
Experimental Mathematics, 20(4):426–456, 2011
Copyright C© Taylor & Francis Group, LLC
ISSN: 1058-6458 print / 1944-950X online
DOI: 10.1080/10586458.2011.565259

Numerical Evidence for the Equivariant Birch and
Swinnerton-Dyer Conjecture
Werner Bley

CONTENTS

1. Introduction
2. Algebraic Preliminaries
3. The Equivariant Tamagawa Number Conjecture for the Base

Change of an Elliptic Curve
4. Explicit Version of the Equivariant Tamagawa Number

Conjecture
5. Computational Remarks
6. Examples
Acknowledgments
References

2000 AMS Subject Classification: 11G40, 14G10, 11G05
Keywords: Birch-Swinnerton-Dyer conjecture, Equivariant
Tamagawa Number conjecture

Let E /Q be an elliptic curve and K /Q a finite Galois extension
with group G. We write E K for the base change of E and con-
sider the equivariant Tamagawa number conjecture for the pair
(h1(E K )(1), Z[G]). This conjecture is an equivariant refinement of
the Birch and Swinnerton-Dyer conjecture for E /K . For almost
all primes l , we derive an explicit formulation of the conjec-
ture that makes it amenable to numerical verifications. We use
this to provide convincing numerical evidence in favor of the
conjecture.

1. INTRODUCTION

Let E/Q be an elliptic curve and let K/Q be a finite
Galois extension with group G = Gal(K/Q ). We write
EK for the base change of E. We consider the motive
M = h1(E)(1) and regard

MK := h0(Spec(K))⊗h0 (Spec(Q )) M = h1(EK )(1)

as a motive over Q with a natural left action of the
rational group ring Q [G] via the first factor. We write
ζ(C [G]) for the center of the complex group ring C [G],
and L(MK , s) for the ζ(C [G])-valued L-function of MK ,
which is defined and analytic in Re(s) > 1/2. It is con-
jectured that L(MK , s) has a meromorphic continuation
to all of C . Assuming this conjecture, we write L∗(MK )
for the leading term in its Taylor expansion at s = 0. To
be more explicit, we let Irr(G) be the set of absolutely
irreducible characters of G. For any character χ we write
L(E/Q , χ, s) for the twisted Hasse–Weil L-function, and
L∗(E/Q , χ, 1) for the leading term in the Taylor expan-
sion at s = 1. The center ζ(C [G]) is canonically isomor-
phic to

∏
χ∈Irr(G) C , and via this identification, L∗(MK )

equals (L∗(E/Q , χ̄, 1))χ∈Irr(G) . It is easily shown that
L∗(MK ) ∈ ζ(R [G])× (see Remark 3.2).

The equivariant Tamagawa number conjecture
(ETNC, for short) formulated in [Burns and Flach 01]
for the pair (MK ,Z[G]) is equivalent to an equality of
the form

δ(L∗(MK )) = χ(MK ), (1–1)
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where δ is a canonical homomorphism from the unit
group ζ(R [G])× to the relative algebraic K-group
K0(Z[G],R ), and χ(MK ) is a certain Euler character-
istic in this relative group constructed from the vari-
ous motivic cohomology groups, realizations, comparison
isomorphisms, and regulators associated to MK and its
Kummer dual.

We note in passing that the ETNC is formulated in
much more generality and that the general formulation is
comparatively abstract. Indeed, in our elliptic curve case
with K = Q , the ETNC is equivalent to the Birch and
Swinnerton-Dyer conjecture (BSD for short). But even
this basic fact is not evident, and we refer the reader to
[Kings 09] or [Venjakob 07] for a detailed proof.

For the base change of an elliptic curve, the ETNC
is an “equivariant BSD conjecture.” Our main result,
Proposition 4.5, makes this apparent for arbitrary elliptic
curves E/Q and Galois extensions K/Q .

The aim of this article is to describe an approach for
converting the rather involved and abstract conjectural
equality (1–1) into a form that is amenable to numeri-
cal computations. In this way, we systematically improve
upon work in [Navilarekallu 88], which originally was the
motivation for this manuscript.

As in the classical case of the BSD conjecture, the
ETNC splits into three parts: an “equivariant rank con-
jecture,” an “equivariant rationality conjecture,” and an
“equivariant integrality conjecture.”

We will use [Dokchitser 04] to compute numerical ap-
proximations to the leading terms of the twisted Hasse–
Weil L-functions, and for our general approach we will
then usually assume the validity of the rank conjecture.
However, in our concrete examples in Section 6, we are
often able to deduce the rank conjecture from theoretical
results or from an explicit computation of Selmer groups.

We then show how to compute numerical approxima-
tions to equivariant periods and to equivariant regula-
tors (provided that we are able to compute the Mordell–
Weil group E(K)). Combining these computations, we
are able to verify the rationality conjecture numerically
up to the precision of our computations.

From now on, we assume the validity of the equivari-
ant rationality conjecture. We note in passing that there
are important results in the literature (without being
exhaustive, we mention only [Gross and Zagier 86,
Kolyvagin 90, Kolyvagin and Logachev 90,
Kolyvagin and Logachev 92, Zhang 01] and recent
results of Bertolini and Darmon) from which one can
possibly deduce the equivariant rationality conjecture
provided that the analytic (equivariant) rank is at

most 1. This will be part of a further research project.
In our numerical examples we consider mostly ellip-
tic curves E defined over Q and dihedral extensions
K/Q of order 2l for an odd prime l such that the
Mordell–Weil group E(K) is finite. In this case, where
all absolutely irreducible characters are of degree 1
or 2, the important works [Shimura 77, Shimura 78]
probably allow one to deduce the equivariant ratio-
nality conjecture. In a slightly different situation,
namely for subextensions of the false Tate curve
tower, in [Bouganis and Dokchitser 07] the authors
successfully apply Shimura’s work to deduce alge-
braicity and Galois equivariance of twisted BSD
quotients. Similar arguments will hopefully work in our
context.

Furthermore, we assume throughout that the Tate–
Shafarevich group �(E/K) is finite. Again, it is possible
to deduce the finiteness of �(E/K) in many examples,
provided that the analytic rank is at most 1, from the
above-mentioned work. However, since the aim of this
paper is to work out the additional difficulties of the
equivariant conjecture, we prefer to make the general as-
sumption that �(E/K) is finite.

A further main result of this paper (Corollary 4.8)
shows that we can use the computational results from
the verification of the rationality conjecture to prove
the l-part of the ETNC for all primes l outside a finite
set of difficult primes. This finite set contains in most
cases the prime divisors of #G and the prime divisors of
#�(E/K).

There are two different reasons that we get into dif-
ficulties with these primes. Our approach is restricted
to the case that certain cohomology groups are perfect
Zl [G]-modules. If l � #G, the ring Zl [G] is regular, so
that this assumption is satisfied for every finitely gener-
ated Zl [G]-module. On the other hand, even if l | #G,
there are some rare cases in which the modules under
consideration are perfect, so that we can also produce
numerical evidence for these interesting primes (see the
examples in Section 6).

Primes dividing #�(E/K) are difficult just because
we are not able to compute �(E/K) as a Galois mod-
ule (which would be necessary in order to compute
Euler characteristics). The situation is even worse, be-
cause we do not have an algorithm at our disposal
to compute #�(E/K). In order to compute a con-
jectural candidate for the set of difficult primes, we
will assume the validity of the classical BSD conjec-
ture for E/K and use it to compute a conjectural value
for #�(E/K).
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We point out that the equivariant BSD conjecture has
far-reaching explicit consequences (see [Burns 09]) that
could not be derived from nonequivariant versions. This
may indicate that any theoretical or numerical verifi-
cation of the equivariant version requires a great deal
of additional effort. Much of the additional algorith-
mic problems are hidden in the algorithms described in
[Bley and Wilson 09]. In particular, it can be shown that
the ETNC is true if and only if the twisted BSD quo-
tients satisfy certain congruences. For cyclic groups Zp ,
dihedral groups D2p with p an odd prime, and the alter-
nating group A4 we explicitly determine these congru-
ences.

We will illustrate our results in Section 6 with some
explicit examples. More examples can be computed using
the author’s Magma implementations.1

The structure of the paper is as follows. In the first
part of Section 2, we review algebraic preliminaries such
as determinant functors, categories of virtual objects, and
the construction of Euler characteristics in these cat-
egories. These very abstract concepts are used to for-
mulate the ETNC in [Burns and Flach 01]. Following
an approach in [Burns 04], we then make the construc-
tion of Euler characteristics more explicit in terms of
relative algebraic K-groups and in this way amenable
to numerical computations. In particular, in the second
part of Section 2, we recall the algorithmic methods
of [Bley and Wilson 09], which allow the computation
of the relevant relative algebraic K-groups and provide
methods to compute in them. For certain small groups we
explicitly determine the above-mentioned congruences.

In Section 3 we describe the ETNC for the base change
of an elliptic curve, and in Section 4 we then derive our
main theoretical results (Proposition 4.5 and Corollary
4.8), which are the basis for our numerical computations.
In Section 5 we comment on the algorithmic aspects of
our work, and in the final section we describe several in-
teresting examples in detail. In particular, we have cho-
sen the examples such that we can apply our methods
for a prime divisor l of #G and such that the explicit
congruences can be seen.

In future work [Bley 10] we will study the l-part of
ETNC for elliptic curves E/K and cyclic extensionsK/Q
of prime-power order ln , for l odd.

