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COMPUTING THE EQUIVARIANT EULER CHARACTERISTIC
OF ZARISKI AND ETALE SHEAVES ON CURVES

BERNHARD KOCK
(communicated by J.F. Jardine)

Abstract
We prove an equivariant Grothendieck-Ogg-Shafarevich for-
mula. This formula may be viewed as an étale analogue of
well-known formulas for Zariski sheaves generalizing the clas-
sical Chevalley-Weil formula. We give a new approach to those
formulas (first proved by Ellingsrud/Lensted, Nakajima, Kani
and Ksir) which can also be applied in the étale case.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

Introduction

This paper deals with the Riemann-Roch problem for equivariant Zariski sheaves
and equivariant étale sheaves on smooth projective curves, i.e. with the computa-
tion of their (equivariant!) Euler characteristic. In the case of Zariski sheaves we
give a new, very natural and quick approach to generalizations of the classical
Chevalley-Weil formula proved by Ellingsrud/Lgnsted (see [EL]), Kani (see [Ka])
and Nakajima (see [Na]) in the 1980s and we derive generalizations of a more re-
cent result of Ksir (see [Ks]). In the case of étale sheaves we develop and prove an
equivariant Grothendieck-Ogg-Shafarevich formula by imitating our new approach
for Zariski sheaves.

Let X be a connected smooth projective curve over an algebraically closed field
k and let G be a finite subgroup of Aut(X/k) of order n. We assume throughout
this paper that the canonical projection 7 : X — Y := X/G is tamely ramified.

Using the coherent Lefschetz fixed point formula (see [Dol] or [BFQ] or [K61])
in conjunction with the Riemann-Roch formula and Hurwitz formula, we prove the
following theorem (see Theorem 1.1) which effectively implies all known formulas
(see Corollaries 1.3, 1.4, 1.7 and 1.8) for the equivariant Euler characteristic

X(G7X76) = [HO(X"S)] - [Hl(X"S)]

of a locally free G-sheaf £ on X, considered as an element of the Grothendieck group
Ko(G, k) of all k-representations of G.
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Theorem 1.
ep —1

MO.X.E) = (1= gy)r + % dogt€) ) HE] - 7 = 3 altnd, (€(P) & L

PeX d=0

Here, r denotes the rank of £, £(P) the fibre of £ at P and xp the character of
G p which is given by the representation of Gp on the cotangent space mp/m%.

We now pass to the étale world. We fix a prime ! # char(k). Let F be a con-
structible F;-sheaf on the étale site X¢; which carries a G-action compatible with
the given G-action on X. We are interested in computing the equivariant Euler
characteristic

Xeo(G, X, F) o= [He (X, F)] = [Hi (X, F)] + [HE (X, F)]

considered as an element of the Grothendieck group Ko(G,F;) of F;-representations
of G.

In the extreme case that G is the trivial group, this problem is solved by the
classical Grothendieck-Ogg-Shafarevich formula (see Theorem 2.12 on p. 190 in
[Mi]). In the extreme case that F is the constant sheaf with trivial G-action, a
satisfactory answer to this problem follows from Remark 2.9 on p. 187 in [Mi]
(see Remark 2.2(b)). By imitating our approach for Zariski sheaves we prove the
following result for an arbitrary group G and arbitrary sheaf F (see Theorem 2.1):

Theorem 2. We assume that the characteristic of k does not divide n. Then we
have:

Xét(G7—X7F) =

- ((2 ~ 2gy) dime, () — () + 3 (i, (Fp) — dim, <fn>>> [Fi[G]]
PeX

=Y Cmag, (Fp e Ip)].
PeX n

Here, gy denotes the genus of Y := X/G, n the generic point of X, a(F) :=
> pex @p(F) the sum of the wild conductors of F, ep the ramification index of
the canonical projection 7 : X — Y at P € X and Ip := ker(F;[Gp] — F,) the
augmentation representation of the decomposition group Gp at P.

