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ON SPACES OF THE SAME STRONG n-TYPE
YVES FELIX aND JEAN-CLAUDE THOMAS
(communicated by Lionel Schwartz)

Abstract

Let X be a connected CW complex and [X] be its homotopy type.
As usual, SNT(X) denotes the pointed set of homotopy types of CW
complexes Y such that their nt"-Postnikov approximations X (") and
Y (™) are homotopy equivalent for all n. In this paper we study a par-
ticularly interesting subset of SNT(X), denoted SNT . (X), of strong n
type; the nt"-Postnikov approximations X and V(™ are homotopy
equivalent by homotopy equivalences satisfying an extra condition at
the level of homotopy groups. First, we construct a CW complex X
such that SNT(X) # {[X]} and we establishe a connection between
the pointed set SNT;(X) and sub-groups of homotopy classes of self-
equivalences via a certain li£11 set. Secondly, we prove a conjecture

of Arkowitz and Maruyama concerning subgroups of the group of self
equivalences of a finite CW complex and we use this result to estab-
lish a characterization of simply connected CW complexes with finite
dimensional rational cohomology such that SNT(X) = {[X]}.

1. Introduction

Let X be a connected CW complex and [X] be its homotopy type. As usual, SNT(X)
denotes the pointed set of homotopy types of CW complexes Y such that their nt”-Postnikov
approximations X () and Y™ are homotopy equivalent (then X and Y have the same n type
for all n > 1).

The first example of a space X with SNT(X) # {[X]} has been given by J.F. Adams in 1957
([1]). In 1966 Brayton Gray, ([7]), found one with finite type. In general, the determination of
spaces X such that SNT(X) is a singleton remains an open problem. For instance, in ([12]),
C.A. McGibbon and J. Méller conjecture that SNT(QX) = {[2X]} for a simply connected
finite CW complex X and prove this conjecture when X is an Hy-space, and in fact using,
[13], their proof works as well in order to prove the conjecture for any rational elliptic space,
[6].

In this paper we consider a particular subset of SNT(X) denoted SNT(X) that we now
describe. Denote by Px the set of pairs (Y, (fn)n>1), where f, : Y (™ — X i a homotopy
equivalence and such that the following diagrams commute for n > 2.

m(ymy Ty
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We put SNT,(X) = {[Y]|(Y,(fn)) € Px }.

When [Y] belongs to SNT, (X), we say that X and Y have the same strong n type.

It follows from the works of Adams ([1]), Wilkerson ([18]), McGibbon and Moller ([12],
[10]) that

SNT(X) = SNT,(X) = {[X]}

in each of the following cases

(a) if m;(X) is a finite group for all i > 0;

(b) if X is a simply connected finite type rational space;

(c) if X is a simply connected, Q-finite type, Hp-space such that the natural map Aut(X) —
Aut HS"(X;7) has a finite cokernel for n > 1. Here Aut HS"(X;Z) denotes the group of
ring homomorphisms.

Example 1. SNT(X) # {[X]}) when X is the 0-localization of the CW complex

Z=(S2x8ix\/S"Vv(\ SHUn.. | e,

p>1 n>1 p>1
n>p

where 7, is the Whitehead bracket [Si, S?]. Observe that X is not of finite type (see (b)
above !). More precisely we prove the following equality (Theorem 4 below)

SNT.(X) = [[ o/ Q.

n>1 n>1

Our main result establishes a connection between the pointed set SNT,(X) and sub-groups
of homotopy classes of self-equivalences via a certain lim ! set. We will state the precise results
—

with its first consequences after some definitions.

