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We study the possible link between the dynamics of a certain

family of circle maps and the caustics of their iterates. The maps

are defined by off-center reflections in a mirrored circle; they

can also be regarded as perturbed rotations. Some of our exper-

imental observations can be justified rigorously: for example, a

lower bound is given for the number of cusps and the mode-

locking behavior are studied. Symplectic topology is a particu-

larly useful tool in this study.

1. INTRODUCTIONWe study a particular one-parameter family of circlemaps, called o�-center reections, �rst introducedin [Yau 1993, problem 21] (de�nitions are given inSection 2). We explore the possible link betweenthe dynamics of this family of circle maps and theircaustics. We observe and prove several phenomena:for example, within a certain generic range of theparameter r, the caustics of odd iterates have ex-actly four cusps, whereas for even iterates the caus-tic is a curve tangent to the circle at exactly fourpoints. Other partial results are given in the hopeof stimulating further investigations.An o�-center reection has several interesting an-alytic forms. It is a Blaschke product restricted tothe circle. It has an in�nite series expression in theparameter, highlighting its character as a pertur-bation of a rotation on the circle. Starting with[Arnold 1961], a standard type of perturbations hasattracted much interests in mathematics and physicscommunities [Bak et al. 1988; Ding and Hemmer1988; Zheng 1991]. This standard type is exactly areduction of the series of the o�-center reection.In the family of o�-center reections, as the pa-rameter r goes from 0 to 1, we go from the antipo-dal map to the doubling map on the circle. Thisprovides a nice particular example of a deformationleading from simple dynamics to chaos, with the un-expected phenomenon of \half-bifurcations" along
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the way (see Figure 9 on page 298). We hope thatsome notion of stability about the cusp points andtangent points on the caustics might emerge fromfurther study of this family of circle maps.Section 2 gives the de�nition and some analyticproperties of the map. Section 3 studies the causticsof the map and of its iterates. Our results concern-ing the caustics of odd iterates are more conclusivethan those for even iterates. Following a symplecticand contact geometry interpretation developed byArnold [1994], we discover the generating functionfor the corresponding Lagrangian embedding. Asa result, the classical four-vertex theorem is appli-cable. The method fails for even iterates, but ex-plicit computations still provide reasonable supportfor certain predictions.Section 4 presents our main heuristic observations,with illustrations, and the theoretical support forthem. For example, we have the partial result thatthe caustic is stable when r � 13 . The more tediouscomputations are segregated into Section 4B for de-tailed reading.Section 5 studies the phenomenon of mode-lock-ing for this family of circle maps, and gives an es-timate for the width of the resonance zone. This isan attempt to understand the iterates of the map.This family extends a class of examples studied byArnold and others, which exhibits the same behav-ior. The mode-locking of the o�-center reectionsand its \complex conjugates" are totally di�erent.Moreover, r = 13 is the �rst value of the parameterwhere this behavior undergoes a structural change.This is probably not simply a coincidence with thebifurcation values of cusps.
2. OFF-CENTER REFLECTIONAn o�-center reection is a map S1 ! S1 de�nedas follows: Pick a point, say (r; 0) in the interior ofthe unit disk D2. For any point in @D2 = S1, withangle coordinate ', say, emit a ray from (r; 0) to '.The ray will be reected at ' with S1 as the curve ofreection and it will hit S1 again at Rr(') on. Themap Rr : S1 ! S1 is the o�-center reection. SeeFigure 1.We �rst establish analytic expressions for the mapRr : S1 ! S1, where 0 � r < 1. WriteRr(') = '+ � � 2� mod 2�;

(r; 0)
'

Rr(')
��

FIGURE 1. The map ' 7! Rr(') is the o�-centerreection with center (r; 0).with� = �(') := Arg (cos'� r + i sin')� ':Here Arg is the principal argument, taking valuesin (��; �]. Since the incidence angle � is an oddfunction of ', it has a Fourier sine series expansion,say � =P ak(r) sin(k'); to compute its coe�cients,we notice thatd�dr = sin'(cos'� r)2 + sin2 'also has a sine expansion, with coe�cients@ak@r = 2� Z �0 sin' sin(k')1�2r cos'+r2 d'= 1� Z �0 � cos(k�1)'1�2r cos'+r2 � cos(k+1)'1�2r cos'+r2� d'= 1� ��rk�11�r2 ��rk+11�r2 � = rk�1:
Integrating we conclude that ak = rk=k, and we canwrite
Rr(') = '+ � � 2 1Xk=1 rkk sin(k') mod 2�: (2–1)

