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A HIGHER DIMENSIONAL HOMOTOPY SEQUENCE

M. GRANDIS and E. M. VITALE

(communicated by Hvedri Inassaridze)

Abstract
We associate to a continuous map between pointed spaces

a long 2-exact sequence of homotopy pointed groupoids. The
usual homotopy sequence of a map follows from this 2-exact
sequence taking, for each groupoid, the set of connected com-
ponents. We also study a condition of strong 2-exactness for a
sequence of cat-groups and pointed groupoids.

Introduction

Let us start with an old story. The simplest homotopy invariant of a pointed
topological space Y is the pointed set π0(Y ) of its path-connected components.
Using the loop functor Ω, we have a family of pointed sets πn(Y ) = π0(ΩnY ) which
are (abelian) groups for n > 1 (n > 2). If f : X → Y is a continuous map preserving
the base point, these homotopy invariants fit into a long exact sequence of groups
and pointed sets

. . . → πn(Kf) → πn(X) → πn(Y ) → . . .

. . . → π1(Kf) → π1(X) → π1(Y ) → π0(Kf) → π0(X) → π0(Y )

where Kf → X is the homotopy kernel of f.
The aim of this short note is to show that this sequence is a kind of “projection”

on the category of pointed sets of an exact sequence of higher dimensional homotopy
invariants. In fact the first two invariants of Y, π0(Y ) and π1(Y ), can be interpreted,
respectively, as the set of connected components and the group of automorphisms
at the base point of the fundamental groupoid Π1(Y ). Using once again the loop
functor, one obtains a family of pointed groupoids Πn+1(Y ) = Π1(ΩnY ). We will
show that these homotopy invariants fit into a sequence of pointed groupoids and
pointed functors

. . . → Πn(Kf) → Πn(X) → Πn(Y ) → . . .

. . . → Π2(Kf) → Π2(X) → Π2(Y ) → Π1(Kf) → Π1(X) → Π1(Y )

which is “2-exact”, i.e. exact in a suitable categorical sense (see Definition 1). Tak-
ing, for each pointed groupoid of this sequence, the pointed set of its connected
components, one comes back to the classical exact sequence of the map f.
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The second part of this paper is devoted to study a condition of strong 2-exactness
which can be stated when a cat-group acts on a pointed groupoid. It is well-known
that the classical homotopy sequence has a strong exactness at the transition point
between groups and pointed sets

π1(Y ) → π0(Kf) → π0(X)

which is stated in terms of the action of the group π1(Y ) on the pointed set π0(Kf).
We show that the higher dimensional homotopy sequence satisfies a similar condi-
tion. We state our condition using a suitable 2-dimensional colimit, which is nothing
but the cokernel (in the sense of bilimits) when the sequence is a sequence of sym-
metric cat-groups. This provide also a new interpretation of the strong exactness
for a sequence of groups and pointed sets.

A warning: the composite of two arrows f : X → Y and g : Y → Z in a category
is denoted by f · g.

1. Preliminaries

In this section we recall all the ingredients we need for the sequence of groupoids:
the kernel of a morphism of pointed groupoids, the definition of 2-exactness, the
homotopy equivariance of the fundamental groupoid of a space.

A pointed groupoid G = (G, 0) is a groupoid G (that is a category in which each
arrow is an isomorphism) together with a chosen object 0. A morphism of pointed
groupoids F : G → H is a functor with a specified arrow f0 : 0 → F (0) in H (a
morphism F : G → H is strict if the arrow f0 is the identity); a pointed natural
transformation ϕ : F ⇒ G : G → H between morphisms of pointed groupoids is a
natural transformation (necessarily a natural isomorphism) such that f0 · ϕ0 = g0.
In this way we obtain a 2-category Gpd∗.

Given a morphism F : G→ H in Gpd∗, its (homotopy) kernel kF : KF → G can
be described in the following way :

- an object of KF is a pair (X, x) with X an object of G and x : 0 → F (X) an
arrow in H ;

- an arrow f : (X, x) → (X ′, x′) of KF is an arrow f : X → X ′ in G such that
x · F (f) = x′ ;

- the base object of KF is (0, f0) ;

- the functor kF sends f : (X,x) → (X ′, x′) to f : X → X ′ ; it is a strict mor-
phism.

