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ENTIRE CYCLIC COHOMOLOGY OF SCHATTEN IDEALS
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(communicated by J.F. Jardine)

Abstract
We compute the entire cyclic homology and cohomology of

the Schatten ideals Lp.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

1. Introduction

This paper is devoted to the computation of the entire cyclic cohomology of
Schatten ideals Lp. This is achieved in two steps. Our main technical result is the
following theorem (Theorem 4.1 of the main text).

Theorem 1.1. Let Lp and Lq be two Schatten ideals, 1 6 p < q < ∞. Then
the inclusion Lp → Lq induces an invertible element in the bivariant entire cyclic
homology HE0(Lp,Lq). Consequently, the entire cyclic homology and cohomology of
the two algebras are isomorphic:

HEi(Lp) = HEi(Lq); HEi(Lp) = HEi(Lq)

for i = 0, 1.

Our proof follows the strategy employed by Cuntz in the proof of a similar result
in the context of the algebraic periodic cyclic cohomology and kk-theory [7]. To
make the proof work we need to establish certain key algebraic properties of the
bivariant entire cyclic cohomology, and this is the main technical difficulty treated
in the paper. We use in a significant way the general theory of the entire cyclic
cohomology for bornological algebras developed by Meyer [17]. In particular, we
rely on the excision property satisfied by this theory.

Thus all Schatten ideals Lp have the same entire cyclic homology and cohomology,
and so it is sufficient to perform the explicit computation for one of them. This is
easiest to do for the trace class operators L1 and indeed Meyer proves [17, Thm
3.41] that HEi(L1) = HEi(C) and HEi(L1) = HEi(C) for i = 0, 1. We provide a
different argument in the case of cohomology which is based on the properties of
Hochschild cohomology of L1. Combining this result with our first theorem we have
(Theorem 5.2):
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Theorem 1.2. For any p, 1 6 p <∞,

HE0(Lp) = C, HE1(Lp) = 0

and

HE0(Lp) = C, HE1(Lp) = 0.

This result has a very interesting application to the study of characters of p-
summable Fredholm modules, which we treat in the last section. As is well known,
an even p-summable Fredholm module αγ over an algebra A gives rise to a periodic
cyclic cohomology class chP (αγ) ∈ HP 0(A). This class is the image of the class in
HP0(Lp) under the Chern character map

chP : HP0(Lp)→ HP0(A)

Exactly the same procedure works in the entire cyclic cohomology and produces an
entire cyclic cohomology class chE(αγ) in HE0(A). Again, this class is the image
of a class in HE(Lp) under the Chern character map

chE : HE0(Lp)→ HE0(A)

The two constructions are compatible in the sense that there is a commutative
diagram

HE0(Lp) chE−−−−→ HE0(A)

'
x

x
HP0(Lp) chP−−−−→ HP0(A)

Here the vertical arrows are given by the canonical inclusion HPi(·) → HEi(·),
i = 0, 1. We derive two conclusions from this construction. First, the classes chP (αγ)
and chE(αγ) are both images of the generator of HP0(Lp) = C. Secondly, the verti-
cal map on the right maps the class chP (αγ) to chE(αγ). This implies, in particular,
that the entire cocycle representing the class chE(αγ) is cohomologous to the peri-
odic cocycle representing chP (αγ). This provides a simple conceptual framework for
the transgression result of Connes-Moscovici [5] in the case of bounded Fredholm
modules. The bivariant version of the Connes-Moscovici transgression has been de-
veloped by Perrot in [19]. We treat the case of both the even and odd Fredholm
modules.

We conclude by mentioning the paper by Mathai and Stevenson [16] where our
Theorems 1.1 and 1.2 have found an interesting geometric application.

2. Spaces with bornology

A bornology on a set X is a family B of subsets of X which is stable under the
formation of subsets and finite unions [1]. Elements of B will be called bounded sets.
A base of a bornology B is a subfamily B0 of B with the property that any element
of B is contained in some element of B0. A map f : (X,B)→ (Y,B′) of bornological
spaces is bounded if and only if for any B ∈ B, f(B) ∈ B′.
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A bornology on a vector space E is said to be compatible with the vector space
structure iff the vector addition E×E → E and multiplication by scalars C×E → E
are bounded maps of bornological spaces.

When the vector space E is equipped with a topology, e.g. E is a locally convex
topological vector space, then there is a canonical bornology associated with the
topology consisting of all sets which are absorbed by all neighbourhoods of zero. This
is the so called von Neumann bornology. However, one can equip the vector space
E with a bornology which does not arise from the topology of E. One consequence
of this is that the class of bounded linear maps on E will be different in general
from the class of continuous maps.

