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We determine the full list of anticanonically embedded qua-

sismooth Fano hypersurfaces in weighted projective 4-spaces.

There are 48 infinite series and 4442 sporadic examples. In par-

ticular, the Reid–Fletcher list of 95 types of anticanonically em-

bedded quasismooth terminal Fano threefolds in weighted pro-

jective 4-spaces is complete.

We also prove that many of these Fano hypersurfaces admit a

Kähler–Einstein metric, and study the nonexistence of tigers on

these Fano 3-folds.

Finally, we prove that there are only finitely many families of

quasismooth Calabi–Yau hypersurfaces in weighted projective

spaces of any given dimension. This implies finiteness for vari-

ous families of general type hypersurfaces.

1. INTRODUCTIONA Fano variety is a projective variety whose anti-canonical class is ample. A 2-dimensional Fano va-riety is called a del Pezzo surface. In higher dimen-sions, attention originally centered on smooth Fano3-folds, but singular Fano varieties are also of con-siderable interest in connection with the minimalmodel program. The existence of K�ahler{Einsteinmetrics on Fano varieties has also been explored;see [Bourguignon 1997] for a summary of the mainresults. Here again the smooth case is of primary in-terest, but Fano varieties with quotient singularitiesand their orbifold metrics have also been studied.In a given dimension there are only �nitely manyfamilies of smooth Fano varieties [Campana 1991;Nadel 1991; Koll�ar et al. 1992b], but very little isknown about them in dimensions 4 and up. By al-lowing singularities, in�nitely many families appearand their distribution is very poorly understood.For a natural experimental testing ground, weturn to hypersurfaces and complete intersections inweighted projective spaces. These varieties can bewritten down rather explicitly, but they still pro-vide many more examples than ordinary projective
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spaces. Experimental lists of certain three-dimen-sional complete intersections were compiled in [Iano-Fletcher 1989]. In connection with K�ahler{Einsteinmetrics, the 2-dimensional cases were �rst investi-gated in [Demailly and Koll�ar 1999] and later in[Johnson and Koll�ar 2000].It is also of interest to study Calabi{Yau hypersur-faces and hypersurfaces of general type in weightedprojective spaces. Some lists with terminal singu-larities appear in [Iano-Fletcher 1989].The aim of this paper is threefold.First, we determine the complete list of anticanon-ically embedded quasismooth Fano hypersurfaces inweighted projective 4-spaces. There are 48 in�niteseries and 4442 sporadic examples (Theorem 2.2).As a consequence we obtain that the Reid{Fletcherlist [Iano-Fletcher 1989, II.6.6] of 95 types of an-ticanonically embedded quasismooth terminal Fanothreefolds in weighted projective 4-spaces is com-plete (Corollary 2.5).Second, we prove that many of these Fano hyper-surfaces admit a K�ahler{Einstein metric (Corollary3.4). We also study the nonexistence of tigers onthese Fano 3-folds (the colorful terminology comesfrom [Keel and McKernan 1999]).Third, we prove that there are only �nitely manyfamilies of quasismooth Calabi{Yau hypersurfacesin weighted projective spaces of any given dimen-sion (Theorem 4.1). This implies �niteness for vari-ous families of general type hypersurfaces (Corollary4.3).
Definition 1.1. For positive integers ai we denote byP(a0 ; : : : ; an) the weighted projective n-space withweights a0; : : : ; an. (See [Dolgachev 1982] or [Iano-Fletcher 1989] for basic de�nitions and results onweighted projective spaces.) We always assume thatany n of the ai are relatively prime. We frequentlywrite P to denote a weighted projective n-space ifthe weights are irrelevant or clear from the con-text. We use x0; : : : ; xn to denote the correspondingweighted projective coordinates. We denote byPi 2 P(a0 ; : : : ; an)the point all of whose coordinates are 0 except forthe i-th one. These points are sometimes called thevertices of the weighted projective space. (They areuniquely determined if none of the ai divides any