There is a pointed natural transformation κF : 0 ⇒ kF ·F (where 0 is the constant
morphism which sends each arrow to the identity of the base object of H) given, at
the point (X, x), by x : 0 → F (X).
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The triple (KF, kF, κF ) has the following universal property : given any other
triple (K, G, ϕ) in Gpd∗ as in the previous diagram, there is a unique morphism
G′ : K → KF such that G′ · kF = G and G′ · κF = ϕ. The functor G′ is defined
by G′(g : Y → Y ′) = G(g) : (G(Y ), ϕY ) → (G(Y ′), ϕY ′). The kernel (KF, kF, κF )
has also a “biuniversal” property, studied in [11, 16], which characterizes it up to
equivalence.

A suitable notion of exactness in Gpd∗, introduced in [11, 16] to study some
examples coming from ring theory, is given in the following definition, related to a
notion of “homotopical exactness” studied in [9].

Definition 1. A triple (G,ϕ, F ) in Gpd∗
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is 2-exact if the comparison morphism G′ : K→ KF is full and essentially surjective
on objects.

If G = (G, 0) is a pointed groupoid, we write π0(G) for the pointed set of iso-
morphism classes of objects, and π1(G) for the group of automorphisms G(0, 0). If
G is a (braided) categorical group, π0G) is a (abelian) group and π1(G) is abelian
(see [5, 10] for the notion of (braided) categorical group). Both π0 and π1 give rise
to functors on the underlying category of Gpd∗

π0 : Gpd∗ → Set∗ π1 : Gpd∗ → Groups

which are homotopy invariants, in the sense that if there is a 2-cell ϕ : F ⇒ G : G→
H in Gpd∗, then π0(F ) = π0(G) and π1(F ) = π1(G). In particular, if F is an
equivalence in Gpd∗, then π0(F ) and π1(F ) are isomorphisms. Finally, let us observe
that if a triple (G,ϕ, F ) as in Definition 1 is 2-exact, then

π0(K)
π0(G)

// π0(G)
π0(F )

// π0(H) π1(K)
π1(G)

/ / π1(G)
π1(F )

/ / π1(H)

are exact sequences of pointed sets and groups.
Consider now a pointed topological space Y and its fundamental groupoid Π1(Y ),

i.e. the pointed groupoid having points of Y as objects and homotopy rel end-points
classes of paths as arrows (we use the additive notation for the concatenation of
paths). This construction gives rise to a functor

Π1 : Top∗ → Gpd∗

between the category of pointed topological spaces and the category of pointed
groupoids. Recall, from [3], the following lemma.

Lemma 2. The functor Π1 is homotopy equivariant. In particular, if f : X → Y is
a homotopy equivalence in Top∗, then Π1(f) is an equivalence in Gpd∗.

In fact, Π1 : Top∗ → Gpd∗ is a 2-functor, when we take as 2-cells in Top∗ homo-
topy classes of homotopies. Moreover, for any f in Top∗, Π1(f) is a strict morphism
in Gpd∗.
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2. The exact sequence

Consider a map in Top∗ together with its homotopy kernel

Kf
kf

// X
f

// Y

Recall that Kf is the subspace of the product space X × Y I given by the pairs
(x, η : ∗ → f(x)), with x a point of X, η a path in Y and ∗ the base point.

Proposition 3. The sequence

Π1(Kf)
Π1(kf)

// Π1(X)
Π1(f)

/ / Π1(Y ) ,

with the pointed natural transformation

ϕ : 0 ⇒ Π1(kf) ·Π1(f) ϕ(x,η) = [η] : ∗ → f(x) ,

is 2-exact.

Proof. Consider the following commutative diagram in Gpd∗, where f ′ is the com-
parison morphism

Π1(Kf)
Π1(kf)

//

f ′
( (

R

R

R

R

R

R

R

R

R

R

R

R

R

Π1(X)

KΠ1(f)

OO

Following the general description given in the first section, we obtain the following
explicit description for Π1(Kf),KΠ1(f) and f ′ :

- an object of Π1(Kf) is a pair (x, η : ∗ → f(x)) in X × Y I ;

- an arrow [h,H] : (x, η) → (x′, η′) in Π1(Kf) is a class of pairs with h : x → x′

a path in X and H : I → Y I such that H(0) = η, H(1) = η′ and, for all t in
I, H(t) : ∗ → f(h(t)) a path in Y ;

- an object of KΠ1(f) is a pair (x, [η] : ∗ → f(x)), where [η] is a map in Π1(Y ),
i.e. a class of paths η : ∗ → f(x) in Y ;

- an arrow [h] : (x, [η]) → (x′, [η′]) in KΠ1(f) is a class of paths h : x → x′ in X
such that the following diagram in Π1(Y ) commutes

∗
[η]

//

[η′]
& &

N

N

N

N

N

N

N

N

N

N

N

N

N

f(x)

[h·f ]
��

f(x′)

- the functor f ′ sends [h,H] : (x, η) → (x′, η′) to [h] : (x, [η]) → (x′, [η′]).

