# On the Number of Daubechies Scaling Functions and a Conjecture of Chyzak et al. 

Yang Wang




Two of the four distinct Daubechies scaling functions for $N=4$. The numbers indicate the coefficients $h_{-3}, \ldots, h_{4}$. The other two scaling functions can be obtained by reversing the coefficients $h_{k}$.

[^0]Using a result on Riesz factorizations, we show that there are at most $2^{\mathrm{N}-1}$ and at least $2^{\lfloor\mathrm{N} / 2\rfloor}$ distinct Daubechies scaling functions with support in $[1-\mathrm{N}, \mathrm{N}]$.

We define a Daubechies scaling function to be a function $\varphi \in L^{2}(\mathbb{R})$, with support in $[1-N, N]$ and satisfying the dilation equation

$$
\varphi(x)=\sum_{k \in \mathbb{Z}} h_{k} \varphi(2 x-k)
$$

where $N$ is a positive integer and the sequence $\left\{h_{k}\right\}$, known as the scaling function's filter sequence, satisfies the conditions $h_{k}=0$ for $k \notin[1-N, N]$ and

$$
\left.\begin{array}{l}
\sum_{k=1-N}^{N} h_{k}=2, \\
\sum_{k=1-N}^{N} h_{k} h_{k-2 l}=2 \delta_{0, l}, \quad \text { for } l=0, \ldots, N-1,  \tag{1}\\
\sum_{k=1-N}^{N}(-1)^{k} h_{1-k} k^{l}=0, \quad \text { for } l=0, \ldots, N-1
\end{array}\right\}
$$

These conditions are motivated by the use of scaling functions and filter sequences in wavelet analysis [Daubechies and Lagarias 1991; 1992]; see also [Chyzak et al. 2001] in this issue, where the equations above are summarized (Section 2) and where it is conjectured (page 75) that there are at most $2^{N-1}$ solutions to the system (1).

Here we prove that there are at most $2^{N-1}$ real solutions to the system (1), this being the case of consequence in wavelet analysis.

Theorem 1. For a fixed $N>0$, the system (1) in $h_{1-N}, \ldots, h_{N}$ has at most $2^{N-1}$ real solutions. In other words, there are at most $2^{N-1}$ distinct Daubechies scaling functions with support in $[1-N, N]$.

The proof uses a lemma on Riesz factorizations. Let $G(z)$ be a Laurent polynomial, that is,

$$
G(z)=\sum_{k \in \mathbb{Z}} c_{k} z^{k},
$$

where finitely many $c_{k} \neq 0$. We consider the question: How may real Laurent polynomials $f(z)$ are there such that $f(z) f\left(z^{-1}\right)=G(z)$ (Riesz factorization)? Obviously if $f(z)$ is a solution then so is $\pm z^{m} f(z)$ for any $m \in \mathbb{Z}$. Call two Laurent polynomials $f(z)$ and $g(z)$ equivalent if $g(z)=z^{m} f(z)$ or $g(z)=-z^{m} f(z)$ for some $m \in \mathbb{Z}$. So our question concerns the number of inequivalent solutions.

Not every Laurent polynomial $G(z)$ has a Riesz factorization $G(z)=f(z) f\left(z^{-1}\right)$ for some real Laurent polynomial $f(z)$. If it does we call $G(z)$ Riesz factorizable. It is well known [Daubechies 1992] that $G(z)$ is Riesz factorizable if and only if $G(z)=$ $G\left(z^{-1}\right)$ and $G(z) \geq 0$ on the unit circle $|z|=1$.
Lemma 2. Let $G(z)=\sum_{k=-M}^{M} c_{k} z^{k}$ be real and Riesz factorizable. Then the number of inequivalent real Laurent polynomials $f(z)$ satisfying

$$
f(z) f\left(z^{-1}\right)=G(z)
$$

is at most $2^{r+s}$, where $2 r$ and $4 s$ denote the number of real and complex roots of $G(z)$ (counting multiplicity) not on the unit circle. In particular, it is at most $2^{M}$.