As a corollary, we obtain that «(F) is divisible by n (see Corollary 2.4). Fur-
thermore, this formula has the following simple shape, if 7 is étale (see Remark
2.2(a)):

xa(G, X, F) = xa(X, F)F[C],

In fact, this formula is valid without the assumption that char(k) does not divide
n. In particular, the (non-equivariant) Euler characteristic xe (X, F) is divisible by
n.

Acknowledgments. I would like to thank Igor Zhukov for raising the equivariant
Riemann-Roch problem for étale sheaves and for drawing my attention to the paper
[Do2]. Furthermore, I would like to thank him and Victor Snaith for helpful and
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encouraging discussions, for reading carefully a preliminary version of this paper
and for suggesting several corrections.

1. The formulas of Ellingsrud/Lgnsted, Nakajima, Kani and
Ksir revisited

The object of this section is to give a new approach to generalizations of the clas-
sical Chevalley-Weil formula published by Ellingsrud/Legnsted, Nakajima and Kani
and to derive generalizations of a comparatively simple formula recently published
by Ksir.

Let X be a connected smooth projective curve over an algebraically closed field
k and let G be a finite subgroup of Aut(X/k) of order n. We assume in this section
that the canonical projection 7 : X — Y := X/G is tamely ramified.

We denote the genus of X and Y by gx and gy, respectively. For any (closed)
point P € X, let Gp := {0 € G : 0(P) = P} denote the decomposition group and
let ep denote the ramification index of 7 at P. It is well-known (see Corollaire 1 of
Proposition 7, Chapitre IV on p. 75 of [Sel]) that Gp is a cyclic group of order ep
and that

Hom(GP7k><) = {X(I)?a s 7X§3P71}

where xp : Gp — k* denotes the character which is given by the action of Gp on
the cotangent space mp/m%. For Q € Y we set eq := ep where P € 771(Q).

We denote the Grothendieck group of all k-representations of G (of finite dimen-
sion) by Ko(G, k). It is free with basis G where G denotes the set of isomorphism
classes of irreducible k-representations of G.

Now, let £ be a locally free G-module on X of rank r, i.e., we have Ox-
isomorphisms ¢g*(£) — &, g € G, which satisfy the usual composition rules. Then,
the Zariski cohomology groups H*(X, &), i > 0, are k-representations of G. Let

X(Gang) = [HO(ng)] - [Hl(ng)] € KO(Gvk)

denote the equivariant Euler characteristic of X with values in €. For any P € X,
we view the fibre £(P) := Ep/mpEp as a k-representation of Gp.
The following theorem computes the equivariant Euler characteristic x (G, X, £).

Theorem 1.1. We have in Ko(G,k):
€p71

n-X(G,X,€) = (n(1— gy)r+deg(€)) RG] - > > d [Indgp (EP)® X;é)] .
PeX d=0
(1)

Proof. By classical representation theory (see Corollary (17.10) on p. 424 in [CR2])
it suffices to show that the Brauer characters of both sides of formula (1) coincide.
For any k-representation V' of G and for any o € G of order prime to char(k) we
write Trace(c|V') for the value of the Brauer character of V' at o. Recall that

dim(V)

Trace(c|V) = Z olay)

i=1
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where ay, i = 1,...,dim(V), are the eigenvalues of the k-linear map o on V and
@ k* — K* is the Teichmiiller character from the group of invertible elements
in k to the group of invertible elements in the quotient field K := Q(W(k)) of the
Witt ring W (k) of k. (We set K :=Fk and ¢ :=1id, if p=10.)