This formula (without the modulo 2�) is exactlythe lifting of Rr to a function from R to R taking0 to �. We will often omit the mod 2� when thecontext is clear.By playing with the argument of a complex num-ber, we get another expression for the map Rr, asthe restriction to the unit circle of the mapz 7! �z2 1� rzz � r (2–2)
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on the unit disk punctured at (r; 0). Thus the o�-center reection is a special case of a Blaschke prod-uct. Therefore, this function Rr(') is harmonicwhen (r; ') are treated as the polar coordinates,since it is the argument of the analytic function�z(1� z)2:By changing a sign in the formula for Rr, we haveanother map Rr de�ned byRr : ' 7! '+ � + 2 1Xk=1 rkk sin(k') mod 2�:
Geometrically, Rr(') is the reection of Rr(') inthe diameter joining ' to ' + �. The map Rr canbe extended to the unit disk, viaz 7! � z � r1� rz :Therefore, it de�nes a map in PSL(2; R ), the isom-etry group of the hyperbolic disk. The dynamics ofRr and this \conjugated" map Rr are completelydi�erent. See [Herman 1979] and Section 5B.For su�ciently small r, Rr behaves very similarlyto R0, the antipodal map. When r < 13 , in fact, Rris in the component of R0 in the group of orientationpreserving di�eomorphisms of S1. However, R1=3 isonly a homeomorphism on S1 and Rr a degree 1 mapwhen 13 < r < 1. This can be easily seen from thederivatives of Rr, whose expressions will be usefullater:R0r(') = 1� 4r cos'+ 3r21� 2r cos'+ r2 ;R00r (') = 2r(1� r2) sin'(1� 2r cos'+ r2)2 ;
R000r (') = 2r(1�r2)�(1+r2) cos'� 2r(1+ sin2 ')�(1� 2r cos'+ r2)3 :Section 4B will give more information about the�xed point and other special points of Rr. Moredynamical properties such as periodic cycles andwhether they are attracting are discussed in [Au1999].

3. CAUSTICS

3A. Caustic of the Off-center ReflectionTwo classical examples of caustics are the locus offocal points with respect to a point on a surface

and the focal curve of a convex plane curve, whichgave rise to the famous Geometric Theorem (Conjec-ture) of Jacobi and the four-vertex theorem. Thereare many interesting at-least-four results related tocaustics; see [Arnold 1994; 1996; Tabachnikov 1990;1995]. The caustic of an o�-center reection pro-vides another one. The conjugate locus of a pointon a at ying disc is, at degenerate situation, thecaustic of the o�-center reection. Bruce and other[Bruce et al. 1982; Bruce and Giblin 1984; 1985;Giblin and Kingston 1986] have analyzed the sin-gularities of the caustics produced by a point lightsource when it is reected in a codimension 1 \mir-ror" in R 2 and R 3. Their emphasis though is on the\source genericity": whether the caustics could bemade generic by moving the source. See also [Bruceet al. 1981].For a circle map f : S1 ! S1, the family of linesjoining ' to f(') isF ('; x; y)= (sin f'�sin')(x�cos')� (cos f'�cos')(y�sin')= (sin f'�sin')x� (cos f'�cos')y� sin (f'�') ;where f' = f(') and so on. The caustic of the mapf is de�ned to be the envelope of these lines. Thus,it is given by the equations@F@' ('; x; y) = 0 = F ('; x; y);
that is,� sin f'� sin' �cos f'+ cos'f 0' cos f'� cos' f 0' sin f'� sin'��xy �= � sin(f'� ')(f 0'� 1) cos(f'� '):�Solving for x; y, we obtain a parameterization of thecaustic:

x(') = f 0' cos'+ cos f'1 + f 0' ;
y(') = f 0' sin'+ sin f'1 + f 0' : (3–1)

The tangent direction of the caustic, which is degen-erate at the cusps, is given by the following formulas:
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x0(') = f 00'(cos'� cos f')�f 0'(1 + f 0')(sin'+ sin f')(1 + f 0')2 ;
y0(') = f 00'(sin'� sin f')+f 0'(1 + f 0')(cos'+ cos f')(1 + f 0')2 ;

(3–2)

The caustic (3{1) of the o�-center reection mayrun to in�nity since 1+R0r(') may be equal to zero.In fact, this is so if and only if r � 12 . It would bemore appropriate to de�ne the caustic as the enve-lope of the geodesic normal �eld on the sphere. Afterstereographic projection, it does not matter whetherthe caustic is de�ned on the plane or the sphere, asthe local properties remain unchanged (Darboux'sTheorem of symplectic structure). As we will see,the local properties of the caustic of Rr can be un-derstood by direct computation.
Theorem 3.1. For all 0 < r < 1, there are exactlyfour cusp points on the caustic of Rr. Two of themcorrespond to the Rr-orbit f0; �g, of period two.
Proof. The derivatives of x and y can be expressedin terms of r and ', namely:
x0(') = 6r2(� cos'+ r cos(2'))(r � cos') sin'(�1� 2 r2 + 3 r cos')2
y0(') = 6r2(�1 + 2r cos')(r � cos') sin2 '(�1� 2 r2 + 3 r cos')2 :

The common solutions for x0(') = 0 = y0(') are ' =0; � and two values of ' with cos' = r. Clearly, 0and � are zeros of x0 of �rst order and of y0 of second

order, thus, these are semicubical cusps. If cos' =r, after further di�erentiation and evaluation at thepoint, one hasx00(') = �12r3; y00(') = 6r2(2r2�1)p1�r2 ;
x000(') = 12(5r4+r2)p1�r2 ; y000(') = �6r3(10r2�3)1� r2 :

