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NON-ABELIAN TENSOR AND EXTERIOR PRODUCTS MODULO ¢ AND
UNIVERSAL ¢-CENTRAL RELATIVE EXTENSION OF LIE ALGEBRAS

EMZAR KHMALADZE
(communicated by Graham Ellis)

Abstract
The notions of tensor end exterior products modulo ¢ of two crossed
P-modules, where ¢ is a positive integer and P is a Lie algebra, are
introduced and some properties are established. The condition for the
existence of a universal g-central relative extension of a Lie epimor-
phism is given and this extension is described as an exterior product
modulo q.

Introduction

The non-abelian tensor product of groups was introduced by Brown and Loday [3,4] and has
applications in homotopy theory and in non-abelian (co)homology theory of groups [11,13,14].

In [5] Conduche and Rodriguez-Fernandez introduce the non-abelian tensor product modulo
an integer ¢q of groups, generalizing definitions of Brown [2] and Ellis and Rodriguez [9]. This
construction is the mod ¢ version of the non-abelian tensor product of groups of Brown and
Loday.

In [6] Ellis developed an analogous theory of non-abelian tensor product for Lie algebras (see
also [7]). Using tensor (exterior) product of Lie algebras Ellis describes the universal central
extension of Lie algebras. The importance of this product is given by Guin in [12], constructing
the non-abelian homology of Lie algebras in low dimensions, which has applications in cyclic
homology.

In the present paper we introduce the non-abelian tensor (exterior) product modulo g,
M®IN (M A?N), where M and N are two crossed P-modules, in the context of Lie algebras,
as the mod ¢ version of Ellis’ tensor (exterior) product of Lie algebras and investigate its prop-
erties. The general aim introducing this notion is to describe the universal g-central relative
extension of a Lie epimorphism, analogously to Conduche-Rodriguez-Fernandez’s result in the
group case [5, Theorem 2.11].

In [16] Kassel and Loday give the notion of relative extension of a Lie epimorphism
a : P — @ and prove that a universal central relative extension exists if and only if the
relative homology group H»(Q, P; A) = 0, where A is a principal ring. In this paper we intro-
duce the definition of a g-central relative extension of a Lie epimorphism, which is the mod
g version of Kassel-Loday’s notion and give our main result (Theorem 2.8): for a short exact
sequence of Lie algebras

0-N-P3Q—-0

there exists a universal g-central relative extension of a if and only if N = N#,P, where
N#4P is the submodule of P generated by the elements [n,p] and gn for n € N, p € P.
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In the rest of the paper the following interesting properties of non-abelian tensor (exterior)

product modulo ¢, M ®? N (M A? N), of Lie algebras are given. The existence of a unique
isomorphism M®QIN — NQIM (MA'N — NA?M) (Proposition 1.7) is shown. Compatibility
of tensor product modulo g of crossed modules with the direct limit of crossed modules is
established (Theorem 1.9). Some examples of crossed squares of Lie algebras are given. Using
a slightly generalized version of Whitehead’s universal quadratic functor (for the definition see
bellow) the relation between the Lie exterior product modulo ¢ and the Lie tensor product
modulo g is estabished (Theorem 1.17). Finally, the relation between Ellis’ non-abelian tensor
product and the non-abelian tensor product modulo ¢ of two Lie algebras with compatible
actions on each other is given (Theorem 1.22).
Notation. We shall use the term Lie algebra to mean a Lie algebra over A, where A is a
commutative ring with identity. We denote by [,] the Lie bracket and by ¢ a non-negative
integer. For any Lie algebra X, an ideal Y C X and x € X we shall write c¢l(z) to denote the
coset Tz + Y.

1. Tensor and exterior products modulo ¢ of Lie algebras

Let P and M be two Lie algebras. By an action of P on M we mean a A-bilinear map
Px M — M, (p,m) — Pm satisfying

PPl = p(p’m) _r (*m),
Plm,m'] = [Pm,m'] + [m,"m/]

for all m,m' € M, p,p’ € P. Note that any Lie algebra acts on its ideals by Lie multiplication.

Recall from [16] (see also [6]) that, in the context of Lie algebras, a crossed P-module is a
Lie homomorphism p : M — P together with an action of P on M which satisfies the following
conditions:

(i) p(Pm) = [p, u(m)),
(ii) *™m! = [m,m’]
for all m,m' € M, p € P.

A morphism of crossed modules p : M — P and y' : M' — P'is a pair (f : M — M’,
¢ : P — P') of Lie homomorphisms such that f(Pm) = ¢ f(m) for all m € M, p € P and
W f=epp.

Suppose that 4 : M — P and v : N — P are two crossed P-modules and consider the
pullback

MxpN —2 5 N

ml l

M Lt P
Let K =M xp N ={(m,n) € M x Nlm € M,n € N,u(m) =v(n)}. In this diagram each
Lie algebra acts on any other via its image in the Lie algebra P.

Definition 1.1. The tensor product modulo q, M ®7 N, of the crossed P-modules p and v is
the Lie algebra generated by the symbols m @ n and {k}, m € M, n € N, k € K subject to the
following relations:

A(m®n)=Am®n=m®e \n, (1.1)

(m+m')@n=men+m' n,

m@n+n)=men+men, (1.2)
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[m,m'|@n=m®™n—m'e™n,

m[n,n]="men-"men, (1.3)
men,m @n'l=-"me™n/, (1.4)
{k},m@n] =% man+me%n, (1.5)
{k+ XNE'} = ME}+ N{EK'}, (1.6)

[{k}, {k}] = mi(qk) @ m2(qk'), (1.7)
{(="m,"n)} = ¢(m ©n) (1.8)

forallm,m’ € M, n,n" € N, k,k' e K, \,\' € A.