Let o € G such that char(k) does not divide the order of o and let X :={P € X :
o(P) = P} denote the set of points in X fixed by o. Then we have:

€p71

Z Z d - Trace (0|Inng(S(P) ® Xdp)) =
PEX d=0

EPfl

d
= Z Z — Z Trace(r tor|E(P)) - x& (17 or)
PeX d=0 ep T€EG, T loTEGP
(by Lemma (21.28) on p. 509 in [CR2])

_ Z % Z Trace(a|E(T(P))) - Xﬁ(P)(U)

PeX d=0 TG, T(P)eX®
n ep—l
= Y Trace(alE(P) - Y d-vh(o)
pexe P d=0
n-re Y 2=l for o =id
_ PEX
n- Y. Trace(c|E(P)) - (xp(oc) —1)71 for o #id (see Lemma 1.2 below)
PEX©

For o # id we have Trace(o|k[G]) = 0, so the character value of the right hand side
of formula (1) at the place o equals

n- Z Trace(a|E(P)) - (1 — xp(a)) ™ .

By the Lefschetz fixed point formula (see Example 3 in [K61] or [BFQ] or [Dol];
here we use the assumption that char(k) does not divide ord(o)), this equals the
character value of the left hand side at the place o.

For o = id we have:

(n(1 — gy)r + deg(&)) - Trace(o|k[G]) =
n(n(l — gy)r + deg(€))
=n ((1 —gx)r+deg(&) +r Z 6P2_ 1)

pPeX

by the Hurwitz formula (see Corollary 2.4 on p. 301 in [Ha]). Hence, the character
value of the right hand side of formula (1) at the place o = id equals

n((1 — gx)r + deg(&)).

By the Riemann-Roch formula (see §1 in Chapter IV of [Ha] and Exercise 6.11 on
p. 149 in [Hal), this equals the character value of the left hand side at the place
o =id.

Thus, the proof of Theorem 1.1 is complete. O
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Lemma 1.2. Let m € N and ( # 1 an m-th root of unity. Then we have:

m—1
m(¢—-1)"" = d”
d=1
Proof. (X071 d¢h) (¢ —1) = S0t dedtt — ot d¢d = (mo— 1)¢m — S el =
m. O

Remark. A generalization of Theorem 1.1 and the subsequent Corollary 1.4 to the
so-called weakly ramified case can be found in [K62].

The following corollary is the main result of the paper [EL] by Ellingsrud and
Lognsted; it computes the multiplicity of any irreducible representation V' &€ G in
the equivariant Euler characteristic x(G, X, £), if char(k) does not divide n. While
the proof of Ellingsrud and Lgnsted is based on the study of the cokernel of the
natural embedding 7*(7¢(€)) < &, we derive it from Theorem 1.1 and hence from
the Lefschetz fixed point formula.

Corollary 1.3 (Formula (3.7) in [EL]). We assume that char(k) does not dim’de
n. ForQeY,deNandV € G, let na,g.ev denote the multiplicity of x% in
E(P) ®ReSGP( ) where P € m=1(Q). Then we have in Ko(G,k)g:

(G, X, &) = (Tlldeg(é') (1—gy) ) -3 Z<1—e> ng.g.evV]

VveG QeY d=1
Proof. Let (, ) : Ko(G, k) x Ko(G, k) — Z denote the usual character pairing. Then,
for all P € X and d € {0,...,ep — 1}, we have:

> (IXFL [E(P) @ Resg,, (VI))V] =

ved

=" (mdg, (E(P) @ x5 V] [V]
ved&
= [mdg (E(P) @ xpY)] in Ko(G,k).

Hence we have:
Z Z Z(l_)ndQEV[V]

ved QeY d=1

ep—1

DY (1- ) S ey o Res, (7)1
PeX Veé
== Z PZ (ep — d)[Ind&  (E(P) ® xp%)]
PGX d=1
== Z Z d[Indg;, (E(P) ® xb)]-
PEX d=1

Thus, Corollary 1.3 follows from Theorem 1.1. O
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The following corollary is the main result of the paper [Na] by Nakajima. Part
(a) of it has also been proved by Kani (see Theorem 2 in [Ka]). In addition to
Theorem 1.1 we use the facts that the Euler characteristic x(G, X, ) is an element
of the Grothendieck group Ky(k[G]) of projective k[G]-modules (see Theorem 1 in
[Na] or Remark 1.5(a) below) and that the Cartan homomorphism Ko(k[G]) —
Ky (G, k) is injective. The corollary expresses the Euler characteristic x(G, X, &) as
an integral linear combination of certain projective k[G]-modules. Our proof shortens
the somewhat lengthy calculations in [Na].