Thus, x00y000 � x000y00 = 72r4=(1�r2) 6= 0;and there are also semicubical cusps at those valuesof ' with cos' = r. �Figure 2 shows caustics of Rr for r < 12 and r > 12 .Since the second one runs to in�nity, it is drawnwith a \compressed" scale, where a circle of radiusgreater than one represents the point of in�nity andthe caustic has a self-intersection there.
3B. A Symplectic ReformulationThe explicit computations in the previous sectiongive an exact count of the number of cusp points,but they are di�cult to extend to the study of theiterated map. In this section, we use a symplecticapproach that helps overcome this di�culty. Wefollow the terminology of [Arnold 1994].Denote the coordinates of the unit cotangent bun-dle ST �(R 2) by (px; py; x; y), where (x; y) 2 R 2 andp2x + p2y = 1. This bundle is a contact 3-manifoldwith the contact 1-form px dx+py dy; the cotangentmanifold T �(R 2) is symplectic with the symplectic2-form d (px dx+ py dy).

�1:657 0:375 1 �1 1=p2 1 36 1

FIGURE 2. Sample caustics of Rr (left, r = 0:375; right, r = 1=p2).
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The unit vector (px; py) in the direction from ' toRr(') is given bypx = cos('+ � � �); py = sin('+ � � �):Then the formula�'S � 7!
0BB@ pxpyxy

1CCA =
0BB@ cos('+���)sin('+���)cos'+S cos('+���)sin'+S sin('+���)

1CCA
de�nes a map L : S1 � R 1 �! T �(R 2), which maybe thought of as a ow (in the parameter S) of unitspeed in the direction of the reection lines, startingwith the round circle S = 0. This is a case of whatArnold [1994] called Legendrian collapsing.Let p : T �(R 2)! R 2 be the canonical projection.The Jacobian J(p � L) of p � L isdet� cos('+���) � sin'�S(1��0) sin('+���)sin('+���) cos'+S(1��0) cos('+���) �;soJ(p � L) = cos('+���) cos'+ sin('+���) sin'+ S(1��0)= � cos�+ S(1��0):So the equation for the critical curve on S1 � R 1 isS = cos�1� �0 :A translation of the de�nition of the caustic intosymplectic terms (or direct calculation for the spe-ci�c map at hand) shows that:
Proposition 3.2. The critical curve, when mapped tothe (x; y)-plane, agrees with the caustic of Rr.A simple calculation also shows thatpx dx+ py dy = sin�d'+ dS;so the image of L is a Lagrange cylinder in T �(R 2).Since � is an odd function of ', we haveZS1 sin�d' = 0;so p(L) is an exact Lagrange cylinder. De�ne a func-tion S(') on the circle byS(') = �Z '0 sin�d';this gives a section in the Lagrange cylinder p(L). Itis easy to see that �S(') is increasing for 0 � ' � �

and decreasing when � � ' � 2�. Therefore, thecurve C given byx = cos'+ S(') cos('+ � � �)y = sin'+ S(') sin('+ � � �)is quite likely to be a convex plane curve. We showthat this is the case when r � 12 .First we note that C has a continuous normal �eld(cos('+���); sin('+���)). It is easy to computex02 + y02 = 4 sin2 �+ (cos�� S(1� �0))2:Therefore, x02 + y02 = 0 is possible only when ' =�. But the number of zeros of x02 + y02 should beeven (geometrically, because C is co-oriented). Thusx02 + y02 > 0 all the time and C is a smooth simpleclosed curve. The curvature of C is� = 1� �0px02 + y02 ;which is nonnegative when r � 12 , so C is convex inthis case. Now the family of reection lines of Rr isidentical to the family of normal lines of this convexcurve C. Therefore, the caustic of Rr has at least 4cusp points [Arnold 1994].The function S(') should be thought of as thegenerating function of the circle map Rr. The curveC is related to the orthotomic of such a reection.We will study such generating functions for generalcircle maps in a forthcoming work.
3C. Iterations of ReflectionsFor an integer n, we denote the n-th iterate of Rrby Rnr = Rr � Rn�1r : S1 ! S1. Equations (3{1) and(3{2), with f = Rnr , give a parametrization of thecaustic of Rnr and its tangent.The cusps on caustics of Rnr are more intrigingand complicated than those of Rr. There are funda-mental di�erences between the caustics dependingon whether n is odd or even. To see this di�erence,we may consider the trivial case r = 0. When n isodd, Rn0 is the antipodal map and its caustic is apoint (and so has a cusp), whereas for n even Rn0is the identity map, whose caustic, being de�ned bythe family of tangents, is the circle itself (and sois smooth). It is to be expected that this contrastremains while r is close to 0.
Theorem 3.3. For small enough r > 0, the caustic ofR2m+1r has at least 4 cusp points .
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Proof. To some extent, the symplectic method inSection 3B may be adopted for R2m+1r . It can beproved by induction on m thatR2m+1r (') = '+ � � 2~�m(')for some odd function ~�m('). For example,~�1(') = �(') + ��'+ � � 2�(')�+��'� 2�(')� 2�('+ � � 2�('))�:Therefore, we still have an exact Lagrangian cylin-der and a sectional curve de�ned by~S(') = �Z '0 sin ~�m d':For small r, it is a convex curve and hence there areat least 4 cusp points on the caustic. �
Remark. The argument fails for even iterates of Rr,because the analog of ~� is not an odd function. Fur-thermore, it is not clear about how small the rangeof r should be. Yet, from experimental observation,there are at least four cusps for any r > 0 and thereare exactly four for 0 < r < 13 . For more, please seethe discussion after proposition 4.3.
4. EXPERIMENTS AND OBSERVATIONSTo get more accurate information about the caus-tics of iterates, we have to rely on lengthy calcula-tions. Our investigation is indeed partly theoreticaland partly experimental. We will �rst describe someinteresting properties with illustrations. The tech-nical details of justi�cation are left to the interestedreader in Section 4B.