Let MON be the submodule of M ®? N generated by the elements m ®n with u(m) = v(n).
Then MON lies in the centre of M ®? N since for any m ® n € MON, m' @ n' € M @ N we
have [m ® n,m' ® n'] =0 (see [6]) and for any {k} € K by relations (1.3), (1.5) one has

[{k},mon]=%men+me %y =[r(¢k),m] @n+m e %n
=m(gk)@"n —m® %y +me %y = 71 (gk) ® wm)p
= mi(gk) ® ""n = m, (¢k) @ [n,n] = 0.

In particular, MON is an ideal of M ®% N.

Definition 1.2. The exterior product modulo q, M AN? N, of the crossed P-modules p and v
1s the quotient

M @ N/MON.

In other words, the Lie algebra M AY N is the quotient of the Lie algebra M ®7? N by the
relation

7T1(k)®71’2(k):0, ke K. (19)
Let us denote by m A n the image of m ® n in M A? N.

Proposition 1.3. There are two Lie homomorphisms £ : MQIN — M and &' : MQIN — N
defined by

E(m & n) =-"m ) 6({]{:}) =T (qk)a
fmon)="n, £({k})=mqh).
Moreover, these homomorphisms factor through M N1 N .

Proof. [6, Proposition 2] leaves us to show that £ and ¢’ commute with relations (1.5)-(1.9).
In effect,

£ m @ n +m®%n) = —"(%m) — P = _n(@ky) - T
= _n(qkm) _ [um(Qk),u(n)]m _ _n(qkm) _ umi(qk) (nm) n n(qkm)
= —[m(qk), "m] = £([{k}, m @ n]).

The proof of the rest is left as an exercise. O

Remark 1.4. There is the canonical Lie homomorphism 0 : M ®? N — M xp N (resp.
0" :MAN'N — M xpN), given, forx € M @1 N (resp. x € M AN? N) by 6(x) = (£(z), & (x))
(resp. §'(x) = (£(z),& (x))). In the case ¢ = 1 the map § is an isomorphism of Lie algebras.

Lemma 1.5. (i) Let m,m',m" € M and n,n',n" € N be such that p(m) = v(n) = v(n")
and pu(m') = pu(m'") =v(n'), then

gm” @ gn'' = —gm ® qgn' = gm’ ® gn.
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(ii) Let k, k' € K and suppose [k, k'] = 0, then
q(my (k) @ my (k') = 0.
Proof. (i) By the relation (1.7) one has
gm” @ qn” = [{(m",n)},{(m,n")}] = =[{(m,n")},{(m",n)}]
=—qm®qn’ = =[{(m,n)},{(m’,n")}] = gm’ @ qn.
(ii) Follows from the relation (1.8) and the fact that {0} = 0. O
Recall from [6] Ellis’ original definition of the non-abelian tensor product of Lie algebras,
M ® N, which is the Lie algebra generated by elements m ® n, m € M,n € N and subject

to the relations (1.1)-(1.4). Furthermore, Ellis’ exterior product, M A N, is the Lie algebra
generated by elements m An, m € M,n € N and subject to the relations (1.1)-(1.4) and (1.9)

(see [6], [7])

Let [M,N] be the submodule of K = M Xxp N generated by the elements (—"m,™n),
m € M,n € N. It is easy to see that [M,N] is an ideal of K. Further, [M, N] contains the
commutator [K, K] of K since for k, k" € K one has

[k, k'] = (=" (), ™ By ().

We have the following

Proposition 1.6. There is a commutative diagram of Lie algebras

MeN —2*— M@ N —— K/[M,N] —— 0

! l H

MAN —Y5 MAN —— K/[M,N] —— 0

with exact rows.

Proof. At first note that the Lie algebra K/[M, N] is abelian. The homomorphism ¢ (resp.
1) is defined by p(m ® n) = m ® n (resp. Y(m An) = m An). By (1.5) Im ¢ (resp. Ime)) is
an ideal of M ®4 N (resp. M A N). It is clear that the quotient of M ®? N (resp. M A? N)

by ¢(M ® N) (resp. (M A N)) is generated by elements {k}, &k € K with the relations
{NE+NE Y = MEF+HN{E'}, [{k}, {k'}] = 0, {(="m,™n)} = 0 and the diagram is commutative.
O

The tensor and exterior products of Lie algebras modulo ¢ are symmetric as we shall show
now.

Proposition 1.7. Let (M, ) and (N,v) be crossed P-modules. Then there is a unique iso-
morphism of Lie algebras

s:M@'N-—N&' M (s: MA'N— NAM),

such that s(m®n) = —(n®m) (s(mAn) = —(nAm)), s({k}) = {k}, where k = (ma(k), m (k))
forallme M, n e N and k € K.

Proof. We have only to show that s commutes with relations (1.5)-(1.9) (for relations (1.1)-
(1.4) see [6]). In effect,

s({k},m®n]) = [{k}, —n@m] = —(®n @ m +n® %m)
=—(*neom+ne®m)=s("®meon+me%*n),

s({Ne + NE'Y) = DE+ NE} = MEY + N {E} = sk} + N {E')).
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By Lemma 1.5(i) one has

s([{k}, {k'}]) = [k}, {F'}] = m(qk) © ma(qk')
= ma(gk') @ m1(gk) = s(m1(qk) ® m2(gk)),

s({(="n,"n)}) ={("n,="m)} = —q(n @ m) = s(qg(m @ n)).
And finally
s(mi (k) Ama(k)) = —(m2(k) Ay (k) = 0.0
Proposition 1.8. Let (M, pu), (N,v) be crossed P-modules and (M',pu"), (N',v') be crossed

P'-modules. Suppose o = (f, @) : (M,u) = (M',u'), 8= 1(g9,¢¥) : (N,v) = (N',v') are crossed
module morphisms such that ¢ = 1. Then there are natural homomorphisms of Lie algebras

a®!B: M!N— M ®7N'
(@ATB:MATN — M'ATN'),

such that (a ® B)(m ©n) = f(m) ® g(n) ((aA? B)(m An) = f(m)Ag(n)), (a®?B)({k}) =
{(fmi(k),gma(k))} ((a A" B)({k}) = {(fmi(k),gm2(K))}) for all m € M, n € N and k € K.