1 Available from http://www.mathematik.uni-muenchen.de/∼bley/
pub.html.

2. ALGEBRAIC PRELIMINARIES

2.1. Determinant Functors and Virtual Objects

Let R by any associative unital ring. Let PMod(R)
denote the category of finitely generated projective
R-modules, and write PMod(R)• for the category of
bounded complexes of such modules. We also write D(R)
for the derived category of complexes of R-modules and
Dperf (R) for the full triangulated subcategory of D(R)
consisting of those complexes that are isomorphic in
D(R) to an object in PMod(R)•. These complexes are
called perfect. Recall that C• is perfect if and only
if there exist a complex P • ∈ PMod(R)• and a quasi-
isomorphism P • −→ C•. We say that an R-module N is
perfect if the complex N [0] belongs to Dperf (R).

Our main reference for determinant functors, Picard
categories, and virtual objects is [Burns and Flach 01].
Let V (R) denote the Picard category of virtual objects
associated to PMod(R) and write [ · ]R for the universal
determinant functor

[ · ]R : (PMod(R), is) −→ V (R),

where (PMod(R), is) denotes the subcategory of all iso-
morphisms in PMod(R). By [Burns and Flach 01, Propo-
sition 2.1], this functor extends to a functor

[ · ]R :
(
Dperf (R), is

) −→ V (R).

We recall that V (R) is equipped with a canonical bifunc-
tor (L,M) �→ LM . We fix a unit object 1R and for each
object L, an inverse L−1 with an isomorphism LL−1 �
1R . Each element of V (R) is of the form [P ]R [Q]−1

R for
modules P,Q ∈ PMod(R). Furthermore, [P ]R and [Q]R
are isomorphic in V (R) if and only if their classes in
K0(R) coincide.

For any Picard category P we define π0(P) to be the
group of isomorphism classes of objects of P and set
π1(P) := AutP(1P). The groups π0(V (R)) and π1(V (R))
are naturally isomorphic to K0(R) and K1(R), respec-
tively.

Let A be a finite-dimensional semisimple Q -algebra.
For any extension field F of Q we put AF := A⊗Q F

and abbreviate Ap := A⊗Q Q p . Let A ⊆ A be a Z-order
and set

Ap := A⊗Z Zp , Â := A⊗Z Ẑ �
∏
p

Ap ,

Â := A⊗Z Ẑ �
∏
p

Ap .

For L ∈ PMod(A) we set

Lp := L⊗Z Zp , LQ := L⊗Z Q , LF := L⊗Z F.



Bley: Numerical Evidence for the Equivariant Birch and Swinnerton-Dyer Conjecture 429

We set V (A) := V (Â)×V (Â) V (A) and recall that el-

ements in V (A) are of the form (X̂, Y, θ̂) with X̂ ∈
V (Â), Y ∈ V (A) and θ̂ : X̂ ⊗Â Â

�−→ Y ⊗A Â an isomor-
phism in V (Â). Note that the tensor in this context is the
functor between categories of virtual objects induced by
the tensor functor on the level of modules by the uni-
versal property [Burns and Flach 01, (2.3),f]. Note also
that we can identify X̂ with

∏
p Xp ∈

∏
p V (Ap), where

Xp := X̂ ⊗Â Ap ∈ V (Ap).
There is a natural monoidal functor V (A) −→ V (A)

induced by

[L]A �→
(∏

p

[Lp ]Ap , [LQ ]A ,
∏
p

[θp ]

)
,

where

θp : Lp ⊗Zp
Q p = L⊗Z Q p

id−→ L⊗Z Q p = LQ ⊗Q Q p

is the natural map.
Let P0 be the Picard category with unique object 1P0

and AutP0 (1P0 ) = 0. Following [Burns and Flach 01],
we define V (A, F ) to be the fiber product category
V (A)×V (AF ) P0 . Explicitly, elements in V (A, F ) are
given by triples

((X̂, Y, θ̂),1P0 , θ∞),

where

X̂ ∈ V (Â), Y ∈ V (A),

θ̂ : X̂ ⊗Â Â
�−→ Y ⊗A Â, (2-1)

θ∞ : Y ⊗A AF
�−→ 1AF

.

We usually omit 1P0 in the notation.
By [Burns and Flach 01, Proposition 2.5], one has a

canonical isomorphism

ιA,F : π0V (A, F ) � K0(A, F ),

where K0(A, F ) is the relative algebraic K-group as
defined in [Swan 68, p. 215]. Following the proof of
[Burns and Flach 01, Proposition 2.5], we explicitly de-
scribe the inverse of ιA,F . Let [P,ϕ,Q] be an element
in K0(A, F ) with P,Q ∈ PMod(A) and an isomorphism
ϕ : P ⊗A AF −→ Q⊗A AF of AF -modules. Then

ι−1
A,F ([P,ϕ,Q])

=

((∏
p

[Pp ]Ap [Qp ]−1
Ap , [P ⊗A A]A [Q⊗A A]−1

A ,
∏
p

θp

)
,

ϕtriv

)
,

where each θp is the canonical map and ϕtriv is the com-
posite

[P ⊗A AF ]AF
[Q⊗A AF ]−1

AF

−→ [Q⊗A AF ]AF
[Q⊗A AF ]−1

AF
−→ 1AF

.

Here the first isomorphism is induced by ϕ.
If we set V (A, F ) := V (A)×V (AF ) P0 , then the

functor V (A) −→ V (A) induces a canonical functor
V (A, F ) −→ V (A, F ) and a homomorphism

π0V (A, F ) −→ π0V (A, F ),

and hence a homomorphism π0V (A, F ) −→ K0(A, F ),
which we also denote by ιA,F . In the same way, we obtain
isomorphisms (see again [Burns and Flach 01, Proposi-
tion 2.5])

ιAp ,Q p
: π0V (Ap ,Q p) � K0(Ap ,Q p).

Given data as in (2-1), we therefore obtain an element

ιA,F
(((

X̂, Y, θ̂
)
, θ∞

))
∈ K0(A, F ).

In the context of the ETNC, we are in addition given an
element L∗ ∈ ζ(AF )×. There is a canonical commutative
diagram of the form shown in Figure 1.

If R is a finite-dimensional semisimple algebra over
either a global field or a local field, then we have an in-
jective reduced norm map

NrdR : K1(R) −→ ζ(R)×.

If G is a finite group, then NrdR [G ] is in general not sur-
jective. However, by [Burns and Flach 01, Section 4.2],
there always exists a canonical “extended boundary ho-
momorphism”

δ : ζ(R [G])× −→ K0(Z[G],R )

such that δ ◦NrdR [G ] = ∂1
Z[G ],R . See

[Breuning and Burns 07, Section 2.1.2] for a conceptual
description of δ.

The conjectures we wish to consider in this paper are
essentially of the form

TΩ := ιZ[G ],R

(((
X̂, Y, θ̂

)
, θ∞

))
− δ(L∗) = 0

in K0(Z[G],R ). In the sequel we set A = Z[G], A =
Q [G], and F = R .

For our computational purposes, in particular to
be able to apply the results and algorithms of
[Bley and Wilson 09], we need to reinterpret this con-
struction in terms of explicit elements of K0(A, F ). Here
we essentially follow the approach in [Burns 04]. For any
bounded complex P • we define objects P all, P even , and
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K1(A) ��K1(AF )
∂ 1
A, F ��K0(A, F )

∂ 0
A, F ��K0(A) ��K0(AF )

K1(A) ��K1(A)
∂ 1
A,Q ����

��

K0(A,Q )
∂ 0
A,Q ����

��

K0(A) ��K0(A)

��

FIGURE 1. Localization sequences.

P odd by

P all =
⊕
i∈Z

P i, P even =
⊕
i even

P i, P odd =
⊕
i odd

P i.

We write Z•(P •), B•(P •), and H•(P •) for the complexes
of cycles, boundaries, and cohomology of P •, each with
zero differentials.

In arithmetic applications we often have the following
data:

Data 2.1.

(a) Y even , Y odd ∈ PMod(A), together with an AF -
isomorphism

Y even ⊗Q F
θF−→ Y odd ⊗Q F.

(b) X•p ∈ PMod(Ap)• together with isomorphisms

Heven(X•p )⊗Zp
Q p

θ e v e n
p−→ Y even ⊗Q Q p ,

Hodd(X•p )⊗Zp
Q p

θo d d
p−→ Y odd ⊗Q Q p .

(c) L∗ ∈ ζ(AF )×.

These data are related to the data given in (2-1) in
the following way:

X̂ =
∏
p

[X•p ]Ap ,

Y = [Y even ]A [Y odd ]−1
A ,

θ∞ : Y ⊗A AF = [Y even ⊗A AF ]AF
[Y odd ⊗A AF ]−1

AF

� [Y odd ⊗A AF ]AF
[Y odd ⊗A AF ]−1

AF

� 1AF
, with the first isomorphism

induced by θF ,
θp : Xp =

[
X•p ⊗Zp

Q p

]
Ap

α1� [Heven(X•p ⊗Zp
Q p)]Ap

× [Hodd(X•p ⊗Zp
Q p)]−1

Ap

α2� [Y even ⊗Q Q p)]Ap
[Y odd ⊗Q Q p)]−1

Ap

= [Y ⊗Q Q p ]Ap
.

Here α1 is the canonical isomorphism of
[Burns and Flach 01, Proposition 2.1e] and α2 is
induced by θeven

p and θodd
p .

Let C p denote the completion of a fixed algebraic clo-
sure of Q p . For every prime p and every homomorphism
j : R → C p we obtain induced maps j∗ : K0(Z[G],R )→
K0(Zp [G],C p) and j∗ : ζ(R [G])× −→ ζ(C p [G])×. We fix
p and j and consider the map θ′p : Xeven

p ⊗Zp
C p −→

Xodd
p ⊗Zp

C p defined by

Xeven
p ⊗Zp

C p

β1� (
Heven(X•p )⊗Zp

C p

)⊕ (
Ball(X•p )⊗Zp

C p

)
β2� (

Y even ⊗Zp
C p

)⊕ (
Ball(X•p )⊗Zp

C p

)
β3� (

Y odd ⊗Zp
C p

)⊕ (
Ball(X•p )⊗Zp

C p

)
β4� (

Hodd(X•p )⊗Zp
C p

)⊕ (
Ball(X•p )⊗Zp

C p

)
β5� Xodd

p ⊗Zp
C p .