Clearly, f ′ is (essentially) surjective on objects. Moreover, consider an arrow
[h] : f ′(x, η) → f ′(x′, η′) in KΠ1(f). The commutativity of the previous diagram
gives us a continuous map L : I × I → Y such that L(0, t) = (η + h · f)(t), L(1, t) =
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η′(t), L(s, 0) = ∗, L(s, 1) = f(h(s)) for all s, t in I. By a well-known transforma-
tion (studied abstractly in [8], under the name of “lens conversion”) one can derive
from L a map N : I × I → Y such that N(0, t) = η(t), N(1, t) = η′(t), N(s, 0) =
∗, N(s, 1) = f(h(s)) for all s, t in I. Finally, put H : I → Y I H(s) = N(s,−). In this
way, we have an arrow [h,H] : (x, η) → (x′, η′) in Π1(Kf) such that f ′([h, H]) = [h],
that is f ′ is full.

In the next corollary, we write Ω: Top∗ → Top∗ for the loop-space endofunctor
and Πn+1(Y ) for the pointed groupoid Π1(ΩnY ).

Corollary 4. Let f : X → Y be a map in Top∗ : there is a long 2-exact sequence
of pointed groupoids

. . . → Πn(Kf) → Πn(X) → Πn(Y ) → . . .

. . . → Π2(Kf) → Π2(X) → Π2(Y ) → Π1(Kf) → Π1(X) → Π1(Y )

Proof. It is enough to recall that the dual Puppe sequence [15]

. . . → Ωn(Kf) → Ωn(X) → Ωn(Y ) → . . .

. . . → Ω(Kf) → Ω(X) → Ω(Y ) → Kf → X → Y

is homotopy equivalent to the sequence of iterated homotopy kernels

. . . // K(k(kf))
k(k(kf))

// K(kf)
k(kf)

// Kf
kf

// X
f

// Y

(as proved in a general, abstract setting in [7]). Since to be full and essentially
surjective is stable under composition with equivalences, we can apply Proposition
3 to each point of the kernel sequence and, by Lemma 2, we obtain the required
long 2-exact sequence.

Remarks :
1) Clearly, π0(Π1(Y )) = π0(Y ) and π1(Π1(Y )) = π1(Y ) ; more generally,

π0(Πn+1(Y )) = πn(Y ) and π1(Πn+1(Y )) = πn+1(Y ). As a consequence, apply-
ing the functor π0 : Gpd∗ → Set∗ to the 2-exact sequence of Corollary 4, we obtain
the usual homotopy exact sequence

. . . → π1(Kf) → π1(X) → π1(Y ) → π0(Kf) → π0(X) → π0(Y ) .

Applying the functor π1 : Gpd∗ → Groups, we obtain the same sequence, but we
miss the three terms of degree zero.

2) In [6], A. Garzon, J. Miranda and A. del Rı́o show that the groupoid Πn(Y ) is
a cat-group for n > 2, a braided cat-group for n > 3 and a symmetric cat-group for
n > 4. Moreover, if f : X → Y is in Top∗ and n > 2, Πn(f) is a monoidal functor
(compatible with the braiding if n > 3). Since the definition of 2-exactness remains
unchanged passing from pointed groupoids to (eventually braided or symmetric)
cat-groups, the 2-exact sequence of Corollary 4 is in fact a 2-exact sequence of
cat-groups for n > 2.
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3. Strong exactness

Let A and B be two groups. To give a homomorphism f : A → B is equivalent
to giving an action of the group A on the underlying set B which also satisfies a
supplementary condition (iii), namely a mapping +: A×B → B such that

(i) 0A + b = b

(ii) (a1 + a2) + b = a1 + (a2 + b)

(iii) a + (b1 + b2) = (a + b1) + b2

for all a, a1, a2 ∈ A and for all b, b1, b2 ∈ B. Indeed, given the action +: A×B → B,
we get f : A → B by f(a) = a + 0B . Conversely, given f : A → B, we put a + b =
f(a)+b. Moreover, given a morphism g : B → C in Groups, the following conditions
are equivalent:

(1) the composite f · g is equal to the zero morphism;

(2) the following diagram, where pB is the projection, commutes

A×B
+

//

pB

��

B

g

� �

B g
// C

Finally, the following conditions are equivalent:

(I) if g(b) = 0C , then there is a ∈ A such that b = f(a);

(II) if g(b1) = g(b2), then there is a ∈ A such that b1 = a + b2.

