
Enumerating Large Orbits and Direct Condensation
Frank Lübeck and Max Neunhöffer

CONTENTS

1. Introduction

2. The Orbit Algorithm and Variations

3. Matrices Acting on Vectors

4. Parallelization

5. Direct Condensation

Acknowledgements

Electronic Availability

References

We describe a new algorithm for direct condensation, which is

a tool in computational representation theory. The crucial point

for this is the enumeration of very large orbits for a group acting

on some set. We present a variation of the standard orbit enu-

meration algorithm that reduces the amount of storage needed

and behaves well under parallelization. For the special case of

matrices acting on a finite vector space an efficient implemen-

tation is described. This allows us to use condensation methods

for considerably larger permutation representations than could

be handled before.

1. INTRODUCTION

Notation. Let G = hg1; : : : ; gri be a group given by rgenerators. Let M be a set, SymM the symmetricgroup on M and � : G! SymM a homomorphism.We say that G acts on M , and form 2M and g 2 Gwe write mg := �(g)(m). Clearly, � is uniquelydetermined by the images �(gi), 1 � i � r, of itsgenerators. We call the elements of M points, andfor m 2 M the set mG := fmg j g 2 Gg is calledthe G-orbit of m (under the action �). Let m0 2Msuch that its G-orbit m0G is �nite.Let K be a subgroup of G, also given by a �nitenumber of generators. The main purpose of this pa-per is the discussion of an algorithm which computesfor each K-orbit mK � m0G, where m 2 m0G, theintersection numbers of its translates mKgi with allsuch K-orbits. This is explained in Section 2 whichstarts with the description of two basic algorithmsfor enumerating an orbit.An interesting interpretation of these numbers inthe representation theory of the groupG is explainedbriey in Section 5, which also contains two explicitexamples. This application, called direct condensa-tion, was our original motivation for this note. Butwe hope that our general remarks about enumerat-ing large orbits will be useful for other applicationsas well.
c A K Peters, Ltd.

1058-6458/2001 $0.50 per page
Experimental Mathematics 10:2, page 197

198 Experimental Mathematics, Vol. 10 (2001), No. 2

The result in Section 5C is of independent interestbecause it can be used to �nish the determination ofthe (previously unknown) decomposition numbersof the symmetric groups Sn, for 21 � n � 23, incharacteristic 5.Our algorithm for orbit intersection matrices (Al-gorithm 2.5) is given in such a way as to make iteasy to �nd variations allowing practical applica-tion to very large cases. For example, it may notbe possible to store all points of the orbit on a com-puter for lack of memory. Therefore we introduce aconcept of minimal points in an orbit and only suchpoints need to be stored during the algorithm.In Section 3 we make this explicit in the importantpractical case were G acts via matrices on a (�nite)vector space. We show a way to de�ne minimal ele-ments that allows us to get very e�ciently from anarbitrary vector in the orbit to a minimal one in thesame K-orbit. This is the key point which makesour algorithm for direct condensation much moree�cient than a previous implementation describedin [Cooperman and Tselman 1996] (see Section 5Bfor more details). In Section 4 we discuss a paral-lelization of the algorithm and our implementation.This can be used to treat substantially larger casesthan could be handled before.
2. THE ORBIT ALGORITHM AND VARIATIONSIn this section we �rst describe algorithms to enu-merate the G-orbit m0G from the given m0 2 Mand given �(gi), where 1 � i � r. (Recall that weassume m0G �nite.)
2A. The Basic Algorithm

Algorithm 2.1 (Orbit)

Input: m0 2M and �(gi) for 1 � i � r
Output: a list L containing the elements of m0G
Initialize: L [m0]
for m in L

for i from 1 to rx mgi
if x =2 Lappend x to the list Lreturn LThe algorithm terminates because the orbit m0G is�nite. It is clear that the resulting list L containsonly elements from the G-orbit of m0. Furthermore