The isomorphisms β1 and β5 are induced by choosing
splittings of the tautological exact sequences

0 −→ Zi(X•p ⊗Q p
C p) −→ Xi

p ⊗Q p
C p

−→ Bi+1(X•p ⊗Q p
C p) −→ 0,

0 −→ Bi(X•p ⊗Q p
C p) −→ Zi(X•p ⊗Q p

C p)
−→ Hi(X•p ⊗Q p

C p) −→ 0,

while β2 and β4 are induced by θeven
p and θodd

p , respec-
tively, and β3 by θF . It can be shown that the refined
Euler characteristic [Xeven

p , θ′p ,X
odd
p ] ∈ K0(Zp [G],C p)

does not depend on any of the above choices. See
[Breuning and Burns 05, Section 6] or [Burns 04] for
more information on this construction of refined Euler
characteristics and its relation to the Euler characteris-
tic used in [Burns and Flach 01].

Lemma 2.2. Assume that X•p ⊗Zp
C p is acyclic outside

degrees 1 and 2. Then

j∗
(
ιZ[G ],R

((
X̂, Y,

∏
p

θp

)
, θ∞

))
= [Xeven

p , θ′p ,X
odd
p ].
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Proof. We consider the diagram

π0V (Z[G],R )
prj ��

ιZ[G ] ,R

��

π0V (Zp [G],C p)

ιZp [G ] ,C p

��
K0(Z[G],R ) j∗ ��K0(Zp [G],C p)

It follows from the explicit descriptions of ι−1
Z[G ],R

and ι−1
Zp [G ],C p

that the diagram is commutative. From
[Breuning and Burns 05, Theorem 6.2 and Corollary 6.3],
we deduce that

ιZp [G ],C p

(
prj

((
X̂, Y,

∏
p

θp

)
, θ∞

))
= [Xeven

p , θ′p ,X
odd
p ].

Hence the result follows.

Remark 2.3. Although [Breuning and Burns 05, Theo-
rem 6.2] is more general, we chose to formulate Lemma
2.2 with the acyclicity condition. This simplification suf-
fices for our applications, and moreover, we can use the
additivity result [Breuning and Burns 05, Theorem 5.7]
without introducing any correction terms.

Let C denote a finite perfect Zp [G]-module. Recall
that a finite Zp [G]-module C is perfect if and only if
there exists a projective resolution

0 −→ P−1 α−→ P 0 −→ C −→ 0

of length 2. Then the element

χZp [G ],Q p
(C) := [P−1 , α⊗ Q p , P

0 ] ∈ K0(Zp [G],Q p)

does not depend on the choice of the above resolution.
For any Zp [G]-module P we write Ptors for the sub-

module of Zp -torsion elements and set Ptf := P/Ptors .

Lemma 2.4. Assume that we have data given as in Data
2.1. Let p be a fixed prime and j : R −→ C p an embed-
ding.

(a) If all cohomology modules Hi(X•p ), i ∈ Z, are Zp [G]-
perfect, then

j∗

(
ιZ[G ],R

((
X̂, Y,

∏
p

θp

)
, θ∞

))

= [Heven(X•p ), θ
′′
p ,H

odd(X•p )]

with θ
′′
p = (θodd

p ⊗ C p)−1 ◦ (θF ⊗ C p) ◦ (θeven
p ⊗ C p).

(b) If, in addition, Hi(X•p )tors is Zp [G]-perfect for all i ∈
Z, then

j∗

(
ιZ[G ],R

((
X̂, Y,

∏
p

θp

)
, θ∞

))

= [Heven(X•p )tf , θ
′′
p ,H

odd(X•p )tf ]

− χZp [G ],Q p
(Heven(X•p )tors)

+ χZp [G ],Q p
(Hodd(X•p )tors).

Proof. Part (a) follows from the definition of θ′p and
[Burns and Flach 01, Proposition 2.1e]. If the modules
Heven(X•p )tors and Hodd(X•p )tors are also Zp [G]-perfect,
then

j∗

(
ιZ[G ],R

((
X̂, Y,

∏
p

θp

)
, θ∞

))
= [Heven(X•p )tf , θ

′′
p ,H

odd(X•p )tf ]
+ [Heven(X•p )tors , 0,Hodd(X•p )tors ].

Part (b) follows now from the definition of the second
summand by dévissage.

For later reference, we record the following lemma. We
write δp : ζ(C p [G])× −→ K0(Zp [G],C p) for the extended
boundary homomorphism. Note that

δp = ∂1
Zp [G ],C p

◦Nrd−1
C p [G ] and δp ◦ j∗ = j∗ ◦ δ.

Lemma 2.5.

(a) Let ξ ∈ ζ(R [G])×. Then

δ(ξ) ∈ K0(Z[G],Q ) ⇐⇒ ξ ∈ ζ(Q [G])×.

(b) Let ξ ∈ ζ(C p [G])×. Then

δp(ξ) ∈ K0(Zp [G],Q p) ⇐⇒ ξ ∈ ζ(Q p [G])×.

Proof. We recall the definition of δ. By the weak approx-
imation theorem, we may choose λ ∈ ζ(Q [G])× such that
λξ is in the image of the reduced norm map NrdR [G ] . We
shorten ∂1

Z[G ],R to ∂1 . Then

δ(ξ) = ∂1
(
Nrd−1

R [G ](λξ)
)
−

∑
p

δp(λ),

and therefore

δ(ξ) ∈ K0(Z[G],Q )⇐⇒ ∂1(Nrd−1
R [G ](λξ))∈K0(Z[G],Q ).

An easy diagram chase using Figure 1 implies that
∂1(Nrd−1

R [G ](λξ)) ∈ K0(Z[G],Q ) if and only if there
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exists η ∈ K1(Q [G]) such that

Nrd−1
R [G ](λξ)/η ∈ im(K1(Z[G]) −→ K1(Q [G])).

It follows that ξ ∈ ζ(Q [G]).
Let δQ : ζ(Q [G])× −→ K0(Z[G],Q ). The reverse im-

plication is immediate from the commutative diagram

ζ(Q [G])× ⊆ ��

δQ

��

ζ(R [G])×

δ

��
K0(Z[G],Q ) ⊆ ��K0(Z[G],R )

The proof of (b) is similar, but easier, because in the
local case the reduced norm map is an isomorphism.

Proposition 2.6. Assume the situation of Data 2.1. Let p
be a prime and j : R −→ C p an embedding. Assume that
Xeven
p and Xodd

p are free Zp [G]-modules. Let (v1 , . . . , vd)
and (w1 , . . . , wd) denote Q p [G]-basis of Xeven

p ⊗Zp
Q p

and Xodd
p ⊗Zp

Q p , respectively. Let B ∈ Gld(C p [G]) rep-
resent θ′p with respect to the chosen basis. Set

Ωp := [Xeven
p , θ′p ,X

odd
p ]− j∗(δ(L∗)).

Then

Ωp ∈ K0(Zp [G],Q p)
⇐⇒ NrdC p [G ](B)/j∗(L∗) ∈ ζ(Q p [G])×.

Proof. Let F 0 := Zp [G]v1 ⊕ · · · ⊕ Zp [G]vd and F 1 :=
Zp [G]w1 ⊕ · · · ⊕ Zp [G]wd . Then

[F 0 , B, F 1 ]− [Xeven
p , θ′p ,X

odd
p ] ∈ K0(Zp [G],Q p).

Writing ∂1
p = ∂1

Zp [G ],C p
, one therefore has

Ωp ∈ K0(Zp [G],Q p)
⇐⇒ [F 0 , B, F 1 ]− j∗(δ(L∗)) ∈ K0(Zp [G],Q p)
⇐⇒ ∂1

p ([C p [G]r , B])− δp(j∗(L∗)) ∈ K0(Zp [G],Q p)
⇐⇒ δp

(
NrdC p [G ](B)/j∗(L∗)

) ∈ K0(Zp [G],Q p)
⇐⇒ NrdC p [G ](B)/j∗(L∗) ∈ ζ(Q p [G])×,

where the last equivalence follows from Lemma 2.5.

In the next section we will recall from
[Bley and Wilson 09] how the relative algebraic K-
group K0(Zp [G],Q p) can be explicitly computed as an
abstract abelian group and how the element Ωp can be
realized as an element of this abstract group.

Remark 2.7. (a) The assumption in Proposition 2.6
is no restriction because we can always find a pro-
jective Zp [G]-module Z such that both Xeven

p ⊕ Z
and Xodd

p ⊕ Z are Zp [G]-free. Indeed, the canon-
ical map K0(Zp [G]) −→ K0(C p [G]) is injective by

[Curtis and Reiner 87, (32.1)], so that the existence of
the isomorphism θ′p implies that [Xeven

p ] = [Xodd
p ] in

K0(Zp [G]). By [Curtis and Reiner 87, II, p. 79], we fur-
ther conclude that Xeven

p � Xodd
p as Zp [G]-modules.

(b) The definition of θ′p shows that for rationality ques-
tions it is enough to consider the map

Y even ⊗Z R −→ Y odd ⊗Z R

induced by θR . More explicitly, let Q [G] = A1 ⊕ · · · ⊕Ar

be the Wedderburn decomposition of Q [G] with corre-
sponding idempotents e1 , . . . , er . We set Y even

i := eiY
even

and Y odd
i := eiY

odd . Then each Ai is a central simple al-
gebra, and we denote by Si the unique simple Ai-module.
Then Y even

i � Sdii and Y odd
i � Sdii . By abuse of language,

we refer to the explicit choice of such isomorphisms as a
“choice of Q [G]-bases” for Y even and Y odd .

