Newton's Formula and the Continued Fraction Expansion of \sqrt{d}

Andrej Dujella

CONTENTS

1. Introduction
2. Which Convergents May Appear?
3. The Number of Good Approximants References

It is known that if the period $\mathrm{s}(\mathrm{d})$ of the continued fraction expansion of $\sqrt{\mathrm{d}}$ satisfies $\mathrm{s}(\mathrm{d}) \leq 2$, then all Newton's approximants

$$
\mathrm{R}_{\mathrm{n}}=\frac{1}{2}\left(\frac{\mathrm{p}_{\mathrm{n}}}{\mathrm{q}_{\mathrm{n}}}+\frac{\mathrm{dq}_{\mathrm{n}}}{\mathrm{p}_{\mathrm{n}}}\right)
$$

are convergents of \sqrt{d}, and moreover $R_{n}=p_{2 n+1} / q_{2 n+1}$ for all $n \geq 0$. Motivated by this fact we define $j=j(d, n)$ by $R_{n}=$ $p_{2 n+1+2 j} / q_{2 n+1+2 j}$ if R_{n} is a convergent of \sqrt{d}, and define $b=b(d)$ by $b=\mid\left\{n: 0 \leq n \leq s-1\right.$ and R_{n} is a convergent of $\left.\sqrt{d}\right\} \mid$. The question is how large $|j|$ and b can be. We prove that $|j|$ is unbounded and give some examples supporting a conjecture that b is unbounded too. We also discuss the magnitude of $|j|$ and b compared with d and $s(d)$.

1. INTRODUCTION

Let d be a positive integer which is not a perfect square. The simple continued fraction expansion of \sqrt{d} has the form

$$
\sqrt{d}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{s-1}, 2 a_{0}}\right]
$$

Here $s=s(d)$ denotes the length of the shortest period in the expansion of \sqrt{d}. Moreover, the sequence a_{1}, \ldots, a_{s-1} is symmetrical, that is, $a_{i}=a_{s-i}$ for $i=1, \ldots, s-1$.

This expansion can be obtained using the following algorithm [Sierpiński 1987, p. 319]:

$$
\begin{align*}
a_{0} & =\lfloor\sqrt{d}\rfloor, \quad b_{1}=a_{0}, \quad c_{1}=d-a_{0}^{2}, \\
a_{n-1} & =\left\lfloor\frac{a_{0}+b_{n-1}}{c_{n-1}}\right\rfloor \\
b_{n} & =a_{n-1} c_{n-1}-b_{n-1}, \tag{1-1}\\
c_{n} & =\frac{d-b_{n}^{2}}{c_{n-1}} \quad \text { for } n \geq 2 .
\end{align*}
$$

Let p_{n} / q_{n} be the n-th convergent of \sqrt{d}. Then

$$
\begin{equation*}
\frac{1}{\left(a_{n+1}+2\right) q_{n}^{2}}<\left|\sqrt{d}-\frac{p_{n}}{q_{n}}\right|<\frac{1}{a_{n+1} q_{n}^{2}} \tag{1-2}
\end{equation*}
$$

[Schmidt 1980, p. 23]. Furthermore, if there is a rational number p / q with $q \geq 1$ such that

$$
\begin{equation*}
\left|\sqrt{d}-\frac{p}{q}\right|<\frac{1}{2 q^{2}}, \tag{1-3}
\end{equation*}
$$

then p / q equals one of the convergents of \sqrt{d}.
Another method for the approximation of \sqrt{d} is by Newton's formula

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{d}{x_{k}}\right) .
$$

In this paper we will discuss connections between these two methods. More precisely, if p_{n} / q_{n} is a convergent of \sqrt{d}, the questions is whether

$$
R_{n}=\frac{1}{2}\left(\frac{p_{n}}{q_{n}}+\frac{d q_{n}}{p_{n}}\right)
$$

is also a convergent of \sqrt{d}.
This question has been discussed by several authors. It was proved by Mikusiński [1954] (see also [Clemens at al. 1995; Elezović 1997; Sharma 1959]) that

$$
R_{k s-1}=\frac{p_{2 k s-1}}{q_{2 k s-1}}
$$

and if $s=2 t$ then

$$
R_{k t-1}=\frac{p_{2 k t-1}}{q_{2 k t-1}}
$$

for all positive integers k. These results imply that if $s(d)=1$ or 2 , then all approximants R_{n} are convergents of \sqrt{d}. Moreover, under these assumptions we have

$$
\begin{equation*}
R_{n}=\frac{p_{2 n+1}}{q_{2 n+1}} \tag{1-4}
\end{equation*}
$$

for all $n \geq 0$.