Corollary 1.4 (Theorem 2 in [Na])). .
(a) There is a projective k[G]-module Ng x (which is unique up to isomorphism)
such that

n ep—1d
ONex = ® @® ©ndd (xb).
G, X Pox 4o GP(XP)

(b) For any P € X, letlp1,...,lp, €{0,...,ep — 1} be given by the equation

[EP)=Y"Ixp""] in Ko(Gp.k);

=1

furthermore, for any Q € Y, we fix a point Q € X with W(Q) = Q. Then we have:

r 'Q.i

X(G, X, €)= —r[Nox]+ > > Z[Inde (X;}d)] in Ko(k[G]) mod Z[k[G]].

QEY i=1d=1

Proof.
(a) Applying Theorem 1.1 to the sheaf & = Ox with trivial G-action, we obtain the
following equality in Ko(G, k) and hence in Ko(k[G]):

0 X(C.X.0x) = (1l — g )G — 3 3 diindg, (b))
PeX d=0

This equality shows that the class of the projective k[G]-module &5 ' ®?Indg  (x$)

is divisible by n in Ky (k[G]). Writing the quotient as a linear combination of classes
of indecomposable projective modules we see that the quotient is in fact the class
of a projective k[G]-module, say Ng x. This immediately implies part (a).

(b) We first prove the following congruence:

deg(€) = Z zr:lpﬂ- mod n.

PeX i=1

For this, we may obviously assume that r = 1. We write Ip for Ip ;. Let K denote the
sheaf of meromorphic functions on X, i.e., the constant sheaf associated with the
function field K (X) of X. Then & is a G-subsheaf of the constant sheaf EQ/. But £
K is isomorphic to K as a G-sheaf since the twisted group ring K (X)G is isomorphic
to the ring M, (K(Y)) of n x n-matrices over the function field K(Y) by Galois
theory and since there is (up to isomorphism) only one module of K (Y")-dimension
n over M, (K (Y)). So, we may assume that £ = Ox (D) for some equivariant Weil
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divisor D = ) pc x np[P]. Now it is easy to see that [p = n, mod ep for all P. So,
for any @ € Y we have: ZPETI'_l(Q) lp = ilp = inp = ZPETI'_l(Q) np mod n.
Thus, the congruence above is proved.

Hence, by Theorem 1.1, we have in Ko(G, k) /nZ[k[G]]:

n-x(G X, €)=
s r ep—1
d—lp;
=D D lealklGl = 3 > D dlndg, ()]
PeX i=1 PeX i=1 d=1
T ep—1 ep—1
d—1p;
SPIDNTH O WRTED S
PeX i=1 d—
r ep—1
= Z Zlnng (Z aP,z‘,d[X%)
PeX i=1 d=0
h o —d fOrd:(),...,BP*lp’i*l
WRETe Apyid == —d+ep ford=ep—Ip;,...,ep — 1.
On the other hand, we have:
T l@,i
—n-r-[Ngx]|+n Z Z Z[Inde (Xéd)] =
QeY i=1d=1
eEp— 1 T le
S g b+ Y e 3
PEX d=0 PeX  i=1d=1
r ep—1 lpi
SO B SENIRS S
PeX i=1
T EPfl
- 3o, (3 anait)
PeX i=1 d=0
Thus, Corollary 1.4 is proved. O
Remark 1.5.

(a) In order to prove that x (G, X, 5) is in Ko (k[G]) for all locally free G-modules &, it
suffices to show that the element = 3~ ,_ Ze’rl [Inng (x%)] is in Ko(k[G]) which
in turn follows from the fact that X(G, X, L) is in Ky(k[G]) for one invertible G-
module £ on X. (Apply twice the formula in part (b) of Corollary 1.4). If deg(L) >
2gx — 2, a nice and short proof of this fact using equivariant cohomology can be
found in Borne’s thesis (see Corollaire 3.14 on p. 61 in [Bo]).