L is invariant under the action of the generators giand so under their inverses g�1i . Since each elementof G is a �nite product of these generators and theirinverses, L is invariant under the action of G. Thisshows that L contains exactly the elements of theorbit m0G.Counting the number of necessary operations inthe algorithm we �nd:
Proposition 2.2.Algorithm 2.1 needs r times the lengthof m0G operations consisting of an application of agenerator of G to a point and a lookup of the result-ing point in the list of known points.With a na��ve implementation of the lookup of pointsin L by sequential comparison, the lookup part ofan operation described in the proposition would takemost of the running time in the case of large orbits.But with the help of standard techniques like hash-ing [Knuth 1997, Section 6.4], the time for a singlelookup becomes (almost) independent of the lengthof the orbit.
2B. Large OrbitsOur interest here is the practical enumeration oflarge orbits. Two problems arise: the list of allpoints in an orbit does not �t into the computermemory and the running time of the algorithm maybe longer than we want to wait for the result.Both problems are addressed by the following vari-ation of Algorithm 2.1.We now assume that we have a partition of Mthat is a re�nement of the partition into G-orbits.As a typical example think of the partition into or-bits under a subgroup of G. Furthermore we as-sume that for each part a nonempty subset is de-�ned whose points we will call minimal. Finally weassume the availability of three functions (whose im-plementation is discussed later):� part, which returns for a given m 2 M a list ofthe points in the part containing m.� minimals, which returns for a given m 2M a listof the minimal points of part(m).� minimal, which returns for a given m 2 M oneminimal point in part(m).To save memory for the orbit m0G the followingalgorithm computes only a list of its minimal points.

Lübeck and Neunhöffer: Enumerating Large Orbits and Direct Condensation 199

Algorithm 2.3 (OrbitByPartition)

Input: m0 2M and �(gi) for 1 � i � r
Output: a list L containing the minimal elements ofm0G with one element of each part marked as arepresentative
Initialize: L minimals(m0); mark �rst element as arepresentative
for m0 in L which is marked as a representativeL1 part(m0)

for m in L1
for i from 1 to rx minimal(mgi)

if x =2 Lappend the elements of minimals(x) to Land mark one of the new points asa representativereturn LWith the output L of this algorithm it is possibleto run through all points in m0G using the function
part as above. Also, one can check for an arbitrarypoint m 2 M whether it is contained in m0G bychecking whether minimal(m) is in L.The order in which the parts are handled in theouter loop of this algorithm does not matter (exceptfor the ordering of the points in the resulting listL). We will show in Section 4 how to use this forparallelizing the algorithm.
2C. Orbit Intersection MatricesLet K = hk1; : : : ; ksi be a subgroup of G given by sgenerators and let m1; : : : ;mm be representatives ofthe K-orbits within m0G.
Definition 2.4. In this setting we de�ne the K-orbitintersection matrices of the gi on m0G to be thematrices (akl(gi))1�k;l�m withakl(gi) := ��mkKgi \mlK�� for 1 � i � r.We are interested in the practical computation ofthese orbit intersection matrices. In Section 5 wewill discuss an application of these matrices in therepresentation theory of the group G.From now on we will assume that the partitionof M described in Section 2B is a re�nement of itspartition into K-orbits.In the following algorithm we use OrbitByPartition(Algorithm 2.3) in two ways: �rst (with some book-keeping for the orbit intersection matrices) for the

whole orbit m0G, the partition being given by theK-orbits; and second, the parts being as before, tocompute the K-orbits.
Algorithm 2.5 (OrbitIntersectionMatrices)

Input: m0; �(gi), 1 � i � r; �(kj), 1 � j � s
Output:� a list L containing the minimal elements of m0Gwith one element of each part marked as a repre-sentative� a map nr :L!f1; : : : ;mg with nr(a)= l if a2mlK� the orbit intersection matrices A(i) (akl(gi)) for1 � i � r
Initialize:� k 1 [[loop variable for number of K-orbit]]� L OrbitByPartition(m0; �(k1); : : : ; �(ks)) [[startwith minimal elements in �rst K-orbit m0K]]� n 1 [[number of last found K-orbit]]� nr(a) 1 for all a 2 L� A(i) (0) for 1 � i � r [[initialize A(i) with 1� 1zero matrices]]
while k � n [[loop over the K-orbits in m0G, eval-uating only one of its parts at a time]]L1 list of a 2 L with nr(a) = k

for each m0 2 L1 marked as a representative of itspartL2 part(m0)
for m in L2

for i from 1 to rx minimal(mgi)
if x =2 L [[the K-orbit xK is not known yet;compute it now]]n n+ 1append OrbitByPartition(x;�(k1);: : : ;�(ks))to Lset nr(a) n for the new points in Lenlarge all A(j), for 1 � j � r, by addinga column and a row of zerosA(i)kn 1else [[number of K-orbit of x is known]]l nr(x)A(i)kl A(i)kl + 1return L, nr and A(i) for 1 � i � rOnly the minimal points ofm0G plus the points ofone part at a time have to be stored. Typical orbitintersection matrices are dense. That means thatduring the execution of this algorithm there are twophases. During the �rst phase mainly new K-orbits