2. WHICH CONVERGENTS MAY APPEAR?

Lemma 2.1. $R_{n}-\sqrt{d}=\frac{q_{n}}{2 p_{n}}\left(\frac{p_{n}}{q_{n}}-\sqrt{d}\right)^{2}$.

$$
\begin{aligned}
& \text { Proof. } \\
& \qquad \begin{aligned}
2\left(R_{n}-\sqrt{d}\right) & =\left(\frac{p_{n}}{q_{n}}-\sqrt{d}\right)+\left(\frac{d q_{n}}{p_{n}}-\sqrt{d}\right) \\
& =\left(\frac{p_{n}}{q_{n}}-\sqrt{d}\right)-\frac{\sqrt{d} q_{n}}{p_{n}}\left(\frac{p_{n}}{q_{n}}-\sqrt{d}\right) \\
& =\frac{q_{n}}{p_{n}}\left(\frac{p_{n}}{q_{n}}-\sqrt{d}\right)^{2} .
\end{aligned}
\end{aligned}
$$

Theorem 2.2. If $R_{n}=p_{k} / q_{k}$, then k is odd.
Proof. Since $p_{l} / q_{l}>\sqrt{d}$ if and only if l is odd, and by Lemma 2.1 we have $R_{n}>\sqrt{d}$, we conclude that k is odd.
Assume that R_{n} is a convergent of \sqrt{d}. Then by Theorem 2.2 we have

$$
R_{n}=\frac{p_{2 n+1+2 j}}{q_{2 n+1+2 j}}
$$

for an integer $j=j(d, n)$. We have already seen that if $s(d) \leq 2$ then $j(d, n)=0$. In [Elezović 1997; Komatsu 1999; Mikusiński 1954] some examples can be found with $j= \pm 1$. We would like to investigate the problem how large $|j|$ can be.

The next result shows that all periods of the continued fraction expansions of \sqrt{d} have the same behavior concerning the questions in which we are interested, i.e. we may concentrate our attention on R_{i} for $0 \leq i \leq s-1$.
Lemma 2.3 [Komatsu 1999]. For $n=0,1, \ldots,\lfloor s / 2\rfloor$ there exist α_{n} such that

$$
R_{k s+n-1}=\frac{\alpha_{n} p_{2 k s+2 n}+p_{2 k s+2 n-1}}{\alpha_{n} q_{2 k s+2 n}+q_{2 k s+2 n-1}}
$$

for all $k \geq 0$, and

$$
R_{k s-n-1}=\frac{p_{2 k s-2 n-1}-\alpha_{n} p_{2 k s-2 n-2}}{q_{2 k s-2 n-1}-\alpha_{n} q_{2 k s-2 n-2}}
$$

for all $k \geq 1$.
The following lemma reduces further our problem to the half-periods.

Lemma 2.4. Let $0 \leq n \leq s / 2$. If

$$
R_{n}=\frac{p_{2 n+1+2 j}}{q_{2 n+1+2 j}},
$$

then

$$
R_{s-n-2}=\frac{p_{2(s-n-2)+1-2 j}}{q_{2(s-n-2)+1-2 j}} .
$$

Proof. If

$$
\begin{align*}
& \left(\begin{array}{cc}
p_{2 n+1+2 j} & q_{2 n+1+2 j} \\
p_{2 n+2 j} & q_{2 n+2 j}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a_{2 n+1+2 j} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{2 n+3} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
p_{2 n+2} & q_{2 n+2} \\
p_{2 n+1} & q_{2 n+1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
d & c \\
f & e
\end{array}\right)\left(\begin{array}{ll}
p_{2 n+2} & q_{2 n+2} \\
p_{2 n+1} & q_{2 n+1}
\end{array}\right), \tag{2-1}
\end{align*}
$$

then

$$
\begin{align*}
& \left(\begin{array}{ll}
p_{2 s-2 n-2-2 j} & q_{2 s-2 n-2-2 j} \\
p_{2 s-2 n-3-2 j} & q_{2 s-2 n-3-2 j}
\end{array}\right) \\
& \quad=\left(\begin{array}{rr}
-e & f \\
c & -d
\end{array}\right)\left(\begin{array}{ll}
p_{2 s-2 n-3} & q_{2 s-2 n-3} \\
p_{2 s-2 n-4} & q_{2 s-2 n-4}
\end{array}\right) \tag{2-2}
\end{align*}
$$

By the assumption and formula (2-1), we have

$$
R_{n}=\frac{p_{2 n+1+2 j}}{q_{2 n+1+2 j}}=\frac{p_{2 n+1}+\frac{d}{c} p_{2 n+2}}{q_{2 n+1}+\frac{d}{c} q_{2 n+2}}
$$