These isomorphisms combine with θR to define an iso-
morphism

τ :
r⊕
i=1

(
Sdii ⊗Q R

)
� Y even ⊗Q R

θR−→ Y odd ⊗Q R

�
r⊕
i=1

(
Sdii ⊗Q R

)
.

Then one has

Ω ∈ K0(Z[G],Q ) ⇐⇒ NrdR [G ](τ)/L∗ ∈ ζ(Q [G])×.

2.2. Relative algebraic K -groups

In this section we recall results from
[Bley and Wilson 09] that will be used to perform
explicit computations in the relative algebraic K-groups
K0(Z[G],Q ) and K0(Zp [G],Q p). For the definitions of
these groups we refer the reader to [Swan 68, p. 215] or
[Bley and Wilson 09, Section 2.1].

We set A := Z[G], A := Q [G], and choose a maximal
orderM in A containing A. We take C := ζ(A) to be the
center of A and write OC for the maximal order in C.

We let DT(Ap) denote the torsion subgroup of the
finitely generated abelian group K0(Ap ,Q p). It is well
known that the map on relative groups induced by the
functor Mp ⊗Ap gives the top exact sequence of the
commutative diagram displayed in Figure 2. The ver-
tical maps are induced by the reduced norm map (see
[Bley and Wilson 09, Theorem 2.2 and 2.4] for more de-
tails).

For ξ ∈ K0(Ap ,Q p) we will often write ξ̃ for any lift
of ξ via the middle vertical isomorphism, i.e., δp(ξ̃) = ξ.

Next we briefly recall from [Bley and Wilson 09, Sec-
tion 2.2] how the diagram in Figure 2 can be used to
perform explicit computations in K0(Ap ,Q p).
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0 �� DT(Ap) ��K0(Ap ,Q p) ��K0(Mp ,Q p) �� 0

0 ��O×Cp
/NrdAp

(A×p ) ��

�
��

C×p /NrdAp
(A×p ) ��

δp�
��

C×p /O×Cp
��

�
��

0

FIGURE 2. Algebraic K-groups and reduced norms.

The primitive idempotents of C will be denoted by
e1 , . . . , er . For i = 1, . . . , r we set Ai := Aei . Then

A = A1 ⊕ · · · ⊕Ar (2-2)

is a decomposition into indecomposable ideals Ai of A.
Each Ai is a Q -algebra with identity element ei . The
centers Ki := ζ(Ai) are finite field extensions of Q via
Q → Ki , α �→ αei , and we have Q -algebra isomorphisms
Ai � Matni (Di) for each i = 1, . . . , r, where Di is a skew
field with ζ(Di) � Ki . The Wedderburn decomposition
induces decompositions

C = K1 ⊕ · · · ⊕Kr, OC = OK 1 ⊕ · · · ⊕ OKr
.

Let f be a full, two-sided ideal of M contained in A
and put g := OC ∩ f. Since M contains the idempotents
ei , the ideal f of M decomposes into f = f1 ⊕ · · · ⊕ fr ,
and similarly, g = g1 ⊕ · · · ⊕ gr . By [Bley and Wilson 09,
Theorem 2.6], the reduced norm NrdA on A induces a
homomorphism

µ : K1(A/f) −→ (OC /g)×

and a canonical isomorphism DT(A) � cok(µ), where
DT(A) denotes the torsion subgroup of K0(A,Q ). This
isomorphism encodes certain congruences implied by the
triviality of an element in DT(A).

For a rational prime p, one has canonical isomorphisms

Ap �
⊕

Ai,P,

where for given i ∈ {1, . . . , r}, P runs through all max-
imal ideals of OKi

dividing p, and Ai,P is defined as
Ai ⊗Ki

Ki,P, where Ki,P denotes completion of Ki with
respect to P. Similarly, we have a canonical isomorphism

Cp �
⊕

Ki,P. (2-3)

We write Ip(C) for the group of fractional ideals of
C with support above p. Then Figure 2 together with
(2-3) induces a canonical identification of K0(Mp ,Q p)
with Ip(C).

We put ap for the p-primary part of a fractional ideal
a. Then one has a homomorphism

µp : K1(Ap/fp) −→
(OCp

/gp
)× � r⊕

i=1

(OKi
/gi,p)

×

and a canonical isomorphism

DT(Ap) � cok(µp). (2-4)

Combined with the isomorphism δp from Figure 2, this
is the origin of explicit congruences. See the next section
for even more explicit versions of these congruences in
the case of cyclic groups Zp , dihedral groups D2p , and
the alternating group A4 .

We obtain the following canonical short exact se-
quence:

0 −→ cok(µp) −→ K0(Ap ,Q p) −→ Ip(C) −→ 0.

After choosing an explicit splitting, we have by
[Bley and Wilson 09, Proposition 2.7] a noncanonical iso-
morphism

K0(Ap ,Q p) � cok(µp)⊕ Ip(C).

In [Bley and Wilson 09, Sections 3 and 4] it is shown
how the right-hand side can be computed explicitly and
how to solve the logarithm problem. We briefly recall the
logarithm algorithm; for the details we refer the reader
to [Bley and Wilson 09, Section 4.1].

Let η = [P,ϕ,Q] ∈ K0(Ap ,Q p). By Remark 2.7(a),
we may without loss of generality assume that P and
Q are Ap -free. Then one computes Ap -bases ν1 , . . . , νd
and ω1 , . . . , ωd of P and Q and a matrix S ∈ Gld(Ap)
such that (ϕ(ν1), . . . , ϕ(νd)) = (ω1 , . . . , ωd)S. In all of
our applications we will be able to choose S ∈ Gld(A).
If η̃ := NrdA (S), then η̃ represents η via the mid-
dle vertical isomorphism in Figure 2, and we will
use [Bley and Wilson 09, Proposition 2.7] to read η̃ in
cok(µp)⊕ Ip(C). In particular, we have a test whether
[P,ϕ,Q] = 0 in K0(Ap ,Q p). If η̃ = (η1 , . . . , ηr ) with ηi ∈
Ki , then

[P,ϕ,Q] = 0 ⇐⇒ vP(ηi) = 0,∀i ∈ {1, . . . , r} with P | p,
and (η̄1 , . . . η̄r ) ∈ im(µp),
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where η̄i is the image of ηi under the projectionO×Ki ,p
−→

(OKi
/gi,p)

×.

Example 2.8. Let p be a prime and let T be a finite perfect
Zp [G]-module. Then T is also perfect as a Z[G]-module
and we may choose a Z[G]-projective resolution of the
form

0 −→ Q
α−→ P −→ T −→ 0.

By a fundamental result of Swan (see
[Curtis and Reiner 87, Theorem (32.11)]), the pro-
jectives P and Q are locally free, and we can there-
fore apply the algorithm of [Bley and Wilson 09,
Section 4.2] to compute Zp [G]-bases ν1 , . . . , νd of
Q⊗Z Zp and ω1 , . . . , ωd of P ⊗Z Zp . The algorithm of
[Bley and Wilson 09] actually produces elements νi ∈ Q
and ωj ∈ P . Hence we obtain a matrix S ∈ Gld(A) that
represents α. Then η̃ := NrdA (S) ∈ C× ⊆ C×p represents
χZp [G ],Q p

(T ) ∈ K0(Zp [G],Q p).
Note that in the case #G = 1, this just generalizes the

notion of the order of the p-primary part of T .

We conclude this section by explicitly describing the
element

Ωp = [Xeven
p , θ′p ,X

odd
p ]− δp(j∗(L∗))

from Proposition 2.6. We assume that v1 , . . . , vd and
w1 , . . . , wd constitute Zp [G]-bases respectively of Xeven

p

and Xodd
p . Then Ωp is represented by

NrdC p [G ](B)/j∗(L∗).
By Lemma 2.5, the element Ωp is rational if and only if

NrdC p [G ](B)/j∗(L∗) ∈ ζ(Q p [G])×.

If this is the case, we can interpret NrdC p [G ](B)/j∗(L∗) =
(η1 , . . . , ηr ) in cok(µp)⊕ Ip(C) and thus determine the
image of Ωp in cok(µp)⊕ Ip(C).

In our applications the modules Xeven
p ⊗Zp

Q p and
Xodd
p ⊗Zp

Q p are usually of the form Xeven ⊗Z Q p and
Xodd ⊗Z Q p with finitely generated Z[G]-modules Xeven

and Xodd . In this case, the rationality question can be
treated by studying the quotient NrdR [G ](B)/L∗, where
B is a matrix computed with respect to any choice of
Q [G]-bases.

It remains to explain how we actually perform the test
NrdR [G ](B)/L∗ ∈ ζ(Q [G])×. Let Irr(G) denote the set of
absolutely irreducible characters. By Wedderburn’s the-
orem, C [G] �∏

χ∈Irr(G) Mnχ (C ), which induces a canon-
ical isomorphism ζ(C [G]) �∏

χ∈Irr(G) C . Explicitly,∏
χ∈Irr(G)

C −→ ζ(C [G]), (αχ)χ∈Irr(G) �→
∑

χ∈Irr(G)

αχeχ,

with the central primitive idempotents

eχ =
χ(1)
|G|

∑
g∈G

χ(g)g−1 .

Lemma 2.9. Let Q ⊆ F ⊆ C and let

α = (αχ)χ∈Irr(G) ∈
∏

χ∈Irr(G)

C � ζ(C [G]).

Then one has

α ∈ ζ(F [G]) ⇐⇒ ασ◦χ = σ(αχ)

for all χ ∈ Irr(G) and all σ ∈ Aut(C /F ).