(b) The equation

X(G, X,0x) = (1 - gv)[k[G]] — [N x]
occurring in the proof of part (a) may be considered as an equivariant version of

the classical Hurwitz formula, see Théoréme 3.16 on p. 62 in Borne’s thesis [Bo].
He gives a proof of this formula and of part (a) of Corollary 1.4 which does not
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use the work of Nakajima or Kani either and whose main ingredient is the coherent
Lefschetz fixed point formula as well.

The following example illustrates part (a) of Corollary 1.4; it has been proved in
[Bo] directly using Hilbert 90 (see Proposition 3.7 on p. 56 in [Bo]).

Example 1.6. We assume that ep =n for all P € X,oy, :={P € X : ep # 1}. Let
X : G — k* be a character. We write x = X% for some ap € N (for all P € X,am).
Then we have:

E ap =0 mod n.
PEXram

The following corollary is a main result of the paper [Ka] by Kani; it generalizes
the classical Chevalley-Weil formula.

Corollary 1.7 (Corollary of Theorem 2 in [Ka]). Let 2 denote the sheaf of
holomorphic differentials on X. Then we have in Ko(G,k):

[H°(X, Q)] = [K] + (9v — DIK[G]] + [Ne x]-

Proof. Tt is well-known that deg(2) = 2gx — 2 and that Q(P) is k[G p]-isomorphic
to mp/m% for all P € X. Hence, by Theorem 1.1, we have in Ko(G, k):

n-x(G,X,Q) =

— (n(1—gv) + (2gx —2) kG — Y dimdg, (&)
PeX d=0

— (n(1— gv) + nl2gy ~2)KIGT — 3 3 (d+1- ep)lIndG, (A
PeX d=0

= n(gy — 1)[]€[G]] + H[NG’X].

Since H'(X, ) is isomorphic to the trivial representation k, this proves Corollary
1.7. O

The following corollary generalizes a recently published result of Ksir (see [Ks]).
While we derive it from the previous corollary, her proof is much more elementary.
To be more precise: While our proof is based on the Lefschetz fixed point formula
(see the proof of Theorem 1.1), her proof uses only the Riemann-Roch and Hur-
witz theorem and some elementary character theory. However, her proof seems to
work only in the case that not only the representation V| but all (irreducible) k-
representations of G are rationally valued. Here, we call a k[G]-module rationally
valued if its (Brauer) character takes only rational values. For each point Q € Y,
we fix a point Q € X in the fibre 7 HQ).

Corollary 1.8. We assume that char(k) does not divide n. Let V' be a non-trivial
rationally valued irreducible k-representation of G. Then the multiplicity of V in
the k-representation H°(X,Qx) is equal to

dim(V)(gy — 1) + % S (dim(V) — dim(V¢a)) .
QeY
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Proof. This follows from Corollary 1.7, the following Proposition 1.9 and the well-
known fact that the multiplicity of V' in the regular representation k[G] is equal to
dim(V). O

Proposition 1.9. We assume that char(k) does not divide n. Let V be a rationally
valued irreducible k-representation of G. Then the multiplicity of V in Ng x and in
its dual Ng x 1s equal to

% > (dim(V) — dim(V92)).

Proof. As in the proof of Corollary 1.3 we write (, ) for the usual character pairing.
Then we have:

ep—1
(V] [Ne. x1) Z > d{[V],[Indg, (xp)))
" pex =0
ep—1
— Z Z d([ RebGP )], [x%])  (by Frobenius reciprocity)
" pex d=o
- % Z %3 (dim(V) — dim(V?))  (by Lemma 1.10 below)
PexX

= % > (dim(V) — dim(V9))

since over any point ) € Y there are precisely % points in the fibre 77(Q) and
since GQ, is conjugate to GQ for any other point Q' in 7-1(Q). This proves the

Proposition for Ng, x. The same argument applies to Z\VTG,X. O

Lemma 1.10. Let C be a cyclic group of order ¢ coprime to char(k), let V be a
rationally valued k[C]-module, and let x : C — k™ be a primitive character of C.
Then we have:

(dim(V) — dim(VY)) in Q.