Now Lemma 2.3 and formula (2-2) imply

$$
\begin{aligned}
R_{s-n-2} & =\frac{p_{2 s-2 n-3}-(d / c) q_{2 s-2 n-4}}{q_{2 n-2 s-3}-(d / c) q_{2 s-2 n-4}}=\frac{p_{2 s-2 n-3-2 j}}{q_{2 s-2 n-3-2 j}} \\
& =\frac{p_{2(s-n-2)+1-2 j}}{q_{2(s-n-2)+1-2 j}}
\end{aligned}
$$

Lemma 2.5. $R_{n+1}<R_{n}$.
Proof. The statement of the lemma is equivalent to

$$
\begin{equation*}
(-1)^{n}\left(d q_{n} q_{n+1}-p_{n} p_{n+1}\right)>0 \tag{2-3}
\end{equation*}
$$

If n is even, then $p_{n} / q_{n}<\sqrt{d}$ and $p_{n+1} / q_{n+1}>\sqrt{d}$. Furthermore, since $p_{n+1} / q_{n+1}-\sqrt{d}<\sqrt{d}-p_{n} / q_{n}$, we have $p_{n} / q_{n}+p_{n+1} / q_{n+1}<2 \sqrt{d}$. Therefore

$$
\frac{p_{n}}{q_{n}} \frac{p_{n+1}}{q_{n+1}}<\left(\left(\frac{p_{n}}{q_{n}}+\frac{p_{n+1}}{q_{n+1}}\right) / 2\right)^{2}<d
$$

and inequality $(2-3)$ is satisfied. If n is odd, the proof is completely analogous.

Proposition 2.6. If d is a square-free positive integer such that $s(d)>2$, then

$$
|j(d, n)| \leq \frac{1}{2}(s(d)-3) \quad \text { for all } n \geq 0
$$

Proof. According to Lemma 2.4 it suffices to consider the case $j>0$. Let $R_{n}=p_{2 n+1+2 j} / q_{2 n+1+2 j}$. By Lemma 2.3 there is no loss of generality in assuming that $n<s$.

Assume first that s is even, say $s=2 t$. Then $R_{t-1}=p_{s-1} / q_{s-1}$ and $R_{s-1}=p_{2 s-1} / q_{2 s-1}$. If $n<$ $t-1$, then Lemma 2.5 clearly implies that $2 n+1+$ $2 j \leq s-2$ and $2 j \leq s-3$. Since s is even, we have $j \leq \frac{1}{2}(s-4)$. For $n=t-1$ or $n=s-1$ we obtain $j=0$. If $t-1<n<s-1$, then $2 n+1+2 j \leq 2 s-2$ and $2 j \leq 2 s-3-2 n \leq s-3$. Thus we have again $j \leq \frac{1}{2}(s-4)$.

Assume now that s is odd, say $s=2 t+1$. Instead of applying Newton's method for $x_{0}=p_{t-1} / q_{t-1}$,
we will apply the "regula falsi" method for $x_{0}=$ p_{t-1} / q_{t-1} and $x_{1}=p_{t} / q_{t}$. It was proved by Frank [1962] that with this choice of x_{0} and x_{1} we have

$$
R_{t-1, t}=\frac{x_{0} x_{1}+d}{x_{0}+x_{1}}=\frac{p_{s-1}}{q_{s-1}}
$$

If $t-1<n<s-1$, then from $R_{s-1}=p_{2 s-1} / q_{2 s-1}$ we obtain $j \leq \frac{1}{2}(s-3)$ as above. Thus, assume that $n \leq t-1$. Since $\left(x_{0} x_{1}+d\right) /\left(x_{0}+x_{1}\right)$ lies between the numbers x_{0} and x_{1}, we conclude that

$$
\left|R_{t-1, t}-\sqrt{d}\right|<\left|R_{t-1}-\sqrt{d}\right|
$$

Hence, by Lemma 2.5, we have $2 n+1+2 j \leq s-2$ and $j \leq \frac{1}{2}(s-3)$.

The next lemma shows that the estimate from Proposition 2.6 is sharp.