4A. ObservationsWe �rst put forward a conjecture about the exactpicture of the caustic when Rnr is still a di�eomor-phism. Then we look at the bifurcation processof the structure of the caustics when r varies. Fi-nally, we compare the caustics for di�erent n. Wewill soon see that the 2-cycles of Rr play a specialrole (Propositions 4.2 and 4.4). The 2-cycles aref0; �g and f�'cg where 'c 2 (0; �) and cos'c =(1 � p1+8r2)=(4r). We will often refer to this no-tation.
Conjecture 4.1. For 0 < r � 13 , the caustic of R2m+1ris a C1 curve with exactly four cusp singularities ,with two of them occurring at ' = 0; �. On the otherhand , the caustic of R2mr is a di�erentiable curve;C1 everywhere except at exactly the four 2-periodicpoints of Rr, where the caustic is tangent to the unitcircle.The conjecture is illustrated in Figure 3.
Proposition 4.2. Any caustic curve of R2mr is tangentto the unit circle at any point ' satisfying R2mr (') ='. In particular , this includes the points 0, �, and�'c. If r � 13 , these are the only four points wherethe caustic meets the circle.
Proof. By substitution of such ' into equations (3{1)with f = Rnr , we have x(') = cos' and y(') =sin'. Applying Lemma 4.5 to such ''s, the asser-tion about the tangential property of the caustics ofeven iterates of Rr follows easily. Next,(Rnr )0(') cos'� cosRnr (') = 0(Rnr )0(') sin'� sinRnr (') = 0:

FIGURE 3. Caustics of iterates Rnr , for r = 13 . From left to right, n = 2; 3; 4.
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since x2+y2 = 1. This leads to Rnr (') = '. If r � 13 ,by Lemma 4.8, n must be even and ' is one of thefour 2-periodic points. �We have already seen from symplectic topology thatcaustics of odd iterates, R2m+1r , always have at leastfour cusps for su�ciently small r > 0. Moreover,for all Rr, two of the cusps occur at ' = 0; �. Now,we may extend this result to odd iterates of Rr withisolated exceptional values of r. It turns out theseexceptional values only occur in r > 13 .
Proposition 4.3. For 0 < r < 13 and for generic 13 <r < 1, the caustic of R2m+1r always has cusps at 0; �.
Proof. For 'a = 0; �, one has Rr('a) = 'a + � mod2�, so we may apply Lemma 4.5 to check whetherthere are cusps. We also have, R2r('a) = 'a andR00r ('a) = 0, so we can simplify using Lemma 4.6and obtain (R2m+1r )00('a) = 0 and(Rn+2r )000('a) = R0r(Rr('a))(Rnr )0('a)R000r ('a)+R0r('a)3�(Rnr )0('a)R000r (Rr('a))+R0r(Rr('a))3(Rnr )000('a)�:We temporarily de�ne, for positive integers n,An = �(Rnr )0 + (Rnr )03 + 2(Rnr )000:So it su�ces to check that A2m+1('a) 6= 0. Wewill proceed by induction on m. First, by directcomputation,A1(0) = 24r2(1� r)2 > 0; A1(�) = 24r2(1 + r)2 > 0:Then, it can be shown thatAn+2('a)= �1�9r21�r2 �3An('a)+(Rnr )0('a)��2R000r ('a+�)R0r('a)3+2R0r('a+�)R000r ('a)�R0r('a)R0r('a+�)+R0r('a)3R0r('a+�)3�= �1�9r21�r2 �3An('a)+A2('a)�(Rnr )0('a):In particular,A2m+1(0) = �1� 9r21� r2 �3A2m�1(0)+A2(0)�1� 3r1� r �m�1 + 3r1 + r �m�1 ;

