Finding the Eigenvalue in Elkies” Algorithm

Markus Maurer and Volker Miiller

CONTENTS

. Introduction

. The Atkin-Elkies Algorithm

. Eigenvalue Search Algorithms

. Rational Functions and Division Polynomials
. A Babystep-Giantstep Method

. A Modified Babystep-Giantstep Algorithm

. Finding the Sign of an Eigenvalue

O N O U kAR WN =

. Probabilistic Fast Search in a Table of Rational Functions
9. Conclusion

Acknowledgements

References

Keywords: elliptic curve, Elkies’ algorithm, point counting

One essential part of Elkies’” algorithm for computing the group
order of an elliptic curve defined over a finite field is the de-
termination of the eigenvalue of the Frobenius endomorphism.
Here we compare from a practical point of view several strate-
gies for this search: the use of rational functions, the use of di-
vision polynomials, the babystep-giantstep method, and a new
modification of this method that avoids the need for two fast
exponentiations.

1. INTRODUCTION

Elliptic curves over finite fields have gained a lot
of attention in public key cryptography in recent
years. Nowadays several institutions are standard-
izing such systems; see [IEEE 2000], for example.
Therefore the question arises how one can find ellip-
tic curves for which the discrete logarithm problem
is supposedly hard. In [Miiller and Paulus 1998], the
authors solve this parameter search by computing
the group order of randomly chosen elliptic curves.
Group order computations for elliptic curves have
made astonishing progress in the last few years; see,
for example [Blake et al. 1999; Lehmann et al. 1994;
Miiller 1995; Lercier 1997]. The Atkin—Elkies al-
gorithm [Atkin 1988; 1992], briefly reviewed in the
next section, proved to be very efficient in prac-
tice; for a detailed description see [Blake et al. 1999;
Miiller 1995]. One essential part of it is the deter-
mination of the eigenvalue of the so called Frobe-
nius endomorphism modulo suitable small primes.
In this paper we compare several strategies for find-
ing this eigenvalue in practice.

We restrict our observations to elliptic curves de-
fined over finite prime fields of large characteristic,
but very similar algorithms are also usable for small
characteristic fields. The paper is structured as fol-
lows: Section 2 gives a short introduction to ellip-
tic curves defined over finite fields of characteris-
tic greater three and the Atkin—FElkies algorithm for

(© A K Peters, Ltd.

1058-6458/2001 $0.50 per page
Experimental Mathematics 10:2, page 275

276 Experimental Mathematics, Vol. 10 (2001), No. 2

point counting. In Section 3, we give an overview
on the four different algorithms of this paper, and
we give average case running times for all these algo-
rithms. Sections 4, 5, and 6 describe each of these al-
gorithms in detail. Finally we describe an important
subalgorithm of these methods, a fast probabilistic
search strategy in a table of rational functions.

2. THE ATKIN-ELKIES ALGORITHM

Let F, be the finite field with ¢ elements, and let
p > 3 be its (prime) characteristic. Let E be an
elliptic curve defined over IF, by its short Weierstrass
equation

y? =2 + agz + ag, 2-1)

where a4, ag € F,, and the discriminant 4a3+27a is
nonzero. Let F, be the algebraic closure of F,. For
afield K, F, C K C F,, the set E(K) of K-rational
points consists of the affine solutions (z,y) € K?
of (2-1), together with the point O “at infinity” ob-
tained by considering the projective closure of (2-1).
The set E(K) has a group structure (usually ad-
ditively written) given by the “tangent and chord
method” [Connell 1996], with O acting as the iden-
tity element. The sum of two given points can be
computed using the following simple formulas and a
few trivial cases:

e The negative of a point P = (z,y) € E(K) is
—P = (z,—y) € E(K).

e Given points P; = (x1,y;) and Py, = (24, y,), with
P, # —P;, we compute the sum (x3,y3) as

Ty = —x1—T2+ A" and ys = —y1+ (21 —x3),
(2-2)
where
n_Y if &1 # xy,
\— T 2— T2
31+ as if 1 = x,.

2

The algorithms of Atkin [1988; 1992] and Elkies
[n.d.] solve a fundamental problem: Given a finite
field F, and an elliptic curve

E = (04, as) c Fj’

find the number of F -rational points on E. A de-
tailed description of both algorithms and their im-
plementation can be found in [Miiller 1995] (or in
short form, [Lehmann et al. 1994]), and we just
sketch the basic ideas here. Both algorithms use
properties of the so called Frobenius endomorphism:

¢y : E(F,) — E(F,)
(z,y) — (2% y").

The basic idea of these algorithms is the compu-
tation of the group order modulo sufficiently many
small primes [, and then use the Chinese Remain-
der Theorem to determine the group order. The
primes [can be divided into two classes: for so called
Atkin primes, there is no subgroup of E(F,) of or-
der [which is invariant under the Frobenius endo-
morphism, whereas for FElkies primes there exists
at least one such subgroup C. Therefore ®x(Q) =
a-Q for all points @ € C and some integer a €
{1,...,1-1}. We denote «a the eigenvalue of ®p
modulo [. To determine o (which directly induces
the group order modulo 1), the algorithm of Elkies
consists of two steps:

1. Determine for some generating point) € C' the
polynomial
(i-1)/2

[T (x - =2(Q) eF,X],

i=1

fc(X) =

where z(H) denotes the z-coordinate of a point
H.
2. Use fo(X) to determine a.

