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Two of the four distinct Daubechies scaling functionsfor N = 4. The numbers indicate the coe�cientsh�3; : : : ; h4. The other two scaling functions can beobtained by reversing the coe�cients hk.
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Using a result on Riesz factorizations, we show that there are at

most 2N�1 and at least 2bN/2c distinct Daubechies scaling func-

tions with support in [1�N, N].

We de�ne a Daubechies scaling function to be afunction ' 2 L2(R ), with support in [1�N; N ] andsatisfying the dilation equation'(x) =Xk2Z hk'(2x�k);where N is a positive integer and the sequence fhkg,known as the scaling function's �lter sequence, sat-is�es the conditions hk = 0 for k =2 [1�N; N ] andNXk=1�N hk = 2;NXk=1�N hkhk�2l = 2�0;l; for l = 0; : : : ; N�1;NXk=1�N(�1)kh1�kkl = 0; for l = 0; : : : ; N�1:

9>>>>>>>>>>>=>>>>>>>>>>>;
(1)

These conditions are motivated by the use of scal-ing functions and �lter sequences in wavelet analy-sis [Daubechies and Lagarias 1991; 1992]; see also[Chyzak et al. 2001] in this issue, where the equa-tions above are summarized (Section 2) and whereit is conjectured (page 75) that there are at most2N�1 solutions to the system (1).Here we prove that there are at most 2N�1 realsolutions to the system (1), this being the case ofconsequence in wavelet analysis.
Theorem 1. For a �xed N > 0, the system (1) inh1�N ; : : : ; hN has at most 2N�1 real solutions . Inother words , there are at most 2N�1 distinct Daube-chies scaling functions with support in [1�N; N ].
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The proof uses a lemma on Riesz factorizations. LetG(z) be a Laurent polynomial, that is,G(z) =Xk2Z ckzk;where �nitely many ck 6= 0. We consider the ques-tion: How may real Laurent polynomials f(z) arethere such that f(z)f(z�1) = G(z) (Riesz factor-ization)? Obviously if f(z) is a solution then so is�zmf(z) for any m 2 Z . Call two Laurent polyno-mials f(z) and g(z) equivalent if g(z) = zmf(z) org(z) = �zmf(z) for some m 2 Z . So our questionconcerns the number of inequivalent solutions.Not every Laurent polynomial G(z) has a Rieszfactorization G(z) = f(z)f(z�1) for some real Lau-rent polynomial f(z). If it does we call G(z) Rieszfactorizable. It is well known [Daubechies 1992] thatG(z) is Riesz factorizable if and only if G(z) =G(z�1) and G(z) � 0 on the unit circle jzj = 1.
Lemma 2. Let G(z) =PMk=�M ckzk be real and Rieszfactorizable. Then the number of inequivalent realLaurent polynomials f(z) satisfyingf(z)f(z�1) = G(z)is at most 2r+s, where 2r and 4s denote the numberof real and complex roots of G(z) (counting multi-plicity) not on the unit circle. In particular , it is atmost 2M .
Proof. For any two roots z1 and z2 of G(z) writez1 � z2 if z2 is one of z1, z�11 , �z1, or �z�11 . It followsfrom G(z) = f(z)f(z�1) that if z� is a root of G thenso is every w � z� and with the same multiplicity.We partition the roots of G not on the unit circleinto equivalent classes of the relation �, and labelthem (counting multiplicity)R1; : : : ;Rr;C1; : : : ;Cs;where each Ri and Cj contain real and complex rootsof G not on the unit circle, respectively. ClearlyjRij = 2 and jCj j = 4. Let U denote the roots of Gthat are on the unit circle.Observe that up to equivalence a Riesz factoriza-tion G(z) = f(z)f(z�1) is completely determinedby the roots of f(z). Furthermore, if z0 is a rootof f(z) with jz0j = 1 then so is �z0 = z�10 . It fol-lows that z0 must also be a root of f(z�1). Henceall roots in U have even multiplicities and they splitevenly between f(z) and f(z�1). This fact implies

that the Riesz factorization G(z) = f(z)f(z�1) isdetermined completely by the roots of f(z) that donot lie on the unit circle.To count the number of di�erent factors f(z), notethat if zi 2 Ri is a root of f(z) then the other ele-ment z�1i in Ri must be a root of f(z�1). Similarlyif zj 2 Cj is a root of f(z) then so is �zj, while theother two elements in Cj will be roots of f(z�1). Sothere are two ways to select roots for f(z) from eachof Ri and Cj . The number of di�erent factors f(z)such that G(z) = f(z)f(z�1) is therefore at most2r+s. Finally, G(z) has at most 2M roots. Hence2r+s � 2M . �
Remark. The number of Riesz factorizations of G(z)is exactly 2r+s if all roots of G not on the unit cir-cle are distinct. Otherwise it is strictly less. Theexact number is not hard to compute, following theproof of the lemma. Let R01; : : :R0r0 and C01; : : : ;C0s0be the distinct equivalent classes of R1; : : :Rr andC1; : : : ;Cs, respectively. Let mi and nj denote themultiplicity of the roots of R0i and C0j , respectively.Then the number of inequivalent Riesz factoriza-tions of G(z) is(m1+1) � � � (mr0+1)(n1+1) � � � (ns0+1): (2)

Proof of Theorem 1. Suppose that the sequence of realnumbers fhk : 1�N � k � Ng satis�es (1). Let
H(z) = 12 NXk=1�N hkzk:Recall (from [Daubechies 1992], for example) thatthe third set of equations in (1) is equivalent toH(z) = �1 + z2 �Nf(z) (3)for some real Laurent polynomial f(z), whereas themiddle set of equations is equivalent toH(z)H(z�1) +H(�z)H(�z�1) = 1: (4)Furthermore H(z) satis�es (4) if and only if

f(ei�)f(e�i�) = N�1Xk=0�N+k�1k �(1� cos �)k;
which is equivalent to
f(z)f(z�1) = N�1Xk=0�N+k�1k ��2� z � z�12 �k: (5)
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Expanding the right hand side of (5) yieldsG(z) = N�1Xk=1�N ckzkfor some ck. By Lemma 2 there are at most 2N�1inequivalent solutions f(z) satisfying (5).We now need only show that any two equiva-lent solutions f1(z) and f2(z) of (3) and (5) mustbe identical. First, it follows from H(1) = 1 thatf1(1) = f2(1) = 1. Hence f2(z) = zmf1(z) for somem 2 Z . Next, any solution f(z) to (3) and (5) musthave the form f(z) = 0Xk=1�N ckzkwith c1�N 6= 0 by (5). Hence m = 0, and so f1(z) =f2(z). �
Remark. This also shows that there are at least 2bN=2cdistinct Daubechies scaling functions with supportin [1�N; N ], where bN=2c denotes the largest inte-ger not exceeding N=2. This is because the functionin (5) cannot have zeros on the unit disk.
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