Proof. We have to show that
∑

χ∈Irr(G) αχeχ ∈ F [G] if
and only if ασ◦χ = σ(αχ) for all χ ∈ Irr(G) and all σ ∈
Aut(C /F ). This amounts to showing that∑
χ∈Irr(G)

χ(1)αχχ(g) ∈ F,∀g ⇐⇒ ασ◦χ = σ(αχ),∀χ, σ.

If
∑

χ χ(1)αχχ(g) ∈ F , ∀g ∈ G, then we easily show that∑
χ∈Irr(G)

χ(1)(ασ◦χ − σ(αχ))(σ ◦ χ)(g) = 0

for all g ∈ G. The assertion now follows from the linear
independence of absolutely irreducible characters.

Conversely, we deduce that

σ

( ∑
χ∈Irr(G)

χ(1)αχχ(g)

)
=

∑
χ∈Irr(G)

χ(1)αχχ(g)

for all σ ∈ Aut(C /F ). Since for any β ∈ C one has

β ∈ F ⇐⇒ σ(β) = β, ∀σ ∈ Aut(C /F ),

the result follows.

For χ ∈ Irr(G) we write Q (χ) for the extension gener-
ated over Q by the values of χ. We recall that Q (χ)/Q
is an abelian extension. By Lemma 2.9, one has

α ∈ ζ(Q [G]) ⇐⇒ αχ ∈ Q (χ) and ασ◦χ = σ(αχ)

for all χ ∈ Irr(G) and all σ ∈ Gal(Q (χ)/Q ). This can be
efficiently checked if we have good approximations of the
complex numbers αχ and bounds for the denominators.

We fix a set IrrQ (G) ⊆ Irr(G) of representatives of
Irr(G) modulo the action of Aut(C /Q ). Thus we iden-
tify C with

∏
χ∈IrrQ (G) Q (χ). Once we know or trust in

the validity of the rationality conjecture, we will work in∏
χ∈IrrQ (G) Q (χ). Note that the fieldsKi , i = 1, . . . , r, can

be identified with the character fields Q (χ), χ ∈ IrrQ (G).
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2.3. Explicit Congruences

Assume that

α = (αχ)χ ∈
∏

χ∈IrrQ (G)

Q (χ) � C×.

We let p denote an odd prime. In this section we will
consider the cyclic groups Zp , the dihedral groups D2p ,
and the alternating group A4 and rephrase the condition
δp(α) = 0 in K0(Zp [G],Q p) in terms of explicit congru-
ences. On the one hand, this serves as an explicit illustra-
tion of the methods introduced in [Bley and Wilson 09],
while on the other hand it leads to very remarkable con-
gruences that are conjecturally satisfied by the twisted
BSD quotients (see Remark 4.6).

Let p be a rational prime and G an arbitrary finite
group. We adopt the notation from the previous subsec-
tion. Let f := {λ ∈ Q [G] | λM⊆ Z[G]} be the conductor
of Z[G] inM. Let g := f ∩ OC be the central conductor.
Note that we make use of an explicit formula for g in
[Curtis and Reiner 87, Theorem 27.13].

We recall that

δp(α) ∈ DT(Zp [G]) ⇐⇒ αχ ∈ O×Q (χ),p

for all χ ∈ IrrQ (G). The explicit congruences are encoded
in the canonical isomorphism (2-4). We will make this
explicit for the groups Zp , D2p , and A4 .

Let G = 〈g0〉 be cyclic of order p. Let ζp be a fixed
primitive pth root of unity and define irreducible charac-
ters χ0 and χ1 by χ0(g0) = 1 and χ1(g0) = ζp . Then

Q [G] � Q ⊕ Q (ζp), λ �→ (χ0(λ), χ1(λ)) .

Let α = (α0 , α1) ∈ Q × ⊕ Q (ζp)× be a p-adic unit (i.e.,
α ∈ O×Cp

). Then

δp((α0 , α1)) = 0 in DT(Zp [Zp ]) (2-5)
⇐⇒ α0 ≡ α1(mod (1− ζp)).

For a proof and the generalization for cyclic groups of
prime-power order we refer the reader to [Bley 10, Sec-
tion 5].

Let now

G =
〈
σ, τ | σp = τ 2 = 1, τσ = σ−1τ

〉
be the dihedral group D2p for an odd prime p. Then
Q [G] � Q ⊕ Q ⊕M2(Q (ζp)+), and we fix such an iso-

morphism by

σ �→
(

1, 1,

(
0 −1
1 ζp + ζ−1

p

))
,

τ �→
(

1,−1,

(
1 ζp + ζ−1

p

0 −1

))
.

From [Bley and Wilson 09, Theorem 1.1], we know that
DT(Zp [G]) � Zp−1 (where for n ∈ N we write Zn for the
cyclic group of order n). Let H = 〈σ〉. By [Breuning 04,
Proposition 3.2], we know that the restriction map

res : DT(Zp [G]) −→ DT(Zp [H])

is injective. Let α = (α0 , α1 , α2) ∈ Q × ⊕ Q × ⊕ Q (ζp)+×

be a p-adic unit. By [Breuning 04, Lemma 3.9] or
[Bley and Burns 03, p. 575] one has res(α) = (α0α1 , α2),
so that we conclude from the result for cyclic groups Zp
that

δp((α0 , α1 , α2)) = 0 in DT(Zp [D2p ]) (2-6)
⇐⇒ α0α1 ≡ α2(mod p),

where p denotes the unique prime ideal of Q (ζp)+ over
the rational prime p. It is also well known (see, e.g.,
[Breuning 04, Proposition 3.2]) that DT(Z2 [D2p ]) is triv-
ial.

Let now G be the alternating group A4 . If σ =
(1, 2)(3, 4) and ν = (1, 2, 3), then G = 〈σ, ν〉. We have
Q [G] � Q ⊕ Q (ζ3)⊕M3(Q ), and we fix such an isomor-
phism by

σ �→

⎛
⎜⎝1, 1,

⎛
⎜⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟⎠
⎞
⎟⎠ ,

ν �→

⎛
⎜⎝1, ζ3 ,

⎛
⎜⎝

0 1 0
0 0 1
1 0 0

⎞
⎟⎠
⎞
⎟⎠ .

From [Bley and Wilson 09, Theorem 1.2], we know that
DT(Z2 [G]) � Z2 and DT(Z3 [G]) � Z2 . We have OC =
(Z,Z[ζ3 ],Z) and g = (12Z, 4(1− ζ3), 4Z). We first con-
sider p = 3. Clearly

(OC /g3)
× � (Z/3Z)× ⊕ (Z[ζ3 ]/(1− ζ3))× � Z2 × Z2 .

Since

NrdQ [G ](1 + ν) = (2, 1 + ζ3 , 2) ≡ (−1,−1)(mod g3),

it follows that im(µ3) = {(1, 1), (−1,−1)}, and we obtain

δ3((α0 , α1 , α2)) = 0 in DT(Z3 [A4 ]) (2-7)
⇐⇒ α1 ≡ α0(mod (1− ζ3)).
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For p = 2 one has

(OC /g2)
× � (Z/4Z)× ⊕ (Z[ζ3 ]/(4))× ⊕ (Z/4Z)×

� Z2 × (Z2 × Z6)× Z2 .

By explicit computation we show that

NrdQ [G ](2 + ν) ≡ (−1, 2 + ζ3 , 1)(mod g2),
NrdQ [G ](−1 + 2ν) ≡ (1,−1 + 2ζ3 ,−1)(mod g2),

NrdQ [G ](−σ) ≡ (−1,−1,−1)(mod g2).

Again by explicit computation one verifies that
the classes of NrdQ [G ](2 + ν), NrdQ [G ](−1 + 2ν), and
NrdQ [G ](−σ) generate the kernel of the surjective homo-
morphism

(OC /g2)
× −→ (Z/4Z)× ,

(α0 , α1 , α2) �→ α0NQ (ζ3 )/Q (α1)α2 .

Together with DT(Z2 [G]) � Z2 , it follows that im(µ2)
equals this kernel, so that

δ2((α0 , α1 , α2)) = 0 in DT(Z2 [A4 ]) (2-8)
⇐⇒ α0NQ (ζ3 )/Q (α1) ≡ α2(mod 4).

3. THE EQUIVARIANT TAMAGAWA NUMBER
CONJECTURE FOR THE BASE CHANGE OF
AN ELLIPTIC CURVE

Let K/Q be a finite Galois extension with group G.
Let E be an elliptic curve defined over Q . We denote
the base change Spec(K)×Spec(Q ) E by EK and consider
MK = h1(EK )(1) as a motive over Q . The Galois group
G naturally acts on MK via the first factor, and thus
we have a natural action of A = Q [G] on the realizations
and motivic cohomology groups attached to MK . For an
explicit description of the realizations we refer the reader
to [Burns 09, Section 4.1].

The purpose of this section is to provide an explicit
description of the equivariant Tamagawa number conjec-
ture (ETNC) for the pair (MK ,Z[G]). Our main refer-
ence is [Burns and Flach 01], from which we adopt most
of our notation. Further references are the survey articles
[Flach 04, Flach 09, Venjakob 07].

We first note that by Poincaré duality, the dual mo-
tive M ∗

K (1) identifies with MK . The motivic cohomology
spaces H0

f (MK ) and H1
f (MK ) are given by

H0
f (MK ) = 0, H1

f (MK ) = E(K)⊗Z Q ,

where as usual, E(K) denotes the Mordell–Weil group
of E/K.

For a number field F we write GF for the absolute
Galois group. Let v be a place of K. We write Kv for

the completion of K at v, and fix an algebraic closure
K̄v of Kv and an embedding K̄ into K̄v . We denote by
Gv ⊆ GK the corresponding decomposition group, and if
v is nonarchimedean, by Iv ⊆ Gv the inertia group. We
write Frv ∈ Gv/Iv for the Frobenius substitution.