In this paper we focus on the second step of Elkies’
algorithm. On average, this part takes about thirty
to forty percent of the total running time of the
point counting algorithm.

3. EIGENVALUE SEARCH ALGORITHMS

In this section we give a short overview of the four
algorithms that we will discuss in this paper, and
present run time data for them. Detailed descrip-
tions of the different methods can be found in the
following sections.

The basic idea of all algorithms for finding the
eigenvalue « is that we can transform the equation
Pr(Q) = a-Q for points @ € C into polynomial
equations modulo fo(X). This transformation was

Maurer and Miiller: Finding the Eigenvalue in Elkies” Algorithm 277

first given by Schoof [1985]. Thus we have to check
which integer 1 < a < [—1 satisfies

(X9.Y") = (X,Y)
mod(fc(X),Y2 — X3 —a X — a(,-), (3-1)

where a-(X,Y') denotes the a-th multiple of a formal
point (X,Y) on E. Once we find an integer « in the
given range with equivalence of z- and y-coordinate
in (3-1) we have determined the eigenvalue of ®p.
From a practical point of view however, it is suffi-
cient to check only equivalence of the y-coordinate of
(3-1). Although unproven, we never found a coun-
terexample. Since the y-coordinate y(—P) of —P
is —y(P), we compute the right side of (3-1) for
1 <a < (I-1)/2 and test whether the y-coordinate
or its negative equals Y'7.

We will examine four algorithms for finding the
eigenvalue a:

. the rational function method,

. the division polynomial method,

. the babystep-giantstep method, and

. a modified babystep-giantstep method.

A ow N =

The first two are standard algorithms for the given
problem. Since they are rather slow for large primes
I, the usage of Shanks’ babystep-giantstep algorithm
was suggested to improve the running time. The last
algorithm is based on a new idea and described for
the first time in this paper.

Table 1 gives average running times for all these
algorithms, for 50 eigenvalue computations of ran-
domly chosen curves defined over a 50-digit and a
100-digit prime field. It shows that the modified
babystep-giantstep algorithm introduced here has
the least average running time already for relatively
small primes [. Table 2 shows similar data for vari-
ants of the four algorithms discussed here, applica-

ble to elliptic curves defined over fields of character-
istic two.

All experimental results in this article were ob-
tained with the point counting program eco_prime
(eco_gf2n in characteristic 2), contained in the LiDIA
package [LiDIA 2000]. The eco_prime program was
used on an Intel Celeron 300A processor with 64 MB
of main memory.

4. RATIONAL FUNCTIONS AND DIVISION
POLYNOMIALS

We describe briefly two standard methods for find-
ing the eigenvalue in Elkies algorithm: the ratio-
nal function method and the division polynomial
method.

Using Rational Functions

The rational function method is directly based on
the addition formulas given in (2-2). In [Connell
1996] it is shown that the ¢-th multiple of a formal
point (X,Y) can be represented as

(X, Y) = (h1s(X), Y hos(X)),

where the h; ;(X) € F,(X), for j = 1,2, are rational
functions. Assume we know the rational functions
representing the two points i-(X,Y) and r-(X,Y).
Then we can determine the rational function repre-
sentation of (i+r)-(X,Y") by substituting the coordi-
nates into the addition formulas (2-2). By counting
basic polynomial operations for rational functions
we can perform an addition of different points with
2 squarings and 19 multiplications modulo fo(X),
doubling a point needs 4 squarings and 13 multi-
plications modulo fo(X), and the addition of the
formal point (X,Y") only requires 2 squarings and 7
multiplications. Here, we do not count linear oper-
ations like multiplication with a scalar.

prime rational division babystep- modified prime rational division babystep- modified
. - babystep- . . babystep-
l function polynom. giantstep . l function polynom. giantstep .
glantstep glantstep
101 6.6 4.6 7.3 3.8 101 18.8 14.5 25.5 13.1
211 51.6 30.8 28.8 17.1 211 134.1 70.0 92.5 50.0
307 125.1 72.0 61.1 36.6 307 315.5 158.2 178.9 105.2
401 131.9 83.3 73.1 54.3 401 293.8 193.6 225.4 141.6

TABLE 1. Average running time in seconds for the eigenvalue search of 50 randomly chosen curves, defined over a

50-digit (left) and over a 100-digit (right) prime field.

278 Experimental Mathematics, Vol. 10 (2001), No. 2

prime rational division babystep- modified
. . babystep-
l function polynom. giantstep .
glantstep
101 50.7 11.8 19.3 6.8
211 201.1 72.8 97.2 42.2
307 514.2 171.7 2194 89.9
401 987.9 323.1 355.4 127.2

TABLE 2. Average running time in seconds for the
eigenvalue search of 50 randomly chosen curves, de-
fined over the field Fy16s (chosen because 215° has 50
decimal digits).

All the polynomials can be reduced by fo(X) and
Y? — X3 — a4 X — ag, so that their X-degree and
Y-degree is at most (I—1)/2 — 1 and 1, respectively.
Rational functions are especially useful if memory is
very restricted. Combined with fast multiplication
methods using addition-subtraction chains (see, e.g.,
[Gordon 1998]) only 3 formal points (or equivalently
12 polynomials in the variable X) have to be stored.