The vector space E is called a convex bornological space if it is equipped with a
bornology whose base consists of convex sets. In this case the base can be assumed
to consist of balanced convex sets, which will be called discs. If D is a bounded
disc in E we denote by ED the vector space generated by D and equipped with the
seminorm given by the gauge of D. When E is a Hausdorff space, ED is a normed
space. The spaces ED form an inductive system indexed by the directed family of
bounded discs and E is the direct limit of this system.

We shall say that a disc D is pre-complete iff the space ED is complete. Thus
when E is Hausdorff, ED is a Banach space. We shall say that E is a complete
bornological space iff its bornology admits a base consisting of pre-complete discs
(cf. [13, Def. IV.2.1]). A bornological space E is complete iff it is the inductive limit
of an injective inductive system of Banach spaces [13, IV.2.3] [17, Theorem A.4].
Every bornological space E admits a bornological completion, but this operation is
less well behaved than the usual completion of a uniform space (see [13, Chapter
4] [17, Appendix A] for a full discussion).

We say that A is a bornological algebra iff it is equipped with a vector space
bornology with respect to which the product map A×A→ A is bounded. A complete
bornological algebra is one that is complete as a bornological vector space.

The construction of cyclic type homology theories requires the use of tensor
products of algebras. In the study of cohomology theories like the entire cyclic
cohomology of Banach algebras it is important to have control over bounded sets
in the tensor product of algebras. However, as is well known from the work of
Grothendieck [11, Probléme des Topologies, p. 33], there is in general no obvious
relation between bounded sets in the tensor product and bounded sets in the algebra.
A possible resolution of this problem, which works well in some situations, is to
define completed tensor products with respect to a given bornology rather than
topology.

The bornological tensor product of two bornological spaces (E1,B1) and (E2,B2)
is by definition the algebraic tensor product E1 ⊗ E2 equipped with the bornology
whose base consists of balanced convex hulls of sets of the form B1 ⊗ B2, where
B1 ∈ B1 and B2 ∈ B2. The completed bornological tensor product E1⊗̂E2 is by
definition the bornological completion of E1 ⊗ E2 with respect this bornology.

For example, the completed bornological tensor product of two Fréchet spaces
equipped with the precompact bornology is isomorphic to the completed projective
tensor product of the two spaces [17, Theorem 2.29].



Homology, Homotopy and Applications, vol. 7(3), 2005 40

When V1 and V2 are nuclear LF -spaces regarded as bornological spaces with the
von Neumann bornology then the completed bornological tensor product V1⊗̂V2 is
isomorphic to the inductive tensor product V1⊗̄V2 of Grothendieck, see [17, Cor.
2.30, p. 15].

3. The X-complex

All cyclic type homology theories of an algebra A are defined using a Z/2Z-graded
complex associated with A which, loosely speaking, is constructed using a certain
deformation of the tensor algebra of A. We describe this construction first in the
case of an algebra A without any topology or bornology.

We recall the differential graded algebra of differential forms ΩA associated with
A. By definition, ΩA is generated by elements of A together with symbols da, for a in
A, such that da is linear in a and satisfies the Leibniz rule d(ab) = (da)b+adb. If the
algebra A is unital with unit 1, it is not assumed that d(1) = 0. As a consequence,
in degree n, ΩnA = A⊗n+1 ⊕ A⊗n. Elements of ΩnA are linear combinations of
differential forms a0da1 . . . dan and da1 . . . dan, with ai in A. The graded space ΩA
is turned into a differential complex by means of two operators

b =
(
b 1− λ
0 −b′

)
, B =

(
0 0
N 0

)

where the operators b′, b, λ,N have their usual meaning, c.f. [7, p.9].
For any algebra A we define the X-complex X(A) of A to be the Z/2Z-graded

complex

A
\d

À
b

Ω1A\

where Ω1A\ = Ω1A/[A,Ω1A] = Ω1A/b(Ω2A), and \ : Ω1A→ Ω1A\ is the canonical
projection map, compare [7, p. 21].

In order to obtain an interesting homology theory we need to apply the above
construction to the non-unital tensor algebra TA of the algebra A. While it seems
at first sight that this will lead to a huge and unwieldy object, it turns out in fact,
thanks to the following result [9, Theorem 5.5], that the resulting complex is a
deformation of the mixed complex (ΩA, b,B). A starting point for the proof is a
remark that the tensor algebra of any algebra A can be identified with the even
part of the algebra ΩA equipped with the Fedosov product

ω ◦ η = ωη − (−1)deg ωdωdη.