For any number field F we let Σ(F ) denote the set
of embeddings of F into C . We define HK :=

⊕
Σ(K ) Q .

The groups G and Gal(C /R ) act on Σ(K) and endow
HK with the structure of a (Gal(C /R )×G)-module. Let
{wj : j ∈ Σ(K)} denote the canonical Q -basis of HK .
We write c ∈ Gal(C /R ) for complex conjugation. Then
cwj = wc◦j and σwj = wj◦σ−1 for σ ∈ G.

For any commutative ring R and any R[Gal(C /R )]-
module X we write X+ and X− for the submodules on
which complex conjugation acts by +1 and −1, respec-
tively.

We write ρK : C ⊗Q K −→ C ⊗Q HK for the canon-
ical C [Gal(C /R )×G]-equivariant isomorphism that
is induced by z ⊗ α �→ (zj(α))j∈Σ(K ) . Let ρ̃K : R ⊗Q

K −→ R ⊗Q HK be the R [G]-equivariant isomorphism
defined in [Bley and Burns 03, p. 554], where it is de-
noted by πK .

We write ∞ for the archimedean place of Q and let
S∞(K) denote the set of archimedean places of K. For
each v ∈ S∞(K) we choose σv ∈ Σ(K) corresponding to
v. Since E is defined over Q , one has σEK = EK for all
σ ∈ Σ(K). As usual, we write MB for the Betti realiza-
tion, that is,

MB =
⊕

σ∈Σ(K )

H1(σEK (C ), 2πiQ )

= HK ⊗Q H1(E(C ), 2πiQ ).

By identifying H1(E(C ), 2πiQ ) with the dual homology
H := HomQ (H1(E(C ),Q ), 2πiQ ), we obtain

M+
B �

⊕
v∈S∞(K )

H1(σvEK (C ), 2πiQ )Gv � [HK ⊗Q H]+ .

We write MdR for the de Rham realization,

MdR = H1
dR(E/K),

with the natural decreasing filtration {F iH1
dR(E/K)}i∈Z

shifted by 1. Thus

MdR/M
0
dR = H1

dR(E/K)/F 1H1
dR(E/K)

� H1(EK ,OEK
).

The G-module H1(EK ,OEK
) is isomorphic to K ⊗Q

H1(E,OE ). Now H1(E,OE ) is canonically isomorphic
to Ω1

E (E)∗ := Hom(Ω1
E (E),Q ), so that we finally make

the identification

MdR/M
0
dR � K ⊗Q Ω1

E (E)∗.
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We let ω0 denote a Néron differential and let γ+ and
γ− be Z-generators of H1(E(C ),Z)+ and H1(E(C ),Z)−,
respectively. We define

Ω+ :=
∫
γ+

ω0 , Ω− :=
∫
γ−
ω0 .

We write ω∗0 ∈ Ω1
E (E)∗ for the map that sends ω0 to 1.

Similarly, we define Q -linear maps γ∗+ , γ
∗
− ∈ H by

γ∗+(γ+) = 2πi, γ∗+(γ−) = 0,
γ∗−(γ+) = 0, γ∗−(γ−) = 2πi.

For γ = aγ+ + bγ− ∈ H1(E(C ),Q ), a, b ∈ Q , we set
γ∗ := aγ∗+ + bγ∗−. Finally, we define

π : C ⊗Q H −→ C ⊗Q Ω1
E (E)∗,

z ⊗ γ∗ �→
(
ω �→ z

∫
γ

ω

)
.

We write πK : R ⊗Q M+
B −→ R ⊗Q MdR/M

0
dR for the

period isomorphism. Then πK is explicitly given by the
following composite of R [G]-equivariant maps:

R ⊗Q [HK ⊗Q H]+

= R ⊗Q H+
K ⊗Q H+ ⊕ R ⊗Q H−K ⊗Q H−

=
(
R ⊗Q H+

K

)⊗R
(
R ⊗Q H+)⊕ (

R ⊗Q H−K
)

⊗R
(
R ⊗Q H−

)
(id⊗π ,id⊗π )−→ (

R ⊗Q H+
K

)⊗R
(
R ⊗Q Ω1

E (E)∗
)

⊕ (
R ⊗Q H−K

)⊗R
(
iR ⊗Q Ω1

E (E)∗
)

(id,−i)−→ (
R ⊗Q H+

K

)⊗R
(
R ⊗Q Ω1

E (E)∗
)

⊕ (
R ⊗Q H−K

)⊗R
(
R ⊗Q Ω1

E (E)∗
)

= (R ⊗Q HK )⊗R
(
R ⊗Q Ω1

E (E)∗
)

ρ̃−1
K ⊗id−→ (R ⊗Q K)⊗R

(
R ⊗Q Ω1

E (E)∗
)

= R ⊗Q K ⊗Q Ω1
E (E)∗.

Proposition 3.1. Fix ι ∈ Σ(K) and define τ ∈ G by c ◦ ι =
ι ◦ τ . Let α0 ∈ K be a normal basis element.

(a) The elements

1 + c

2
wι ⊗ γ∗+ +

1− c
2

wι ⊗ γ∗−
and α0 ⊗ ω∗0 are Q [G]-bases of [HK ⊗Q H]+ and
K ⊗Q Ω1

E (E)∗, respectively.

(b) With respect to these bases, the period isomorphism
πK is represented by

λα0 :=
(

Ω+
1 + τ

2
+ Ω−

1− τ
2

)

×
(∑
σ∈G

(ι ◦ σ)(α0)σ−1
)−1

.

Proof. Statement (a) is obvious. For the proof of (b), we
write πK =

(
ρ̃−1
K ⊗ id

) ◦ f and first compute the matrix
for

f : R ⊗Q [HK ⊗Q H]+

−→ (R ⊗Q HK )⊗R
(
R ⊗Q Ω1

E (E)∗
)

with respect to the bases

W := 1⊗ 1 + c

2
wι ⊗ γ∗+ + 1⊗ 1− c

2
wι ⊗ γ∗−

and (1⊗ wι)⊗ (1⊗ ω∗0).
The basis element W is mapped to(

Ω+ ⊗ 1 + c

2
wι − iΩ− ⊗ 1− c

2
wι

)
⊗ (1⊗ ω∗0) .

By the definition of τ , one has(
Ω+

1 + τ

2
− iΩ− 1− τ

2

)
(1⊗ wι)

=
(

Ω+ ⊗ 1 + c

2
wι − iΩ− ⊗ 1− c

2
wι

)
.

Next we compute the matrix of the map ρ̃K : (R ⊗Q
K) −→ R ⊗Q HK with respect to the bases 1⊗ α0 and
1⊗ wι . One has

ρ̃K (1⊗ α0) = (Re(ι(σ(α0)) + Im(ι(σ(α0)))σ∈G .

On the other hand, one computes(∑
σ∈G

ι(σ(α0))σ−1

)(
1 + τ

2
− i1− τ

2

)
(1⊗ wι)

=
(
Re(ι(σ(α0))) + Im(ι(σ(α0)))

)
σ∈G.

Summarizing, we obtain

πK (W ) =
((
ρ̃−1
K ⊗ id

) ◦ f) (W )

=
(

Ω+
1 + τ

2
− iΩ− 1− τ

2

)
× (

ρ̃−1
K ⊗ id

)
((1⊗ wι)⊗ (1⊗ ω∗0))

=
(

Ω+
1 + τ

2
− iΩ− 1− τ

2

)(
1 + τ

2
− i1− τ

2

)−1

×
(∑
σ∈G

(ι ◦ σ)(α0)σ−1
)−1

(1⊗ α0 ⊗ ω∗0)

=
(

Ω+
1 + τ

2
− iΩ− 1− τ

2

)(
1 + τ

2
+ i

1− τ
2

)

×
(∑
σ∈G

(ι ◦ σ)(α0)σ−1

)−1

(1⊗ α0 ⊗ ω∗0)

=
(

Ω+
1 + τ

2
+ Ω−

1− τ
2

)(∑
σ∈G

(ι ◦ σ)(α0)σ−1

)−1

× (1⊗ α0 ⊗ ω∗0) .
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For a ring R and an R-module W , we set W ∗ :=
HomR (W,R) whenever there is no danger of confusion.
Following [Burns and Flach 01, (29)], we define

Ξ = Ξ(MK )
:= [H1

f (MK )]−1
Q [G ] [H

1
f (K,M ∗

K (1))∗]Q [G ] [M+
B ]−1

Q [G ]

× [MdR/M
0
dR ]Q [G ]

= [E(K)⊗Z Q ]−1
Q [G ] [(E(K)⊗Z Q )∗]Q [G ] [M+

B ]−1
Q [G ]

× [MdR/M
0
dR ]Q [G ].

The height pairing induces an R [G]-equivariant isomor-
phism

δ : E(K)⊗Z R −→ (E(K)⊗Z R )∗ .

Together with the period isomorphism πK , we obtain an
isomorphism in V (AR ) = V (R [G]),

θ∞ : Ξ⊗Q [G ] R [G] −→ 1R [G ].

Let Sram(K/Q ) be the set of rational primes that ramify
in K/Q , and Sbad(E) the set of rational primes where E
has bad reduction. We put S := Sram(K/Q ) ∪ Sbad(E),
and for a fixed prime l, we set Sl := S ∪ {l}. We let
Tl(E) := lim←− E[ln ] denote the l-adic Tate module of E

and set Tl := Zl [G]⊗Zl
Tl(E), which we regard as a (left)

module over GQ ×G. Explicitly, GQ acts diagonally, and
g(λ⊗ t) = λg−1 ⊗ t for g ∈ G, λ ∈ Zl [G], and t ∈ Tl(E).
We further define

Vl(E) := Tl(E)⊗Zl
Q l , Vl := Tl ⊗Zl

Q l .