Using Division Polynomials

Schoof [1985] used division polynomials to compute
i-(X,Y) for 1 < i < (I-1)/2. These polynomials
are defined as follows, where ; should be read as
(X, Y):

¢0 = Oa
/l;bl = 17
'(/)2 - 2Y7

Vg = 3X* 4+ 6a, X% + 1206 X — a3,
Py =4Y (X + 5as X* + 20a6X° — 5ai X?
— 4asa6X — 8aj — ai),

To overcome recursion in the computation of divi-
sion polynomials, we compute division polynomials
with growing index and store all polynomials that
will be needed later (together with their square and
cube). The computation of a new division polyno-
mial then takes at most 3 multiplications modulo
fo(X) (plus a squaring and one more multiplica-
tion for the square and cube of it, if needed). Then
we can compute i-(X,Y) as

Yic1Pit1
.

i-(X,Y) _ (X . ¢i+2¢¢21_¢i—2¢¢2+1))

4Y 9}
(4-1)

Thus, to check a list of m candidates for the eigen-
value of Frobenius with maximal element «,,, we
need at most 4, + 2m multiplications and o,
squarings modulo fo(X), using a table with at most
3a,,/2 polynomials of degree at most (I—1)/2 — 1.

As Table 1 shows, the division polynomial method
is always faster than the rational function method.
The random access memory of today’s computers is
large enough that table storage requirements do not
prevent the faster method from being usable even
for giant group order computations. Table 3 gives
a more detailed comparison of the running time of
both methods. It lists the minimal, maximal, and
average time for finding the eigenvalue in 50 ran-
domly chosen eigenvalue computations for a finite
prime field with 50-digit prime characteristic, and
50 for a field with 100-digit prime characteristic.

5. A BABYSTEP-GIANTSTEP METHOD

The fast exponentiation part becomes less impor-

(2 2 . tant the bigger the prime [becomes. Therefore
;= — (1 2 = o1 forv>3 :
v 2Y (%D w2V =Y 21/}”1) - faster methods for finding the correct value out of
Poit1 = Yiga ¥ — 1/’%11%4 for ¢ > 2. a list of candidates can further improve the running
/ rational division fast €xXpo- ; rational division fast exXpo-
function polynomial r}entla— function polynomial r}entla—
tion Y'? tion Y'?
101 25 6.6 10.9 25 46 73 2.6 101 10.8 188 275 10.2 14.7 20.1 10.1

211 8.8 51.6 102.0
307 16.7 125.1 275.8
401 18.5 131.9 2243

9.0 30.8 48.6 8.8
16.7 72.0 127.1 16.5
18.5 83.3 149.5 185

211 369 134.8 2204 36.8 70.0 117.3 36.7
307 66.6 315.5 591.9 66.4 158.2 287.2 66.4
401 76.2 293.8 497.0 759 193.6 3428 75.6

TABLE 3. Minimal, average, and maximal time in seconds for finding the eigenvalue of 50 randomly chosen
eigenvalue computations for curves defined over a 50-digit (left) and a 100-digit (right) prime characteristic,

together with the time for computing Y'?.

Maurer and Miiller: Finding the Eigenvalue in Elkies” Algorithm 279

time. This section describes one such method, based
on the babystep-giantstep idea of Shanks.

Shanks’ algorithm applies in many situations in
which we have a search problem in a large list of
candidates connected by algebraic relations. Here
the idea works as follows: Let 1 < oy < -+ <
be a list of m candidates for the eigenvalue . Set
K = { /2] Then we try to determine integers
0<j< K and —K <17 < K such that

(X1,Y") —5-2K)(X,Y)=1i(X,Y)
mod (fo(X),Y? — X° — ay X — as).

Given such integers, we directly can deduce @ =
Jj(2K) + i mod l. The following lemma proves the
existence of such integers.

Lemma 5.1. Let o, be a positive integer and set K =
[ozm/ﬂ. For each integer a with 1 < a < a,,,
there exist integers i, with 0 <1, j < K, such that
either oo = j(2K) + i or a = j(2K) — 1.

Proof. Division with remainder, where the remainder
is chosen as absolute smallest integer, yields @ =
J(2K) +1, with —K <1i < K. We have

j=(a—1)/2K) < (a+ K)/(2K)
<an/(2K)+1/2<K+1/2.
Hence, 0 < j < K. O

Elliptic curves offer the advantage that we can check
the two points i-(X,Y) and —i-(X,Y) simultane-
ously for free. To determine integers ¢ and j for
the Frobenius eigenvalue «, the algorithm first com-
putes all points i-(X,Y) for 0 < i < K and stores
the y-coordinates together with the corresponding
index ¢ in a table (the babysteps). Then all the
points on the left hand side of the shown equation
are computed (the giantsteps); for each point we
check whether its y-coordinate already shows up in
the babystep table. If so, we have found 7 and j.
This idea leads to the following algorithm.

Algorithm 5.2 (Babystep-giantstep).