Proposition 3.1. ([9][7, Thm. 2.29, p. 24]) For any algebra A the X-complex of
the tensor algebra TA of A is isomorphic to a complex of the form

ΩevA
δ

À
β

ΩoddA

where the differentials β and δ can be explicitly determined in terms of differentials
b and B.
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Let us assume that A is a complete bornological algebra. Then ΩA becomes a
bornological algebra with bornology whose base is given by balanced convex hulls
of the sets SdS . . . dS and dS . . . dS, where S is an element of the bornology on A.
We denote by ΩanA the completion of ΩA with respect to this bornology. This is a
Z/2Z-graded complex with the same differentials b and B, which are now bounded
maps. The even part of the algebra ΩanA, equipped with the Fedosov product, is
by definition the analytic tensor algebra TA of A. This algebra fits into the algebra
extension

0→ JA→ TA→ A→ 0

The X-complex of the tensor algebra TA is defined in the same way as before.

Definition 3.2. The bivariant entire cyclic homology of a pair of bornological
algebras A and B is by definition

HE∗(A,B) = H∗(Hom(X(TA), X(TB))

where Hom(X(TA), X(TB)) denotes the Z/2Z-grade complex of bounded linear
maps from X(TA) to X(TB). This complex is equipped with the differential [∂, φ] =
∂ ◦φ− (−1)deg φφ ◦ ∂, where ∂ = b+B [7, p. 57][17, p. 37]. The resulting homology
theory is Z/2Z-graded.

This construction is due to Meyer, who proves that this bivariant cyclic homology
satisfies excision in both variables [17] [7, Thm. 5.4]. More precisely, we have the
following.

Theorem 3.3. Let 0→ S → P → Q→ 0 be an extension of complete bornological
algebras which admits a bounded linear section. Assume further that A is a complete
bornological algebra. Then we have the following natural exact sequences of length
six.

HE0(A,S) −−−−→ HE0(A,P ) −−−−→ HE0(A,Q)

d1

x
yd1

HE1(A,Q) ←−−−− HE1(A,P ) ←−−−− HE1(A,S)

(1)

HE0(S,A) ←−−−− HE0(P,A) ←−−−− HE0(Q,A)

d2

y
xd2

HE1(Q,A) −−−−→ HE1(P,A) −−−−→ HE1(S,A)

(2)

Moreover, HE is invariant with respect to differentiable homotopies whose first
derivative is integrable. Meyer also proves that when A is a Banach algebra then
HE∗(A,C) is the same as the entire cyclic cohomology HE∗(A) of A as defined by
Connes [18, 4.1]

A very important property of HE is the existence of the composition product,
which is defined as in the case of bivariant periodic cyclic homology by composition
of linear chain maps. For any three bornological algebras A1, A2 and A3 there is a
bilinear product:

HEi(A1, A2)×HEj(A2, A3)→ HEi+j(A1, A3)
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given by f · g = g ◦ f . A detailed study of this product will provide formulae for the
connecting homomorphisms in the exact sequences of Theorem 3.3.

4. Entire cyclic cohomology of Schatten ideals

The aim of this section is the following

Theorem 4.1. Let Lp and Lq be two Schatten ideals, 1 6 p < q. Then the inclusion
Lp → Lq induces an invertible element in HE0(Lp,Lq). Consequently, the entire
cyclic homology and cohomology of the two algebras are isomorphic:

HEi(Lp) = HEi(Lq); HEi(Lp) = HEi(Lq)

for i = 0, 1.

In the context of algebraic periodic cyclic homology [7] and in kk-theory this
result was first proved by Cuntz [6]. The proof outlined here follows the same
strategy, which relies on algebraic features of bivariant cohomology theories. To
make sure that this translation works, we need to prove a number of technical
results which provide the necessary formal properties of the bivariant entire cyclic
homology.

Let E denote the following extension of complete bornological algebras.

E : 0→ S
i−→ P

p−→ Q→ 0

We shall assume that this sequence is split, i.e. there exists a bounded linear map
s : Q→ P which is a right inverse for the projection p.

The excision property of the bivariant cyclic homology HE∗ implies that there
are the following two exact sequences

→HE∗(P, S)→ HE∗(S, S) δ1−→ HE∗+1(Q,S)→
→HE∗(Q,P )→ HE∗(Q,Q) δ2−→ HE∗+1(Q,S)→

Denote by 1Q the class in HE0(Q,Q) induced by the identity map on the algebra Q
and, similarly, 1S will denote the class of the identity map on S. The following lemma
is a translation of a result of Kassel [14, Lemme 2.2] in the case of his bivariant
cyclic cohomology. An analogous result has been proved in the case of bivariant
periodic cyclic cohomology by Cuntz and Quillen [10][7, Prop. 2.51, p.33].