Although it is not visible in the notation, the modules Tl
and Vl depend on both E and K.

We let RΓc(ZSl , Tl) denote the complex defined in
[Burns and Flach 01, Sections 3.2, 3.3] and let

θl : Ξ⊗A Al −→ [RΓc(ZSl , Tl)]⊗A Al

be the isomorphism defined in [Burns and Flach 01, Sec-
tion 3.4]. Given these data, we obtain an element

RΩ := ιZ[G ],R

(((∏
l

[RΓc(ZSl , Tl)], Ξ,
∏
l

θ−1
l

)
, θ∞

))

in K0(Z[G],R ).
Next we will formulate the conjecture for which we

wish to provide numerical evidence. For each character
ψ ∈ Irr(G), we write L(E/Q , ψ, s) for the twisted Hasse–
Weil L-function. We assume that L(E/Q , ψ, s) has an
analytic continuation to all of C and write L∗(E/Q , ψ, 1)
for the leading term in its Taylor expansion at s = 1.

In order to compare the vector of twisted Hasse–Weil
L-functions to the motivic L-function, it is necessary to

recall the precise definition of the twisted Hasse–Weil L-
functions. The l-adic representation attached to E is

Hl(E) := Hom(Vl(E),Q l)⊗Q l
Q̄ l .

For χ ∈ Irr(G) we write Vχ for a representation space
for χ, and without loss of generality we may regard Vχ
as a Q̄ l-vector space. For primes p �= l, we define local
polynomials by

Pp(E,χ, T ) := det
(
1− Fr−1

p T | (Hl(E)⊗Q̄ l
Vχ

)Ip ) .
As usual, we put Lp(E,χ, s) := Pp(E,χ, p−s) and
L(E/Q , χ, s) :=

∏
p Lp(E,χ, s)

−1 . The l-adic realization
of MK is given by

Hl(MK ) := Hom(Vl(E),Q l)(1)⊗Q l
HK,l ,

where we have put HK,l := HK ⊗Z Zl . If we fix an
embedding ι : K ↪→ Q̄ , then Hl(MK ) gets identified
with Hom(Vl(E),Q l)(1)⊗Q l

Q l [G]∗, where Q l [G]∗ :=
Hom(Q l [G],Q l) denotes the contragredient representa-
tion. By [Burns and Flach 01, Remark 7], the motivic
L-function associated with MK is defined by the Euler
factors

NrdC [G ]
(
1− Fr−1

p T | Hl(MK )Ip
)

=
(

det
(

1− 1
p
Fr−1

p T | (Hl(E)⊗Q̄ l
Vχ̄)Ip

))
χ∈Irr(G)

.

It easily follows that

L(MK , s) = (L(E/Q , χ̄, s+ 1))χ∈Irr(G) .

Remark 3.2. Since L(E/Q , χ̄, s+ 1) is the complex
conjugate of L(E/Q , χ, s+ 1) for each real value
s, it follows from Proposition 2.9 that L∗(MK ) =
(L(E/Q , χ̄, 1))χ∈Irr(G) belongs to ζ(R [G])×.

Remark 3.3. For later reference we compute the refined
Euler characteristic of the complex

T
Ip
l

1−Fr−1
p−→ T

Ip
l ,

where the nontrivial modules are placed in degrees 0
and 1 under the assumption that T Ipl is Zl [G]-perfect. In
this case, the refined Euler characteristic associated with
the above complex is represented by (Lp(E, χ̄, 1))χ∈Irr(G)
via the middle vertical isomorphism of Figure 2. In-
deed, the Weil pairing induces a GQ -equivariant iso-
morphism Tl(E) � Hom(Tl(E),Zl)(1). Moreover, Tl =
Zl [G]⊗Zl

Tl(E) as a (left) G-module, so that the asser-
tion easily follows. For the same reason, we always have

det
(
1− Fr−1

p | V Ip
l

)
= (Lp(E, χ̄, 1))χ∈Irr(G) . (3–1)
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We now set

L∗ :=
(
L∗(E/Q , ψ̄, 1)

)
ψ∈Irr(G) ∈ ζ(R [G])×,

so that L∗(MK ) = L∗. If we define

TΩ := RΩ + δ(L∗),
then the ETNC (see [Burns and Flach 01, Conjec-
ture 4(iv)]) for the pair (MK ,Z[G]) can be stated in the
following form.

Conjecture 3.4.

TΩ = 0 is in K0(Z[G],R ).

For a set of places P of Q , we write P (K) for the
set of places of K lying above places in P . In the
next section we will (assuming the rationality conjec-
ture [Burns and Flach 01, Conjecture 4(iii)] and certain
further hypotheses on K, E, and l) describe the l-part
TΩl ∈ K0(Zl [G],Q l) of TΩ in terms of refined Euler
characteristics. To that end, we will define a Zl [G]-perfect
complex RΓf (Q , Tl), and for each v ∈ S∞(K) ∪ Sl(K) a
Zl [G]-perfect complex RΓf (Kv , Tl(E)) such that there is
an exact triangle⊕

v∈S∞(K )∪Sl (K )

RΓf (Kv , Tl(E))[−1] −→ RΓc(ZSl , Tl)

−→ RΓf (K,Tl(E)).

This may be considered an explicit integral version of the
middle column of [Burns and Flach 01, diagram (26)].

We will now use the additivity of refined Euler charac-
teristics (see [Breuning and Burns 05, Theorem 5.7] and
our Remark 2.3) and the explicit nature of the complexes
RΓf (K,Tl(E)) and RΓf (Kv , Tl(E)) to describe RΩ. We
write χZl [G ],C l

for the refined Euler characteristic intro-
duced in [Burns 04]. In this way, we obtain

RΩl = χZl [G ],C l
(3–2)

×
( ⊕
v∈S∞(K )∪Sl (K )

RΓf (Kv , Tl(E))[−1], π−1
K

)

+ χZl [G ],C l

(
RΓf (K,Tl(E)), δ−1) .

To conclude this section we aim to formulate an ex-
plicit rationality conjecture. As we will see, one has

Hi
f (K,Vl(E)) = Hi

f (K,Tl(E))⊗Zl
Q l

=

⎧⎪⎪⎨
⎪⎪⎩

0, i �= 1, 2,

E(K)⊗Z Q l , i = 1,

(E(K)⊗Z Q l)
∗ , i = 2.

Moreover, by [Burns and Flach 01, (28)], there is an iso-
morphism in Dperf (Q l [G]), namely⊕

v∈S∞(K )

RΓf (Kv , Vl(E)) � (
M+

B ⊗Q Q l

)
[0],

and by [Burns and Flach 01, (22)] an exact triangle

((
MdR/M

0
dR

)⊗Q Q p

)
[−1] −→

⊕
v |l

RΓf (Kv , Vl(E))

−→
⊕
v |l

(
Vl,v

φv−→ Vl,v

)
.

Just for the moment, we content ourselves with ob-
serving that the terms resulting from

(
Vl,v

φv−→ Vl,v
)

for
v ∈ Sl(K) are rational, and in fact, will give certain Eu-
ler factors. In order to state the rationality conjecture,
we can therefore neglect these terms. To tie up with the
situation described in Data 2.1, we set

Y even := (E(K)⊗Z Q )∗ ⊕ (
MdR/M

0
dR

)
,

Y odd := (E(K)⊗Z Q )⊕M+
B ,

θR := δ−1 ⊕ π−1
K ,

X•l := RΓf (K,Tl(E))⊕
⊕
v |l∞

RΓf (Kv , Tl(E))[−1].

Recall that for the rationality conjecture, we do not
have to consider the maps θeven

l and θodd
l (see Remark

2.7). Note also that it is usually more convenient to sep-
arate the height and period isomorphism and thus to con-
sider

Y even
1 := (E(K)⊗Z Q )∗, Y odd

1 := E(K)⊗Z Q ,

θ1,R := δ−1 , X•1,l := RΓf (K,Tl(E)),

and

Y even
2 :=

(
MdR/M

0
dR

)
, Y odd

2 := M+
B , θ2,R := π−1

K ,

X•2,l :=
⊕
v |l∞

RΓf (Kv , Tl(E))[−1].

Let τ1 be defined as in Remark 2.7(b) with respect to
Y even

1 and Y odd
1 . Let α0 be a normal basis element for

K/Q . For each χ ∈ Irr(G) we choose a C -space Vχ that
realizes χ. Let Tχ : G −→ Gl(Vχ) denote the correspond-
ing representation, and define

d+(χ) := dimC

(
V Gal(C /R )
χ

)
and

d−(χ) := codimC

(
V Gal(C /R )
χ

)
.
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We set

Reg =
(
Regχ

)
χ∈Irr(G) := NrdR [G ](τ1),

R = R(α0) = (Rχ)χ∈Irr(G)

:=
(
det

(∑
σ∈G

ι(σ(α0))Tχ(σ−1)
))

χ∈Irr(G)
,

Ω = (Ωχ)χ∈Irr(G) :=
(
Ωd+ (χ)

+ Ωd−(χ)
−

)
χ∈Irr(G)

,

and note that NrdR [G ](λα0 ) = Ω/R(α0), where λα0 is de-
fined in Proposition 3.1. From Remark 2.7(b) we deduce
that the rationality part of [Burns and Flach 01, Conjec-
ture 4] is equivalent to the following conjecture.

Conjecture 3.5. We have u ∈ ζ(Q [G])×, where

u :=
L∗R
ΩReg

and L∗ :=
(
L∗(E/Q , ψ̄, 1)

)
ψ∈Irr(G) .

Remark 3.6. Conjecture 3.5 does not depend on the choice
of α0 . Indeed, if β0 is another normal basis element, then
β0 = λα0 with λ ∈ Q [G]×. It is then easy to see that
R(β0) = NrdQ [G ](λ)R(α0).