If X is a based topological space, Aut (X) denotes the group of homotopy classes of self
homotopy equivalences of X, and Aut,(X) the subgroup of homotopy classes which induce
the identity on the homotopy groups of X. A tower of groups

oo Aut X I Aut XD o Aut X

is defined by the homomorphisms ¢, ([f]) = [f" Y] where f(*~1 denotes the map induced
up to homotopy by f :

x(n) AN x(n)

W} Lo

xt-1 T -1y

In 1975, C. Wilkerson ([18]) establishes the existence of a natural pointed set bijection
9% : SNT(X) — lim ' Aut X
+—
where liin 1@, is defined for a tower of groups
s G B G- B G
as the orbit set for the action of the group [], G acting on the set [], G, by

() - (an) = ('Ynanqn+1(7n+1)71)-
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The sequence of injections Aut, X — Aut X induces a natural map

jx :lim?! Aut, X™ — lim! Aut X .
«— —

Theorem 1. Let X be a simply connected CW complex. Then there is a pointed set bijection
SNT,(X) — Image jx.

Example 2. Assume X is a simply connected finite type CW-complex that has the rational
homotopy type of a bouquet of spheres. By ([12], Lemma 1), the groups Aut, X (™) are finite,
so that lim ' Aut, X™ = {x} and SNT,(X) = {[X]}, see [12].

Example 3. Denote by f : CP>® — S a phantom map and by H : S — S? the Hopf map.
The homotopy cofibre Z, of Ho f, and the space S?VXCP> have the same n type for all n. D.
Stanley ([16]) has proved that the Lusternik-Schnirelmann category of Z is two whereas the
category of S2V L CP™ is one. Therefore the spaces Z and S? V XCP> do not have the same
homotopy type and thus not the same strong n type because they are rational suspensions.

Theorem 2. Let X be a simply connected finite type CW complex with finite dimensional
rational cohomology, then SNT,(X) = {[X]} if and only if for some integer N, the morphism
Aut,(X) = Aut, (X)) has a finite cokernel.

2. The six term exact sequence

Let X be a simply connected finite type CW complex. Denote by G, the image of the
natural morphism AutX (™ — Autme, (X). Then the short exact sequence of towers

1— Aut, X" 5 Autx™ -5 G, — 1

induces a 6-term exact sequence, [8]:

1 lim Aut, X™ = lim AutX™ = lim G,, > lim ! Aut, X ™ %
— — — —

X liLnlAutX(”) — lim "G, — *

The image of jx is, by Theorem 1, in bijection with the subset SNT (X)) of SNT'(X) so that
we obtain a 6-term exact sequence

1 Aut,X — AutX — lim G, 5 lim? Aut, X 3 SNT(X) = lim*G,, — *.
— — —
In particular, in the case SNT,(X) = {[X]} we have a bijection
SNT(X) — lim 'G,, .
«—

This 6-term exact sequence provides us with anaother description of the set SNT, X. The
group lim G}, is the subgroup of Autm.(X) consisting of those automorphisms ¢ such that,
—

for each n > 1, the restriction of ¢ to m¢, can be realized by some automorphism «a;, €
AutX (™. The connecting map § associates to ¢ the class of the element (o, (api1)™)p>1 in
lim! Aut, X (™.

—

The group lim G,, acts on the set lim* Aut, X" in the following way : Let ¢ be an element
— —
in lim G, whose restriction to 7¢, is realized by an automorphism «, € AutX () and let
pu
B=1[(8,)] €lim" Aut,X™ then
pi

((10 ' ﬁ)n = anﬁn(an+1)7l .
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Therefore we deduce:

Proposition 1. The set SNT,(X) is the orbit space of lim' Aut,X™ for this action.
«—

Let us precise here another interesting fact concerning the above 6-term exact sequence.
Let aut, X denote the monoid of self equivalences which induce the identity map at the level
of homotopy groups and recall that mp(aut,X) = Aut,X. From the work of Bousfield and
Kan ([4]), we have a diagram of short exact sequences

1 — lim'm(aut ,,X(”)) - aut X B lim Aut ,X™ — 1
— —

| + NS

1 — lim'm(aut ,X™) —  AwtX 5  limAut X 5 1
— —

Moreover the kernel of p is the subgroup of automorphisms ¢ whose restrictions to X (") are
homotopic to the identity for each n > 1. This subgroup of Aut, X is called the group of weak
identities of X. Observe that if X is an H-space, the set of homotopy classes of phantom maps
from X into X, Ph(X,X), is a group, and that the map 6 : Ph(X,X) — Ker p defined by
6(f) =id + f is a group isomorphism ([15]).