Input: maximum candidate «,, for eigenvalue; Elkies

polynomial fo(X)

Output: eigenvalue o

1. set K = [v/a,,/2]

2. fori =0to K
a. compute y-coordinate of i-(X,Y’) mod fo(X)
b. store y-coordinate at index i in a table

3. compute point (X?,Y?) mod fo(X)
4. forj=0to K
a. compute y-coordinate of
(X9,Y1) —j-(2K)-(X,Y) mod fo(X)
b. if y-coordinate is stored in table at index ¢
return o = 25K + i
c. if —(y-coordinate) is stored in table at index i
return o = 25K — i

From this description it directly follows that at most
2K —1 < 2[y/(I-1)/2] — 1 point additions of for-
mal points are needed. For large [, this number
is significantly smaller than the expected number
of point additions in the rational function method
and of iterations in the division polynomial method,
which is (I—1)/4. This fact explains the faster av-
erage run time of Algorithm 5.2 (compared to the
rational function and division polynomial method)
shown in Tables 1.

It follows from the analysis of the costs of point
operations in Section 4, that the computation of the
points i-(X,Y’) needed in the babysteps should be
done with division polynomials and equation (4-1).

Assume that we find an integer s such that the set
of eigenvalue candidates modulo s is small. Then it
is advantageous to choose K “near” [\/ozm /2], but
divisible by s. Then we can exclude several possi-
ble values for ¢ mod s, and we only have to consider
indices ¢ which are elements of the small set of can-
didates modulo s (note that K = 0 mod s).

An important algorithmic question in Algorithm
5.2 is the implementation of the commands in line
(4b) and (4c). Note that all the points computed in
either the babysteps or the giantsteps are rational
functions, where numerator and denominator are re-
duced by fo(X) and Y? — X3 —ay X —ag. Therefore
there remains the problem how to check in an effi-
cient way whether two rational functions are equiv-
alent modulo (fo(X),Y? — X3 —ayX —ag). We will
describe a new fast probabilistic algorithm for this
problem in Section 8. This probabilistic algorithm
improves the overall performance of Algorithm 5.2
significantly, as can be seen in Table 6.

A serious drawback of Algorithm 5.2 is the fact
that we need both polynomials X9 and Y9 to de-
termine the y-coordinate of the “giantstep points”
(X7,Y9) —j(2K)-(X,Y) in step (4a). Thus we have
to perform two fast polynomial exponentiations, one

280 Experimental Mathematics, Vol. 10 (2001), No. 2

for Y2 mod (fo(X), Y?—X3—ay,X —ag), and one for
X?mod fc(X). Thus the speed advantages given
by the smaller number of point additions diminishes.

6. A MODIFIED BABYSTEP-GIANTSTEP ALGORITHM

In this section we present a new idea similar to the
babystep-giantstep idea in Section 5, which does not
have the disadvantage of two fast exponentiations.
The modified babystep-giantstep algorithm uses the
fact that for most integers [,a we can find small
integers i, j such that o = 27%-j mod [/, and so

21.(X9,Y) = j(X,Y)
mod (fo(X), Y? = X* —ayX —ag). (6-1)

From the addition formulas (2-2), the advantage of
this idea becomes clear: computing the z-coordinate
of 2¢-(X,Y?) can be done without knowledge of Y'7.
The formula (2-2) for computing the z-coordinate
of twice a formal point P only contains y(P)?, which
can be substituted with the right-hand side of the
curve equation. With a test for the x-coordinate of
(6-1) we can then determine the eigenvalue, up to
the sign.

This idea leads to the following algorithm. As-
sume that we know bounds Kp and Kg, respec-
tively, such that for every eigenvalue candidate o’
there exist integers 0 < i < Kg and 1 < j < Kg
with 2°a’/ = jmod . Then we first compute the
z-coordinates of the left-hand side of (6-1) for all
0 < i < Kp (the babysteps) and store the rational
functions (together with corresponding indices i) in
a table. Then we test the right-hand side of (6-1)
for all odd 1 < j < K¢ (the giantsteps).

Algorithm 6.1 (Modified babystep-giantstep).

Input: bounds K, K for number of babysteps and

giantsteps; Elkies polynomial fo(X)

Output: o

1. compute X9 mod fe(X)

2. fort=0to Kp
a. compute z-coordinate of 2¢-(X?,-) mod fo(X)
b. store z-coordinate at index ¢ in table

3. for j =1to Kg
a. compute z-coordinate of j-(X,Y) mod fo(X)
b. if z-coordinate is stored in table at index i

return o = £27%-j mod [

Our earlier analysis of the costs of point operations
(Section 4) shows that the computation of step (3a)
should be done with division polynomials. There
remains then the question about the optimal choice
for the bounds Kp, K and the expected/maximal
number of operations which are performed by Algo-
rithm 6.1. Since the computational costs (in poly-
nomial multiplications, squarings) for step (2a) and
(3a) are different, we use the weighted cost function
cost(i,j) = i-c; + j-ca, where ¢; and ¢, are the costs
of step (2a) and (3a), respectively. For any eigen-
value candidate, we determine then all possible val-
ues for 7,j (note that there are several possibilities
to choose i, j), and we choose the pair with minimal
costs. We do this computations for all eigenvalue
candidates and set the bounds K, Kg correspond-
ingly. Since [is rather small, this computation can
be done “brute force” (trying all possibilities).