200 Experimental Mathematics, Vol. 10 (2001), No. 2

are evaluated. After the computation of the �rst fewrows of the orbit intersection matrices the list L iscomplete. In the second phase the remaining partof the orbit intersection matrices is determined.
Remark 2.6. Assume we have run Algorithm 2.5 onceand want to know the orbit intersection matricesfor additional elements of G. This can be achievedby a small modi�cation of the previous algorithm.As input we take the elements of G whose orbit in-tersection matrices we want to know and the re-sulting L and nr from a previous call to OrbitInter-
sectionMatrices. The only di�erence is now that inthe initialization L and nr are set to the given ones.Of course, here the case x 62 L in the inner loopnever occurs.
3. MATRICES ACTING ON VECTORSOne case for the setup in Section 2 is that the setM is a �nite-dimensional vector (row) space over a�nite �eld and the action of the generators gi (andthe kj) is described by matrices acting onM by rightmultiplication.G. Cooperman and M. Tselman [1996] have imple-mented a parallelized algorithm for computing orbitintersection matrices in this case. An important as-pect of their algorithm consists also in saving mem-ory by not storing all points in the orbit. However,if the proportion of stored elements in such an orbitis 1=�, one needs on average about � vector-matrixmultiplications to �nd from an arbitrary point inthis K-orbit one of the stored points. This essen-tially leads to a multiplication of the total runningtime of the algorithm by a factor �.Another approach was taken by R. Parker andR. Wilson, who have a (sequential) program thatuses \tadpoles" to save memory. There seems to beno reference for this, so here is the idea: One de�nesa \random-looking" successor function on the set ofpoints and stores only \attracting points" under re-peated application of this function. Under certainstatistical assumptions one expects to buy a sav-ing factor 1=� in memory usage with a log� timepenalty factor. But it seems to be di�cult to predictthe behavior of the algorithm in practical cases.We will now explain a way to realize our functions
minimals, minimal and part described in 2B e�cientlyfor this case. This allows us to reduce the needed

memory by a large factor. But the computing time isonly increased by a small constant factor comparedto the basic orbit algorithm.We consider a subgroup U ofK with the followingproperties:
(1) U is small enough that we can store all elementsof U in our process for computing the orbit in-tersection matrices.
(2) There is a U -invariant subspace V ofM such thatall U -orbits of the quotient spaceM=V can easilybe computed.
(3) The average length of the U -orbits on M=V is\close to" jU j.In practical examples it seems not to be di�cultto �nd such U and V . The space M viewed as aG-module is typically irreducible. Small subgroupsof K as candidates for U can be found by con-sidering some subgroups generated by random el-ements. Now M considered as U -module usuallyhas a composition series consisting of many small-dimensional modules. This can be found using the
MeatAxe [Ringe 1998], and so we �nd candidates forV .Assume that we have found U and V as above.Let pr : M ! M=V be the projection map. Notethat the action of U on M and the induced actionon M=V commute with pr. We enumerate M=Vand call m 2 M minimal if pr(m) is minimal inits U -orbit with respect to this enumeration. (pr isparticularly easy to implement when the basis of Mis chosen to contain a basis of V .)In a precomputation|a short one, because ofproperty (2)|we compute by a variation of thebasic orbit Algorithm 2.1 for each point of M=Veither an element of U mapping it onto the mini-mal element in its U -orbit or, if the point is alreadyminimal, the elements of U stabilizing this point.Now we implement part(m) by computing all mu,u 2 U , and removing multiple points. Because ofproperty (3) this takes not much more than onevector-matrix multiplication per element in part(m).For minimal(m) we use the precomputation; for
pr(m) we have stored a u 2 U such that mu is min-imal. All minimals(m) are computed by applying allu0 from the stabilizer of pr(mu) to mu and removingmultiples. Because of property (3) this stabilizer isoften trivial.