A2m+1(�) = �1� 9r21� r2 �3A2m�1(�)+A2(�)�1� 3r1� r �m�1�1 + 3r1 + r �m ;whereA2(0) = 48r2(1 + r)(1� r2)3 (1� 3r + 13r2 � 15r3);
A2(�) = 48r2(1 + r)(1� r2)3 (1 + 3r + 13r2 + 15r3):It can be easily computed that A2(0) > 0 for 0 <r < 13 and A2(�) > 0 for all r > 0. Thus,
A2m+1('a) � �1� 9r21� r2 �3A2m�1('a) > 0:For r > 13 , A2m+1 may have zeros. We can onlyconclude from above that A2m+1 is a rational func-tion in r with denominator being a power of (1�r2).Therefore, it has only isolated zeros and cusps at 0; �occur for r > 13 generically. �We observe that at cusp points, (3{2) gives a set of\homogeneous" equations which has zero determi-nant. Thus, except at a couple of ''s, it is su�cientto solve only one equation, say, x0(') = 0. It islikely that this equation has exactly four solutionsfor 0 < r < 13 . However, it is still hard to solveexplicitly especially for high iterates of Rr. Figure 4shows the functions (R3r)00=�(R3r)0(1 + (R3r)0)� and(sin' + sinR3r('))=(cos' � cosR3r(')) for r = 0:1and r = 0:33. Exactly four cusp solutions appearin each of them. We do not have a proof of thisgraphical fact. Perhaps it may be proved by de-tailed curve sketching argument and comparison ofR2m�1r and R2m+1r using the known properties of R2rgiven in Lemma 4.8.This situation may be compared with the \Jacobiconjecture" promoted by Arnold [1994; 1996]. Asmentioned in the beginning of Section 3A, the caus-tic of Rr agrees with the locus of conjugate pointsof (r; 0) on a at ying disk. Although the lociof higher order conjugate points are not the sameas the caustics of odd iterates of Rr, the geomet-ric nature of their common contact indicates thattwo problems|whether there are exactly four cuspson the loci of higher order conjugate points andwhether there are exactly four cusps of the causticsof odd iterate of Rr |might be related. In both
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FIGURE 4. Graphs of (R3r)00=�(R3r)0(1+(R3r)0)� (left) and (sin'+sinR3r('))=(cos'�cosR3r(')) (right), for r = 0:1(thin lines) and r = 0:33 (thick lines).cases, since we do not have exact nice formulas forthe loci of higher order conjugate points and thecaustics of odd iterates of Rr, it would be very dif-�cult to have an exact count of cusps. Of course,Conjecture 4.1 deals with a very special situation.From graphical evidence, it is tempting to think thata proof should not be out of reach.In the proof above, we see that for n � 3, exceptA3(�), we always have An(0) = 0 = An(�) alwaysat r = 13 . There is a possible structural change onthe caustic of Rnr occurring at r = 13 for n � 3.We observe from experiment that, for the caustic ofodd iterates, once r > 13 , bifurcation of cusp mayoccur. Interestingly, from the computed pictures,bifurcation only occurs at the cusp corresponding to' = 0 but not others; see Figure 5 for an example.Would the di�erent properties between A2(0) andA2(�) be part of the reason?On the other hand, bifurcation into cusps also oc-curs for even iterates of Rr at r = 13 . We begin by

examining some Taylor expansions. Since Rr andits iterates are 2�-periodic odd functions, they haveparticular nice expansions at 'a = 0; �. This en-ables us to see the local properties of the causticsmore clearly.Let f be any even iterate of Rr, then f('a) = 'a.We write � = ' � 'a and g(�) = f(') � 'a andsuppose it has an expansiong(�) =Xk=0 a2k+1�2k+1:One can inductively work out the coe�cients of theexpansions of 1 + f 0(') = 1 + g0(�), cos f(') =� cos g(�), etc. If Pk; Qk denote polynomials withPk(0; : : : ; 0) = 0 = Qk(0; : : : ; 0), one hasx(') = �1� a12 �2 +Xk=1 Pk(a1; : : : ; a2k+1)(1 + a1)2k+1 �2k;
y(') = � 2a11 + a1 � +Xk=1 Qk(a1; : : : ; a2k+1)(1 + a1)2k+1 �2k+1:

1.5 -1.1 -0.95

-0.02

0.02

FIGURE 5. Caustic of Rnr for r = 0:36, n = 3. On the right, an enlargement of the region ' = 0.
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These expansions help to understand the caustics ofR2mr at 'a = 0; �. It would be convenient to look atthe pictures before we go on.In Figure 6, we see that cusps are born near ' = 0and �. From the enlargement, the caustic bifurcatesinto 2m cusps when r increases across 13 , where Rrchanges from a di�eomorphism to a degree 1 map.In the expansion of R2mr , we have
a1 = �1� 9r21� r2 �m :

This allows us to show that r = 13 is where thecaustic of R2mr changes at ' = 0; �. In fact, thecaustics of R21=3 has the following Taylor expansions.At 'a = 0,
x(')� x(0) = �274 �4 +O(�6);y(')� y(0) = 18�3 +O(�5);