Furthermore, if a, 8 are onto, so also is a @1 3 (a A? ).

Proof. Note that (fmi(k),gm2(k)) € M' xp N' for all k € K = M xp N. a ®? § plainly
commutes with relations (1.1)-(1.9). For instance,
(@ B)([{k}, m @ n]) = [{(fm1(k), gm2(K))}, f(m) @ g(n)]
= #ImR) f(m) © g(n) + f(m) ® 707 g(n)
= B £ (m) @ g(n) + f(m) @ #70 g(
= f(*™ M m) @ g(n) + f(m) @ g("™n)
= (@®?f)("men+me *n).0

n)

Now we investigate the compatibility of the tensor product modulo ¢, ®4, with the direct
limit of crossed modules. The group-theoretic version of this result is given in [15].

Theorem 1.9. Let {M,,®% a < B} and {P., P2, a < B} be two directed systems of Lie al-
gebras. Let ji, : M, — P, be a crossed P,-module for each a such that (®2,95) . (M, o) —
(Mg,vg), a < B is a crossed module morphism. Let vy : N — Py be a crossed P,- module
for each a such that (1,99) : (N,v,) — (N,vg), a < B is a crossed module morphism. Then
there are natural isomorphisms of Lie algebras

(lim o {Mo}) ©7 N~ lim o { Mo ©9 N}, lig o {Mo}) A? N ling o{ Mq A7 N},

where li_n;a{Ma} ®4 N is considered as the tensor product modulo q of crossed liﬂa{Pa}—
modules.

Proof. It is easy to check that a homomorphism v : N — limo{F,} defined by v(n) =
cl(va(n)), n € N with an action (P=)p, = Pep is a crossed module.

Let p : limo{Mq} — limo{Ps} be the Lie homomorphism defined by u(cl(ma)) =
cl(pta(ma)). There is an action of limo{Ps} on lim,{Ms} defined by clpa)cl(mg) =

cl(‘I’l(p“)(If’ (mg)), where v > a, (the existense of such v follows from the directeness of
the system). It is easy to check that everything is well defined here. Then we have

p(P) l(mg)) = (el B (m))) = el (Y0 @) (mg))

= ([T (Pa), 1y (B (mp))]) = cl([¥(Pa), ¥ 315(ms)])
= [el(pa), wccl(mp))], where v > «, B3;
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u(cl(ma))cl(mﬁ) — cl(ua(ma))cl(mﬁ) - cl(‘l’lua(ma)q)g,(mﬁ))
= cl( P (mg)) = cl(R] (ma), B} (ms)])
= [cl(mq),cl(mg)], where v > a, (.
Hence p is a crossed lim o { P, }-module.
Suppose
t:(limo{Ma}) ® N — limg o {Ms @7 N}

(vesp. t ¢ (lim o {Ma}) AY N — limg o { M, AY N})

is a homomorphism defined by the formula t(cl(my) ® n) = cl(mq ®n) (resp. t(cl(mq) An) =
cl(my An)) and t({(cl(ma),n)}) = cl({(®2(my,),n)}). Note that there is a 3 > « such that
(@9 (mq),n) € Mg xp, N, when (cl(mq),n) € (lim o M) Xlim o P, V. To prove that ¢ is well
defined we repeat the corresponding part of the proof of Theorem 1.5 in [15].

It is clear that ¢ commutes with relations (1.1) and (1.2). Let us show the compatibility
with relations (1.3)-(1.9).

t([el(ma), cl(mg)] © n) = t(cl([85(ma), 25(mgp)]) @ n)
cl([23(ma), ®j3(ms)] @ n)
A(®Y (mg) @ " 3 (me) q)’Y(mﬁ)®,u7<I>g(ma)n)

(

(

A((®) @7 1x)(ma ® Yarems)p) — (87 ®7 1x)(mp ® Vaka(ma)pyy
= cl(mg @ ") n — cl(mp @ He(Ma)p)
= t(cl(mg) ® UM n — cl(mg) ® M)p), for some v > a, 3.
Similarly it can be proved that ¢ preserves the second relation of (1.3). Next
t([cl(mq) @ n,cl(mg) @ n']) = [el(my ®n), cl(mg @n')]
= (87 &7 1y)(ma @), (B) &1 1x)(mg @ 1))
= d([®](ma) ®n, @ (mg) ®n']) = —cl("Y (ma) © T2 "))
= _t(nCI(mDé) ® Cl(mﬁ)nl)7 Y 2 Oé,ﬁ,

t([{(cl(ma),n)}, cl(mg) @ n']) = [cl({(@](ma),n)}), cl(ms @ n')]
cl([(®7 ® 1n)({(®](ma),n)}), @] (ms @ n')])

cl([{(2] (ma),n)}, ) (mp) @ n'))

= ("} (mg) @ ' + B (mg) @ ')
t("cl(mg) @n' +cl(mg) ® "n'), v > 1,8,

/\

t({A(cl(ma),n) + X (cl(mg),n")})
!

(c
t({(cl(@%(Amqa) + @5(N'mp)), An + A'n')})
= cl({(®2 (22 (\ma) + BL(N'mg)), An + A'n')})
(
(

7
¢

—_~ o~

c({ 7' (Ame) + <I>7 (N'mg)), An + N'n')}

(@Y (ma),m)} + X ({8 (mg),n")})
(M(cl(ma),n)} + N{(cl(mp),n")}),

I
= 0
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t([{(cl(ma),n)}, {(cl(mg),n")}])

= [d({(®Y(ma),n)}, L ({(®} (mp),n")})]
= cl([{(22 (ma),n)}, {(@] (ma),n")}])

= cl(q®] (ma) ® qn') = t(q.cl(ma) @ qn’),

t{(="cl(ma), “"In)}) = t({(cl(="ma), " n)})
= Cl({(‘1>§( "ma), ™ n)}) = c({(=" 5 (ma), T " In)})
cl(q(®g(ma) ® 1)) = t(a(cl(ma) @ n)).