Lübeck and Neunhöffer: Enumerating Large Orbits and Direct Condensation 201

Using these considerations we can count the basicoperations needed in Algorithm 2.5.
Proposition 3.1. Assume that in the situation abovethe computation of minimals(m) takes on average lessthan 2 vector-matrix multiplications and that thecomputation of part(m) takes on average less than 2vector-matrix multiplications per point in the part .Then:(a) OrbitByPartition (Algorithm 2.3) requires 2 + 2rvector-matrix multiplications and r list lookupsper point in the considered orbit (neglecting thecomputation of all minimal points once for eachpart).(b) OrbitIntersectionMatrices (Algorithm 2.5) requires(2+2s)+(2+2r) vector-matrix multiplications ands + r list lookups per point in the considered or-bit (here we neglect the calls to minimals once foreach part and the bookkeeping e�ort for the orbitintersection matrices).A similar idea also works in the case of G acting onthe subspaces of M , instead of the vectors.In certain cases one can think of further improve-ments by choosing subgroups U with additional niceproperties. For example, if M is a semisimple U -module then one can take a basis of M such thatelements of U have a (very sparse) block diagonalform. (In general one can reach a block triangularform.)
4. PARALLELIZATIONWe do not see an improvement of Algorithm 2.5
OrbitIntersectionMatrices which reduces the computa-tion time considerably. But we can reduce the wait-ing time for the result by distributing the computa-tions in parallel among several computer processors.We are mainly thinking of using networks of work-stations. In this section we describe our approachto a parallelization of OrbitIntersectionMatrices.
4A. Parallel version of OrbitIntersectionMatricesLooking at the algorithm we see that it is essentialto have a central place where the list L and the map
nr are managed (in form of a hash table) to avoidmany computations of the same K-orbits by severalprocesses and also to guarantee a unique numberingof the K-orbits found.

We divide the work into pieces by giving singleruns through a K-orbit as jobs to single processors.In such a job, corresponding to a run through thebody of the outer loop in Algorithm 2.5, one row ofeach of the orbit intersection matrices is computed.We have written a small library which allows com-munication of processes running on computers con-nected via a network (using UNIX domain sockets,which are available on many computer operatingsystems). The communication is of the type thatone process sends to another a number indicating atype of a request plus some data. The other processmay do some computation and then sends back ananswer in form of a block of data. Using this wehave implemented three di�erent programs whichwork together.First there is one process called the jobserver: Itcan be asked for a job to do (a number k in Algo-rithm 2.5), or for a number for a newly found K-orbit, and it collects the computed rows of the orbitintersection matrices and stores them into �les.Then there is one process (or several, see below)called the hashserver: This one manages the hashtable for the list L. It can be asked to send fora given list of points the corresponding numbers oftheir K-orbits or the information which points arelying in a not yet known K-orbit. Also this pro-cess can be asked to store the information about anew K-orbit in its hash table (it writes it to a �le,too), and also to send a list of representatives forthe parts which are contained in the K-orbit with agiven number.Finally there can be many processes called dc-client: They ask the jobserver for a job, get therepresentatives for the K-orbit they have to handlefrom the hashserver, then run through the body ofthe outer loop of Algorithm 2.5, send the computedrows of the orbit intersection matrices to the job-server, and start from the beginning. When such aprocess has to check whether a point is containedin L and wants to know the number of its K-orbitthen it sends the point to the hashserver to get theanswer. When a new K-orbit is computed it is sentto the hashserver (which ignores it in the rare casethat thisK-orbit was in the meanwhile already com-puted by another process). Actually a dcclient doesnot send single points as requests to the hashserverbut always computes minimal(mgi) for all m in a