and at 'a = �,x(')� x(�) = 24316 �4 +O(�6)y(')� y(�) = �812 �3 +O(�5):This shows that the caustic of R2r undergoes a swal-lowtail bifurcation at 0; � when r = 13 . We mayfurther work out the expansion of R2m1=3 as the m-thiterate of R21=3. Using a1 = 0 and a3 6= 0 for R2r , wehave R2m1=3(') = 'a + �3mU(�)for some function U with U(0) 6= 0. The bifurcationof the caustics of R2mr at ' = 0; � should be of thetype (�3m+1; �3m) when r passes 13 .We have been considering the behavior of the caus-tics of Rnr with parameter r and n �xed. What hap-pens if r is �xed and n is allowed to vary? Thereis an interesting phenomenon for r � 13 . Althoughthere is a fundamental di�erence when n is odd andeven, this di�erence disappears as n goes to in�nity.Figure 7 shows how the caustics of R2m+1r and R2mr
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FIGURE 6. Caustics of Rnr for r = 0:36, n = 2 (top) and n = 4 (bottom). On the right, enlargements of the region' = 0.
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change|they tend to the same quadrilateral. Thedashed vertical line from 'c to �'c in the pictureof even or odd caustics is determined by r but notthe number of iterates. When n is even, it is wherethe caustic is tangent to the circle. When n is odd,every caustic is tangent to this vertical line becauseit is the line joining 'c and R2m+1r ('c) = �'c. Thepoint of tangency occurs exactly at 'c by de�nition.
Proposition 4.4. For 0 < r � 13 , as m ! 1, boththe caustics of R2m+1r and R2mr approach the samequadrilateral de�ned by the four points 0, �, and�'c, which are the only 2-periodic points of Rr.
Proof. We �rst show that the caustics of R2m+1r atthe four points tend to the circle as m!1. Thesefour ''s are the solution to R2r(') = '. Thus, wehave (R2m+1r )0(') = R0r(')m+1 � R0r(Rr('))m.At ' = 0; �, the coordinates of the caustic are

x(') = � ((Rnr )0(')� 1)1 + (Rnr )0(') ; y(') = 0:
Clearly,(R2m+1r )0(0) = R0r(0)m+1R0r(�)m= �1� 3r1� r �m+1�1 + 3r1 + r �m :
Thus, x(0)! �1 as m!1. The situation at � issimilar.At the point 'c with Rnr ('c) = �'c, the coordi-nates of the caustic arex('c) = cos'c; y('c) = (�1 + (Rnr )0('c)) sin'c1 + (Rnr )0('c) :

Since Rr is odd and R2r('c) = 'c, it follows that(Rnr )0('c) = R0r('c)n. Moreover, by 4r cos'c = 1 �p1 + 8r2, one may show that(�1 + (Rnr )0('c))1 + (Rnr )0('c) ! 1 as n!1.Again, these two cusps approach to the unit circle.Secondly, from Lemmas 4.7 and 4.8, 0 and � arethe attracting �xed points of R2r while �'c are re-pelling. Moreover, the attracting basins for 0 and �are (�'c; 'c) and ('c; 2� � 'c) respectively. Thus,for any given neighborhood of 0, for su�ciently largem, for any neighboring '1; '2 2 (�'c; 'c), R2mr ('1)and R2mr ('2) lie in that neighborhood of 0. Hence,the intersection of the lines from 'j to R2mr ('j) liesin a neighborhood of the quadrilateral. The prooffor the cases at � and of odd iterates are similar. �
4B. Technical ResultsWe collect here some technical results needed to jus-tify the observations of Section 4A. They are mostlyobtained by direct computation and the reader canskip the proofs.The �rst one deals with the existence of cusps atcertain special \symmetric" positions.
Lemma 4.5. Let f denote any iterate of Rr. On thecaustic of f , the conditions for the occurrence of asemicubical cusp at ' are� f 0(') = 0 and f 00(') 6= 0 if f(') = ';� f 00(') = 0 and �f 0(') + f 0(')3 + 2f 000(') 6= 0 iff(') = '+ �.
Proof. This is proved by computing the derivativesof (3{1) and (3{2), then evaluating at the particular

FIGURE 7. Caustics of Rnr for r = 13 and n = 1; 3; 5; 7; 9 (left) and n = 2; 4; 6; 8 (right).
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values '0 or 'a. The result follows by verifying thatx0 = 0 = y0 and x00y000 � x000y00 6= 0. �
Remark. Although this lemma is stated for an iterateof Rr, it is actually true for any circle map. Otherresults in this section also hold in a more generalsetting, but we will focus on iterates of Rr.At a point ' with f(') = �', we always havex0(') = 0. The conditions there aref 0(')(1 + f 0(')) cos'+ f 00(') sin' = 0;f 0(')(2 + cos(2')) + 6f 0(')2 cos2 '+ (1+2 cos(2'))f 0(')3 � 2f 000(') sin2 ' 6= 0:Analogously, if f(') = ��', we have y0(') = 0 andconditionsf 0(')(1 + f 0(')) sin'� f 00(') cos' = 0;f 0(')(2� cos(2')) + 6f 0(')2 sin2 '+ (1� 2 cos(2'))f 0(')3 � 2f 000(') cos2 ' 6= 0:The next lemma is just the chain rule.
Lemma 4.6. If n = p+ q,(Rnr )0(') = (Rpr)0(Rqr(')) (Rqr)0(')= R0r(')R0r(Rr(')) � � �R0r(Rn�1r ('));(Rnr )00(') = (Rpr)00(Rqr(')) (Rqr)0(')2+ (Rpr)0(Rqr(')) (Rqr)00(');(Rnr )000(') = (Rpr)000(Rqr(')) (Rqr)0(')3+ (Rpr)0(Rqr(')) (Rqr)000(')+ 3(Rpr)00(Rqr(')) (Rqr)0(') (Rqr)00('):