Assume now that A is a group and B and C are just pointed sets. Still, given a
map +: A × B → B such that (i) and (ii) hold, we obtain a morphism f : A → B
in Set∗ by f(a) = a + 0B (the opposite construction does not make sense). But
now condition (2) is stronger than condition (1) and condition (II) is stronger than
condition (I). The strong conditions can be expressed by means of the pointed orbit
set B/A, a sort of “cokernel” of the action +: A × B → B. In fact, the projection
P+ : B → B/A is the coequalizer of + and pB (within pointed sets). Now, a mapping
g : B → C satisfies (2) iff it factors through P+; it also satisfies (II) iff the comparison
mapping B/A → C is surjective.
The interest of the strong exactness condition (II) comes from the homotopy se-
quence: if f : X → Y is in Top∗, there is a well-known action of the H-space ΩY on
Kf

+: ΩY ×Kf → Kf ; ω + (x, η) = (x, ω + η)

which induces a map +: π0(ΩY )×π0(Kf) → π0(Kf) such that conditions (i), (ii),
(2) and (II) hold (see [2] for a detailed discussion).

The rest of this section is devoted to study the 2-dimensional analogue of strong
exactness. Let A be a cat-group and B a pointed groupoid and consider a functor
µ : A × B → B together with two natural isomorphisms m0

B : B → µ(O, B) and
mA1,A2,B : µ(A1 ⊗ A2, B) → µ(A1, µ(A2, B)), coherent with respect to the cat-
group structure of A. (This is equivalent to giving a monoidal functor from A to
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the monoidal category of endofunctors of B.) Starting from (µ,m0,m) : A×B→ B,
we can construct a new pointed groupoid Cokµ in the following way:

- the objects of Cokµ are those of B;

- a pre-morphism (A, f) : B1 → B2 in Cokµ is a pair with A in A and f : B1 →
µ(A,B2) in B;

- a morphism [A, f ] : B1 → B2 is an equivalence class of pre-morphisms: two
pre-morphisms (A, f), (A′, f ′) : B1 → B2 are equivalent if there is α : A → A′

such that f · µ(α, B2) = f ′;

- the base point of Cokµ is that of B.

There is a morphism of pointed groupoids Pµ : B→ Cokµ which sends g : B1 → B2

to [0, g ·m0
B2

] : B1 → B2. There is also a natural transformation

A× B
µ

//

πµ⇒pB

� �

B
Pµ

� �

B
Pµ

/ / Cokµ

given by πµ(A,B) = [A∗, m0
B · mA∗,A,B : B → µ(0, B) ' µ(A∗ ⊗ A,B) →

µ(A∗, µ(A,B))] : B → µ(A,B) (where A∗ is a dual of A). Moreover, the follow-
ing diagrams in Cokµ commute

B

Pµ(m0
B)

� �

πµ(0,B)

��

B
πµ(A1⊗A2,B)

/ /

πµ(A2,B)

��

µ(A1 ⊗A2, B)

Pµ(mA1,A2,B)

��

µ(0, B) µ(A2, B)
πµ(A1,µ(A2,B))

/ / µ(A1, µ(A2, B))

The previous construction is universal in the following sense (Cokµ is the iso-
coinserter of µ and pB): given

A× B

β⇒

µ
//

pB
��

B

G
��

B
G

/ / C
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with G : B→ C in Gpd∗ and β a natural transformation such that

G(B)

G(m0
B)

��

β0,B

��

G(B)
βA1⊗A2,B

//

βA2,B

��

G(µ(A1 ⊗A2, B))

G(mA1,A2,B)

��

G(µ(0, B)) G(µ(A2, B))
βA1,µ(A2,B)

/ / G(µ(A1, µ(A2, B)))

commute, there is a unique G′ : Cokµ → C in Gpd∗ such that Pµ · G′ = G and
πµ ·G′ = β.