Proof. For any two roots $z_{1}$ and $z_{2}$ of $G(z)$ write $z_{1} \sim z_{2}$ if $z_{2}$ is one of $z_{1}, z_{1}^{-1}, \bar{z}_{1}$, or $\bar{z}_{1}^{-1}$. It follows from $G(z)=f(z) f\left(z^{-1}\right)$ that if $z_{*}$ is a root of $G$ then so is every $w \sim z_{*}$ and with the same multiplicity. We partition the roots of $G$ not on the unit circle into equivalent classes of the relation $\sim$, and label them (counting multiplicity)

$$
\mathcal{R}_{1}, \ldots, \mathcal{R}_{r}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{s}
$$

where each $\mathcal{R}_{i}$ and $\mathcal{C}_{j}$ contain real and complex roots of $G$ not on the unit circle, respectively. Clearly $\left|\mathcal{R}_{i}\right|=2$ and $\left|\mathcal{C}_{j}\right|=4$. Let $\mathcal{U}$ denote the roots of $G$ that are on the unit circle.

Observe that up to equivalence a Riesz factorization $G(z)=f(z) f\left(z^{-1}\right)$ is completely determined by the roots of $f(z)$. Furthermore, if $z_{0}$ is a root of $f(z)$ with $\left|z_{0}\right|=1$ then so is $\bar{z}_{0}=z_{0}^{-1}$. It follows that $z_{0}$ must also be a root of $f\left(z^{-1}\right)$. Hence all roots in $\mathcal{U}$ have even multiplicities and they split evenly between $f(z)$ and $f\left(z^{-1}\right)$. This fact implies
that the Riesz factorization $G(z)=f(z) f\left(z^{-1}\right)$ is determined completely by the roots of $f(z)$ that do not lie on the unit circle.

To count the number of different factors $f(z)$, note that if $z_{i} \in \mathcal{R}_{i}$ is a root of $f(z)$ then the other element $z_{i}^{-1}$ in $\mathcal{R}_{i}$ must be a root of $f\left(z^{-1}\right)$. Similarly if $z_{j} \in \mathfrak{C}_{j}$ is a root of $f(z)$ then so is $\bar{z}_{j}$, while the other two elements in $\mathcal{C}_{j}$ will be roots of $f\left(z^{-1}\right)$. So there are two ways to select roots for $f(z)$ from each of $\mathcal{R}_{i}$ and $\mathfrak{C}_{j}$. The number of different factors $f(z)$ such that $G(z)=f(z) f\left(z^{-1}\right)$ is therefore at most $2^{r+s}$. Finally, $G(z)$ has at most $2 M$ roots. Hence $2^{r+s} \leq 2^{M}$.
Remark. The number of Riesz factorizations of $G(z)$ is exactly $2^{r+s}$ if all roots of $G$ not on the unit circle are distinct. Otherwise it is strictly less. The exact number is not hard to compute, following the proof of the lemma. Let $\mathcal{R}_{1}^{\prime}, \ldots \mathcal{R}_{r^{\prime}}^{\prime}$ and $\mathfrak{C}_{1}^{\prime}, \ldots, \mathfrak{C}_{s^{\prime}}^{\prime}$ be the distinct equivalent classes of $\mathcal{R}_{1}, \ldots \mathcal{R}_{r}$ and $\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{s}$, respectively. Let $m_{i}$ and $n_{j}$ denote the multiplicity of the roots of $\mathcal{R}_{i}^{\prime}$ and $\mathfrak{C}_{j}^{\prime}$, respectively. Then the number of inequivalent Riesz factorizations of $G(z)$ is

$$
\begin{equation*}
\left(m_{1}+1\right) \cdots\left(m_{r^{\prime}}+1\right)\left(n_{1}+1\right) \cdots\left(n_{s^{\prime}}+1\right) . \tag{2}
\end{equation*}
$$