In determining the cusps on the caustic, some orbitsin the iteration play a special role. We thus establishthe following to handle that.
Lemma 4.7. For 0 � r � 13 , R2m+1r has no �xed pointand R2mr (') 6= '+ �.
Proof. First, one can obtain algebraically the four�xed points of R2r. The attracting ones are 0, �,while �'c are repelling. Using calculus we get thecorresponding attracting basins and conclude thatR2mr (') converges to 0 or � mod 2� monotonically.By the series expression (2{1) of Rr('), one can de-duce the estimate��Rr(')� '�� � � � 2��log(1� r)��:The lemma follows by the convergence of R2mr (').�
Lemma 4.8. For 0 < r � 13 , let'c = arccos�1�p1 + 8r24r � :� Rnr (') = ' has solutions if and only if n is even,and they are 0; �;�'c.� Rnr (') = �' has solutions �'c if n is odd , and0; � if n is even.� Rnr (') = ' + � has solutions if and only if n isodd ; two of them are 0 and �.� Rnr (') = � � ' has solutions 0, � when n is oddand two solutions when n is even.This follows from the previous lemma and induction.Lemmas 4.7 and 4.8 are illustrated by Figure 8.
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FIGURE 8. Plots of Rnr for r = 13 and n = 1; 3; 7 (left), r = 2; 6; 8 (right). The axes correspond to ' = 0.
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In an attempt to understand more about the iter-ates Rnr , we computed the asymptotic orbits of thetwo critical points� arccos 1 + 3r24r (4–1)for 13 � r < 1. The asymptotic orbit of ' is the setfRnr (') : N1 < n < N2g for large N1; N2. Figure 9shows the corresponding bifurcation diagram|thatis, the plot of asymptotic orbits against the param-eter r|for the critical point corresponding to the+ sign in (4{1). The diagram for the other criticalpoints is simply the reection in a horizontal line.Thus, as r increases starting from 13 , the orbit�rst undergoes bifurcation at r = 1=p5 � 0:447where the 2-cycle f0; �g turns repelling and a 4-cycleoccurs. The period doubling continues until r <0:62 and is followed with chaotic behavior when rapproaches 1. At r = 1, Rr becomes the doublingmap.An interesting feature of Figure 9 is that, in addi-tion to the usual bifurcations, there are \half-bifur-cations" or sudden turns (for example, at r � 0:56).We have noticed that the half-bifurcation at (r; ') ismatched by one at (r;�') going in the same direc-tion|either both choose the upper branch or bothchoose the lower branch. This means that the half-bifurcation at (r; ') is matched by one at (r; ') in

the mirror image diagram (the bifurcation diagramcorresponding to the other critical point), going inthe opposite direction. Thus, if we superimpose Fig-ure 9 with its mirror image (reection in the horizon-tal bisector), the result looks like a usual bifurcationdiagram.Should we take these half-bifurcations into con-sideration when using the Feigenbaum's constant toestimate the limit of period doubling?Finally, unlike other well-known one-parameterfamilies (logistic, polynomial, cosine), this family Rrdoes not display the most obvious period-3 window,but a period-8 one at r � 0:68, though a period 3window seems to occur at r � 0:86. According tothe Sarkovskii ordering [Devaney 1989, part 1], Rrhas periodic orbits of any period for r in the period-3 window. However, for r in the period-8 window,can Rr have a period with odd factors? If not, doesit only have periods that are powers of 2?
5. MODE-LOCKING

5A. BackgroundThe study of circle maps is closely related to thestudy of di�erential equations on torus (i.e., equa-tions with double periodic coe�cients). For such adi�erential equation, one may consider the Poincar�e'2�

�

0 0:4 0:5 0:6 0:7 0:8 0:9 1 r
FIGURE 9. Bifurcation diagram of the critical point 1 + 3r24r .
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return map of the ow, which de�nes a map on ameridian circle of the torus. The stability of theequation is reected by this circle map.Arnold [1961, x 12] investigated the circle map' 7! '+ a+ " cos'and obtained information on its resonance zone inthe (a; ")-plane. This gave rise to the famous pictureof so-called Arnold tongues. Subsequently, numer-ous studies by physicists and mathematicians [Baket al. 1988; Ding and Hemmer 1988; Feudel et al.1995; Jensen et al. 1984; Kaneka 1984; Pi~na 1986;Zheng 1991] have been published on the perturba-tion of a rotation' 7! '+
� " sin'; " 2 [0; 1):The focus is on the phenomenon called mode-lockingand the Devil's staircase. Arnold later [1983b] gavea proof of his observation for circle maps of the form' 7! '+
+ "(trigonometric polynomial)as well as analytic reduction of many circle maps[Arnold 1983a, Chapter 3, x 12]. The algebraic na-ture of the method is also apparent in the problemof particular di�erential equations. Arnold predictsthat a general theorem exists for these equations andgeneral circle maps.In this section, we will provide further evidencetowards Arnold's prediction by showing similar be-havior in the o�-center reection. Our o�-centerreection is not of the form studied by Arnold, so itmay be regarded as another small step towards thegeneral theory.Consider a two-parameter model of circle mapsarising from the o�-center reection map, with pa-rameters r 2 [0; 1) and 
 2 (��; �]:Rr;
(') = '+
� 2 1Xk=1 rkk sin(k'):
(We use r instead of " to be consistent with previ-ous sections.) Unlike the models discussed above, rcannot be factored out. This map can be thoughtof as an imperfect o�-center reection on the circle,where the reected angle has a constant deviationfrom the incident angle. The original o�-center re-ection corresponds to 
 = �. We may not get sucha deviation by varying the metric of the circle; it isbetter understood in terms of symplectic geometry.