202 Experimental Mathematics, Vol. 10 (2001), No. 2

�xed part and puts a collected request to the hash-server into a queue. Before computing the next suchrequest it checks for available answers from the hash-server. This way the client process does not have tobe idle in case of a temporarily overloaded network.As a variant we also allowmultiple hashservers:Here we use a function which computes for a givenpoint the number of a hashserver which is responsi-ble to store this point and to answer requests aboutit. This makes the preparation of hashserver re-quests by a dcclient slightly more complicated butit can be very useful in certain situations: For exam-ple if the data for the requests are computed so fastthat the network bandwidth is too small and if wehave a switched network (which allows several par-allel connections with full bandwidth) then multiplehashservers can increase the overall available net-work bandwidth for the requests. And this is simi-lar when a hashserver cannot handle all the requestsfast enough. Another point is that the hashserver isusually the process which needs most of the mem-ory. For e�ciency it is desirable that a hashservercan keep the list L in the physical memory of thecomputer. Using multiple hashservers we can usethe physical memory of several computers for thispurpose.Concerning the memory needed by these processesthe hash servers need to hold all minimal points ofm0G and a client process needs to store at most allminimal elements of a K-orbit and the points in onepart of the partition. The orbit intersection matricescan also become very big (there may be up to 10000K-orbits, say). But it is never necessary to storemore than one row in a client. Once a row is com-puted it can be stored in a �le and is not needed anymore. (We only have to append some zeros when weuse them, because some new K-orbits can be foundafter �nishing a row.)The computation time for the algorithm scales al-most linearly with the number of clients as long asthe bandwidth of the communication between theclients and the hash servers or the computing powerof the hash servers do not reach their limit. And theamounts of data which have to be transferred canbe estimated very well from 3.1. If network band-width becomes a problem one can at least speed uplinearly the second phase of the algorithm describedafter Algorithm 2.5: We interrupt the computation

after �nding all K-orbits and start it again in theform of 2.6 with several hash servers who all use thesame already computed data.
4B. Comments on the ImplementationOur implementation of the parallel version of Orbit-

IntersectionMatrices is written as far as possible in ageneric way (the programming language is C), wherewe assume almost nothing about how the points ofM , elements of G and the action are given. To geta program for a special case one has to write a �lecontaining functions for initializing the clients, op-eration of group elements on points, the functions
part, minimal and minimals, and hash functions forthe points. This can then be linked easily with themain part of the program.The part for the client-server communication is aseparate small package which can be used for otherprograms as well. It supports simple blocking re-quests, i.e., where a process waits for an answer, aswell as queues of nonblocking requests.One advantage of our communication approachseems to be robustness: The crash of any single pro-cess involved in a computation does not waste thecomputing time spent so far. Client processes can beterminated and new ones started up at any time. Ofcourse the whole computation crashes when one ofthe server processes is terminated for some reason.But we are saving the results which are already ob-tained into �les and this makes it possible to restartthe computation almost at the point where it wasstopped. This feature is very important for the useof such programs on networks where any single ma-chine can be down at any time for various reasons.The lack of this feature was also the reason that wedid not use a (in certain aspects much more sophisti-cated) communication protocol like MPI [Snir et al.1998].The initial revision of our package contains twoversions of the programs. One with permutations asgroup elements for doing the computation describedin 5C and another more general one for matricesacting on vectors over a �nite �eld. In the latter weuse some basic functions from the MeatAxe [Ringe1998]. Since we want to use this program for verylarge examples we have put some e�ort in optimizingthe vector-matrix arithmetic, e.g., by precomputingcertain linear combinations of rows of the operating

Lübeck and Neunhöffer: Enumerating Large Orbits and Direct Condensation 203

matrices (Parker calls this \greasing") and by usingpartial row operations for sparse rows.Our software is freely available under the GnuPublic License; see Electronic Availability at the endof this article.
5. DIRECT CONDENSATIONLet A be a �nite-dimensional algebra over a �eld Fand let e = e�e 2 A an idempotent. The idea of con-densation is to get information on A-modulesM bystudying the eAe-modules Me. In particular this isan important tool in computational representationtheory. The latter modules can be of much smallerdimension but still encode interesting informationon the structure of M, since the map M 7! Me isan exact functor from the category of A-modules tothe category of eAe-modules.For more details we refer to [Cooperman et al.1997] and the references given there. The �rst ref-erence describing the use of this method in modularrepresentation theory is J. Thackray's thesis [1981].
5A. Interpretation of the OrbitIntersectionMatricesWe want to consider the special case when A = FGis the group algebra of a �nite group G over the�eld F , e is the idempotent 1=jKj �Pk2K k 2 FGcorresponding to the subgroup K of G whose orderis not a multiple of the characteristic of F , and Mis a permutation module of FG. (If e is of this formthen K is called the condensation subgroup).Now we assume that G and M are �nite. A per-mutation representation G! SymM of G describesa permutation module M of FG. A basis for thismodule is parameterized by the elements of M . Letx = Pm2M amm 2 M and O be a K-orbit of M .Then for all m 2 O the coe�cient of m in xe is1=jOj �Pm02O am0 . This shows that the orbit sums�O :=Pm2Om for all K-orbits in M are a basis ofMe. Furthermore we see how for g 2 G the elementege is acting on this basis: for another K-orbit O0the coe�cient of �O0 in �Oege is 1=jO0j � aO;O0 withaO;O0 := ��fm 2 O j mg 2 O0g��.Clearly M is a direct sum of the permutationmodules on the G-orbits in M . Our Algorithm 2.5(OrbitIntersectionMatrices) computes exactly the num-bers aO;O0 for all K-orbits in a single G-orbit. (Notethat the sum of entries in a �xed row or column of