Lemma 2.7. Let $t \geq 1$ and $m \geq 5$ be integers such that $m \equiv \pm 1(\bmod 6)$ and let

$$
d=F_{m-2}^{2}\left(\left(2 F_{m-2} t-F_{m-4}\right)^{2}+4\right) / 4
$$

Then

$$
\begin{align*}
& \sqrt{d}=\left[\frac{1}{2} F_{m-2}\left(2 F_{m-2} t-F_{m-4}\right)\right. \\
& \overline{2 t-1, \underbrace{1, \ldots, 1}_{m-3}}, 2 t-1, F_{m-2}\left(2 F_{m-2} t-F_{m-4}\right) \tag{2-4}
\end{align*} .
$$

Therefore, $s(d)=m$.
Furthermore, $R_{0}=p_{m-2} / q_{m-2}$ and hence

$$
\begin{aligned}
j(d, 0) & =\frac{1}{2}(m-3), \\
j(d, k m) & =\frac{1}{2}(m-3), \\
j(d, k m-2) & =-\frac{1}{2}(m-3) \quad \text { for } k \geq 1 .
\end{aligned}
$$

Proof. Since $m \equiv \pm 1(\bmod 6), \frac{1}{2} F_{m-2} F_{m-4}$ is an integer. It is clear that $a_{0}=\lfloor\sqrt{d}\rfloor=\frac{1}{2} F_{m-2}\left(2 F_{m-2} t-\right.$ F_{m-4}). Then

$$
\begin{aligned}
a_{1} & =\left\lfloor\frac{1}{\sqrt{d}-a_{0}}\right\rfloor=\left\lfloor\frac{\sqrt{d}+a_{0}}{d-a_{0}^{2}}\right\rfloor \\
& =\left\lfloor\frac{\sqrt{d}+a_{0}}{F_{m-2}^{2}}\right\rfloor=\left\lfloor\frac{2 a_{0}}{F_{m-2}^{2}}\right\rfloor \\
& =\left\lfloor 2 t-\frac{F_{m-4}}{F_{m-2}}\right\rfloor=2 t-1 .
\end{aligned}
$$

Let

$$
\sqrt{d}=a_{0}+\frac{1}{a_{1}+\frac{1}{\alpha_{2}}}
$$

Then

$$
\frac{1}{\alpha_{2}}=\frac{\sqrt{d}-a_{0}+F_{m-2} F_{m-3}}{F_{m-2}^{2}}
$$

and

$$
\begin{equation*}
\frac{1}{\alpha_{2}}>\frac{F_{m-3}}{F_{m-2}} . \tag{2-5}
\end{equation*}
$$

Since

$$
\begin{aligned}
\sqrt{d} & =\sqrt{a_{0}^{2}+F_{m-2}^{2}}=a_{0} \sqrt{1+\frac{F_{m-2}^{2}}{a_{0}^{2}}} \\
& <a_{0}+\frac{F_{m-2}^{2}}{2 a_{0}} \leq a_{0}+\frac{F_{m-2}^{2}}{F_{m-2} F_{m-1}}=a_{0}+\frac{F_{m-2}}{F_{m-1}}
\end{aligned}
$$

we have

$$
\begin{aligned}
\frac{1}{\alpha_{2}} & <\frac{F_{m-2}^{2} / F_{m-1}+F_{m-2} F_{m-3}}{F_{m-2}^{2}} \\
& =\frac{F_{m-1} F_{m-3}+1}{F_{m-1} F_{m-2}}=\frac{F_{m-2}}{F_{m-1}} .
\end{aligned}
$$

From this and (2-5) we conclude that

$$
\begin{equation*}
\frac{1}{\alpha_{2}}=[0 ; \underbrace{1,1, \ldots, 1}_{m-3}, y] \tag{2-6}
\end{equation*}
$$

and $a_{2}=a_{3}=\cdots=a_{m-2}=1$. Furthermore, from (2-6) we have

$$
\frac{1}{\alpha_{2}}=\frac{y F_{m-3}+F_{m-4}}{y F_{m-2}+F_{m-3}}
$$

and

$$
\begin{align*}
& y=\frac{\alpha_{2} F_{m-4}-F_{m-3}}{F_{m-2}-\alpha_{2} F_{m-3}} \\
& =\frac{F_{m-2}+F_{m-3} a_{0}-F_{m-3} \sqrt{d}}{F_{m-2}\left(\sqrt{d}-a_{0}\right)} \frac{\sqrt{d}+a_{0}}{\sqrt{d}+a_{0}} \\
& \times \frac{F_{m-2}+F_{m-3} a_{0}+F_{m-3} \sqrt{d}}{F_{m-2}+F_{m-3} a_{0}+F_{m-3} \sqrt{d}} \\
& =\frac{\sqrt{d}+a_{0}}{F_{m-2}\left(F_{m-2}+F_{m-3}\left(\sqrt{d}+a_{0}\right)\right)} \\
& \times\left(1+F_{m-3} F_{m-2}(2 t-1)\right) . \tag{2-7}
\end{align*}
$$

Let $1 / z=y-(2 t-1)$. From (2-7) we obtain

$$
\begin{aligned}
z & =\frac{F_{m-2}^{2}+F_{m-2} F_{m-3}\left(\sqrt{d}+a_{0}\right)}{\sqrt{d}-a_{0}+F_{m-2} F_{m-3}} \\
& >\frac{2 a_{0} F_{m-2} F_{m-3}}{1+F_{m-2} F_{m-3}} \geq \frac{4}{3} a_{0} \geq a_{0}+1
\end{aligned}
$$

We have $a_{m-1}=\lfloor y\rfloor=2 t-1$ and $a_{m} \geq a_{0}+1$. But now from [Perron 1954, Satz 3.13] it follows that $a_{m}=2 a_{0}$ and $s(d)=m$.