There is another interesting subgroup of Aut, X (™ the subgroup Autg X (™ formed by the
automorphisms ¢ such that Q¢ is homotopic to the identity. By ([5]), the maps AutqX ™ —
Aut, X (™ are injections of finitely generated nilpotent groups. Since these injections become
isomorphisms after Malcev completion, the quotients H, = Aut,X ™ / AutoX () are finite
groups. Therefore ligl 'H, =0, and we have a surjection

lim' AutgX™ — lim ! Aut, X™ .
— —
This shows that

Proposition 2.

SNT,(X) = Image (lim* AutqX™ — lim *AutX (n)).
— —

In other words, the set SNT,(X) can also be described as the subset of SNT'(X) formed
by the spaces Y for which there exist maps f, : Y™ — X (") such that the following diagrams
commute for n > 2.

avm 2y gxm)
dapl dap
vy st gy

3. Proof of Theorem 1

Recall that Px denotes the set of pairs (Y, (fn)n>1), where f, : Y (™ — X is an homotopy
equivalence and such that the following diagrams commute

m vy Ty

b (0$) I 0

T, (Y1) e (fn1) T (X (1)
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We introduce an equivalence relation on the set Px. Two pairs (Y, (f)) and (Z, (g,)) in Px
are equivalent if there is an homotopy equivalence ¢ : Z — Y such that the maps f, o pog;!
belongs to Aut. (X (™) for all n. For instance, for any homotopy equivalence m : Y — Z and
each element (Z, (gn)), the elements (Y, (g, o m)) and (Z, (¢g»)) are equivalent. We denote by
Ex the quotient set Px/ ~. To each pair (Y, (f,)) € Px we associate the homotopy type of
Y into SNT(X). We obtain in this way a well defined map p : Ex — SNT(X).

The following proposition implies then clearly Theorem 1.

Proposition 3. Let X be a simply connected CW complex. There is a natural pointed set
bijection ;¥ : Ex — lim* Aut, X" . Moreover, the bijections % and 69X fit together in a
—

commutative diagram
lim' Aut, X" — Image jx < lim TAut X (™
— —

T ol = To*
Ex L5 SNT,(X) < SNT(X).

Proof. Since the simplicial Postnikov decomposition is functorial, we consider Kan complexes
instead of CW complexes. The nt"-Postnikov complex of a simplicial complex X is the quotient
X)) = X/ ~, where z ~,, y if the corresponding faces of z and y of dimensions less than or
equal to n are equal. The quotient X(?) is a Kan complex, and the natural projections

pg?) - x() oy x(n=1)

are Kan fibrations with Eilenberg-MacLane complexes K (7, (X),n) as fibres.

We suppose that X is a minimal Kan complex. Therefore each X (™ is also minimal. As
usual, AutX( denotes the group of simplicial isomorphisms and Aut, X denotes the
subgroup of automorphisms inducing the identity map on the homotopy groups.

If o, € AutX ™, the composite a, op("*+1) is again a Kan fibration and a Postnikov section.
Let @ = (ap, - -) denotes the sequence of the o, in [, Aut.(X™), and define

Xg = lim(X("),an,l Op(")) .
pa

Then X5 is again a minimal Kan complex and the commutativity of the square

x(n) = xMm
Py ! ian_lop(")
x(-1) =i y(ne1)

shows that for each n there are homotopy equivalences f¥ : X (n) Xén) such that the
following diagram commutes

m(xmy el

(%)) 4 b me(an—10p™)

r (X(m0y Tl )y

In particular, (X5, (7)) defines an element in Px and in Ex.