If cl(pta(ma)) = cl(vq(n)) then there is 8 > a such that ¥%pu,(m,) = ¥3v,(n) and hence
1525 (ma) = vg(n). Then

t(cl(ma) An) = c(mg An) = cl (P2 (mq) An) = 0.
On the other hand, the homomorphisms
&, 11y : M, TN — (li_nga{Ma}) ®1 N

(resp. ®o AY 1y : Mo A" N = (lig o {Mo}) AT N),

Where b, : M, — lim,{M,} are the canonical homomorphisms, induce a homomorphism
:lim o {M ®IN} — (11 a{My}) ®1 N (resp. t': ling o, {My AT N} — (l_n)a {My}) AT N).
It is easy to see that tt', t t are identity maps. O
One has the following generalization of the homomorphism ¢ in Proposition 1.6

Theorem 1.10. (i) Let p be a positive integer and let ¢' = pq. Then there is a Lie homo-
morphism ¢’ : M @1 N — M ®? N given by
¢'m@n)=men, ¢{k})={pk}
form € M,n € N,k € K. Furthermore, the Lie homomorphism ¢’ induces a Lie homo-
morphism ' : M AT N - M A N.
(ii) Let L = K/[M, N] then cokery' and cokery' are isomorphic to L/pL.
Proof. (i) We have to show that ¢’ commutes with relations (1.1)-(1.9). It is clear for relations
(1.1)-(1.4) and (1.9). Now, form € M, n € N, k, k' € K, \,\' € A we have
O ([{k},m@n]) = [{pk},m@n] = P*m o n+m e Py

=" meon+me T n=¢ (@ *mon+me ),
O ({Me + XNE'}) = {p(Ak + N'E")} = Mpk} + N{pk'} = o' Mk} + N {E'});

' ([{k}, {K'}]) = [{pk}, {pk'}] = 1 (qpk) @ T2 (qpk’)
= ¢'(m(q'k) ® m(q'K"));

¢ ({(="m,™n)}) = {p(="m,"n)} = q¢'(m @ n) = ¢'(¢'(m @ n)).

(ii) Can be proved by analogy with the group theoretic version (see [5, Theorem 1.22]). O
Suppose that g : M — P and v : N — P are two crossed P-modules in the context of
Lie algebras. There is an action of P on M ®? N (M A? N) which on generators is given by
Pm@n)=Pme@n+mePn P(mAn) =PmAn+mAPn) and P{k} = {Pk} for m € M,
n € N, k € K and p € P. The proof of this fact is left for the reader.
Now we give the definition of the crossed square of Lie algebras which is the crossed 2-cube
of Lie algebras (see [8, Definitions 1.3 and 1.4]).
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Definition 1.11. A crossed square is a commutative diagram of Lie algebras
L 25 M

S
N 2> P
endowed with an action of P on each Lie algebra and a bilinear function h : M x N — L

such that
(i) pu, v and a = v\ = puX are crossed modules, and the maps X\, X\ preserve the actions
of P;
(ii) Ah(m,n) = ="m, X'h(m,n) = ™n;
(iv) h([m,m'],n) = h(m,™ n) — h(m',™n),
h(m7 [nanl]) = h(n’m,n) - h(nmvnl);

(v) Ph(m,n) = h(*m,n) + h(m,?n)
for allm,m' e M, n,n' e N,pe P,l € L.

It is easy to obtain the following property of crossed squares of Lie algebras:

Lemma 1.12. Consider a crossed square of Lie algebras. Then:

(i) with the actions induced by the image in P the morphisms A\, X' are crossed modules;
(ii) the actions of M on Ker\' and of N on Ker\ are trivial;

(iii) (AL, A (1) =[] for all 11" € L.

Now we list some examples of crossed squares of Lie algebras. Throughout, P is an arbitrary

Lie algebra and pt: M — P and v : N — P are crossed P-modules.

(1) The square (pull)

MxpN —2= N

ml lu

B &
with h(m,n) = (—="m,™n) is a crossed square.
(2) The square

MeN — % N

| K
M —t-P
with £(m ®n) = —"m, ' (m ®n) = ™n and h(m,n) =m @ n is a crossed square.

(3) The square

MAN —£ 4 N

a3 l
M —£=P
with h(m,n) = m A n is a crossed square.

One has the following
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Lemma 1.13. Form € M, n € N, k € K we have the following relations:
"{k} =m @ m(qk),
"k} = —m(qk) © .

Proof. "{k} = {([m, 7, (k)], "m2(k))} = {(="®)m, ™y (k))} = m @ m2(gk) by formula (1.8).
The proof of the second formula is similar. O
Now we have a fourth example of a crossed square of Lie algebras

Proposition 1.14. The square

M —ts P
is a crossed square with the function h given by h(m,n) = m ® n, where & and &' are the Lie
homomorphisms defined in Proposition 1.3.