For '0 2 S1, there is the rotation number!(Rr;
; '0) = limn!1 Rnr;
('0)� '0n ;where the right-hand side is performed on a lifting ofRr;
. It is independent of '0 if Rr;
 is di�eomorphic.In such case, one simply denotes !(Rr;
). If Rr;
 isonly a degree 1 map, one has a rotation intervalinstead. These notions are indeed de�ned for anycircle map. Historically, attention has been centredaround perturbations of rotations, ' 7! ' + 
 +u('). It is natural to ask for the relation between 
and !. The physicists usually refer to 
 as internalfrequency and ! as resonance frequency. When ! =!(
) is a locally constant function, the situation iscalled mode-locking.Herman [1977; 1979] studied mode-locking exten-sively and obtained interesting results, which are ap-plicable to Rr;
 because it satis�es the property A0of Herman.
Theorem 5.1. For all !0 2 2�Q and 0 < r � 13 , thereis an interval I = Ir of !0 such that for every 
 2 Ir,the di�eomorphism Rr;
 has rotation number !0.The interval I is called resonance interval and itssize depends on r (and of course !0). Its variancein terms of r de�nes a picture which looks like atongue. We will discuss it later. Furthermore, fromHerman's study, the o�-center reection model alsodemonstrates the well-known Devil's staircase.
Theorem 5.2. For any 0 < r � 13 , the function 
 7!!(Rr;
) is nondecreasing , locally constant at any ra-tional number , and has a Cantor set of discontinu-ity .We have mentioned that if we alter a sign and formthe \conjugate" family

Rr;
(') = '+
+ 2 1Xk=1 rkk sin(k');
the dynamics is completely di�erent. Actually, Rr;
can be extended to e2�i
 z � r1� rzon the hyperbolic disk, which de�nes a hyperbolicelement in PSL(2; R ). Mode-locking does not occur,i.e., ! �Rr;
� = 2p�=q only if 
 = p=q.
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5B. Width of the Resonance ZoneArnold [1983b] discusses the mode-locking situationof a rotation slightly perturbed by a trigonometricpolynomial, g(x),f : x 7! x+
+ "g(x):The resonance zone is the set f(
; ") : 
 2 I"g.Arnold developed a formal calculation to estimatethe width of the interval I" in terms of ", which givesrises to a picture of the resonance zone. This formalcalculation is related to the homological equation ofanalytical reduction [Arnold 1983a]. If the rotationnumber is rational, the width of the resonance in-terval I" is bounded by a power of ". The graphicalplot of the resonance zone in the "
-plane form theso-called Arnold's tongue.By a method similar to Arnold's, one may alsoestimate the width of Ir for the o�-center reectionsRr;
, 0 � r � 13 . We will show the di�erent behav-iors of R = Rr;� and R = Rr;� at the same time.For simplicity of computation, we �rst considerthe resonance zone containing �. Writing 
 = �+a,the second iterates of the maps are
R2(x) = x+ 2� + 2a� 2 1Xk=1 rkk sin(kx)

�2 1Xk=1 rkk sin k�x+ � + a� 2X rkk sin(kx)�;
R2(x) = x+ 2� + 2a+ 2 1Xk=1 rkk sin(kx)

+2 1Xk=1 rkk sin k�x+ � + a+ 2X rkk sin(kx)�:
The equations of resonance are R2(x) = x+ 2� andR2(x) = x + 2�. Let v = a � 2P(rk=k) sin(kx), wehave0 = v � 1Xk=1 �rkk sin(kx)� (�r)kk sin k(x+ v)� ;
where v = v1r + v2r2 + v3r3 + � � � : Note that thesolutions of v's for R and R do not only di�er by asign. One can see this by the subtle combinations ofthe signs of the in�nite series in their second iterates.Inductively, one may show that for R, we havevk = 2k sin kx;

while the values for R arev1 = �2 sinx;v2 = sin 2x;v3 = 2 sinx� 83 sin 3x:This leads to a r-series for a and its maximum andminimum provide bounds for the resonance zone,namely,a = 2 sin(2x)r2 + �2 sinx� 73 sin 3x�r3 + � � �for the map R, and a = 0 for the map R. Thiscalculation agrees with our previous remark thatmode-locking (near ! = �) does not occur for R.Furthermore:
Theorem 5.3. The width of Ir is bounded by Cr2 for
 = � and Cr for general 
.The computation for the resonance zone at a general
 = 2p�=q is more complicated. The equation toformally expand is Rqr;a+2p�=q(x) = x + 2p�. Thecoe�cients ak ofa = a1r + a2r2 + a3r3 + � � �provide the estimates of Ir. It turns out that the�rst term a1 does not vanish, indeed,

qa1 = 2 q�1Xj=0 sin�x+ 2jp�q � :
This may not be a sharp estimate, yet we can onlyconclude that the width of Ir is of order r in general.
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