Suppose that @ and 3 define the same element in lim ! Aut,X (™. Then there is a sequence
—

¥ = (m) € Il, Aut, X such that a, = 7, 0 By 0 (¢ns1(Yns1)) '. We then have maps
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Yn Xén) — X én) such that the following diagrams commute up to homotopy

xn Iy x(n)

Bn—10p% { { Qan—10p%
x(n-1) Tl x(n— 1)

and thus the homotopy class [(f2)~" 0, o f5] belongs to Aut, X (™. Here, if f is a homotopy
equivalence, then f~! means any representative for the class [f]. The correspondance a —
(Xa, (f¥)) induces therefore a well defined map

®:lim" Aut, X" = Ex,
+—

Which respects base points.
In order to show that @ is a bijection we construct the inverse map. The map

6: Py —1im" Aut, X™, (Y, (fa)) = ((fno (f W)

n+1
(Y (fn)) and (Z, (gn))
are equivalent, then there exists a map ¢ such that, for each integer n > 1, the class a,, =
[gn © o™ o e Aut, X This shows that

(@) - [fao (£ 71 = [gn 0 (0 1.

The relation ® o §X = id results from the commutativity, up to homotopy, of the diagram

factors to give a map 0 : Ex — lim* Aut, X Indeed, suppose that
+—

yon I xm)

p? { { faoro(fr -t
yin-n 0 -

The relation 6;¥ o ® = id is trivially satified. O

4. A conjecture of Arkowitz and Maruyama

For a simply connected CW complex Z we denote by Aut(Z), n > 2, the kernel of the
natural morphism Aut(Z) — Aut7¢,(Z). In ([3]) Arkowitz and Maruyama conjecture that
for a finite simply connected CW complex there is an integer IV such that the restriction map
Aut, — Autg Z is an isomorphism. Here we prove the conjecture as a corollary of its rational
version.

Theorem 3. Let Z be a simply connected finite type CW complex and let Zy its rationaliza-
tion. Suppose there H>M (Z;Q) = 0 for some M, then there is some integer N such that the
restriction map

AutﬁZO e d Auth() y

is an isomorphism.
Moreover if H>M(Z;Z) = 0, then there is some integer N such that Aut,Z = Auth.

Example 3. Suppose W is the fat wedge of the three spheres S?, S? and S%, ie. S? x S? x §* =
W U, D8 where w € 77(W) denotes a triple Whitehead product. Then the rational homotopy
Lie algebra of W is generated by elements of degrees less than or equal to 6 :

T (QW) ® Q = Ab(x1, 41, 23) [ [ Lite) -
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The cokernel of the morphism Aut;k(W) — Aut% (W) is not finite, but for n > 8, the cokernel
of the correponding injection Autly (W) — Aut;;_l(W) is finite.

Example 4. The integer N depends on the space and not only on the dimension of the space.
Consider for instance the 6-dimensional rational space X whose minimal Lie model is given
by the following differential graded Lie algebra

L = (L%, i, iy @i gy bijy U, 0,W)i =1, ns i< D)

|mz| = |yz| = |Zz| = 2) |u| = 1) |U| = 2) |ai,j|7 |bi,j|) |’LU| = 57
d(u) = d(v) = d(z;) = d(y;) = d(z;) = 0, d(ai ;) = [2i, 25], d(bi,j) = [ys, 2], and

dw) = [z1,y1] + ... + [Tn, yn] -

The autoomorphism ¢ equal to the identity on all generators except w and defined on w by
p(w) = w + [v, [v,u]] belongs to Aut‘;#”"(X) but not to Autr(X).

Proof of Theorem 3. Denote by (AV,d) the Sullivan minimal model of Z ([17]). We denote
by Aut(AV,d) the group of homotopy classes of automorphisms of (AV, d). Each automorphism
of (AV,d) induces an isomorphism on the vector space of indecomposable elements Q(AV) =
AV/ AZ2V = V. We denote by Aut,(AV,d) the kernel of the representation morphism
Aut(AV,d) — Aut(Q(V)) and by Autg(/\V, d) the kernel of the morphism Aut(AV,d) —
Aut(Q(V)SN). We denote also by I'so(AV,d) the group of automorphisms of (AV,d), and by
Is01(AV,d) the subgroup of autoomorphisms of the form id + ¢, with ¢ : V — AZ2V,

From the Sullivan theory of minimal models one deduce the following group isomorphisms