other.) The a�ne chart where xi 6= 0 can be writtenas C n(y0; : : : ; byi; : : : ;yn)=Z ai(a0; : : : ; bai; : : : ;an): (1–1)(Here and later b denotes an omitted coordinate.)This shorthand denotes the quotient of C n by theaction(y0; : : : ; byi; : : : ; yn) 7! ("a0y0; : : : ; byi; : : : ; "anyn);where " is a primitive ai-th root of unity. The iden-ti�cation is given by yaij = xaij =xaji . (1{1) are calledthe orbifold charts on P(a0 ; : : : ; an).For any i, P(a0 ; : : : ; an) has an index ai quotientsingularity at Pi. For any i < j, ifgcd(a0; : : : ; bai; : : : ; baj ; : : : ; an) > 1;then P(a0 ; : : : ; an) has a quotient singularity along(xi = xj = 0). These give all the codimension 2singular subsets of P(a0 ; : : : ; an).For every m 2 Z there is a rank 1 sheaf OP(m)which is locally free only if aijm for every i. A ba-sis of the space of sections of OP(m) is given by allmonomials in x0; : : : ; xn with weighted degree m.Thus OP(m) may have no sections for some m > 0.
2. ANTICANONICALLY EMBEDDED QUASISMOOTH

FANO HYPERSURFACESLet X 2 jOP(m)j be a hypersurface of degree m.The adjunction formulaKX �= OP(KP +X)jX �= OP(m� (a0 + � � �+ an))jXholds if X does not contain any of the codimension2 singular subsets. If this condition is satis�ed thenX is a Fano variety i� m < a0+ � � �+an. Frequentlythe most interesting cases are when m is as large aspossible. Thus we consider the case Xd 2 jOP(d)jfor d = a0 + � � � + an � 1. Such an X is calledanticanonically embedded.In most cases, all hypersurfaces of a given de-gree d are singular and pass through some of thevertices Pi. In these cases the best one can hopeis that a general hypersurface Xd is smooth in theorbifold sense, called quasismooth. At the vertex Pithis means that the preimage of Xd in the orbifoldchart C n(y0; : : : ; byi; : : : ; yn) is smooth. In terms of
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the monomials of degree d this is equivalent to say-ing that For every i there is a j and amonomial xmii xj of degree d. (2–1)j = i is allowed, corresponding to the case when thegeneral Xd does not pass through Pi. The condi-tion that Xd does not contain any of the singularcodimension 2 subsets is equivalent toIf gcd(a0; : : : ; bai; : : : ; baj ; : : : ; an) > 1there is a monomial of degree d notinvolving xi; xj . (2–2)

For n � 3, these are the two most important specialcases of the general quasismoothness condition:For every I�f0; : : : ; ng there is an in-jection e : I ,! f0; : : : ; ng and mono-mials xe(i)Qj2I xmijj of degree d forevery i 2 I. (2–3)

Remark 2.1. The quasi-smoothness condition in [Iano-Fletcher 1989, I.5.1] says thatFor every I � f0; : : : ; ng either (2{3)holds or there is a monomialQj2I xbjjof degree d. (2–30)
The two versions are, however, equivalent. We provethis by induction on jIj. Indeed, assume that thereis a monomial Qj2I xbjj of degree d and let I 0 �I be all the indices which are involved in at leastone such monomial. By induction (2{3) holds forI n I 0, giving monomials xe(i)Qj2InI0 xbijj for i 2 I nI 0. By assumption these e(i) are not in I, so wecan choose I 0 [ e(I n I 0) as the image of e : I !f0; : : : ; ng. (A suitable reordering of the values of emay be necessary.)The computer searches carried out in connectionwith [Iano-Fletcher 1989; Demailly and Koll�ar 1999]looked at values of ai in a certain range to �nd theai satisfying the constraints (2{1) to (2{3). This ap-proach starts with the ai and views (2{1) to (2{3)as linear equations in the unknown nonnegative in-tegers mi;mij . In the cases studied in those twoworks these searches seemed exhaustive. Aside fromone series of examples, the computers produced so-lutions for low values of the ai and then did not �ndany more as the range of the allowable values wasextended. This of course does not ever lead to aproof that the lists were complete.