Table 4 lists a few values for Kg, Kg. Moreover
we present the expected (under the assumption that
we have no information about «; that is to say,
all integers 1, ..., [—1 have the same probability
of being the eigenvalue) and the maximal number
of point additions needed. The expected/maximal
number of point additions is computed by counting
the number of necessary polynomial multiplications
and squarings, and then dividing by the correspond-
ing values for point addition given in the beginning
of Section 4.

Table 4 shows that the expected number of point
additions in Algorithm 6.1 is approximately equal to
the number of babysteps in Algorithm 5.2, the maxi-
mal number is only about twice the number of baby-
steps. This statement is also true for other primes [.
Therefore modified babystep-giantstep (Algorithm
6.1) has an advantage over standard babystep-giant-
step (Algorithm 5.2) in that although the number

I K K exp. # of max. # of K in
B 7Y additions additions Alg. 5.2
101 12 10 6.7 9.6 7
211 22 16 10.9 16.4 10
307 23 25 13.2 21.6 12
401 42 32 18.6 32.1 14

TABLE 4. Optimal values for number of babysteps
and giantsteps in Algorithm 6.1, and expected and
maximal number of point additions.

Maurer and Miiller: Finding the Eigenvalue in Elkies” Algorithm 281

of expected point additions is the same, only one
fast exponentiation is needed. A disadvantage of
Algorithm 6.1 is its ambiguous output. Section 7
addresses the problem of computing the sign of the
eigenvalue.

Running Times

Table 1 showed that the modified babystep-giantstep
algorithm 6.1 is the fastest of all search algorithms
described in this paper. Table 5 presents more de-
tailed data on Algorithm 5.2 and 6.1. Again 50 ran-
dom eigenvalue computations were done for a 50-
digit and a 100-digit prime field.

7. FINDING THE SIGN OF AN EIGENVALUE

In this section we will present two algorithms to
compute the sign of the eigenvalue of Frobenius. We
assume that we already know the eigenvalue modulo
the sign.

Dewaghe’s Algorithm for Finding the Sign

We first present a generalized version of a theorem
of Dewaghe [1998] and show how this theorem can
be used to compute the sign of the eigenvalue for
primes | = 3 mod 4.

Theorem 7.1. Let [be an odd prime. Assume that
a is an eigenvalue of the Frobenius endomorphism,
and g(X) € F,[X] is a divisor of degree d of the
corresponding Elkies polynomial fo(X). Then

res(g(X), X* + as X + aﬁ)(q_l)/2 =a"

Proof. Let P € C be a nontrivial point. It fol-
lows from [Vélu 1971] that all the roots of fo(X)
are given as the z-coordinates of points ¢-P with
1 < i < (I-1)/2. We can therefore find an inte-

g(X). Since g(X) is a divisor of fo(X) defined over
F,, we have g(X?) = g(X)4, so the Frobenius map
permutes the roots of g(X). Therefore the elements
of the sequence (z(®%(r-P)));50 = (z((ra?)-P));s0
are roots of g(X), and the sequence is periodic with
period length d.

We examine the order e of a modulo [. Because
the period length is d, we have e > d, and z(r-P) =
z(a®r-P) = z(a~%.r-P). We conclude for the
points, that r-P = £a°*~%r-P, so o= =1 mod .
Therefore the order of « divides 2(e — d), which
means that there is an integer k with ke = 2(e —d).
Because d > 1, we have 0 < ke < 2e, which implies
0 < k < 1. As a consequence, the order of « is either
d or 2d.

If we define 8 = {ra?, 0 < j < d}, all the roots of
the polynomial g(X) are given as z(s-P) for s € 8.
A basic result for resultants gives

res(g(X), X® + a4 X + a5)
= H (z(s-P)* + asz(s-P) + as).

SES

Therefore we deduce (noting that ¢ is odd)

res(g(X), X° + as X + aG)(q_l)/2

= res (g(X), X3 4+ a,X + ae)(q —q)/2
= H (;L'(s-P)3 + asz(s-P) +a6)(q —q)/2

s€S8
_ H y H y(a?-s-P)
(a-s-P)
s€S
y(adH'T'P) d
= — = s
y(a-r-P)

where the last transformation holds because, as al-
ready shown, either the order of a is d, so a? = 1, or
it is 2d, so a? = —1 and y(a?*'-r-P) = y(—a-r-P) =

ger 1 < r < (I-1)/2 such that z(r-P) is a root of —y(a-r-P). O
babystep-giantstep mod. babystep-giantstep ! babystep-giantstep mod. babystep-giantstep
(Algorithm 5.2) (Algorithm 6.1) (Algorithm 5.2) (Algorithm 6.1)

101 50 73 90 5.0 25 38 42 2.4
211 155 28.8 359 16.5 9.0 17.1 19.2 7.8
307 31.3 61.1 809 31.2 149 36.6 43.1 14.8
401 35.0 73.1 102.1 34.6 20.4 54.3 63.5 16.4

101 205 255 283 20.3 10.2 13.1 14.0 10.2
211 68.1 92.5 1064 65.9 344 50.0 55.0 32.1
307 126.2 178.9 228.3 126.1 71.2 105.2 116.6 60.1
401 144.6 225.4 281.7 142.8 75.8 141.6 162.4 67.7

TABLE 5. Minimal, average, and maximal running time in seconds for Algorithm 5.2 and 6.1 for 50 randomly
chosen eigenvalue computations over a prime field with 50-digit (left) and 100-digit (right) prime charatersitic.
In italics we give the average time to compute (X?,Y?) (Algorithm 5.2) or X? (Algorithm 6.1).