AutZy = Aut(AV,d)
Aut} Zy = Aut} (AV,d)
Aut,Zy = Aut,r(/\V, d)

where Z, denote the 0-localization of Z.
Since H>M (AV,d) = 0, each automorphism of (AVSM d) extends to an automorphism of
(AV,d). This means that the restriction map

p: Aut(AV,d) = Aut(AVSM q)

is onto. Let @ : (AV,d) — (A,d) be a quasi-isomorphism with A>™ = 0. Suppose now that
frg € Aut(AV). If p(f) ~ p(g), (~ means homotopy in the category of c.d.g.a.’s), then
Ao f~6og, and since 6 is a quasi-isomorphism, f ~ g. This shows that p is also injective.

We form the vector space Hom®(VSM AZ2V), consisting of the degree zero linear maps. We
choose an homogeneous basis, (z;)i—1,..n,, of VS™ and an homogeneous basis, (y;)j=1,...Na»
for (AZ2V)SM_ Then for any ¢ € Hom®(VSM AZ2V) we write

plas) =) aly;-
i

Of course id + ¢ is an automorphism of (AVSM d) if and only if it commutes with the
differential, i.e. if and only if, for t = 1,..., N1, we have

(id + p)d(x;) = d(xi + p(zi)) -
By expressing these conditions in terms of the ag, we obtain a bijective correspondance between
Iso; (A\VSM d) and some sub-algebraic variety W in Q™1 7V2,
We choose a linear section, o : (d(AZ2V))>M — (AV)ZM | of the differential d. Then each

¢ = id + ¢ in Iso; (A\VSM d) extends in a natural way to an automorphism of (AV,d) by the
following rule : Let z € VM+k k> 1) then ¢dz is a coboundary so that we put 1 (z) = ovdz.
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Performing this construction on a homogeneous basis of each V"** we construct the required
homomorphism. Moreover, ¢ is an isomorphism since it is a quasi-isomorphism and (AV,d) is
minimal ([17]). We put [y = I'so; (AVSM d), and for m > M,

Tn={vel,¥(z)—2ze >V, for zeVS"}.

the choice of the section isomorphisms of (AV,d). We v such that in their extension
Now the sequence

...CFM+2CFM+1 CTly

is a sequence of inclusions of algebraic varieties. Since @[af] is noetherian, this sequence
stabilizes : there is an integer N such that

FN:FN-H' V’I"Zl

Denote by I';4 the normal subgroup of I' consisting of the automorphisms homotopic to
the identity. Then f ~ g if and only if fg~' € ;4. Thus Aut(AVSM d) is isomorphic to the
quotient I'so; (AVSM d))/T;4. This yields the equality

Aut (AV,d) = Auty ™" (AV,d) Vr>1.
Since Aut’%(/\V, d) = Aut’;(Zo), ([17]), we obtain finally
Authg = Autg”Zg Vr>1
Suppose now that Z is a simply connected finite CW complex. Then Aut,(Z) C Autg (Z)is
an normal inclusion of finitely generated nilpotent groups ([9]) with same Malcev completions.

It is then easy to see by induction on the nilpotency index that the quotient is a finite group.
Therefore there is an integer P > N such that Aut,(Z) = Auti(Z). O

5. Proof of Theorem 2

The proof of Theorem 2 is based on a sequence of 4 lemmas.

Lemma 1. There is a rational homotopy equivalence K : W — X where W is a finite CW
complex.

Henceforth we consider K : W — X as in lemma 1, and by Theorem 3, we fix an integer

N such that Autho = Aut,Xo and H>V(X;Q) = 0.

)
Lemma 2. The morphism Aut,W "+ Unti Aut, W™ js injective and has a finite cok-
ernel for each n > N.

(n)
Lemma 3. The morphism Aut,X "+ Unti Aut, X has a finite kernel and a finite
cokernel forn > N.

Theorem 2 follows from previous lemmas and the following lemma due to McGibbon and
Moller ([12], Lemma 3).