A similar search for quasismooth Fano hypersur-faces in weighted projective 4-spaces is quite timeconsuming. With some reasonably large bounds,say ai a few hundred, the programs run for daysand they produce a few thousand examples. Wewere unable to isolate the series from these lists. The�niteness of the sporadic examples was also unclear.While there were few examples with large minfaig,there did not seem to be an end to the list. In-deed, it is quite unlikely that any systematic searchof this kind could have discovered the example withthe largest a0:(407; 547; 5311; 12528; 18792)with monomialsx24; x33; x591 x2; x0x72; x910 x1;or the beautiful pair of sporadic examples with thelargest a4:(223; 9101; 46837; 112320; 168480)with monomialsx24; x33; x1x72; x0x371 ; x13010 x2;and (253; 7807; 48101; 112320; 168480)with monomialsx24; x33; x371 x2; x0x72; x13010 x1:The biggest values of a0 are of some interest in con-nection with the conjectures of [Shokurov 2000, 1.3].Next we describe the computer programs that ledto the list of anticanonically embedded quasismoothFano hypersurfaces in weighted projective 4-spaces.The programs, written in C, are available at theaddress www.math.princeton.edu/~jmjohnso.
2A. Preliminary StepsIn order to �nd all solutions, we change the point ofview. We consider (2{1) to be the main constraintwith coe�cients mi and unknowns ai. The corre-sponding equations can then be written as a linearsystem(M+J+U)(a0 a1 a2 a3 a4)t = (�1 �1 �1 �1 �1)t

(2–4)where M = diag(m0;m1;m2;m3;m4) is a diagonalmatrix, J is a matrix with all entries �1 and U isa matrix where each row has 4 entries = 0 and one
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entry = 1. The main advantage is that some of themi can be bounded a priori. Assume for simplicitythat a0 � a1 � � � � � a4.Consider for instancem4. The relevant equation ism4a4 + ae(4) = a0 + a1 + a2 + a3 + a4 � 1:Since a4 is the biggest, we get right away that 1 �m3 � 3. Arguing inductively with some case analy-sis we obtain3 � m2 � 16; 2 � m3 � 6; 1 � m4 � 3 (2–5)Thus we have only �nitely many possibilities forthe matrix U and the numbers m2;m3;m4. Fixingthese values, we obtain a linear system(M+J+U)(a0 a1 a2 a3 a4)t = ( �1 �1 �1 �1 �1)t;where the only variable coe�cients arem0;m1 in theupper left corner of M . Solving these formally weobtain a0 = �0m1+�02m0m1+0m0+1m1+� ;a1 = �1m0+�12m0m1+0m0+1m1+� :where the �i; �i; i; � depend only on U;m2;m3;m4.We distinguish 3 cases. The �rst one is the mainsource of examples. Cases 2 and 3 are anomaliesfrom the point of view of our method. In both caseswe ended up experimentally �nding strong restric-tions on the ai. Even with hindsight we do not knowhow to prove these a priori.
Case 1: 2 6= 0. In this case the absolute value of�0m1 + �02m0m1 + 0m0 + 1m1 + �goes to zero as m0;m1 go to in�nity. It is not hardto write down the precise condition and a computercheck shows that �0m1 + �02m0m1 + 0m0 + 1m1 + � � 1implies minfm0;m1g � 83:
Case 2: 2 = 0 and 01 6= 0. It turns out that if thisholds then 01 > 0 and a0; a1 are bounded by 8 forminfm0;m1g � 36. Moreover, the 3 linear forms�0m1 + �0; �1m0 + �1; 0m0 + 1m1 + �

are dependent. This implies that�11a0 + �00a1 = �0�1:A computer search shows that this is possible onlyif a0 = a1 = 1.
Case 3: 2 = 0 and 01 = 0. It turns out that one of�0m1+�0; �1m0+�1 equals 0m0+1m1+ �. Thusa0 = 1 or a1 = 1. Moreover, we also see by explicitcomputation that one of the following holds:a2 = a3 = a4; a2 = a3 = 12a4; a2 = 12a3 = 13a4:
2B. Main Computer SearchHere we discuss the main case when, in addition tothe inequalities (2{5) we also assume that 3 � m1 �83. In this case the system (2{4) reduces to a singleunknown m0. This is very similar to the 4-variablecase discussed in [Johnson and Koll�ar 2000].We solve formally for a0 to geta0 = 0m0�+ �where �; �; 0 depend only on U andm1;m2;m3;m4.If � 6= 0 then we get a bound on m0 too, and weare down to �nitely many possibilities all together.There are 403,455 cases of this. The resulting solu-tions need considerable cleaning up. Many of themoccur multiply and we also have to check the otherconditions, (2{2) and (2{3). Discarding repetitions,we get 15757 cases, out of which 4594 are quasis-mooth.If � = 0 then we get a series solution where theai are linear functions of a variable m0. There are550,122 cases of this. Here the main di�culty is thatthe program does not produce the series in a neatform. Usually one series is put together out of manypieces according to some congruence condition.
2C. Additional CasesAssume �rst that we are in Case 2 of Section 2A.Since a0 = a1 = 1, the numbers a1; a2; a3; a4 andd = a1+a2+a3+a4 satisfy the numerical conditions(2{3). This leads to a lower dimensional problemwhich is easy to solve.Case 3 of Section 2A is even easier. We get solu-tions of the form(1; a; b; b; b); (1; a; b; b; 2b); or (1; a; b; 2b; 3b):
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Applying (2{3) to I = f2; 3; 4g gives that bja. Thusb divides all but one of the weights, so b = 1. Thisimplies that a � 6. At any case, all these appearalso under Case 2 of Section 2A.At the end we obtain our �rst main result:
Theorem 2.2. The following is a complete list of an-ticanonically embedded quasismooth Fano hypersur-faces in weighted projective 4-spaces :
1. 48 in�nite series of the formX2k(b1+b2+b3)�P�2; kb1; kb2; kb3; k(b1+b2+b3)�1�for k = 1; 3; 5; : : : . The occurring 3-tuples b1, b2,b3 are described in Remark 2.3.
2. 4442 sporadic examples whose list is available atwww.math.princeton.edu/~jmjohnso.
2D. An Error CheckWe wrote a program that looked at all 5-tuples sat-isfyinga0 � 100; a1 � 200; a2 � 200; a3 � 400; a4 � 600:The program ran for 4 days and produced 3610 qua-sismooth examples, all in complete agreement withthe correspondingly truncated list of 4442 sporadicexamples.
Remark 2.3. It turns out that a 3-tuple b1; b2; b3 ap-pears in Theorem 2.2(1) i� j�2Kj of P(b1 ; b2; b3) hasa quasismooth member. The list of these is implicitin Reid's list of 95 families of singular K3 surfacesin weighted projective 3-spaces. In [Iano-Fletcher1989, II.3.3] they correspond to those quadruplets(b1; b2; b3; b4) for which b4 = b1 + b2 + b3. Our 48 3-tuples occured explicitly in [Yonemura 1990; Tomari2000] in connection with the study of simple K3 sin-gularities of multiplicity 2.One direction of this observation is easy to estab-lish in all dimensions.
Lemma 2.4. Assume that j�2Kj of P(b1 ; : : : ; bn) has aquasismooth member . Then the general anticanoni-cally embedded Fano hypersurface inP(2; kb1 ; : : : ; kbn; k(b1 + � � �+ bn)� 1)is quasismooth for k = 1; 3; 5; : : : .We conjecture that conversely, every in�nite series isof this form. It is interesting that every quasismoothhypersurface in P(2; kb1 ; : : : ; kbn; k(b1+ � � �+bn)�1)

has a singular set of codimension 2. Thus the pre-ceding conjecture would imply that for every n � 4there are only �nitely many anticanonically embed-ded quasismooth Fano hypersurfaces with isolatedsingularities in weighted projective n-spaces.It is not hard to check which of the above Fanothreefolds have terminal singularities. The familiesin Theorem 2.2(1) always have nonisolated singular-ities, and for the remaining cases the conditions of[Iano-Fletcher 1989, II.4.1] work. As a consequence,we obtain the following corollary. (Reid informed usthat he also has an unpublished proof of this.)
Corollary 2.5. The Reid{Fletcher list of 95 familiesof anticanonically embedded quasismooth terminalFano threefolds in weighted projective 4-spaces [Iano-Fletcher 1989, II.6.6] is complete. �
3. KÄHLER–EINSTEIN METRICS AND THE