Proof. One has to define G′ : Cokµ → C by

G′ : [A, f ] : B1 → B2 7→ G(f) · β−1
A,B2

: G(B1) → G(µ(A,B2)) → G(B2)

The uniqueness follows from the commutativity of the following diagram

B1
[A,f ]

//

Pµ(f)
$$

H

H

H

H

H

H

H

H

H

B2

πµ(A,B2)
z zv

v

v

v

v

v

v

v

v

µ(A,B2)

This universal property characterizes Cokµ up to isomorphism. The triple
(Cokµ, Pµ, πµ) has also a “biuniversal” property (it is the bi-coequaliser of µ and
pB) which characterizes it up to equivalence. It is similar to those of the kernel and
of the cokernel (see [11, 16]).

Let us explain the notation Cokµ. Starting from (µ,m0, m) : A×B→ B, we get a
morphism F : A→ B in Gpd∗ by F (A) = µ(A, 0) and f0 = m0

0 : 0 → µ(0, 0) = F (0).
If it is the case that A and B are symmetric cat-groups and F is a monoidal functor
compatible with the symmetry, then Cokµ is exactly the cokernel of F as described
in [11, 16].

In order to state strong exactness for pointed groupoids, observe that, given

A× B

β⇒

µ
/ /

pB
��

B

G
��

B
G

/ / C

as before, we get a pointed natural transformation

B

α⇑
G

��

?

?

?

?

?

?

?

A

F
??

�

�

�

�

�

�

�

0
// C
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by αA = g0 ·βA,0 : 0 → G(0) → G(µ(A, 0)) = G(F (A)). Recall now that, if (F, α,G)
is a sequence of symmetric cat-groups, its 2-exactness can be equivalently stated by
asking that the canonical comparison from the cokernel of F to G is full and faithful
(Proposition 6.2 in [11]). With this fact in mind, we give the following definition.

Definition 5. Consider

A× B

β⇒

µ
//

pB
��

B

G
��

B
G

/ / C

as before. The sequence (µ, β,G) is strongly 2-exact if the comparison functor
G′ : Cokµ → C is full and faithful.

Here is the expected link between strong 2-exactness (Definition 5) and 2-exactness
(Definition 1). The proof is a direct calculation.

Proposition 6. Consider

A× B

β⇒

µ
//

pB
� �

B

G
��

B
G

// C

and B

α⇑
G

��

?

?

?

?

?

?

?

A

F
??

�

�

�

�

�

�

�

0
// C

as before. Consider also the factorization F ′ of F through the kernel of G and the
factorization G′ of G through Cokµ

F ′ : A→ KG G′ : Cokµ → C .

a) If G′ is faithful, then F ′ is full;
b) If G′ is full, then F ′ is essentially surjective.

The interested reader can verify that, if A,B,C, F, G and α belong to the 2-category
of cat-groups and if β is compatible with the cat-group structure of B and C, then
both the implications of Proposition 6 can be reversed.

Let us write down explicitly the condition of fullness for G′ : Cokµ → C : given
two objects B1 and B2 in B and an arrow c : G(B1) → G(B2) in C, there is A in A
and f : B1 → µ(A,B2) in B such that G′[A, f ] = c.
The analogy between fullness of G′ and strong exactness for a sequence of groups
and pointed sets, i.e. condition (II), is now clear. This analogy is made more precise
in the next remark.

Remark :
1) Assume that the categories A,B and C of Proposition 6 are discrete (so that

A is a group, and B and C are pointed sets, but Cokµ is not discrete). Then the
fullness of G′ is exactly condition (II) (moreover, the faithfulness of G′ implies that
F is injective).

2) Assume that the categories A,B and C of Proposition 6 have a unique object
(so that A is an abelian group and B and C are groups). Then the faithfulness of G′
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is exactly condition (II) (moreover, the fullness of G′ is equivalent to the surjectivity
of G).

Finally, we come back to the higher dimensional homotopy sequence. Let f : X →
Y be an arrow in Top∗ and consider the action ΩY ×Kf → Kf as at the beginning
of this section. It induces an action µ : Π1(ΩY ) × Π1(Kf) → Π1(Kf) of the cat-
group Π2(Y ) = Π1(ΩY ) on the pointed groupoid Π1(Kf). Moreover, the diagram

Π2(Y )×Π1(Kf)
µ

//

pΠ1(Kf)

��

Π1(Kf)

Π1(kf)
��

Π1(Kf)
Π1(kf)

// Π1(X)

is strictly commutative.

Proposition 7. Let

Π2(Y )×Π1(Kf)
µ

//

=pΠ1(Kf)

� �

Π1(Kf)

Π1(kf)
��

Π1(Kf)
Π1(kf)

// Π1(X)

be as before. The sequence (µ,=,Π1(kf)) is strongly 2-exact.

We leave the proof as an exercise for the reader.
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