Now consider the approximant

$$
\begin{aligned}
R_{0} & =\frac{1}{2}\left(a_{0}+\frac{d}{a_{0}}\right)=\frac{a_{0}^{2}+d}{2 a_{0}}=\frac{2 d-F_{m-2}^{2}}{F_{m-2}\left(2 F_{m-2} t-F_{m-4}\right)} \\
& =\frac{F_{m-2}\left(\left(2 F_{m-2} t-F_{m-4}\right)^{2}+2\right)}{2\left(2 F_{m-2} t-F_{m-4}\right)} .
\end{aligned}
$$

From (2-4) we have

$$
\begin{aligned}
\frac{p_{m-2}}{q_{m-2}} & =a_{0}+\frac{1}{a_{1}+F_{m-3} / F_{m-2}} \\
& =a_{0}+\frac{F_{m-2}}{(2 t-1) F_{m-2}+F_{m-3}} \\
& =a_{0}+\frac{F_{m-2}}{2 t F_{m-2}-F_{m-4}}=R_{0},
\end{aligned}
$$

and $j(d, 0)=\frac{1}{2}(m-3)$ as we claimed. Now Lemmas 2.3 and 2.4 imply that $j(d, k m)=\frac{1}{2}(m-3)$ and $j(d, k m-2)=-\frac{1}{2}(m-3)$ for $k \geq 1$.

Corollary 2.8. We have $\sup \{|j(d, n)|\}=+\infty$ and

$$
\limsup \left\{\frac{|j(d, n)|}{s(d)}\right\}=\frac{1}{2}
$$

There remains the question how large $|j|$ can be compared with d. In [Cohn 1977] it was proved that

$$
s(d)<\frac{7}{2 \pi^{2}} \sqrt{d} \log d+O(\sqrt{d}) .
$$

However, under the extended Riemann Hypothesis for $\mathbb{Q}(\sqrt{d})$ one would expect that

$$
s(d)=O(\sqrt{d} \log \log d)
$$

[Williams 1981; Patterson and Williams 1985] and therefore $|j(d, n)|=O(\sqrt{d} \log \log d)$.

Set
$d(j)=\min \{d$: there exist n such that $j(d, n) \geq j\}$.
In Table 1 we list values of $d(j)$ for $1 \leq j \leq 48$ such that $d(j)>d\left(j^{\prime}\right)$ for $j^{\prime}<j$. We also give corresponding values n and k such that $R_{n}=p_{k} / q_{k}=$ $p_{2 n+1+2 j} / q_{2 n+1+2 j}$.

We don't have enough data to support any conjecture about the rate of growth of $d(j)$. In particular, it remains open whether

$$
\lim \sup \{|j(d, n)| / \sqrt{d}\}>0
$$

$d(j)$	$s(d)$	n	k	$j(d, n)$	$\frac{\log d(j)}{\log j(d, n)}$	$\frac{\sqrt{d(j)}}{j(d, n)}$
13	5	5	3	1		3.60555
124	16	1	7	2	6.95420	5.56776
181	21	4	15	3	4.73188	4.48454
989	32	7	23	4	4.97491	7.86209
1021	49	12	35	5	4.30494	6.39062
1549	69	18	49	6	4.09953	6.55956
3277	35	6	27	7	4.15984	8.17787
3949	128	79	175	8	3.98242	7.85513
10684	212	46	113	10	4.02873	10.3363
12421	121	30	89	14	3.57216	7.96068
22081	218	62	155	15	3.69361	9.90645
33619	282	83	199	16	3.75925	11.4597
39901	449	287	609	17	3.73927	11.7501
45109	470	143	325	19	3.63969	11.1784
48196	374	129	299	20	3.59946	10.9768
60631	504	149	343	22	3.56273	11.1924
78439	696	208	467	25	3.50125	11.2028
81841	494	153	361	27	3.43237	10.5955
170689	743	207	473	29	3.57783	14.2464
179356	776	500	1063	31	3.52276	13.6614
194374	738	220	505	32	3.51370	13.7775
224239	1008	302	673	34	3.49382	13.9276
238081	979	613	1297	35	3.48218	13.9410
241021	1008	311	695	36	3.45823	13.6372
242356	1090	710	1499	39	3.38418	12.6230
253324	984	291	667	42	3.32893	11.9836

TABLE 1. Values of $d(j)$ for $1 \leq j \leq 42$.