NONEXISTENCE OF TIGERSNext we study the existence of K�ahler{Einstein met-rics and the nonexistence of tigers on our Fano hy-persurfaces. After some de�nitions we recall the cri-terion established in [Johnson and Koll�ar 2000]. Inthe case of K�ahler{Einstein metrics this in turn re-lies on earlier work of [Nadel 1990; Demailly andKoll�ar 1999].
Definition 3.1. Let X be a normal variety and D a Q -divisor on X. Assume for simplicity that KX and Dare both Q -Cartier. Let g : Y ! X be any properbirational morphism, Y smooth. Then there is aunique Q -divisor DY =P eiEi on Y such thatKY +DY � g�(KX +D) and g�DY = D:We say that (X;D) is klt if ei > �1 for all g andi. We call (X;D) log canonical if ei � �1 for all gand i. See [Koll�ar and Mori 1998, Section 2.3], forinstance, for a detailed introduction.
Definition 3.2 [Keel and McKernan 1999]. Let X bea normal variety. A tiger on X is an e�ective Q -divisor D such that D � �KX and (X;D) is notklt. As illustrated in [Keel and McKernan 1999], thetigers carry important information about birationaltransformations of log del Pezzo surfaces. They areexpected to play a similar role in higher dimensions.
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Proposition 3.3 [Johnson and Koll�ar 2000]. Let Xd �P(a0 ; : : : ; an) be a quasismooth hypersurface of de-gree d = a0 + � � �+ an � 1.
1. X does not have a tiger if d � a0a1.
2. X admits a K�ahler{Einstein metric ifd < nn�1 a0a1: �
Corollary 3.4. Of the sporadic series of quasismoothFano hypersurfaces mentioned in Theorem 2.2(2),there are 1605 types where none of the members havea tiger and 1936 types where every member admitsa K�ahler{Einstein metric. This information is con-tained in the list of Theorem 2.2(2).
4. CALABI–YAU HYPERSURFACESFinally we study the case of Calabi{Yau hypersur-faces and hypersurfaces of general type in weightedprojective spaces. For these cases there are �nite-ness results in all dimensions. The key part is thecase of Calabi{Yau hypersurfaces.
Theorem 4.1. For any n there are only �nitely manytypes of quasismooth hypersurfaces with trivial can-onical class in weighted projective spacesP(a0 ; : : : ; an):
Proof. As in the Fano case, �rst we look at thosehypersurfaces which are quasismooth at the verticesof P(a0 ; : : : ; an). This condition is equivalent to alinear system of equations(M + J + U)(a0; : : : ; an)t = (0; : : : ; 0)t (4–1)where M = diag(m0; : : : ;mn) is a diagonal matrix,J is a matrix with all entries �1 and U is a matrixwhere each row has n entries = 0 and one entry = 1.In the geometric setting the mi and the ai are pos-itive integers, but it will be convenient to allow theai to be positive real numbers. By the homogenityof the system we may assume that P ai = 1.Assume now that we have an in�nite sequence ofsolutions (a0(t); : : : ; an(t)) where a prioriM(t), J(t),U(t) also vary with t. By passing to a subsequencewe may assume that J(t) and U(t) are constant andeach ai(t) converges to a value Ai. Thus we canwrite ai(t) = Ai + ci(t) where limt!1 ci(t) = 0,PiAi = 1 and Pi ci(t) = 0. By passing to a sub-sequence and rearranging, we can also assume that