Proof. We have to check each property of a crossed square.
(i) It is easy to see that £ and &' preserve the actions of P. Consider a = p& = v¢’, then:

a(f(m®@n)) = pé(Pm @ n+m@Pn) = p(="(m) - "'m)
= u(=F("m)) = [p, n(="m)] = [p, a(m @ n)],
a("{k}) = n€({"k}) = pmi (*(gk)) = [p, pm1(gk)] = [p, a({k})],
Q&) (1 g 1) = B (! ) = Bt ot 4 gt @ lim) (]
= -"m,m'l@n" +[m,"m|@n —m' @ [n,"n']+m' @ "[n,n’]
=—["m,m'|@n +m' @ ["n,n']
= —"me@™n —m' @ [™n,n']+m' @ ["n,n'] = [mon,m @n]
by formulas (1.3) and (1.4),
AmEm Ky = ™ (M{k}) = (" {k}) = " (=i (qk) © n) = "(m @ m2(qk))
= [mi(gk),m] @ n —m(gk) @ "n —"m @ m(gk) —m @ [n, m>(gk)]
=m(gk) @ ™n—m® ®n — 7 (gk) @ ™n —"m @ m(gk) — *men
+"m ® ma(gk) = [m @ n, {k}]
by Lemma 1.13 and formulas (1.3) and (1.5),
@D (mon)=""men+me ™ Fy = [{k},men]
by formula (1.5),
DY = U} = i (gk) © ma(ak') = [{k}, {K'}]

by Lemma 1.13 and formula (1.7).
Now if z,y € M ®? N are such that a(Pz) = [p, a(z)] and a(Py) = [p, a(y)], then

a(’[z,y]) = [a("z), a(y)] + [a(z), a("y)]
= [[p, a(x)], a(y)] + [a(=), [p, a¥)] = [p, o[z, y]];
Next, if 21, y1, 21 € M ®7 N are such that @y, = [z;, 1] and “*) 2z, = [z1, 2], then

@y, 2] = [[w1, 1], 21) + [y1, [21, 21]] = [0, [y1, 20]);
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And finally, if 25, y2, 2o € M ®9 N are such that *(*2) z, = [z, 2] and *W2) 2z, = [y, 2], then
ollwz,y2]) ) = al2) (alyz) 5y _ aly2) (alz2) 4,)
= [z2, [y2, 22]] = [y2, [2, 22]] = [[22, 2], 22]-

Thus « is a crossed module.

(ii), (iv) and (v) are clear.

(iii) For the proof of the first formula we consider the two cases | = m ® n and | = {k},
then one has

!

(mon)on' =-"meon' =-"men+m® n,n]=—-"(men)
by formula (1.3),
E{k}) @n =m(gk) ®@n = -"{k}

by Lemma 1.13, and observe that if £(I) ® n = —"l and {(I') @ n = —"I',for |, I' € M ®? N,
then by formula (1.3) and (i) it can be written

I en=¢0) @8 n—¢l) 2 On
=W on) = et @n - OEl) on) + V) @n
=", ="+ L) @n =1, ="+ (L) @n,
so that
LU @n=—([,""+[",I]) =", 1]
The proof of the second formula is similar.0

Corollary 1.15. The square

M —t5P
with h(m,n) = m An is a crossed square.

Lemma 1.16. (i) With the action induced by the image of K = M xp N in P the Lie
homomorphism 6 : M @1 N — K (§' : M NY N — K ), constructed in Remark 1.4 is a
crossed module.

(ii) Ifx € MAYN (resp. x € M ®1 N ), then {6'(z)} = qx (resp. {§(z)} = qx).

Proof. (i) immediately follows from the direct calculations.
(ii) For k € K by formula (1.6)

{0'({k})} = {(m1(gk), m2(qk))} = {qk} = q{k},
for m € M and n € N, using (1.8) one has
{Fm Am)} = {(="m,™n)} = gm A n).
Now let , y e M AT N, A\, X € A, {§'(x)} = qz and {6'(y)} = qy, then by formula (1.6)
{6'Az + Ny)} = qg(Az + N'y).
Next, by relation (1.8), Lemma 1.12(iii) and Proposition 1.14 one has
{8 ([, y])} = {(="" W, (x), ™ @ o8 (9)} = q(é(w) AE () = glee, y].

It is enough to see that {§'(z)} = gz for any x € M A? N. The equality {é(z)} = gz for
x € M ®7 N can be proved similarly. O
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Now we analyse the kernel of the canonical homomorphism M ®4 N — M A? N. In order to
do this we consider the generalized version of Whitehead’s universal quadratic functor ' [19],
which is defined by Simson and Tye in [18] (see also [6]) for any A-module A as the A-module
I'(A) generated by the symbols y(a) with a € A, subject to the relations

A*v(a) = y(ha),
v(a+b+c¢)+v(a) + () +v(c) =v(a+b) + v(a+c) +v(b+ c),
Y(Aa + b) + My(a) + Ay(b) = My(a + b) + v(Aa) + v(b)

forall A\, N € A, a, b, c € A.

Let o : M — P and v : N — P be two crossed P-modules. Suppose the image of (£,¢') is
written < M, N >. It is easy to check that < M, N > is an ideal of K = M xp N and the
quotient is abelian. One has the following

Theorem 1.17. There is a natural ezact sequence of Lie algebras
K/ <MN>%Me'N5MAN— 0,
where Y(y(cl(m,n))) =mn and t(m @ n) =m An.

Proof. It is easily seen from relations (1.1), (1.4)-(1.7) that any element € M ®% N is of the
form z =5, m; ® n; + {k}, 80

£(z) Zmz®nl ®¢ Zml®nl
Zmz®nl @& {k}) +E{EY) @ ¢ Zml®nz
+€({k}) ® &' ({k}).

But from the proof of Proposition 14 in [6] we have
- mion) (Y mion) =0
Next, using Lemma 1.13

€02 m e n)  €({kD + (kD © € omi @ n)
= S ms o mah) +mak) & ™) = 3=k = k)

i

_ Z _[u(nl),u m; ]{k} _ [u(ml),l/(m)]{k}) =0,

By relation (1.7)
E({k}) ® £ ({k}) = mi(gk) ® m2(qk) = 0.

So ()@ (z) = 0 for every z € M®IN. Thus if ¢l(m,n) = 0 then ¢(y(cl(m,n))) = m@n = 0.

Clearly ¢ commutes with the defining relations of I'(—) and Im¢ = MON = Kert (see

Definition 1.2). But M ON is in the centre of M ®7 N and so ¢ is a Lie homomorphism. O
Recall the definition of compatible actions of Lie algebras from [6]

Definition 1.18. Let M and N be two Lie algebras with actions on each other. The actions
are compatible if

n' =[n',™n] and "m' = [m',"m]

for allm,m' € M n,n' € N.
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Let M and N be two Lie algebras with compatible actions on each other. We shall denote
by MN the submodule of N generated by the elements of the form ™n, m € M, n € N. It
follows from the compatibility condition that ™ N is an ideal of N.