Proposition 4.2. If δ1 and δ2 denote the connecting homomorphisms in the pre-
ceding two long exact sequences, then

δ1(1S) = −δ2(1Q) ∈ HE1(Q,S)

Proof. To simplify notation, for any two Z/2Z-graded complexes C and D, we shall
write H∗(C,D) for the homology H∗(Hom(C,D)).

The projection p induces a map of complexes X(TP )→ X(TQ). Let us denote by
X(P,Q) the kernel of this map, so that we have an exact sequence of Z/2Z graded
complexes

(α) : 0→ X(P,Q)→ X(TP )→ X(TQ)→ 0.
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By the universal properties of the non-unital tensor algebra and the X-complex, a
linear splitting s of the sequence E induces a linear splitting of the sequence (α)
[17, 3.3.2] which will also be denoted s. This splitting in turn determines the odd
degree map [∂, s] = ∂ ◦ s − s ◦ ∂ with the properties p[∂, s] = 0 and [∂, [∂, s]] = 0.
Thus [∂, s] determines an element in H1(X(TQ), X(P,Q)) which will be denoted γ.
This class does not depend on the choice of the linear section s. Indeed, any two
C-splittings can be connected by a linear path (1− t)s+ ts′. Now:

[∂, (1− t)s+ ts′] = (1− t)[∂, s] + t[∂, s′]

gives a (differentiable) homotopy between the corresponding cycles.
Furthermore, there is the induced sequence of Z/2Z-graded complexes

0→Hom(X(TQ), X(P,Q))→ Hom(X(TP ), X(P,Q))
→ Hom(X(P,Q), X(P,Q))→ 0

If we now apply the homology functor we obtain an exact sequence of length six.
The two connecting homomorphisms

Hj(X(P,Q), X(P,Q))
γ·−→ Hj+1(X(TQ), X(P,Q)),

for j = 0, 1, in the resulting homology sequence are both given by multiplication by
γ.

The inclusion map i : X(TS) → X(TP ) satisfies pi = 0 and so can be regarded
as a map i : X(TS) → X(P,Q). Since this map is induced from an algebra homo-
morphism, it is a 0-cycle and so creates an element i ∈ H0(X(TS), X(P,Q)). A key
step in the proof of excision in HE (Theorem 3.3) is the fact that i is invertible [17],
so that there exists i−1 ∈ H0(X(P,Q), X(TS)).

For any Z/2Z-graded complex C the composition product gives a map

Hj(X(TS), X(P,Q))⊗Hk(X(P,Q), C)→ Hj+k(X(TS), C).

Thus taking the product on the left by the invertible element i of degree 0 establishes
an isomorphism

i· : Hj(X(P,Q), C) '−→ Hj(X(TS), C).

If we now recall that HE∗(S, S) = H∗(X(TS), X(TS)) and use the triple product

H0(X(P,Q), X(TS))⊗Hj(X(TS), X(TS))⊗H0(X(TS), X(P,Q))
−→ Hj(X(P,Q), X(P,Q))

we deduce that there is an isomorphism

HEj(S, S) ' Hj(X(P,Q), X(P,Q)).

For φ ∈ HE∗(S, S) this is given explicitly by φ 7→ i−1 · φ · i. Taking the left product
with γ produces a map

HEj(S, S)→ Hj+1(X(TQ), X(P,Q)), φ 7→ γ · i−1 · φ · i.
If we now take the product on the right with i−1 ∈ H0(X(P,Q), X(TS)) and use
the identification H∗(X(TQ), X(TS)) = HE∗(Q,S) we conclude that the connecting
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homomorphism HEj(S, S)→ HEj+1(Q,S) may be described by the fomula

φ 7→ γ · i−1 · φ,
for any φ ∈ HEj(S, S). In particular, when φ = 1S we obtain

δ1(1S) = γ · i−1.

The exact sequence (α) also leads to the following exact sequence:

0→Hom(X(TQ), X(P,Q))→ Hom(X(TQ), X(TP ))
→ Hom(X(TQ), X(TQ))→ 0

which in turn induces a corresponding exact sequence of bivariant homology groups
of length six.

The existence of a bounded linear splitting s of the sequence (α) implies that
X(TP ) splits as a direct sum of Z/2Z-graded vector spaces:

X(TP ) = X(TQ)⊕X(P,Q)

It then follows that there is a complementary splitting of the sequence (α) given by
s′ = 1− s. It is now not difficult to see that the two connecting homomorphisms

Hj(X(TQ), X(TQ))→ Hj+1(X(TQ), X(P,Q))

for j = 0, 1 are given by left multiplication by the element [∂, s′] = −[∂, s] = −γ.
We can find an explicit formula for the connecting homomorphism

δ2 : HEj(Q,Q)→ HEj+1(Q,S)

as follows. We multiply on the left by −γ to construct a map

HEj(Q,Q) := Hj(X(TQ), X(TQ))
−γ·−−→ Hj+1(X(TQ), X(P,Q)).