QU
="
&
=

I

N o

Proof. 1t obviously suffices to consider the case k = C. Since V is rationally valued
and C is abelian, the class [V] of V in K (C[C]) belongs to the image of the canonical
homomorphism Ky(Q[C]) — Ko(C[C]), see the Corollary of Proposition 35, §12.2,
on p. 93 in Serre’s book [Se2]. By Exercise 13.1 on pp. 104-105 in [Se2], the permu-
tation representations Indg(lH), H a subgroup of C, form a Z-basis of K(Q[G]).
Since both sides of the formula in the Lemma are additive in V, it therefore suffices
to prove the Lemma in the case V = Indg(l g) where H is any subgroup of C. Let
h denote the order of H. Then we obviously have:

(Ix%, md$ (1)) = (ResG (xD)], 1x]) = { (1): iefls}g.d
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Thus we obtain:

S d (), [Ind$ (L))
d=0
—h+2h+.. .+ (%—1)h

:h<1+2+...+<%—1>)

(6]

g (dlm(IndH(lH)) — dim ((Indg(lH))C)) :

as was to be shown. O

Similarly to the deduction of Corollary 1.8 from Corollary 1.7 we deduce the
following corollary from Corollary 1.4. An alternative approach to the following
corollary based on Ksir’s paper [Ks| and Borne’s thesis [Bo] can be found in the
recent preprint [JK] by Ksir and Joyner.

Corollary 1.11. We assume that char(k) does not divide n. Let D = 3,y np[P]
be a G-equivariant divisor on X and let V' be a rationally valued irreducible k-
representation of G. Then the multiplicity of V' in the FEuler characteristic
X(G, X,0x(D)) is equal to

dim(V) (1 - gv) +

. 1, ..
Z dim(V)mg — B (dim(V') — dim( VEa) Z< ], [Res& (V)]>
QeYy
where lp € {0,...,ep — 1} and mp € Z are given by np = lp + mpep for any
PeX.

Proof. By Corollary (1.4)(b) we have the congruence

x(G, X,0x(D)) = —[Ng.x] + ZZIndG

QeY d=1

in Ko(k[G]) mod Z[k[G]]. By the Riemann-Roch theorem and the Riemann-Hurwitz
formula this congruence becomes an equality in Ky(k[G]) after adding the term

L =gy + Z mg | [k[G]]
QeYy

on the right hand side. Now using the Proposition 1.9 and Frobenius reciprocity we
obtain Corollary 2.11. O
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Notice that the multiplicity ([Xéd], [Resg,, (V)]) of the character Xg?d of the cyclic

group G in the restricted representation ResgQ (V) can easily be computed. For
instance, if e Is a power of a prime, the following lemma can be applied.

Lemma 1.12. Let C be a cyclic group of prime power order ", let V be a rationally
valued k-representation of C, let x : C — k* be a primitive character and let
d=10°m € Z with s € {0,...,r — 1} and m € Z coprime to l. Then the multiplicity
(XY, [V]) of x¥ in V is equal to

dim(VH) — dim(VH")
Ir=s=1(1 —1)

where H and H' are the (unique) subgroups of C' of order I° and I°*1, respectively.

Proof. Easy. O

2. The equivariant Grothendieck-Ogg-Shafarevich formula

The goal of this section is to prove an equivariant Grothendieck-Ogg-Shafarevich
formula.

Let X be a connected smooth projective curve over an algebraically closed field
k and let G be a finite subgroup of Aut(X/k) of order n. We assume in this section
that char(k) does not divide n. Let 7 : X — Y, gx, gy, Gp and ep be defined as
in §1. Furthermore, we denote the generic point of X by 7.

