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Two of the four distinct Daubechies scaling functions
for N = 4. The numbers indicate the coefficients
h_3,...,hs. The other two scaling functions can be
obtained by reversing the coefficients hy.
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Using a result on Riesz factorizations, we show that there are at
most 2N~ and at least 2LV2! distinct Daubechies scaling func-
tions with support in [T—N, NJ.

We define a Daubechies scaling function to be a
function ¢ € L*(R), with support in [I—N, N] and
satisfying the dilation equation

p(z) = hip(2z—k),
keZ
where N is a positive integer and the sequence {hy},
known as the scaling function’s filter sequence, sat-
isfies the conditions hy = 0 for k ¢ [1—N, N] and
N 3\
hy = 2,
T

k=1-N

N
Z hkhk_gl :25071, for lZO,...,N—l, (1)

k=1-N
N

> (=1)fhyyk' =0, forl=0,...,N-1.

k=1-N )

These conditions are motivated by the use of scal-
ing functions and filter sequences in wavelet analy-
sis [Daubechies and Lagarias 1991; 1992]; see also
[Chyzak et al. 2001] in this issue, where the equa-
tions above are summarized (Section 2) and where
it is conjectured (page 75) that there are at most
2N=1 golutions to the system (1).

Here we prove that there are at most 2V~! real
solutions to the system (1), this being the case of
consequence in wavelet analysis.

Theorem 1. For a fited N > 0, the system (1) in
hi_ns-..,hn has at most 2V real solutions. In
other words, there are at most 2V~ distinct Daube-
chies scaling functions with support in [1—N, N].
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The proof uses a lemma on Riesz factorizations. Let
G(z) be a Laurent polynomial, that is,

G(z) = Z 2",
kEZ

where finitely many ¢, # 0. We consider the ques-
tion: How may real Laurent polynomials f(z) are
there such that f(2)f(z7') = G(z) (Riesz factor-
ization)? Obviously if f(z) is a solution then so is
+2™ f(z) for any m € Z. Call two Laurent polyno-
mials f(z) and g(z) equivalent if g(z) = 2™ f(z) or
g(z) = —2™ f(z) for some m € Z. So our question
concerns the number of inequivalent solutions.

Not every Laurent polynomial G(z) has a Riesz
factorization G(z) = f(z)f(27") for some real Lau-
rent polynomial f(z). If it does we call G(z) Riesz
factorizable. It is well known [Daubechies 1992] that
G(z) is Riesz factorizable if and only if G(z) =
G(z7!') and G(z) > 0 on the unit circle |z| = 1.

Lemma 2. Let G(z) = Z,I:I:_M cr2® be real and Riesz
factorizable. Then the number of inequivalent real
Laurent polynomials f(z) satisfying

fR)f(z7) = G(z)
is at most 2"7°, where 2r and 4s denote the number
of real and complex roots of G(z) (counting multi-
plicity) not on the unit circle. In particular, it is at
most 2M.

Proof. For any two roots z; and z, of G(z) write
2y ~ 2o if 2, is one of 2y, z; ', Z;, or Z; '. It follows
from G(z) = f(2)f(z7") that if z, is a root of G then
so is every w ~ z, and with the same multiplicity.
We partition the roots of G not on the unit circle
into equivalent classes of the relation ~, and label
them (counting multiplicity)

le"vgzraela"'aesa

where each R; and €, contain real and complex roots
of G not on the unit circle, respectively. Clearly
|R;| =2 and |C;| = 4. Let U denote the roots of G
that are on the unit circle.

Observe that up to equivalence a Riesz factoriza-
tion G(z) = f(2)f(z7") is completely determined
by the roots of f(z). Furthermore, if z, is a root
of f(z) with |z| = 1 then so is Z, = 2z, '. It fol-
lows that z, must also be a root of f(27!). Hence
all roots in U have even multiplicities and they split
evenly between f(z) and f(z7'). This fact implies

that the Riesz factorization G(z) = f(z)f(z!) is
determined completely by the roots of f(z) that do
not lie on the unit circle.

To count the number of different factors f(z), note
that if z; € R; is a root of f(z) then the other ele-
ment z; ' in R; must be a root of f(271). Similarly
if z; € C; is a root of f(z) then so is Z;, while the
other two elements in €; will be roots of f(z'). So
there are two ways to select roots for f(z) from each
of R; and C;. The number of different factors f(z)
such that G(z) = f(z)f(z7') is therefore at most
275, Finally, G(z) has at most 2M roots. Hence
2rts < oM, U

Remark. The number of Riesz factorizations of G(z)
is exactly 27 if all roots of G not on the unit cir-
cle are distinct. Otherwise it is strictly less. The
exact number is not hard to compute, following the
proof of the lemma. Let R},...R., and C,...,C,
be the distinct equivalent classes of R;,...R, and
Ci,...,Cy, respectively. Let m; and n; denote the
multiplicity of the roots of R] and €, respectively.
Then the number of inequivalent Riesz factoriza-
tions of G(z) is

(mi+1) - (mp+1)(ni+1) -+ (ng+1). ()

Proof of Theorem 1. Suppose that the sequence of real
numbers {h;, : 1-N < k < N} satisfies (1). Let

;X
H(Z>:§ Z hy 2.

k=1-N

Recall (from [Daubechies 1992], for example) that
the third set of equations in (1) is equivalent to

H(z) = (I;Z)Nf(Z) (3)

for some real Laurent polynomial f(z), whereas the
middle set of equations is equivalent to

H)H(zY+ H(—2)H(—z"") = 1. (4)
Furthermore H(z) satisfies (4) if and only if
N-1
e fe ) =S (N - coso),
k=0

which is equivalent to

fRrE = Y (V) ()

k=0
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Expanding the right hand side of (5) yields

N-1
G(z) = Z 2"
k=1—N

for some ¢,. By Lemma 2 there are at most
inequivalent solutions f(z) satisfying (5).

We now need only show that any two equiva-
lent solutions fi(z) and f2(z) of (3) and (5) must
be identical. First, it follows from H(1) = 1 that
fi(1) = fo(1) = 1. Hence fo(z) = 2™ f1(z) for some
m € Z. Next, any solution f(z) to (3) and (5) must
have the form

2N—1

0
f(z)= Z cr 2"
k=1—N
with ¢;_n # 0 by (5). Hence m = 0, and so fi(z) =
fa(2). U

Remark. This also shows that there are at least 217V/2)
distinct Daubechies scaling functions with support
in [1-N, N], where | N/2| denotes the largest inte-
ger not exceeding N /2. This is because the function
in (5) cannot have zeros on the unit disk.
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