Multiplication on the right by i−1 ∈ H0(X(P,Q), X(TS)) gives a map

Hj+1(X(TQ), X(P,Q)) ·i−1

−−→ Hj+1(X(TQ), X(TS)) = HEj+1(Q,S).

Thus the formula for the connecting homomorphism δ2 is

δ2(ψ) = −γ · ψ · i−1,

for any ψ ∈ HEj(Q,Q). In particular, when ψ = 1Q we have

δ2(1Q) = −γ · i−1 = −δ1(1S)

This result can be extended to provide formulae for connecting homomorphisms
in exact sequences of Theorem 3.3. Both of the excision exact sequences are natural.
In the case of the sequence (1) this means that there exists a commutative diagram

HEj(A,Q)×HE0(Q,Q) m−−−−→ HEj(A,Q)

1⊗δ2

y
yd1

HEj(A,Q)×HE1(Q,S) m−−−−→ HEj+1(A,S)
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where m denotes the product map and d1 denotes the connecting homomorphism
in the diagram (1) of Theorem 3.3, for j = 0, 1.

Taking into account the usual sign convention we have that

d1(φ · ψ) = m(1⊗ δ2)(φ⊗ ψ) = m((−1)deg(φ)(φ⊗ δ2(ψ)) = (−1)deg(φ)φ · δ2(ψ)

for φ ∈ HEj(A,Q) and ψ ∈ HE0(Q,Q). Hence

d1(φ) = d1(φ · 1Q) = (−1)deg(φ)φ · δ2(1Q)

Similarly, we obtain a formula for the connecting homomorphism d2 in the exact
sequence (2). In this case the naturality of this sequence implies that there exists
the following commutative diagram

HE0(S, S)×HEj(S,A) m−−−−→ HEj(S,A)

δ1⊗1

y
yd2

HE1(Q,S)×HEj(S,A) m−−−−→ HEj+1(Q,A)

Hence, for φ ∈ HE0(S, S) and φ ∈ HEj(S,A) we have

d2(φ · ψ) = m(δ1 ⊗ 1)(φ⊗ ψ) = δ1(φ) · ψ
Thus

d2(ψ) = d2(1S · ψ) = δ1(1S) · ψ.
In summary, we have obtained the proof of the following proposition, which

extends an analogous result of Kassel [14, Thm 2.1, Lemme 2.2] (see also [10, Thm
5.5]).

Proposition 4.3. Let us denote by ch(E) the class −δ1(1S) = δ2(1Q) of the ex-
tension E. Then the connecting homomorphism d1 in the exact sequence (1) sends
φ ∈ HEj(A,Q) to (−1)deg(φ)φ · ch(E) ∈ HEj+1(A,S). The connecting homomor-
phism d2 in the sequence (2) sends ψ ∈ HEj(S,A) to ch(E) · ψ ∈ HEj+1(Q,A).

This implies, as in [14][10], the following.

Corollary 4.4. If the algebra P in the extension E is HE-equivalent to 0, which
means that HE∗(A,P ) = HE∗(P,A) = 0 for any bornological algebra A, then ch(E)
is an invertible element in HE1(Q,S).

Proof. Let us put A = S in the sequence (1) and then A = Q in the sequence (2)
of Theorem 3.3. Since the terms containing the algebra P are zero, we see that the
connecting homomorphisms d1 and d2 are now isomorphisms. In particular, there
exists η1 ∈ HE1(S,Q) such that d1(η1) = 1S ∈ HE0(S, S). Similarly, there exists
η2 ∈ HE1(S,Q) such that d2(η2) = 1Q ∈ HE0(Q,Q). But we have just established
that

d1(η1) = η1 · ch(E) = 1S

and that
d2(η2) = ch(E) · η2 = 1Q
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This implies that η1 = η2. Indeed,

η1 = η1 · 1Q = η1 · ch(E) · η2 = 1S · η2 = η2.

Thus η = η1 = η2 ∈ HE1(S,Q) is the inverse of ch(E) ∈ HE1(Q,S).

The rest of the proof of the theorem follows an argument of Cuntz [6, Satz
6.12][7], who used it to prove an analogous result in his kk theory and periodic
cyclic homology.