Let [ # char(k) be a prime and let F be a constructible F;-sheaf on Xg with
G-action, i.e., we have isomorphisms ¢*(F) — F, g € G, which satisfy the usual
composition rules. Then the étale cohomology groups HY (X,F), i > 0, are F;-
representations of G. Let

Xee(G, X, F) := [Hg (X, F)] = [Hg (X, F)] + [HE (X, F)] € Ko(G,F)

denote the equivariant Euler characteristic; here, Ko(G,F;) is the Grothendieck
group of Fj-representations of G (of finite dimension). Furthermore, let

a(F) = Z ap(F)eZ

Pex
denote the sum of the wild conductors of F (see p. 188 in [Mi]) and let Ip :=
ker(F;[Gp] — ;) denote the augmentation representation of Gp (for P € X).

The following theorem may be viewed as an analogue of Theorem 1.1; it computes
the equivariant Euler characteristic x¢t (G, X, F).
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Theorem 2.1 (Equivariant Grothendieck-Ogg-Shafarevich formula). We
have in Ko(G,F;)g:

xat(G, X, F) =
= ((2 ~ 2gy) dim, () — ~o(F) + 3 L (dime, (Fp) — dim (fn») [F.[G]]
pPeX
- > L, (Fr @ 1p)) @)
PeX

Remark 2.2. Let dimg, (Fp) = dimg,(F5) for all P € X with ep # 1. Then
formula (2) has the following shape:

(G X.7) = (2= 20v) dimey(73) = 2e7) ) RG]~ X “Lltua, (Frolr)
PeX

here, ¢(F) = > pey cp(F) is the sum of the conductors of F (see p. 188 in [Mi]).
This formula becomes particularly simple in the following two extreme cases.
(a) Let 7 : X — Y be étale. Then we have:

(6. X, 7) = (2 20y) dime () — (7)) IFGTL

If G is the trivial group, this is the classical Grothendieck-Ogg-Shafarevich formula
(see Theorem 2.12 on p. 190 in [Mi]). In particular, we obtain the following formula
for an arbitrary group G:

Xa(G X, F) = - xa(X, ) [R[C]

(notice that n(2 —2gy) = (2—2gx) by the Hurwitz formula). This formula remains
valid, if we drop the assumption that char(k) does not divide n (see the proof below).
In particular we obtain that the (non-equivariant) Euler characteristic x4t (X, F) is
divisible by n. Finally, the latter formula may be viewed as an analogue of Theorem
2.4 in [EL].

(b) Let F be the constant sheaf F; with trivial G-action. Then we obtain the fol-
lowing formula:

Xat(G, X, F) = (2= 29)[EI[G]) - Y~ [IndG, (Ip)].
PeXx
This is the Fj-version of the formula in Remark 2.9 on p. 187 in [Mi]. (Notice
that the Artin character is the character of the augmentation representation since
char(k) does not divide n.) It can be derived from the Q;-version by applying the
decomposition homomorphism as in lines 6 through 9 on p. 191 in [Mi].

Proof. (of Theorem 2.1) As in the proof of Theorem 1.1 we will show that the
(Brauer) character values of both sides of formula (2) coincide for all o € G. So let
o € G. Then we have:
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1
— Z ep - Trace(U|Inng (Fp®Ip)) =
Pex

1
= Z Z Trace(t 'o7|Fp @ Ip)

n
PeX reG, 7 loTeGp

(by Lemma (21.28) on p. 509 in [CR2])

1
= - Z Z T‘race(0|.7:,r(p) &® I.,.(p))

PeX reG, 7(P)eXe

= Z Trace(o|Fp @ Ip)
Pexe

= Z (Trace(o|Fp @ Fi[Gp]) — Trace(a|Fp))
Pexe

= Z (dimp, (Fp) - Trace(o|F[Gp]) — Trace(o|Fp)) (by Frobenius reciprocity)
Pexe

— 3 Trace(o|Fp) for o # id
- PEX®

> dimp, (Fp) - (ep — 1) for o =1id.