an orbit intersection matrix gives the length of thecorresponding K-orbit.) The method was called di-rect condensation by Parker and Wilson becauseone only needs to know for a given pointm 2M andg 2 G its image mg but one does not need to writedown in full detail the explicit permutation inducedby g on M .
5B. An Application with G = ThAs �rst example for our program we have checkedthe computations in [Cooperman et al. 1997]. ThereG is the sporadic simple Thompson group actinglinearly on a vector space M of dimension 248 overthe �eld with 2 elements. The considered G-orbithas about 109 elements. The cited paper containsenough details that we could redo the computationsstarting with the matrices for this representationgiven in R. Wilson's WWW-Atlas of group repre-sentations [Wilson et al. 1996+].We used the approach described in Section 3. Assubgroup U for the partition of the orbit we con-structed a group of order 336 which has an invari-ant subspace in M of codimension 20. It turned outthat about 1 out of 257 points in the considered G-orbit is minimal. The minimal vectors can be storedin 125 Megabytes of memory using one bit per �eldelement.After we measured the time needed for a singlevector-matrix multiplication, we estimated the to-tal running time of the condensation using Propo-sition 3.1. We found that this estimate was veryclose to the actual running time. The computationswere done on 18 machines (450MHz Pentium II pro-cessors) of a cluster at the university of St. Andrews(provided by an EPSRC grant), which are connectedby a \switched fast ethernet network". We used onehashserver which had to handle about 65 Giga-bytes of lookup requests. The computation neededless than 4 hours. (To compare with [Coopermanet al. 1997, 3.3]: There 8 machines computed forone month|a single vector-matrix multiplicationtook about the same time as in our case|and 610Megabytes of vectors had to be stored.)We have also done some larger computations forother sporadic simple groups. The results can hope-fully contribute to the determination of the modu-lar character tables of these groups. Details will begiven elsewhere.

204 Experimental Mathematics, Vol. 10 (2001), No. 2

5C. An Application with G = S21 a Symmetric GroupAs another application we condensed the permuta-tion module of a Young subgroup of type (8; 8; 4; 1)in the symmetric group G = S21. The motivationwas a question by G. James and A. Mathas whocould determine the decomposition matrix for theirreducible representations of G in characteristic 5up to a single entry. The question was whether inthe Specht module of G labelled by the partition(8; 8; 4; 1) reduced modulo 5 the irreducible modulelabelled by (12; 9) occurs once or twice.J. M�uller has found a subgroup K of G with theproperty that the permutation module of type (8;8; 4; 1) condensed with K as condensation subgrouphas either 761 or 762 constituents in a compositionseries depending on the two possible cases. Such aconsideration can be made using only the two pos-sible tables of Brauer characters for G and the char-acter table of K. (See again [Cooperman et al. 1997]for a more detailed explanation.) The group K is atransitive subgroup of order 47;029;248 having thenumber 147 in the database of transitive groups con-tained in GAP [GAP 2000].In this case ourM consists of 21-tuples of numberson which G acts by permutation. The permutationmodule we want to condense is described by the or-bit of [0;0;0;0;0;0;0;0;1;1;1;1; 1;1;1; 1; 2; 2;2;2; 3].It has dimension 1; 309; 458; 150. As generators ofG we took two random elements and K was alsogiven by two generating permutations. As partitionof the orbit for Algorithm 2.5 we took again orbitsunder a subgroup of K. There is a nice subgroupwhich is a direct product of 7 symmetric groups S3,each factor permuting the entries of 3 consecutivepositions. We de�ne for each part a unique mini-mal point, namely that one whose entries are sortedin positions f1; 2; 3g, f4; 5; 6g and so on. There areonly about 660; 000 minimal points in the orbit. So,the operation of group elements on the points andthe functions part, minimal and minimals are imple-mented easily and e�ciently for this case.In this example the operation of group elementson points can be computed so fast that even in aparallel computation with few clients the networkbandwidth can be reached with the requests for thehashserver. Our approach with multiple hash-servers improves the situation considerably here.