Lemma 4. Let G, = G,_1 be a tower of groups. Suppose that q,(G,) has finite index into
Gn_1, forn > N. Then lim'G,, = {#} if and only if lim G,, — G n has a finite cokernel.
— —

Proof of Lemma 1.
Suppose that H>M (X;Q) = 0. We consider the cellular chain complex of X,

Cos1(X32) S Cu(X3Z) = Coy 1 (X Z) = -
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where each Cy(X;Z) is freely generated by the k-cells of X as a Z-module. In particular,
Cm+1(X;Z) = ®!_,Ze;. By an elementary argument in linear algebra, there exists elements
i1, 45 € {1,---,7} such that 9 ® Q sends isomorphically ®3_;Qe;; to the image of 0 ® Q

Denote by W the subcomplex of X obtained by adding to the M-skeleton of X the (M +1)-
cells e;,,---,e;,. The injection K : W — X induces an isomorphism in the homology of the
rational cellular chain complexes and is therefore a rational homotopy equivalence. O

Proof of Lemma 2. Since n > N > dim W, and since W™ = W Up, €™, ng > n + 2, the
restriction maps

Aut%W(’H‘l) — Aut%W(")

AutW — AutW+D 5 Autw ()

are isomorphisms. This gives directly the first part of the lemma.
Consider the following diagram obtained by restriction and rationalization

AutBP WD S Au WD IE Aut, . (W)
r’ L J/ T
Aut;?_lWO(nJrl) — Aut%WO(n+1) 72& Autﬂ'n_H (W) &® @

By hypothesis, (cf. Theorem 3), the representation map repg is trivial, the image of the
representation rep : Aut;W(”H) — Aut 7,41 (W) is finite and thus its kernel Aut;HW(”“)
is a subgroup of finite index.

Therefore the composite

Aut, Wt = Aut;HW(”“) — Aut;;W(”H) — Aut;;W(”) = Aut, W

has a finite cokernel. O

Proof of Lemma 3. We use the same argument as in ([12]). We define
A(f) = {(a, B) € Aut, W™ x Aut, X | f(Mq =g}

Then A(f(™) is a group and since f : W — X is a rational equivalence, by a result of
Wilkerson ([19]) the projections from A(f™) to Aut,W and to Aut,X ™ have finite
kernels and cokernels.

Now, using Lemma 2, a simple diagram chasing yields the result.

Aut, WO A(FOHD) S Agg, XD

! ! !
At WO e AGF™) S Aut, X

6. Example of a space X with SNT,(X) # {[X]}
Consider the CW complex

Z=(2x 8%\ S"V(\ SHUn., | erer,

p>1 n>1 p>1
n>p

where 7, , is the Whitehead bracket [S;, S6P].
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The space T is constructed as a deformation of the space Z.

T = ((S2V8;) % (Vp215%)) Uisz sz €' V() S Uiy, | ent®ug, [ e,

n>1 p>1 p>1
n>p

P
where W, = wp, + Z[SG”, S;-l]. Here the element w,, is a triple Whitehead product in the mg,13
i=1
of the fat wedge T'(S2,SZ, S%).
The spaces X and Y are respectively the rationalizations of Z and T. We show that X
and Y do not have the same homotopy type, and that there exists a sequence of homotopy
equivalences between the n*® skeleton

fn: Xp oY,
such that
T (fn) = T (fm)

when r < n < m. In particular f, induces an homotopy equivalence f{" 1) : X(n=1) — y(n=1),
so that SNT (X)) # {X}.

By Quillen rational homotopy theory ([14]), there is an equivalence of homotopy category
between the homotopy category of simply connected CW complexes and the homotopy cate-
gory of connected differential graded Lie algebras. It thus suffices to prove the corresponding
results into the category of differential graded Lie algebras.

