pair (St(R), St(R/I) using crossed modules. We
show that universal central extensions of crossed modules provide a direct extension of the
definition of K> from the absolute to the relative case, amplifying a remark made by Ellis in
[7].

Let F(R) denote the homotopy fibre of BGL(R) — BGL(R)" so that St(R) = w1 F(R), and
let GL(R,I) be the kernel of GL(R) - GL(R/I), with E(I) = E(R)NGL(R,I). Let F(R,I)
denote the homotopy fibre of F(R) — F(R/I): it is homotopy equivalent to the homotopy
fibre of BGL(R,I) — K(R,I). The relative Steinberg group St(R,I) may be defined by
St(R,I) = m F(R,I) and the homotopy sequence of the fibration F(R,I) - BGL(R,I) —
K(R,I) translates to the sequence

0= K5(R,I) = St(R,I) = GL(R,I) = K1(R,I) = 0

[15]. We show how K5 (R, I) arises from a universal central extension of a crossed module.

It follows from well known relations between elementary matrices that E(I) = [E(I), E(R)]
so that i : E(I) — E(R) is a perfect crossed module. Its universal central extension is the
crossed module E(I) ® E(R) - E(R) ® E(R) : now E(R) ® E(R) is the universal central
extension of E(R) [3] so that E(R) ® E(R) = St(R), and the kernel of E(R) ® E(R) — E(R)
can therefore be identified with K»(R). That a corresponding identification can be made in the
relative case follows from a theorem of Ellis. Theorem 1.2 of [8] specialises to an isomorphism
St(R,I) = E(I) ® E(R) and it follows that K5(R,I) can be identified with the kernel of
E(I) ® E(R) — E(R). To summarise, we have the following result.
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Theorem 5.1. The crossed module E(I) — E(R) is perfect and the short ezact sequence

0 - Ky(RI) — StRI) — EI) — 1
1 N3 3
0 - KyR) — St(R) — ER — 1

is a universal central extension of crossed modules. Hence the crossed module K>(R,I) —
K5(R) is isomorphic to the second homology crossed module Ho(E(I), E(R),i) (which is equal
to HGV(E(I), E(R),i) since (E(I), E(R),i) is aspherical and perfect).
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