3. THE NUMBER OF GOOD APPROXIMANTS

Proposition 3.1. If $a_{n+1}>2 \sqrt{\sqrt{d}+1}$, then R_{n} is a convergent of \sqrt{d}.

Proof. From (1-2) and Lemma 2.1 we have

$$
R_{n}-\sqrt{d}<\frac{1}{2 p_{n} q_{n}^{3} a_{n+1}^{2}}
$$

Let $R_{n}=u / v$, where $(u, v)=1$. Then certainly $v \leq 2 p_{n} q_{n}$, and

$$
\begin{aligned}
\left|\sqrt{d}-\frac{u}{v}\right| & <\frac{1}{8 p_{n}^{2} q_{n}^{2}} \frac{4 p_{n}}{q_{n} a_{n+1}^{2}} \\
& <\frac{1}{2 v^{2}} \frac{1}{\sqrt{d}+1}\left(\sqrt{d}+\frac{1}{a_{n+1} q_{n}^{2}}\right)<\frac{1}{2 v^{2}}
\end{aligned}
$$

which proves the proposition.
Theorem 3.2. R_{n} is a convergent of \sqrt{d} for all $n \geq 0$ if and only if $s(d) \leq 2$.

Proof. As we mentioned in the introduction, the result of Mikusiński [1954] imply that if $s(d) \leq 2$, then all R_{n} are convergents of \sqrt{d}.

Now assume that R_{n} is a convergent of \sqrt{d} for all $n \geq 0$. Then

$$
R_{n}=\frac{p_{2 n+1}}{p_{2 n+1}} \quad \text { for all } n \geq 0
$$

This follows from the fact that $R_{s-1}=p_{2 s-1} / q_{2 s-1}$, together with Corollary 2.2 and Lemma 2.5. Therefore, $R_{0}=p_{1} / q_{1}$ and

$$
\begin{equation*}
R_{k s-1}=\frac{p_{2 k s+1}}{q_{2 k s+1}} \quad \text { for all } n \geq 0 \tag{3-1}
\end{equation*}
$$

Let $\sqrt{d}=\left[a_{0} ; \overline{a_{1}, \ldots, a_{s-1}, 2 a_{0}}\right]$ and $d=a_{0}^{2}+t$. Then, by [Komatsu 1999, Corollary 1],

$$
\begin{equation*}
R_{k s}=\frac{\alpha p_{2 k s+2}+p_{2 k s+1}}{\alpha q_{2 k s+2}+q_{2 k s+1}} \tag{3-2}
\end{equation*}
$$

where

$$
\alpha=\frac{2 a_{0}-a_{1} t}{\left(a_{1} a_{2}+1\right) t-2 a_{0}}
$$

From (3-1) and (3-2) it follows that $\alpha=0$ and therefore $t=2 a_{0} / a_{1}$. It is well known (see [Sierpiński 1987, p. 322], for example) that if $d=a_{0}^{2}+t$, where t is a divisor of $2 a_{0}$, then $s(d) \leq 2$.

If R_{n} is a convergent of \sqrt{d}, then we will say that R_{n} is a "good approximant". Set
$b(d)=\mid\{n: 0 \leq n \leq s-1$ and R_{n} is a convergent of $\left.\sqrt{d}\right\} \mid$.

Theorem 3.2 shows that $s(d)>2$ implies $s(d) / b(d)>1$. Komatsu [1999] proved that if $d=(2 x+1)^{2}+4$ then $b(d)=3, s(d)=5$ (see also [Elezović 1997]) and if $d=(2 x+3)^{2}-4$ then $b(d)=4, s(d)=6$.

Example 3.3. If

$$
d=16 x^{4}-16 x^{3}-12 x^{2}+16 x-4
$$

where $x \geq 2$, then $s(d)=8$ and $b(d)=6$. Using algorithm (1-1) it is straightforward to check that

$$
\begin{aligned}
\sqrt{d}= & {[(2 x+1)(2 x-2)} \\
& \left.\quad \overline{x, 1,1,2 x^{2}-x-2,1,1, x, 2(2 x+1)(2 x-2)}\right] .
\end{aligned}
$$

Hence, $s(d)=8$.