The Quillen models Lx and Ly of X and Y are respectively given by :

ﬁX = (L(a’7b7 camiayiaviawiatiazi,j; i 2 17.] > Z)7d)7
with |a| = [b] =1, |¢| = 3, |zi| = 6i — 1, |yi| = 3, |zi,5| = 6i + 3, |vs| = 6i + 1, |w;| = 60 + 1,

|ti| =6i+ 3, d(c) = [a':b]a d(xl) =0, d(yz) =0, d(zi,j) = [xivyj]a d(vl) = [aami]a d(wl) = [bv xi]v
d(tl) =W = [Uiv b] + [Ca ml] + [wiv a]'

EY = (L(aab)ca miayiaviywiytiyzi,j; 1 2 1).7 > Z)ad)a

with same degrees and differentials, except that
i
d(ti) = wi + Z[mi:yj] .
i=1

Suppose that ¢ : Lx — Ly is a quasi-isomorphism and denote by LP the ideal of Lx or Ly
generated by iterated brackets of lenght > p.

By composition with an automorphism of m3(X) ® Q = aQ @ bQ we can suppose that
p(a) = a and p(b) = b. Then we have

4

¥
¥

c)=c+ 21@1 VeYk
x;) = pa; modl?, u # 0
)

(
(
(v;
(
(

S

= pv; modlL?
o(w;) = pw; modL?

o(ti) = dt; + Zj>i Bi,j%i,j

and,

(dp — @d)(ti) = (6 — pwi + Z Olasyi] + D Biglesyil = D venlye, @] modL? .

j>i E>1
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Therefore v # 0 for k < i. Since this has to be true for any i > 1, we have
p(c) =c+ Y Wi
k>1

with all v # 0, which is impossible.

On the other hand, by taking 4 = § = v, = 1 for £ < p, and v, = 0 for & > p, we obtain
an homotopy equivalence f,, : X™ — Y™ with n =4 + 6p.

Remark now that the composition of injections

((S* x 8% x (Vp215%)) V (Va1 57)), 5 X = ([(S% x 5%) V (Va1 52)] x [Vp>15%]),

induces a surjective map on homotopy groups. It results then from results of Anick ([2]) that
7« (1) is a surjective map, and using this it is clear that m,.(fn,) = 7-(fr) when r < m < n.

Theorem 4. Let X be the rationalizations of the CW complex

Z=(S; xS x\/S"v(\ SHun., U e,

p>1 n>1 p>1
n>p

where v, , is the Whitehead bracket [S?, S?]. Then

SNT, (X) = liinlAut,,X(”) ~[[o/ pe.

n>1 n>1

Proof. Since 7,.(2X) ® Q is generated as an algebra by the elements a, b, ; and y;, i > 1,
with the notations of section 4, the restriction map Aut X — lim G, is surjective. Therefore
—

SNT,(X) = lim *Aut, X (™,
—

Denote by £\ the quotient of Lx by the ideal 7 = (Lx)>"! @ 5, where S = d(£%?).
Clearly Aut X" can be identified with the group of homotopy classes of automorphisms ¢
of Eg?) such that ¢ is the identity on the vector space generated by the elements a,b, x;, y;,
i>1.

To each ¢ € Aut , X(™ n >4, we can associate the element ¢(c) — ¢ € @;>1Qy;. We define
in this way a linear map Aut X — 7m3(2X) whose kernel and cokernel are respectively
denoted by K,, and I,;

0> K, — Aut . X™ 51, 0.

For ¢ € K,, and n > 6i + 3, the elements ¢(v;) — v; and ¢(w;) — w; belong to the sub Lie
algebra L generated by a, b and the z;. This define a map

YKy P (Leiss @ Leits) ,
i|6i+3<n
and this gives a short exact sequence

0 K, =Ker) > Ko~ D (Loirs ® Loizs) = 0.
i|6i+3<n

Since the induced map ¢ : lim K,, — @(L6i+3 ® Lg;+3) is surjective, we have
-
i>1

lim' K, =lim'K/, .
— —
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Now remark that the sequence K|, — K]

n_1 18 a sequence of surjective maps. It follows that

lim ' K/, = 0. This gives the isomorphism
—

lim'Aut , X™ ~1im'7T,, .
— —

Now, clearly, Ig;+4 = @ Qu;. We consider then the short exact sequence of towers

j>i

0%@@!/]'%@@]'%@@]'—)0.

i<t izt Jj>i

The associated six-terms exact sequence reduces to the exact sequence

0— P, - [[w —>1i£111'n—>0-

jz1 jz1
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