Proposition 4.5. Let us assume that for two complete bornological algebras A and
B there are maps

α : B ↪→ A
β : A⊗A→ B

such that the composition α◦β identical to the product map on A, whereas β ◦α⊗α
is the product on B. Then the element [α] of HE0(B,A) is invertible. This implies
that HE∗(A) ' HE∗(B) and HE∗(B) ' HE∗(A).

Proof. We present here a more explicit version of Cuntz’s argument, which is
adapted to the context of entire cyclic homology.

We equip the Fréchet algebra C∞([0, 1]) of smooth functions with the von Neu-
mann bornology; in the present case this bornology coincides with the pre-compact
bornology.

If A is a complete bornological algebra, define

A[0, 1] = C∞([0, 1])⊗̂A
We denote by A(0, 1] the algebra of smooth functions from the closed interval [0, 1]
to A which vanish at zero; we use the notation A(0, 1), A[0, 1) to denote the algebras
of smooth functions from the interval [0, 1] to A that vanish at both ends of the
interval or just at 1. The algebra A[0, 1) is contractible to zero: the family of maps
φt that send a function f to φt(f)(x) = f((1 − t)(x)) forms a homotopy between
the identity map and evaluation at 1 (which is the same as the zero map).

There is the following suspension extension:

S(A) : 0→ A(0, 1)→ A[0, 1)→ A→ 0

where the map on the right is given by evaluation at 0. Since the algebra A[0, 1) is
contractible it is HE-equivalent to zero. We can therefore use Corollary 4.4 to deduce
that the class chS(A) = −δ1(1A(0,1)) = δ2(1A) ∈ HE1(A,A(0, 1)) is invertible, for
any complete bornological algebra A.

Let A and B be complete bornological algebras as in the statement of the Propo-
sition. We denote by B the complete bornological algebra generated by the alge-
bra B(0, 1) together with the algebra At = {fa | a ∈ A} consisting of functions
fa : [0, 1] → A which for a fixed a ∈ A send t 7→ ta. As a vector space, B is the
direct sum of the two algebras. The product on B is defined using the pointwise
product on B(0, 1) together with the following two operations. The product of a
function f ∈ B(0, 1) by an element ga ∈ At is given by µ(α(f) ⊗ ga). Finally, the
product of two fucntions fa and fb is the function g(a, b) + fαµ(a⊗b) where

g(a, b)(t) = µ(a⊗ b)(t2 − t).
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With these definitions we have the following extension of complete bornological
algebras

0→ B(0, 1)→ B→ A→ 0

which admits a bounded linear splitting. Proposition 4.2 implies that this extension
creates an element u ∈ HE1(A,B(0, 1)).

The homomorphism α : B → A gives rise to an element [α] ∈ HE0(B,A). We
need to show that it is invertible. For this we construct first the following diagram:

0 −−−−→ B(0, 1) −−−−→ B[0, 1) −−−−→ B −−−−→ 0y
yid+α

yα

0 −−−−→ B(0, 1) −−−−→ B −−−−→ A −−−−→ 0

Using the first of the two excision sequences we obtain the following commutative
diagram:

HE0(B(0, 1]) −−−−→ HE0(B)
· ch(S(B))−−−−−−−→ HE1(B(0, 1)) −−−−→

y α

y
∥∥∥

HE0(B) −−−−→ HE0(A) ·u−−−−→ HE1(B(0, 1)) −−−−→
Here the two connecting homomorphisms on the right are in accordance with Propo-
sition 4.3 whereas the vertical map in the middle is given by taking the product
on the right with α ∈ HE0(B,A). Since the diagram commutes we see that for any
φ ∈ HE0(B)

φ · α · u = φ · ch(S(B))

Given that ch(S) is invertible we find that α · u · ch(S(B))−1 = 1 ∈ HE0(B,B).
We now employ the following commutative diagram:

0 −−−−→ B(0, 1) −−−−→ B −−−−→ A −−−−→ 0

α

y
yα

∥∥∥
0 −−−−→ A(0, 1) −−−−→ A[0, 1) −−−−→ A −−−−→ 0

where the vertical map on the left is the obvious extension of α to functions. Using
excision again, this translates to the following commutative diagram of homology
groups:

HE0(B) −−−−→ HE0(A) ·u−−−−→ HE1(B(0, 1)) −−−−→
α

y
∥∥∥

yα

HE0(A[0, 1)) −−−−→ HE0(A)
· ch(S(A))−−−−−−−→ HE1(A(0, 1)) −−−−→

If we take into account the isomorphism of homology groups HE1(B(0, 1)) = HE0(B)
provided by the suspension extension (and similarly in the case of the bottom row)
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we obtain the commutative diagram:

HE0(A) ·u−−−−→ HE1(B(0, 1))
· ch(S(B))−1

−−−−−−−−→ HE0(B)
∥∥∥

yα

yα

HE0(A)
· ch S(A)−−−−−−→ HE1(A(0, 1))

· ch(S(A))−1

−−−−−−−−→ HE0(A)

It is now clear that u · ch(S(B))−1 · α = 1 ∈ HE0(A,A). Thus α ∈ HE0(B,A) is
invertible, with inverse u · ch(B(0, 1))−1 ∈ HE0(A,B).