According to the definition of the Peiffer product of groups (see [19],[10]) we have the
following

Definition 1.19. The Peiffer product, M < N, of two Lie algebras M and N with compatible
actions on each other is the quotient of the coproduct M % N by the relations:

[m,n] ="n, [n,m] ="m

for allm e M, n € N.

As a consequence of the compatibility condition the actions of M * N on M and on N
factor through M < N and the canonical maps M — M > N and N — M < N are crossed
modules. So we can define an ’absolute’ tensor product modulo ¢ of two Lie algebras M and
N acting on each other compatibly, by considering them as crossed M > N-modules.

Theorem 1.20. If M and N act trivially on each other (i.e. N = {0} and M = {0})
then there is an isomorphism

M ®q N ~ (Mab/qMab) ®A/qA (Nab/qNab)’

where M = M/[M,M], N*®* = N/[N, N] and [M, M], [N, N] are commutants of M and N
respectively.

Proof. In the case of trivial actions [m,n] = 0in M > N for all m € M, n € N and
hence the Peiffer product M < N = M x N. Clearly K = M Xpsan N = 0. So the Lie
homomorphism ¢ in Proposition 1.6 is surjective. By [6] in the case of trivial actions one has
M ® N ~ M® @, N®. By relation (1.8) every element in M ®7 N has an order dividing q.
Then

M@"N~MoN/qM®N)~ Moy N /q(M*™® 2, N°)
A (M [qM®) @5 g0 (N® [gN"). O
Now the relation between Ellis’ non-abelian tensor product of Lie algebras and the non-
abelian tensor product modulo ¢ of Lie algebras with compatible actions on each other will be
given, which is the Lie algebra analogue of [15, Theorem 1.9]
First we study the Peiffer product of Lie algebras. Let M and N be two Lie algebras acting
compatible on each other and let ¢ : M*N — M < N be the natural Lie homomorphism. Then

modulo Kery, [m,n] = ™n, so that every element of M > N can be written as ¢ (m) + ¢ (n)
for suitable m and n. We denote 1)(m) + ¢ (n) by < m,n >. It is easy to see that the relations

[<m,n > <m0 > =<[m,m]+"m —"m,[nn'] >
=< [m)m,]) [n)nl] +"n' — mln >
are defining relations for M b1 N on the generators < m,n > and the Peiffer product is a

homomorphic image of the semidirect products M x N and M x N. Furthermore, M > N is
obtaind from M x N (resp. M x N) by imposing the relation

("m,™n) =0
for all m € M and n € N, since if L is an ideal of M x N (resp. M x N) generated by the
set {("m,™n)lm € M,n € N}, then we have a Lie homomorphism M x N/L 5% M > N
(resp. M x N/ % M 1 N), e(cl(m,n)) =< m,n >. On the other hand, there is a Lie
homomorphism M sx« N < M x N/L (resp. M >a N < M x N/L) induced by the canonical

homomorphisms M — M x N and N - M x N (resp. M —- M x N and N - M x N). It is
clear that ee’ and €'e are identity maps.
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Let p: M — P and v : N — P be two crossed P-modules.The actions of M and N on each
other via P are always compatible and it is easy to prove the following

Proposition 1.21. There is an exact sequence of Lie algebras
0— K/[M,N] % MNP (1.10)

where the map j is induced by the map K — M x N given by (m,n) — (m,—n) and
t(< m,n >) = pu(m) +vn).

Observe that this result is the Lie algebra analogue of Proposition 2.5 [1] (see also [10],
[15]).
By (1.10) and Proposition 1.6 one has the following exact sequence of Lie algebras

MONA3M@N— M N —s P. (1.11)

In the case of the ’absolute’ tensor product modulo ¢ of Lie algebras M and N acting com-
patibly on each other and considered as crossed M < N-modules, the natural homomorphism
M > N — P = M v N is the identity map. Thus from (1.11) ¢ : M @ N — M ®7? N is an
epimorphism and K = [M, N].

Theorem 1.22. Let M and N be Lie algebras equipped with compatible actions on each other.
Then there is a short exact sequence of Lie algebras

0 — q(KerANKer\) — M@ N 3 M @I N — 0,

where \: M @ N — M, X : M ® N — N are Lie homomorphisms defined on generators by
A(m ®@n) =="m, N(m®n) ="n (see [6, Proposition 2]).

Proof. Any element € M ® N is of the form z = )", m; ® n;. Let € KerAN Ker)', then
by the formulas (1.8), (1.6) one has

90((]56)_2 (mi ® n;) Z{ ="mg, ™in;)}
={Q_(-"ma), Zml ={(A\@),N(@)} ={(0,0)} =0.

i

This proves that ¢(q(KerA N Ker\')) = 0. Hence ¢ induces a natural Lie homomorphism
: M@ N/q(KerA\N Ker\') — M @7 N.
(="™my, ™in,;) for

Since K = [M, N] (see above), any element k € K is of the form k = )",
suitable m; € M, n; € N. Let us define a homomorphism ¢' : M ®? N —
M ® N/q(KerAn Ker)') as follows: ¢'(m ® n) = cl(m @ n), '({k}) = cl(3°; g(m; ®n;)). It
is easy to see that ¢/’ is correctly defined, it preserves the relations (1.1)-(1.8) and ¥, ¢¥'¢
are identity maps. O

Note that by [12] if N — M (resp. M — N) is a crossed M-module (resp. N-module) then
KerX (resp. Ker)) is the first non-abelian homology H; (M, N) (resp. Hi (N, M)) of the Lie
algebra M (resp.N) with coefficients in the Lie algebra N (resp. M)

Corollary 1.23. If M is a perfect Lie algebra (i.e. M = [M,M]) then one has the following
short ezxact sequence of Lie algebras

0—=qHy(M) > MM — M®!M—0

Proof. Follows from Theorem 1.22 and the fact that if M is a perfect Lie algebra then
Ker\ = Hy(M) [6, Theorem 11]. O
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2. The universal ¢-central relative extension of Lie algebras

Let M and N be two ideals of the Lie algebra P, so that there is a canonical identification
K =M xp N =MnNN, sending (k, k) onto k. We denote by M#,N the image of M ®¢ N
and M A? N in K = M N N. Whence M#,N is the ideal of K generated by elements [m,n]
and gk for me M, ne€ N and k € K.