282 Experimental Mathematics, Vol. 10 (2001), No. 2

Dewaghe derived from this idea an easy method to
determine the sign of the eigenvalue of the Frobe-
nius endomorphism for primes [= 3 mod 4. Then
we can choose g(X) = fo(X), and a?909(X) directly
corresponds to the Jacobi symbol for «. Since for
primes [= 3 mod 4, —1 is a nonsquare, exactly one
of the two elements o and —« is a square modulo
I. Thus Theorem 7.1 shows that a resultant com-
putation (which needs only O(l) operations in F,)
uniquely determines the sign of the eigenvalue.

For primes [= 1 mod 4, this fact is no longer true,
and the sign of the eigenvalue can no longer be com-
puted in this way. It should however be noted that
only half of the elements in (Z/IZ)* are squares such
that a resultant computation with g(X) = fo(X)
can be used to lower the number of candidates for
the eigenvalue search by a factor two.
start with the search for the eigenvalue with one of
the algorithms described in this paper, we compute
the resultant res(fo(X), X3 + a4 X + ag), which will
exclude half of the eigenvalue candidates.

Before we

A Factorization Approach for Finding the Sign

In this section we show how a proper divisor g(X)
of the Elkies polynomial can be computed and used
to determine the sign of the Frobenius eigenvalue,
even for primes [= 1 mod 4. Instead of computing
X?mod fc(X) in Algorithm 6.1, we choose a ran-
dom element a €]F; and compute the polynomial

h(X) = (X +a) V% mod fo(X).

Note that the computation time for this fast ex-
ponentiation is essentially the same as for comput-
ing X9 mod fo(X). Given h(X), we can determine
X?mod fc(X) with one more squaring, one mul-
tiplication and an addition (note that (X + a)? =
X7+ a? = X7+ amod fc(X)). Then we can com-
pute *a with Algorithm 6.1.

Let d be the least common multiple of the orders
of @ and —a modulo [, divided by two if even. Then

X7 = X((x)*(X,Y)) = X mod fo(X),
and therefore fo(X) must have a factor of degree

d. If d is reasonably small, we use h(X) to search
for a factor of fo(X). As in the case of polynomial

factorization methods (see [Cantor and Zassenhaus
1981], for example), we hope that

gcd((X + a)(qd_l)/2 - 1,fC(X))
— gcd(h(X)1+q+q2+---+q

R 1’ fC(X))
gives a nontrivial factor g(X) of fo(X). If we find
such a nontrivial divisor, the following methods can
be used to determine the sign of the eigenvalue of
Frobenius. If the orders of @ and —a modulo [do not
both divide d, then we can use a resultant computa-
tion with g(X) as described in Theorem 7.1 to deter-
mine the sign. Otherwise we test the y-coordinate
of (3-1), but fc(X) is replaced by its divisor g(X)
such that computation is speeded up. We compute
Y?mod (9(X), Y? — X® — ay X — ag) and compare
with y(a+(X,Y)) mod (9(X), Y? — X3 —a, X — ag).
If both rational functions are equal mod g(X), we
know that « is the eigenvalue, otherwise —« is the
correct result.

Unfortunately the integer d is quite large in most
cases, and the extra time to factor fo(X) seems
to be “wasted” just for determining the sign of the
eigenvalue. In this case it seems to be better in prac-
tice to “accept” the nonuniqueness of the result.

8. PROBABILISTIC FAST SEARCH IN A TABLE OF
RATIONAL FUNCTIONS

In the giantstep part of Algorithms 5.2 and 6.1 we
have to check whether for a given rational function
a(X)/b(X) and a given table of rational functions
uj(X)/v;(X), j = 1,...,k, there exists an index
1 <i <k with

a(X) _ uwi(X)
HE) = o(X) mod fo(X). (8-1)
This equation is equivalent to
a(X)v;(X) — b(X)u;(X) =0mod fo(X), (B8-2)

but a test based on (8-2) would require 2k multi-
plications of polynomials for only one search. An
alternative to this obvious solution is the computa-
tion of inverses for v;(X) (during the computation
of the table) and b(X) using an extended gcd al-
gorithm. To transform a table of size k we need
k polynomial inversions and multiplications; each
search needs one inversion, one multiplication and &

Maurer and Miiller: Finding the Eigenvalue in Elkies” Algorithm 283

polynomial comparisons only. We will list running
times for this variant in Table 6.

A Probabilistic Algorithm

We now describe a different probabilistic approach
which is based on an idea of Victor Shoup. This
method will find every equality in (8-1), but it ad-
ditionally “finds” a few spurious values —it gives no
assurance that (8-1) really is fulfilled. But this can
be easily checked by two polynomial multiplications
with the denominators.

Let d = deg(fo(X)) and w €]FZ be a random vec-
tor. In the following, we represent each residue class
of the ring F,[X]/(fc(X)) by its unique element of
degree less than d. If a(X) is such an element, then
ac IFZ denotes the coefficient vector of the polyno-
mial a(X). We define the map

L, : IE‘q[X]*/(fC(X)) — F,
9(X) r— gouw,
where @ is the inner product between the coefficient

vector g and the vector w.