To finish the proof of the theorem we let B = Lp and A = Lq, where p 6 q 6 2p.
The map α of the previous statements is obtained from the continuous inclusion
Lp → Lq and the map β from the multiplication map Lq⊗̂Lq → Lp. This completes
the proof of Theorem 4.1.

Corollary 4.6. Let B be a complete bornological algebra. Then for any 1 6 p < q
the inclusion Lp⊗̂B → Lq⊗̂B induces an invertible element in bivariant entire
cyclic cohomology HE0(Lp⊗̂B,Lq⊗̂B). Thus the entire cyclic homology and coho-
mology of the algebras Lp⊗̂B and Lq⊗̂B are isomorphic.

5. Hochschild homology of L1

In the previous section we have established HE-equivalence of the Schatten ideals
Lp for all p > 1. To finish the computation we need to find explicit information about
one of those ideals and it turns out that this is easiest to do in the case of the trace
class operators. In the biviariant case this was treated by Meyer who proved the
following stability result. [17, Thm 3.41]

Proposition 5.1. Let L1 denote the ideal of trace class operators. Then

HEi(L1) = HEi(C), HEi(L1) = HEi(C)

for i = 0, 1.

It is interesting to provide a direct proof of this result in the case of cohomology.
Let E and F be two Banach spaces in duality relative to a non-degenerate bilinear
form 〈−,−〉 : E × F → C. Then the tensor product of these spaces can be turned
into an algebra with the multiplication defined by

(x⊗ y)(x′ ⊗ y′) = 〈x′, y′〉x⊗ y′

In the case where E is a Hilbert space H and F is its continuous dual H∗, we have
that H⊗̂H∗ = N(H), where N(H) is the algebra of nuclear operators on H. When
H is separable, the algebra of nuclear operators is isomorphic to the algebra of trace
class operators L1.

Furthermore, Helemskii proves in [12, Ch. IV] that the algebra of nuclear op-
erators N(H), hence the algebra of trace class operators L1 is biprojective, which
means that it is a projective bimodule over itself. It is also proved in [12, Theorem
V.2.28] that for a biprojective Banach algebra A we have H3(A,X) = 0 for any
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Banach bimodule X. It then follows [15] that there exists a connection that pro-
vides a uniformly bounded contracting homotopy of the Hochschild complex for A
(with coefficients in A). This implies by the perturbation mapping lemma that the
canonical inclusion HP∗(A) → HE∗(A) is an isomorphism [15]. On the left-hand
side of this map, we regard A as a topological algebra and define HP∗(A) via the
projective tensor product.

To summarise, this sequence of arguments shows that HP∗(L1) ' HE∗(L1). Fi-
nally, Cuntz proves in [7, Prop. 17.3] that HP∗(L1) = HP∗(C) and HP∗(L1) =
HP∗(C). We summarise these results as follows.

Theorem 5.2. The algebra L1 is HE∗-equivalent to C.

In conclusion, we have the following.

Corollary 5.3. For any p, 1 6 p <∞,

HE0(Lp) = C, HE1(Lp) = 0

and

HE0(Lp) = C, HE1(Lp) = 0.

Proof. This result follows immediately from Theorem 4.1 and Proposition 5.1.

6. Canonical classes associated with p-summable Fredholm
modules

In this section we use our calculations to put some known results concerning
characters of Fredholm modules in a new context. Let A be an involutive algebra
over C.

We begin with the odd case. We recall that a bounded odd p-summable Fredholm
module over A is given by the data (H,π, F ), where π : A → L(H) is a represen-
tation the algebra A on a Hilbert space H, and F is a self-adjoint involution which
commutes with π modulo Lp [4, p. 208].

Let P be the corresponding spectral projection onto the +1 eigenspace. Let
σ : A→ L(H) be a linear map defined by σ(a) = Pπ(a)P for all a ∈ A, where π is
the representation of A as bounded operators on Hilbert space as required by the
structure of a Fredholm module. The goal of this section is to construct canonical
classes in the periodic and entire cohomology of the algebra A. Our construction
relies on an idea of Cuntz and Quillen [8], and follows the method outlined by Cuntz
in [6, 7].