Proposition 2.1. Suppose that M and N are two ideals of a Lie algebra P and M NN =
MH#,N, then we have
M®!N=MA!N.

Proof. For k € K = M NN = M#,N there exists x € M ®7 N such that k = £(z), then by
Lemme 1.12(iii) we have

k@ k=E@) ®€(@) = [r,2] = 0.0
Now we give the following definition from [16]

Definition 2.2. (i) Let a: P — Q be a Lie epimorphism and A be a Q-module. A relative
extension of a by A is an exact sequence of Lie algebras

0A-EBPSQ—0

such that p is a crossed P-module.
(ii) a morphism between the relative extensions
0ASEBPSQ—0
and
0—>A’—>E’E>P3>Q—>O
is a P-equivariant Lie homomorphism ¢ : E — E' (i.e. o(Px) =Pp(z) forz € E, pe P)
such that p'¢ = p.
(iii) A relative extension of a by A is called a central relative extension if Q acts trivially on
A.

Following definitions are the Lie algebra analogues of Definitions 2.3-2.5 in [5].

Definition 2.3. A relative extension of a by A is called a q-central relative extension if Q acts
trivially on A and qa = 0 for any a € A. Such q-central relative extension is called universal if
there exists a unique morphism of relative extensions from it to any q-central relative extension
of a.

Note that if @ = {0}, then the g-central relative extension of a by A is a g-central extension
of P by A, i.e. a central extension of Lie algebras
0>A—-FE—-P—0,
such that ga = 0 for all a € A.

Definition 2.4. A P-Lie algebra A (P acts on A) is called P-q-perfect if A is generated by
elements of the form [a,a'] —Pa’ and qa, a,a’ € A, p € P.

Note that if P acts trivially on A, then the P-g-perfect Lie algebra A is a g-perfect Lie
algebra, i.e. A is generated by elements of the form qa and [a',a"], a,a’,a" € A.

Now we obtain the conditions for the existence of a universal ¢g-central relative extension of
a Lie epimorphism and describe this extension using exterior (tensor) product modulo g.
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Lemma 2.5. Let P be a Lie algebra and N be an ideal of P. Then the P-Lie algebra N N7 P
(N ®1P) is P-q-perfect if and only if N = N#,P.

Proof. First suppose N = N#,P, then for any n € N there exists z € N A? P such that
n = {(x), thus, by Lemma 1.16(ii) {n} = {£(z)} = ¢z and by Definition 1.11(iii) and Corollary
1.15 we have n Ap = &(x) Ap = —Pz. As N A7 P is generated by elements n A p and {n} it is
P-g-perfect.

Conversely, let N A? P be P-g-perfect. Consider the surjective Lie homomorphism ¢ :
N A? P — N/[N, P] given by Proposition 1.6. As the elements [z,z'] — Pz’ and gz generate
N A9 P, then their images ¢([z,2'] — P2') = c([¢(z),p — &(z)]) = 0 and ¢ (qz) = cl(£(qx))
generate N/[N, P],so N = N#,P. O

Lemma 2.6. A short exact sequence of Lie algebras
0N=>P3Q—0
gives rise to an exact sequence of Lie algebras
NAPSPYQ S0
if and only if N = N#,P.
Proposition 2.7. Suppose that
0N—-P3%Q—0
is a short exact sequence of Lie algebras and let
0-A-EBP3Q—=0

be a q-central relative extension of a. If N # N#,P then the Lie algebra E is not P-g-perfect
and this q-central relative extension is not universal.

Proof. If the Lie algebra E is P-g-perfect then by surjectivity of the Lie homomorphism
E % N we obtain that N is P-g-perfect i.e. N = N#4P. So E is not P-g-perfect.

Let EL be the submodule of E generated by the elements [z,2'] — P2’ and qz, z,2' € E,
p € P. 1t is easy to see that E% is an ideal of E, E/E} # 0 is abelian and Q acts trivially on
E/E}. Then the exact sequence

0— E/EL S E/ELXN S P3Q -0,

where 7(z,n) = n, is a g-central relative extension of a.

Let us define Lie homomorphisms fi, fo : E — E/E}, x N as follows: fi(z) = (cl(z), u(x))
and fa(x) = (0, u(x)) for all € E. Clearly f; and f» are morphisms of relative extensions and
f1 # f2. Hence the g-central relative extension 0 - A — F £ P % Q — 0is not universal. O

Theorem 2.8. Let
0N->P3Q—0

be a short ezact sequence of Lie algebras and N = N#,P. Then the exact sequence

05V oSNAPSPYQ S0
is the universal q-central relative extension of o, where V = Ker.

Proof. By Lemme 2.6 this sequence is exact. By Lemma 1.12(ii) and Corollary 1.15 the Lie
algebra () acts trivially on Ker¢ and by Lemma 1.16(ii) one has gz = {{(z)} = 0 for z € Ker¢.
So the sequence is a g-central relative extension of a.

Let

0A-EBP3Q—0
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be another g-central relative extension of a. Suppose ¥ : N — E be a set-theoretic section of
p and let us define a map k: N A? P — E as follows: k(n Ap) = —P¥(n) and k({n}) = ¢d(n).
We must show that k& commutes with relations (1.1) to (1.9).