Lemma 8.1. Let w € Fz be a random vector. The
map L., just defined is linear. If

a(X)-v(X) = b(X)-u(X) # 0 mod fc(X),
then
L (a(X)v(X) = b(X)-u(X)) 0

with probability 1 — q~*.

Proof. The first observation follows from the linearity

of the inner product. For proving the second obser-

vation, we count the number of “bad vectors” w as
d-1

q . Il

The map L,, can therefore be used to check (with
high probability) whether (8-2) is satisfied or not. If
(8-2) is not satisfied, then with high probability L,,
is nonzero. If however the result of L, is zero, we
check (8-2) with two multiplications modulo fo(X).

This strategy obviously depends on a fast way to
evaluate the map L,,. Using the linearity of L,,, we
get

Ly (a(X)v;(X) — b(X)u;(X) mod fo(X))
= Ly, (a(X)0;(X) mod fo(X))
Ly (b(X)-u;(X) mod fo(X)).

Therefore, we have reduced the problem of comput-
ing L,, to the problem of computing the slightly dif-
ferent function

Lax)w (v(X)) = Ly (a(X)-v(X) mod fo(X))

for a fixed polynomial a(X) € F,[X]. Define the
d x d-matrix
Max) ::(a(X) ‘ (X)X ‘ ‘ a(X)-Xd—l),

where the coefficient vector of a(X)-X* mod fo(X)
forms the i-th column of M,x) (indexing columns
and rows of the matrix from zero). The following
theorem shows how this matrix M, x) can be used
to compute the function Ly x),w-

Theorem 8.2. Any polynomial v(X) e F,[X]*/(fc(X))
satisfies

Lagx)w (v(X)) = (Mg x)w) © 0.

Proof. The coefficient vector of the image of any poly-
nomial v(X) under the map

]Fq[X]/(fC’(X)) — Fq[X]/(fC(X))a
v(X) — v(X)-a(X)

can be computed as M,x)-0. Then we get (with
M, ; being the entry in row ¢ and column j of M,(x))

Lax)w(v(X)) = Ly (a(X) 0(X)) = (Myx)-7) ©Ow

In our application, the random vector w and the
polynomial a(X) are fixed for one search, whereas
v(X) changes for any rational function stored in the
table. Therefore the evaluation of L,(x),(v(X)) for
many polynomials v(X) can be split into two parts:
first we compute and store the vector MaT(X) -w, then
we use Theorem 8.2 to determine L,(x),.(v(X)) for
all polynomials v(X). This idea leads to the follow-
ing algorithm for fast probabilistic search in a table
of rational functions.

284 Experimental Mathematics, Vol. 10 (2001), No. 2

Algorithm 8.3 (Fast search in rational function table).
Input: a rational function a(X)/b(X); a table of ra-
tional functions u;(X)/v;(X) for 1 < j < k; poly-
nomial fc(X)
Output: index ¢ such that (8-1) is fulfilled, or “no
match found”
1. choose a random vector w € IFZ
2. compute vectors v, = MaT(X)-z_U and v, = M;X)-g)
3.fori=1to k
if v, ©U;, =V, © Uy
if a(X)v;(X) —b(X)u;(X)=0mod fo(X)
return ¢

4. return “no match found”

Theorem 8.4. Algorithm 8.3 needs O ((d*+dk) log(q)?)
bit operations to check equation (8-1).

Proof. The computation of the matrix M, x) for
given a(X) can essentially be done as one polyno-
mial multiplication modulo fo(X) (note that mul-
tiplication with a linear polynomial is cheaper than
a general polynomial multiplication). Therefore the
computation of the vectors v, and v, can be done in
O(d?) operations in F . For k evaluations of L,(x),w
we have to compute k inner products which need
O(dk) operations in F,. Each operation in F, can
be done with O(log(q)?) bit operations. O

In a practical implementation, a speed advantage
can be gained by choosing the vector w not ran-
domly, but as the first unit vector. Then the com-
putation of the matrix M, x) can be speeded up by
a factor approximately two, since we only have to
compute the first row of matrix M,x). So, for the
column i, not all the coefficients of a(X)-X* have to
be determined, but only coefficients that are needed
for a column of bigger index. Thus the larger the
index of the column to compute, the smaller the
number of coefficients which have to be updated.

Practical Comparison of Extended GCD and Probabilistic
Method

We’ve implemented the two algorithms of Section 8.
Table 6 shows the average time needed for k searches
in a table of size k, obtained from 50 eigenvalue com-
putations of randomly chosen elliptic curves defined
over prime fields of 50-digit and 100-digit character-
istic. The table suggests that the new probabilistic
search algorithm is at least three times faster than

the extended gcd approach. Moreover almost all the
running time of Algorithm 8.3 goes into the precom-
putation in step 2 (computation of the matrix M, x)
and the vector v, = MaT(X) ‘w).