Let A′ = Lp + σ(A). This is a subalgebra of L(H). The Schatten ideal Lp is
then an ideal in the algebra A′ and we have the following short exact sequence of
algebras, which is C-split:

0→ Lp → A′ → A′/Lp → 0 (3)

The linear map σ can be viewed as a map σ : A→ A′, which gives rise to an algebra
homomorpism σ : TA → A′ which has the important property that it sends the
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canonical ideal IA ⊂ TA to the Schatten class Lp. In other words, we have the
following commutative diagram of short exact sequences:

0 −−−−→ Lp −−−−→ A′ −−−−→ A′/Lp −−−−→ 0
x

x
x

0 −−−−→ JA −−−−→ TA −−−−→ A −−−−→ 0
The algebra homomorphism JA → Lp gives rise to an element in HP0(JA,Lp) =
HP1(A,Lp) and so to a map in cohomology HP∗(Lp) → HP∗(JA) = HP∗+1(A).
Given that HP0(Lp) = C and HP1(Lp) = 0, an odd Fredholm module determines
a canonical element in HP1(A). This is the character of a p-summable Fredholm
module that was first constructed by Connes in [2].

Our discussion of bornological algebras allows us to extend this idea to entire
cyclic cohomology. Let A be a complete bornological algebra. Applying the same
reasoning as above to the canonical extension of complete bornological algebras

0→ JA→ TA→ A→ 0

produces an element of HE1(JA,Lp) and so a map HE∗(Lp) → HE∗(JA)
= HE∗+1(A). Again, since we have that HE0(Lp) = C and HE1(Lp) = 0, an odd
p-summable Fredholm module determines a canonical class in HE1(A). Further-
more, because of of HP and HE equivalence of Schatten ideals, these classes are
independent of 1 6 p <∞.

We remark that the canonical classes so constructed are compatible, in the sense
that we have the following commutative diagram

HE0(Lp) −−−−→ HE1(A)

'
x

x
HP0(Lp) −−−−→ HP1(A)

It is not difficult to work out the well-known explicit formulae for these characters;
these were first derived by Connes in [2], compare [7, Ch. 19].

An even p-summable Fredholm module over an involutive C algebra A is given
by the data (H,π, F, γ), where γ is a self-adjoint involution on the Hilbert space
H (this Hilbert space is thus Z/2Z-graded) and the representation π : A → L(H)
commutes with this involution (and so A is represented by even operators with
respect to the grading). F and γ anticommute and for each a ∈ A, [F, π(a)] ∈ Lp.

In this situation we have a different algebra extension:

0→ Lp → Aγ → Aγ/L
p → 0 (4)

where the algebra Aγ is generated by Lp and π(A). This sequence has two linear
splittings: π and πF (a) = Fπ(a)F , see [7, Ch. 19]. In the context on periodic cyclic
cohomology this extension leads to the well known canonical character of Connes:

HP0(Lp)→ HP0(A)

which again is independent of p. This construction carries over to the case when the
algebra A is a complete bornological algebra; in particular the algebra extension (4)
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becomes an extension of complete bornological algebras. This extension gives rise
to a map HE0(Lp)→ HE0(A) which represents the character of an even Fredholm
module. The two constructions, one in the context of periodic cyclic cohomology
and the other for the entire cyclic cohomology, are compatible in the sense that
there exists the following commutative diagram:

HE0(Lp) −−−−→ HE0(A)

'
x

x
HP0(Lp) −−−−→ HP0(A)

These remarks may be summarised as follows. Let A be a complete involutive
bornological algebra over C. Let α be an odd p-summable Fredholm module over A,
and let αγ be an even p-summable Fredholm module over A. Let chE(α) ∈ HE1(A)
be the class in HE1(A) determined by α, and chP (α) ∈ HP1(A) be the class
in HP1(A) determined by α. Similarly, we denote by chE(αγ) ∈ HE0(A) and
chP (αγ) ∈ HP0(A) the classes in HE0(A) and HP0(A) determined by αγ .

Theorem 6.1. Under the canonical inclusion

HP∗(A)→ HE∗(A),

chE(α) is the image of chP (α). In the even case, chE(αγ) is the image of chP (αγ).

Corollary 6.2. The class chE(α) ∈ HE1(A) can be represented by a periodic cyclic
cocycle. The class chE(αγ) ∈ HE0(A) can be represented by a periodic cyclic cocycle.

This means, in particular, that the entire cocycle representing the class chE(αγ)
is cohomologous to the periodic cocycle representing chP (αγ); a similar statement
holds in the odd case. This provides a simple conceptual framework for the trans-
gression result of Connes-Moscovici [5] in the case of bounded Fredholm modules.
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