Now the direct computation shows that

$$
\begin{aligned}
R_{0} & =\frac{p_{3}}{q_{3}}=\frac{2 x\left(4 x^{2}-3\right)}{2 x+1} \\
R_{1} & =\frac{p_{5}}{q_{5}}=\frac{(2 x-1)\left(8 x^{4}-8 x^{2}+1\right)}{2 x\left(2 x^{2}-1\right)} \\
R_{3} & =\frac{p_{7}}{q_{7}}=\frac{\left(2 x^{2}-1\right)\left(16 x^{4}-16 x^{2}+1\right)}{x(2 x+1)\left(4 x^{2}-3\right)} \\
R_{5} & =\frac{p_{9}}{q_{9}}=\frac{(2 x-1)\left(128 x^{8}-256 x^{6}+160 x^{4}-32 x^{2}+1\right)}{4 x\left(2 x^{2}-1\right)\left(8 x^{4}-8 x^{2}+1\right)} \\
R_{6} & =\frac{p_{11}}{q_{11}}=\frac{2 x\left(4 x^{2}-3\right)\left(64 x^{6}-96 x^{4}+36 x^{2}-3\right)}{(2 x+1)\left(8 x^{3}-6 x-1\right)\left(8 x^{3}-6 x+1\right)} \\
R_{7} & =\frac{p_{15}}{q_{15}} \\
& =\frac{\left(8 x^{4}-8 x^{2}+1\right)\left(256 x^{8}-512 x^{6}+320 x^{4}-64 x^{2}+1\right)}{2 x(2 x+1)\left(2 x^{2}-1\right)\left(4 x^{2}-3\right)\left(16 x^{4}-16 x^{2}+1\right)} .
\end{aligned}
$$

Hence, $b(d)=6$.
In the same manner we can check that for $d=$ $16 x^{4}+48 x^{3}+52 x^{2}+32 x+12, x \geq 1$, we have also $s(d)=8$ and $b(d)=6$.

Let
$s_{b}=\min \{s:$ there exists d such that

$$
s(d)=s \text { and } b(d)=b\}
$$

We know that $s_{1}=1, s_{2}=2, s_{3}=5, s_{4}=6$ and $s_{6}=8$. In Table 2 we list upper bounds for s_{b} obtained by experiments.

b	s_{b}	s_{b} / b \leq	b \leq	s_{b} \leq	s_{b} / b \leq	b s_{b} \leq	s_{b} / b \leq	
3	5	1.66667	12	18	1.50000	22	46	2.09091
4	6	1.50000	13	27	2.07692	23	69	3.00000
5	9	1.80000	14	22	1.57143	24	38	1.58333
6	8	1.33333	15	41	2.73333	25	69	2.76000
7	13	1.85714	16	26	1.62500	26	50	1.92308
8	12	1.50000	17	43	2.52941	27	97	3.59259
9	17	1.88889	18	32	1.77778	28	58	2.07143
10	14	1.40000	19	41	2.15789	29	97	3.34483
11	23	2.09091	20	34	1.70000	30	58	1.93333
			21	41	1.95238			

TABLE 2. Upper bounds for s_{b}.

Questions. 1. Is it true that $\inf \left\{s_{b} / b: b \geq 3\right\}=\frac{4}{3}$? 2. What can be said about $\sup \left\{s_{b} / b: b \geq 1\right\}$?

Example 3.4. Let $d=25\left((10 x+1)^{2}+4\right)$. Then

$$
\begin{array}{r}
\sqrt{d}=[50 x+5 ; \overline{x, 9,1, x-1,4,1,4 x-1,1,1,1,1, x-1,1,1} \\
\quad \overline{25 x+2,4 x, 2,2, x-1,1,2,2,1, x-1,2,2,4 x, 25 x+2,1} \\
\overline{1, x-1,1,1,1,1,4 x-1,1,4, x-1,1,9, x, 100 x+10}] .
\end{array}
$$

Hence, $s(d)=43$. Furthermore, $b(d) \geq 15$. Indeed, it may be verified that $R_{n}=p_{k} / q_{k}$ for (n, k) one of $(0,3),(3,11),(6,15),(11,23),(14,27),(15,35)$, $(18,41),(23,43),(26,49),(27,57),(30,61),(35,69)$, $(38,73),(41,81),(42,85)$.

We expect that Example 3.4 may be generalized to yield positive integers d with $b(d)$ arbitrary large. In this connection, we have the following conjecture.

Conjecture 3.5. Let $d=F_{m}^{2}\left(\left(2 F_{m} x \pm F_{m-3}\right)^{2}+4\right)$, with $m \equiv \pm 1(\bmod 6)$. Then $b(d) \geq 3 F_{m}$.