9. CONCLUSION

We have compared four different methods for finding
the eigenvalue of the Frobenius endomorphism, an
important part in point counting algorithms. Our
timings indicate that the new babystep-giantstep
algorithm 6.1, together with the fast table search
method of Section 8, is the best method for find-
ing eigenvalues if the prime [is reasonably large
(say, bigger than 100) and ! = 3 mod 4. For primes
I = 1 mod 4 however, its nonunique output com-
plicates predictions about the optimal eigenvalue
search method. If the characteristic of the field is
huge, it may be favorable to use either the divi-
sion polynomial or the babystep-giantstep method
instead; for medium sized fields, our LiDIA imple-
mentation eco_prime prefers still to use Algorithm
6.1. So it remains to answer the open question
whether there is an equivalent to Dewaghe’s method
to determine the sign of an eigenvalue for primes
I = 1mod 4 without factoring the Elkies polyno-
mial.

ACKNOWLEDGEMENTS

We thank an anonymous referee who pointed out to
us several weaknesses in the first version of this pa-
per. His help improved the quality and readability

I k ext. gcd Ale. 8.3 Step 2 of

method & Alg. 8.3
101 5 1.34/ 2.75 0.34/ 0.56 0.33/ 0.55
211 8 6.83/13.98 2.21/ 3.63 2.19/ 3.57
307 9 15.03/30.84 5.13/ 8.39 5.06/ 8.27
401 10 21.64/44.81 9.14/14.84 9.03/14.63

TABLE 6. Average running times in seconds for k
searches in a table of size k, with the extended gcd
method and Algorithm 8.3, obtained from fifty eigen-
value computations of randomly chosen curves de-
fined over a 50-digit prime field and fifty over a
100-digit prime field (a slash separates the two val-
ues). In each case k was chosen to be [/(I-1)/4],
the maximal number of babysteps and giantsteps in
Algorithm 5.2.

Maurer and Miiller: Finding the Eigenvalue in Elkies” Algorithm 285

of the paper significantly. We also thank Mike Scott
for several helpful suggestions.

REFERENCES

[Atkin 1988] A. O. L. Atkin, “The number of points on
an elliptic curve modulo a prime, I”, preprint, 1988.
Author’s email address: aolatkin@math.uic.edu.

[Atkin 1992] A. O. L. Atkin, “The number of points on
an elliptic curve modulo a prime, IT”, preprint, 1992.

[Blake et al. 1999] I. F. Blake, G. Seroussi, and N. P.
Smart, Elliptic curves in cryptography, London Math.
Soc. Lecture Note Series 265, Cambridge Univ. Press,
Cambridge, 1999.

[Cantor and Zassenhaus 1981] D. G. Cantor and H.
Zassenhaus, “A new algorithm for factoring polyno-
mials over finite fields”, Math. Comp. 36:154 (1981),
587-592.

[Connell 1996] I. Connell, “Elliptic curve handbook”,
preprint, 1996. See ftp://www.math.mcgill.ca/pub/
ECH1/.

[Dewaghe 1998] L. Dewaghe, “Remarks on the Schoof-
Elkies—Atkin algorithm”, Math. Comp. 67 (1998),
1247-1252.

[Elkies n.d.] N. Elkies, “Explicit isogenies”, preprint.
Author’s email address: elkies@math.harvard.edu.

[Gordon 1998] D. M. Gordon, “A survey of fast
exponentiation methods”, J. Algorithms 27:1 (1998),
129-146.

[IEEE 2000] The Institute of Electrical and Electronics
Engineers, “Std 1363: Standard specifications for
public key cryptography”, technical report, 2000. See
http: //standards.ieee.org.

[Lehmann et al. 1994] F. Lehmann, M. Maurer, V.
Miiller, and V. Shoup, “Counting the number of points
on elliptic curves over finite fields of characteristic
greater than three”, pp. 60-70 in Algorithmic number
theory (Ithaca, NY, 1994), edited by L. M. Adleman
and M.-D. Huang, Lecture Notes in Computer Science
877, Springer, Berlin, 1994.

[Lercier 1997] R. Lercier, Algorithmiques des courbes
elliptiques dans les corps finis, Ph.D. thesis, 1997.

[LiDIA 2000] The LiDIA Group, “LiDIA: a library for
computational number theory, release 2.0”, software,
Technische Universitdt Darmstadt, 2000. See http://
www.informatik.tu-darmstadt.de/TI/LiDIA.

[Miiller 1995] V. Miiller, Die Berechnung der Punktan-
zahl elliptischer Kurven uber endlichen Korpern der
Charakteristik groffer 3, Ph.D. thesis, Universitat des
Saarlandes, Saarbriicken, Germany, 1995.

[Miiller and Paulus 1998] V. Miiller and S. Paulus,
“On the generation of cryptographically strong elliptic
curves”, preprint, 1998.

[Schoof 1985] R. Schoof, “Elliptic curves over finite fields
and the computation of square roots mod p”, Math.
Comp. 44:170 (1985), 483-494.

[Vélu 1971] J. Vélu, “Isogénies entre courbes elliptiques”,
C. R. Acad. Sci. Paris Sér. A 273 (1971), 238-241.

Markus Maurer, Centre for Applied Cryptographic Research, Department of C & O, University of Waterloo,
Waterloo, Ontario, Canada, N213G1 (m2maurer@cacr.math.uwaterloo.ca)

Volker Miiller, Universitas Kristen Duta Wacana, JI. Dr. Wahidin 5-19,

55224 Yogyakarta, Indonesia (vmuellerQukdw.ac.id)

Received October 8, 1999; accepted in revised form January 11, 2001