PeX

Hence, for o # id, the character value of the right hand side of formula (2) at
the place o equals ), v, Trace(o|Fp). By the Lefschetz fixed point formula (see
Theorem 2 in [Do2] or [Ve]; here, we use that char(k) does not divide n), this
equals the character value of the left hand side.

For ¢ = id, the character value of the right hand side at the place o is

’I’L(Q — 2gy) dimFl (.7:77) - (1(.7:) + Z dimFl (fp) - Z ep - dim]pl (.7:17) =

PeX PeX
= (2 — 2gx ) dimg, (F5) — (a(f) + Y (dimg, (F) — dimg, (fP))>
PeX

by the Hurwitz formula. By the classical Grothendieck-Ogg-Shafarevich formula
(see Theorem 2.12 on p. 190 in [Mi]), this equals the character value of the left
hand side at the place o = id.

Thus, the proof of Theorem 2.1 is complete. O

The following corollary may be viewed as the analogue of Corollary 1.3; it com-
putes the multiplicity of any irreducible F;-representation V' of G in the equiv-
ariant Euler characteristic x4t (G, X, F). We write Irr(G,F;) for the set of isomor-
phism classes of irreducible F;-representations and set sy := dimg, (Endg,[¢(V)) for
V € Irr(G, ). For Q € Y and V € Irr(G, ), let mg, 7 v denote the multiplicity
of the trivial representation F; in Fp ® Ip ® Resgp (V) where P € 7= 1(Q).
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Corollary 2.3. We assume that (I,ord(G)) = 1. Then we have in Ko(G,F;)g:
Xét(G7 X7 f) =

= (@-—QQY)dHnm(f%)—';aﬁf)+'E: if@ﬁnmifb)—*ﬁﬁwﬂfh»>[FJGH

PeX
- Z P chzfv

venrGr) oV Qey

Proof. Let {,,) : Ko(G,F;) x Ko(G,F;) — Z denote the symmetric bilinear form
given by ([V], [W]) := dimp, (Homg, ¢ (V,W)) for any Fi-representations V', W' of
G. Then we obviously have:
(a) ([V],[W @ X]) = ([V ® W], [X]) for any F;-representations V, W, X of G.

b) ZVGIU(G ) ({V] ) ([V],z)[V] = z for all z € Ko(G,F)).
(¢) (z,Res$(y)) = (Ind%(z),y) for any subgroup H of G, z € Ko(H,F,;) and
Yy < Ko(G,Fl).
Hence we have for all P € X:

>y (E e 0 1 @ ResG, (V)IV] =
Velrr(G,F;) ’
= Y Y mag, e e Y]

Vel (G,F) ’

[mdg  (Fp @ Ip)] in Ko(G,Fy).

Hence we have:

Z *Zmev

Velrr(G,F) QGY

er 1 .
S 2w, 2 T PR T @ Re, (VDY)

= Z [mdé (Fp @ Ip)] in Ko(G,Fy).
PGX

Thus, Corollary 2.3 follows from Theorem 2.1. O

The analogue of the element [Ng x| occurring in Corollary 1.4(a) is

" L, (1p)]

PeXx
It is obviously an element of Ko(G,F;). More generally, » | pc < [Indgp (Fp®1Ip)]
is an element of Ky(G,F;), since Indgp (Fp ® Ip) 1is isomorphic to
Inng, (Fpr ® Ip/) for any P,P' € X with n(P) = m(P’). Furthermore,
Y pex & (dimp, (Fp) — dimp, (F5)) is an integer. Thus, Theorem 2.1 implies the
following corollary.
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Corollary 2.4. The sum a(F) of the wild conductors ap(F), P € X, is divisible

by n.

In particular, Theorem 2.1 expresses xe¢ (G, X, F) as an integral linear combina-
tion of F;-representations; thus, the analogue of Corollary 1.4 is already built into

Theorem 2.1.
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