Proof of Theorem 1. Suppose that the sequence of real numbers $\left\{h_{k}: 1-N \leq k \leq N\right\}$ satisfies (1). Let

$$
H(z)=\frac{1}{2} \sum_{k=1-N}^{N} h_{k} z^{k}
$$

Recall (from [Daubechies 1992], for example) that the third set of equations in (1) is equivalent to

$$
\begin{equation*}
H(z)=\left(\frac{1+z}{2}\right)^{N} f(z) \tag{3}
\end{equation*}
$$

for some real Laurent polynomial $f(z)$, whereas the middle set of equations is equivalent to

$$
\begin{equation*}
H(z) H\left(z^{-1}\right)+H(-z) H\left(-z^{-1}\right)=1 . \tag{4}
\end{equation*}
$$

Furthermore $H(z)$ satisfies (4) if and only if

$$
f\left(e^{i \theta}\right) f\left(e^{-i \theta}\right)=\sum_{k=0}^{N-1}\binom{N+k-1}{k}(1-\cos \theta)^{k},
$$

which is equivalent to

$$
\begin{equation*}
f(z) f\left(z^{-1}\right)=\sum_{k=0}^{N-1}\binom{N+k-1}{k}\left(\frac{2-z-z^{-1}}{2}\right)^{k} . \tag{5}
\end{equation*}
$$

Expanding the right hand side of (5) yields

$$
G(z)=\sum_{k=1-N}^{N-1} c_{k} z^{k}
$$

for some $c_{k}$. By Lemma 2 there are at most $2^{N-1}$ inequivalent solutions $f(z)$ satisfying (5).

We now need only show that any two equivalent solutions $f_{1}(z)$ and $f_{2}(z)$ of (3) and (5) must be identical. First, it follows from $H(1)=1$ that $f_{1}(1)=f_{2}(1)=1$. Hence $f_{2}(z)=z^{m} f_{1}(z)$ for some $m \in \mathbb{Z}$. Next, any solution $f(z)$ to (3) and (5) must have the form

$$
f(z)=\sum_{k=1-N}^{0} c_{k} z^{k}
$$

with $c_{1-N} \neq 0$ by (5). Hence $m=0$, and so $f_{1}(z)=$ $f_{2}(z)$.
Remark. This also shows that there are at least $2^{\lfloor N / 2\rfloor}$ distinct Daubechies scaling functions with support in $[1-N, N]$, where $\lfloor N / 2\rfloor$ denotes the largest integer not exceeding $N / 2$. This is because the function in (5) cannot have zeros on the unit disk.

## ACKNOWLEDGEMENT

The author is greatly indebted to the Editor, Silvio Levy, for his encouragement and help.

## REFERENCES

[Chyzak et al. 2001] F. Chyzak, P. Paule, O. Scherzer, A. Schoisswohl, and B. Zimmermann, "The construction of orthonormal wavelets using symbolic methods and a matrix analytical approach for wavelets on the interval", Experiment. Math. 10:1 (2001), 67-86.
[Daubechies 1992] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 61, SIAM, Philadelphia, 1992.
[Daubechies and Lagarias 1991] I. Daubechies and J. C. Lagarias, "Two-scale difference equations, I: Existence and global regularity of solutions", SIAM J. Math. Anal. 22:5 (1991), 1388-1410.
[Daubechies and Lagarias 1992] I. Daubechies and J. C. Lagarias, "Two-scale difference equations, II: Local regularity, infinite products of matrices and fractals", SIAM J. Math. Anal. 23:4 (1992), 1031-1079.

Yang Wang, School of Mathematics, Georgia Institute of Mathematics, Atlanta, GA 30332, United States (wang@math.gatech.edu, http://www.math.gatech.edu/~wang)

Received July 25, 2000; accepted August 17, 2000


[^0]:    Research supported in part by NSF grant DMS-97-06793.