We have checked Conjecture 3.5 for $m \leq 25$. We have also a more precise form of Conjecture 3.5. Namely, we have noted that if

$$
d=F_{m}^{2}\left(\left(2 F_{m} x+F_{m-3}\right)^{2}+4\right)
$$

where x is sufficiently large, then in the sequence $a_{1}, a_{2}, \ldots, a_{s-1}$ the numbers $x-1, x, 4 x-1$ and $4 x$ appear $2 F_{n}-F_{n-3}-3, F_{n-3}+2, L_{n-3}+1$ and $2 F_{n-3}$ times, respectively, and the number $\frac{1}{2}\left(a_{0}-1\right)$ appears once. If this conjecture on the sequence a_{1}, a_{2}, \ldots, a_{s-1} is true, then at least $3 F_{n}$ elements in that sequence are greater then $2 \sqrt{\sqrt{d}+1}$, and Proposition 3.1 implies $b(d) \geq 3 F_{n}$. We have also noted similar phenomena for $d=F_{m}^{2}\left(\left(2 F_{m} x-F_{m-3}\right)^{2}+4\right)$.

As in the case of $j(d, n)$, we are also interested in the question how large $b(d)$ can be compared with d. Let

$$
d_{b}=\min \{d: b(d) \geq b\}
$$

Table 3 lists values of d_{b} for $1 \leq b \leq 102$ such that $d_{b}>d_{b^{\prime}}$ for $b^{\prime}<b$.

Consider the expression $\log d_{b} / \log b$. Conjecture 3.5 implies that

$$
\sup \left\{\frac{\log d_{b}}{\log b}: b \geq 2\right\} \leq 4
$$

and Table 3 suggests that this bound might be less than 4. It would be interesting to find exact value for $\sup \left\{\log d_{b} / \log b: b \geq 2\right\}$.

d_{b}	$s\left(d_{b}\right)$	b	$\frac{\log d_{b}}{\log b}$	d_{b}	$s\left(d_{b}\right)$	b	$\frac{\log d_{b}}{\log b}$
2	1	1		19996	272	40	2.68463
3	2	2	1.58496	22309	250	42	2.67887
13	5	3	2.33472	23149	288	50	2.56893
21	6	4	2.19616	31669	368	52	2.62274
43	10	6	2.09917	46981	430	58	2.64934
76	12	8	2.08264	52789	514	62	2.63477
244	26	14	2.08300	73516	644	64	2.69430
796	44	16	2.40916	76549	548	68	2.66517
1141	58	18	2.43556	87109	648	72	2.65976
1516	76	20	2.44475	103741	618	74	2.65100
2629	100	22	2.54748	140701	690	80	2.70523
3004	108	24	2.51969	163669	776	82	2.72439
3949	128	26	2.54173	180709	954	86	2.71749
4204	116	28	2.50399	228229	1160	90	2.74192
6589	134	30	2.58531	249601	950	92	2.74839
10021	190	32	2.65815	273361	1076	94	2.75539
12229	174	36	2.62635	279301	1214	98	2.73503
18484	258	38	2.70087	344509	1164	102	2.75675

TABLE 3. Value of d_{b} for $b \leq 102$.

REFERENCES

[Clemens et al. 1995] L. E. Clemens, K. D. Merrill and D. W. Roeder, "Continued fractions and series", J. Number Theory 54 (1995), 309-317.
[Cohn 1977] J. H. E. Cohn, "The length of the period of the simple continued fraction of $d^{1 / 2} "$, Pacific J. Math. 71 (1977), 21-32.
[Elezović 1997] N. Elezović, "A note on continued fractions of quadratic irrationals", Math. Commun. 2 (1997), 27-33.
[Frank 1962] E. Frank, "On continued fraction expansions for binomial quadratic surds", Numer. Math. 4 (1962), 85-95.
[Komatsu 1999] T. Komatsu, "Continued fractions and Newton's approximants", Math. Commun. 4 (1999), 167-176.
[Mikusiński 1954] J. Mikusiński, "Sur la méthode d'approximation de Newton", Ann. Polon. Math. 1 (1954), 184-194.
[Patterson and Williams 1985] C. D. Patterson and H. C. Williams, "Some periodic continued fractions with long periods", Math. Comp. 44 (1985), 523-532.
[Perron 1954] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, Stuttgart, 1954.
[Schmidt 1980] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980.
[Sharma 1959] A. Sharma, "On Newton's method of approximation", Ann. Polon. Math. 6 (1959), 295300.
[Sierpiński 1987] W. Sierpiński, Elementary theory of numbers, PWN, Warszawa; North-Holland, Amsterdam, 1987.
[Williams 1981] H. C. Williams, "A numerical inverstigation into the length of the period of the continued fraction expansion of $\sqrt{d} "$, Math. Comp. 36 (1981), 593-601.

Andrej Dujella, Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia (duje@math.hr)

Received March 13, 2000; accepted in revised form September 20, 2000