On 20 machines of the network already mentionedin 5B using 20 client and 20 hash server processesthe orbit intersection matrices for the two generatorsof G could be computed in 38 minutes and duringthis time about 96 Gigabytes of data were sent overthe network.The condensed module has dimension 4197. Acomposition series of this module for the algebragenerated by the two computed elements of form egecan be found with the MeatAxe [Ringe 1998] withina few hours of computation time. We found 761constituents and this rules out the possibility forthe decomposition number which would imply 762constituents. (Note that it is not clear whether ourtwo elements ege generate the whole algebra eFGe,but taking further generators into account cannotincrease the number of constituents.)
Proposition 5.1. Let G = S21 and F be a �eld ofcharacteristic 5. The multiplicity of the simple FG-module labeled by the partition (12; 9) in the FG-Specht module labeled by (8; 8; 4; 1) is one.This result together with work of A. Mathas andG. James, in particular the software package Specht[Mathas 1997], determine the decomposition num-bers in characteristic 5 for all symmetric groups Snwith n � 23.
ACKNOWLEDGEMENTSWe would like to thank J. M�uller for very usefuldiscussions on the topic.The cluster of machines used to perform the calcu-lations described in Section 5B was purchased withfunds from EPSRC grant GR/M32351.
ELECTRONIC AVAILABILITYAn implementation of the algorithms described hereis freely available under the terms of the Gnu PublicLicense, at http://www.math.rwth-aachen.de/~DC.For details on the Gnu Public License scheme, seehttp://www.gnu.org/copyleft/gpl.html.
REFERENCES[Cooperman and Tselman 1996] G. Cooperman andM. Tselman, \New sequential and parallel algorithmsfor generating high dimension Hecke algebras us-ing the condensation technique", pp. 155{160 in

Lübeck and Neunhöffer: Enumerating Large Orbits and Direct Condensation 205

ISSAC' 96: Proceedings of the International Sympo-sium on Symbolic and Algebraic Computation (Zurich,1996), edited by Y. N. Lakshman, ACM Press, NewYork, 1996.[Cooperman et al. 1997] G. Cooperman, G. Hiss, K.Lux, and J. M�uller, \The Brauer tree of the principal19-block of the sporadic simple Thompson group",Experiment. Math. 6:4 (1997), 293{300.[GAP 2000] The GAP group, GAP: Groups, algo-rithms, and programming, Version 4:2, RWTH Aachenand University of St. Andrews, 2000. See http://www-gap.dcs.st-and.ac.uk/~gap.[Knuth 1997] D. E. Knuth, The art of computerprogramming, v. 3: Sorting and searching, 2nd ed.,Addison Wesley, Reading, MA, 1997.

[Mathas 1997] A. Mathas, Specht: Decomposition ma-trices for the Hecke algebras of type A (manual forversion 2.4), University of Sydney, 1997. See http://www.maths.usyd.edu.au:8000/u/mathas/specht/.[Ringe 1998] M. Ringe, The C-MeatAxe, a manual,Lehrstuhl D f�ur Mathematik, RWTH Aachen, 1998.See http://www.math.rwth-aachen.de/~MTX/.[Snir et al. 1998] M. Snir et al., MPI| the completereference, 2nd ed., MIT Press, Cambridge (MA), 1998.See also http://www-unix.mcs.anl.gov/mpi/.[Thackray 1981] J. G. Thackray,Modular representationsof �nite groups, Ph.D. thesis, Cambridge University,1981.[Wilson et al. 1996+] R. Wilson et al., \WWW-Atlas of group representations", 1996+. See http://www.mat.bham.ac.uk/atlas/.
Frank L�ubeck, Lehrstuhl D f�ur Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany(Frank.Luebeck@math.rwth-aachen.de, http://www.math.rwth-aachen.de/~Frank.Luebeck)Max Neunh�o�er, Lehrstuhl D f�ur Mathematik, RWTH Aachen, Templergraben 64, 52062 Aachen, Germany(Max.Neunhoe�er@math.rwth-aachen.de, http://www.math.rwth-aachen.de/~Max.Neunhoe�er)
Received May 10, 2000; accepted in revised form October 13, 2000