I := fi : ci(t) < 0g is independent of t and thatA0=(�c0(t)) is the smallest positive number among�Ai=(�ci(t)) : i 2 I	. The quasismoothness con-dition at the vertex P0 translates into m0(t)a0(t) +aj(t) = 1. We have limt!1 a0(t) = A0 > 0 sincec0(t) < 0, hencem0(t) is bounded from above. Thuswe may assume that m0(t) = m0 is constant andlimt!1m0c0(t) + cj(t) = 0:m0a0(t) + aj(t) = 1 is equivalent to[m0A0 +Aj ] + [m0c0(t) + cj(t)] = 1: (4–2)By the above considerations, (4{2) splits into twoequationsm0A0 +Aj = 1 and m0c0(t) + cj(t) = 0: (4–3)UsingPi ci(t) = 0 and the second equation in (4{3)we obtain thatXi2I ci(t) = �Xi 62I ci(t) � �cj(t) = m0c0(t): (4–4)

Multiplying by A0=c0(t) and using the special choiceof A0=c0(t) we get thatm0A0 �Xi2I ci(t) A0c0(t) �Xi2I Ai: (4–5)

Combining with the �rst equation of (4{3) we getthat1 = m0A0 +Aj � Aj +Xi2I Ai � nXi=0 Ai = 1: (4–6)

This implies that all inequalities in (4{4), (4{5) and(4{6) are equalities. Hence Ak; ck(t) are zero fork 62 I [ fjg. By assumption the ak(t) are positive,so I[fjg = f0; : : : ; ng. Moreover, the ratios Ai=ci(t)are all the same for i 2 I.These imply that, up to rearranging the indices,the ai(t) are of the form�A0(1�c(t)); : : : ; An�1(1�c(t)); An+c(t)Pn�1i=0 Ai�:Consider next the equationmn�An+c(t)Pn�1i=0 Ai�+Aj(1�c(t)) = 1;where for notational simplicity we allow j = �1 withA�1 = 0. For large t this implies thatPn�1i=0 Ai = Aj ,which is not possible for n � 2. Thus An = 0 andthe solutions become�A0(1� c(t)); : : : ; An�1(1� c(t)); c(t)� (4–7)
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where Pn�1i=0 Ai = 1. To get quasismoothness, weneed to understand all monomials of degree P ai,which amounts to �nding all integer solutions ofP biai = 1. In our case, for large t there are nosolutions with bn = 0 which means that every hy-persurface of degree P ai contains the hyperplane(xn = 0), hence they are all reducible. Thus thesolutions (4{7) do not correspond to quasismoothhypersurfaces. �
Remark 4.2. The solutions (4{7) do correspond tointeresting series of singularities. Namely, for ev-ery integer solution of Pn�1i=0 1=mi = 1 they give anin�nite series of singularities(xm00 + � � �+ xmn�1n�1 + xkn)xn = 0 � A n+1for k = 1; 2; : : : . These singularities are weighted ho-mogeneous and semi log canonical (see [Koll�ar et al.1992a, 16.2.1] for the de�nition) but not isolated.By adding a general higher degree term, we get iso-lated log canonical singularities.
Corollary 4.3. For any n and k > 0 there are only�nitely many families of quasismooth hypersurfacesX � P(a0 ; : : : ; an) such that !X �= OX(k).
Proof. Assume thatX = (F (x0; : : : ; xn) = 0) � P(a0 ; : : : ; an)is quasismooth of degree d and !X �= OX(k). ThenX� := (F (x0; : : : ; xn) + xdn+1 + � � �+ xdn+k = 0)� P(a0 ; : : : ; an; 1; : : : ; 1| {z }k times )is also quasismooth of degree d and !X �= OX . Thuswe are done by Theorem 4.1. �
Remark 4.4. The �niteness result (Corollary 4.3) is inaccordance with the conjectures [Koll�ar et al. 1992a,18.16]. On the other hand, Theorem 4.1 seems tobe a more special �niteness assertion.
ACKNOWLEDGEMENTWe thank J. McKernan for helpful comments andreferences.
ELECTRONIC AVAILABILITYThe computer programs that led to the list of anti-canonically embedded quasismooth Fano hypersur-faces in weighted projective 4-spaces can be found at

www.math.princeton.edu/~jmjohnso, together withthe list itself.
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