Clearly

E(n A Ap) = =P0(n) = Xk(n A p).
Note that if z,y € E and z — y € A, we have Px = Py for all p € P. Then
E(An A p) = =PI(An) = =P(AI(n)) = Ak(n A p);

E((n+n')yAp) = =P@(n+n')) = =PW(n) +9(n')) = k(n Ap) + k(n' Ap).
Clearly
k(n A (p+p') =k(nAp)+k(nAp);
Using the defining conditions of crossed module
k([n,n'] Ap) = ="¥([n,n']) = ="[I(n),9(n")]
= —[P9(n), d(n")] = W(n),"9(n")] = =""D9(@) + D)
= —[Prly(n!y + P lY(n) = —k(n' Ap) + k(n A™ p);
and
kA lp,p]) = =PP19(n) = =P(*'9(n)) + 7 (P9(n))
= —P9(" n) + P 9(*n) = k("' n A p) — k(*n A D).

The proof of the commutativity of k& with relations (1.4) and (1.5) is similar. Next, since
qr = qy for all z,y € E such that z —y € A, we have

E({dn+ XNn'}) = @d(An + X'n') = g\ (n) + N'I(n))
= Ak({n}) + X'k({n'});

k([{n}, {n'}]) = [g9(n), ¥ ()] = =) (g0 (n))
= —1"Y(qn) = k(qn A qn');

k({[n,p]}) = ¢d¥([n,pl) = —¢"¥(n) = k(q(n A p)).
Finally
E(n An) = ="0(n) = =" ™yY(n) = —[0(n),9(n)] = 0.
Since ¥(Pn) — P¥(n) € A one has
k(P{n}) = ¢d("n) = ¢"9(n) = Pk({n});
and
k(P (nAp)) = =P 9("n) — PP19(n) = =P ("' 9(n)) = Pk(n A p).

Thus k is P-equivariant.

Suppose k' : N A? P — E is an other homomorphism such that uk = pk’ = &, then
k(y) — k' (y) € Kery = A and k(qy) = k'(qy) for all y € N A? P. On the other hand for any
z,2' € NAY P and p € P we have (“(#)=P)(k(2') — k'(2')) = 0 from which comes

k([z,z'] — Px') = k' ([z, 2] — Pa').

Thus k = k' since N A? P is P-g-perfect and is generated by elements [z, z'] — Pz’ and qy, for
all z,2',y e NNTP,pe P. O
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Remark 2.9. In Theorem 2.8 N A? P can be replaced by N ®? P.
Corollary 2.10. If P is a g-perfect Lie algebra, then the exact sequence of Lie algebras

05V sPAPS PO

is the universal q-central extension, where V = Keré.

References
1. R.Brown, Coproducts of crossed P-modules: applications to second homotopy groups and
to the homology of groups, Topology 23 (1984), 337-345.

2. R.Brown, g-perfect groups and q-central extensions, Publicaciones Mat. 34 (1990), 291-
297.

3. R.Brown and J.-L.Loday, Excision homotopique en basse dimension, C.R. Acad. Sci.
Paris S.I Math. 298, No 15 (1984), 353-356.

4. R.Brown and J.-L.Loday, Van Kampen theorems for diagrams of spaces, Topology 26
(1987), 311-335.

5. D.Conduche and C.Rodriguez-Fernandez, Non-abelian tensor and exterior products mod-
ulo q and universal q-central relative extension, J. Pure Applied Algebra, 78 (1992),
139-160.

6. G.J.Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. J 33 (1991),
101-120.

7. G.J.Ellis, Non-abelian exterior product of Lie algebras and an exact sequence in the
homology of Lie algebras, J. Pure Appl. Algebra 46 (1987), 111-115.

8. G.J.Ellis, Higher dimensional crossed modules of algebras, J. Pure Appl. Algebra bf 52
(1988), 277-282.

9. G.J.Ellis and C.Rodriguez, An exterior product for the homology of groups with integral
coefficients modulo p, Cahiers Topologie Géom. Différentielle Catégoriques XXX (1989),
339-344.

10. N.D.Gilbert and P.J.Higgins, The non-abelian tensor product of groups and related con-
structions, Glasgow Math. J 31 (1989), 17-29.

11. D.Guin, Cohomologie et homologie non-abeliennes des groupes, J. Pure Appl. Algebra
50 (1988), 109-137.

12. D.Guin, Cohomologie des algebres de Lie croisees et K -theorie de Milnor additive, Ann.
Inst. Fourier, Grenoble 45 (1995), 93-118.

13. H.Inassaridze and N.Inassaridze, Nomn-abelian homology of groups, K-Theory J. 378
(1998), 1-17.

14. N.Inassaridze, Non-abelian tensor products and non-abelian homology of groups, J.Pure
Appl. Algebra, 112 (1996), 191-205.

15. N.Inassaridze, g-Homology of groups, J.Pure Appl. Algebra (1999) (to appear).

16. C.Kassel and J.-L.Loday, Extensions centrales d’algebres de Lie, Ann. Inst. Fourier
(Grenoble) 33 (1982), 119-142.

17. J.-L.Loday, Cohomologie et groupe de Steinberg relatif, J. Algebra 54 (1978), 178-202.

18. D.Simson and A.Tye, Connected sequences of stable derived functors and their applica-
tions, Dissertationes Mathematicae (Rozprawy Mat.) 111 (1974).

19. J.H.C.Whitehead, On adding relations to homotopy groups, Ann. of Math. 42 (1941),
409-428.



Homology, Homotopy and Applications, vol. 1, No. 9, 1999 204

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous
ftp at ftp://ftp.rmi.acnet.ge/pub/hha/volumes/1999/n9/n9.(dvi,ps,dvi.gz,ps.gz)

Emzar Khmaladze khmal@rmi.acnet.ge

A. Razmadze Mathematical Institute
Georgian Academy of Sciences

1, M. Aleksidze St., Thilisi 380093
Georgia