We will compute complex approximations to

u = (uχ)χ∈Irr(G) ∈
∏
χ

C× � ζ(C [G])×

and then use Lemma 2.9 to verify the rationality conjec-
ture numerically.

4. EXPLICIT VERSION OF THE EQUIVARIANT
TAMAGAWA NUMBER CONJECTURE

In this section we will define the complexes RΓf (Q , Tl)
and RΓf (Q p , Tl) and explicitly describe their cohomol-
ogy. We will closely follow [Burns and Flach 96] and
[Burns 09, Section 12].

Under certain hypotheses on E, K, and l (see below),
we will derive an explicit version of ETNC in terms of
refined Euler characteristics of classical objects of the
theory of elliptic curves, such as the Mordell–Weil group
and the Tate–Shafarevich group.

We fix an algebraic closure Q̄ of Q and an embed-
ding ι : Q̄ −→ C . Recall that we have defined τ ∈ G by
c ◦ ι = ι ◦ τ , with c ∈ Gal(C /R ) denoting complex con-
jugation. We set G∞ = Gal(C /R ) and identify G∞ via ι
with a subgroup of GQ . For each rational prime p we fix
an embedding jp : Q̄ −→ Q̄ p . With respect to jp , we let
Gp ⊆ GQ denote the decomposition group, and Ip ⊆ Gp

the ramification subgroup. Finally, we let Īp ⊆ Ḡp ⊆ G

denote the ramification and decomposition groups of p
in K/Q .

For a profinite group Π and a continuous Π-module N ,
we denote by C•(Π, N) the standard complex of continu-
ous cochains. We write ZSl for the ring of Sl integers,
and GSl for the Galois group of the maximal subex-
tension of Q̄ that is unramified outside Sl . Following
[Burns and Flach 01, Sections 3.2–3.4], we set

RΓ(ZSl , Tl) := C•(GSl , Tl)

and

RΓc(ZSl , Tl)

:= Cone
(
RΓ(ZSl , Tl) −→

⊕
p∈Sl

C•(Gp, Tl)
)
[−1],

where the morphism here is induced by the natural maps
Gp ⊆ GQ −→ GSl .

We now proceed to define the remaining complexes in
the true triangle

RΓc(ZSl , Tl) −→ RΓf (Q , Tl) −→
⊕

p∈Sl ∪{∞}
RΓf (Q p , Tl).

Our aim is to define these complexes such that they are
Zl [G]-perfect. We point out that for l � #G, the algebra
Zl [G] is regular, so that every complex of Zl [G]-modules
with only finitely many nontrivial cohomology groups all
of which are finitely generated is automatically perfect.

For a finite place v of K we write OKv
for the valua-

tion ring in the completion Kv , and mv for the maximal
ideal. Let kv := OKv

/mv denote the residue class field.
We write E0(Kv ) for the points of E(Kv ) that reduce
to a nonsingular point on the reduced curve Ē(kv ). Let
Ēns(kv ) denote the group of nonsingular points of Ē(kv ).

We will need the following set of hypotheses.

Hypotheses 4.1.

(0) �(E/K) is finite.
(1) l is at most tamely ramified in K/Q .

(2) (a) If l ∈ S or l = 2, then l � #G.

(b) If l �∈ S and l �= 2, then l � Īp for all p ∈ S.

(3) Sbad(E) ∩ Sram(K/Q ) = ∅.
(4) If l | #G, then

(a) E(K)⊗Z Zl , (E(K)⊗Z Zl)∗ are Zl [G]-perfect
and l � #E(K)tors .

(b) l � #�(E/K).

(5) If l �∈ S and l �= 2, then l � #(E(Kv )/E0(Kv )) for all
v ∈ S(K).
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Hypotheses 4.1(2) and (3) are needed to show that the
above complexes are perfect. Hypotheses 4.1(1), (4), and
(5) will be needed to compute the refined Euler charac-
teristics of these complexes. Note that Hypothesis 4.1(2)
possibly excludes certain prime divisors l of #G from our
considerations. However, in certain circumstances, all of
the hypotheses (1)–(5) are conjecturally satisfied for some
divisors l of #G. Explicit examples are given in Section 6.
We remark also that with some additional effort it would
be possible to relax Hypothesis 4.1(5) by stipulating it
only for l | #G, but for a related, more complicated, mod-
ule. However, in this case the computation of the relevant
Euler characteristics becomes more complicated and less
suitable for numerical computations (see Remark 4.4).

If p =∞, we define RΓf (Q p , Tl) to be the complex
H0(Q ∞, Tl)[0] = TG∞l [0]. Then RΓf (Q ∞, Tl) is indeed a
perfect complex. This is clear for l � #G by the preced-
ing remark. In general, we may identify E(C ) with the
complex torus C /(ZΩ+ ⊕ ZΩ−). In this way, we obtain
an isomorphism of G∞-modules Tl(E) � ZlΩ+ ⊕ ZlΩ−.
Using this identification, it is clear that

Tl(E)Gv �
{

ZlΩ+ , if v is real,

ZlΩ+ ⊕ ZlΩ−, if v is complex,

for each v | ∞. Hence RΓf (Q ∞, Tl) is free of rank 1 as a
Zl [G]-module generated by Ω+ ifK is totally real, and by
1+τ

2 ⊗ Ω+ + 1−τ
2 ⊗ Ω− ifK is complex (note that l �= 2 by

Hypothesis 4.1(2a) if K is complex). For later reference,
we record

TG∞l � Zl [G]
(

1 + τ

2
⊗ Ω+ +

1− τ
2
⊗ Ω−

)
. (4–1)

For a Z-module A we write A∧l for the l-completion
lim←− A/l

nA. For each pair of primes p and l, we write

H1
f (Q p , Tl)BK for the finite-support cohomology group

defined in [Bloch and Kato 90, Section 3]. We will explic-
itly describe this group. From Kummer theory we obtain
a natural monomorphism

E(Kv )∧l −→ H1(Kv , Tl(E))

for each place v | p. By [Bloch and Kato 90, following
(3.2)], the group H1

f (Kv , Tl(E))BK is equal to the image
of E(Kv ) in H1(Kv , Tl(E)) under the composite map

E(Kv ) −→ E(Kv )∧l −→ H1(Kv , Tl(E)).

Using (4–8), one can show that E(Kv ) −→ E(Kv )∧l is
onto, so that

H1
f (Q p , Tl)BK �

⊕
v |p

E(Kv )∧l .

The next definition is motivated by [Burns 09, Sec-
tion 12.2 and Remark 12.4.2]. We need the following
notation. If p �∈ S and p �= 2, then we define a finitely
generated Zp [G]-module by setting Dp := Dcr,p(Tp) �
OK,p ⊗Zp

Dcr,p(Tp(E)), where OK,p := Zp ⊗Z OK and
Dcr,p is the quasi-inverse to the functor of Fontaine and
Lafaille that is used in [Niziol 93]. For each such p we
also write φp for the natural Zp [G]-equivariant Frobenius
on Dp .

We define

RΓf (Q p , Tl) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
T
Ip
l

1−Fr−1
p−→ T

Ip
l , if l �∈ S, l �= 2, l �= p,

F 0Dp
1−φ0

p−→ Dp , if l �∈ S, l �= 2, l = p,

H1
f (Q p , Tl)BK , if l ∈ S or l = 2,

where Frp is the natural Frobenius in Gal(Q ur
p /Q p), and

φ0
p is the restriction of φp to F 0Dp ⊆ Dp . In the first two

cases, the modules are placed in degrees 0 and 1, while
in the third case, the module is placed in degree 1.

The following lemma and its proof are analogous to
[Burns 09, Lemma 12.2.1].

Lemma 4.2. Assume Hypotheses 4.1(2) and (3). Then
RΓf (Q p , Tl) is a perfect complex of Zl [G]-modules.

Proof. If l ∈ S or l = 2, the result is clear, because in this
case, Zl [G] is regular. If l �∈ S, l �= 2, and l = p, we note
that p is unramified in K/Q by definition of S, and hence
OK,p is a free Zp [G]-module. Thus

F 0Dp � OK,p ⊗Zp
F 0Dcr,p(Tp(E))

and

Dp � OK,p ⊗Zp
Dcr,p(Tp(E))

are finitely generated Zp [G]-modules of finite projective
dimension.

Finally, if l �∈ S, l �= 2, and l �= p, we first note that

T
Ip
l = (Zl [G]⊗Zl

Tl(E))Ip = Zl [G]Ip ⊗Zl
Tl(E)Ip ,

because of Hypothesis 4.1(3). If p ∈ Sram(K/Q ), then
T
Ip
l = Zl [G]Īp ⊗Zl

Tl(E). We write eĪp for the idempo-
tent associated with Īp . By Hypothesis 4.1(2b), we have

Zl [G] = Zl [G]eĪp ⊕ Zl [G](1− eĪp )
= Zl [G]Īp ⊕ Zl [G](1− eĪp ).

Therefore T Ipl is a direct summand of Zl [G]⊗Zl
Tl(E) �

Zl [G]2 and thus projective.
If p ∈ Sbad(E), then T Ipl = Zl [G]⊗Zl

Tl(E)Ip is clearly
Zl [G]-free.
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We define the complex RΓ(Q , Tl) as in
[Burns and Flach 96, (1.33)] and proceed to recall
the computation of its cohomology (for more details
see [Burns and Flach 96, Section 1.5.1]). For an ar-
bitrary Zl-module W , we write W ∗ for the linear
dual HomZl

(W,Zl), and W∨ for the Pontryagin dual
Homcont(W,Q l/Zl).

We note that the Weil pairing induces an isomorphism
between Tl and T ∗l (1). Furthermore, we recall that

Hi(ZSl , Tl) �
{

0, if i = 0,

E(K)⊗Z Zl , if i = 1.

4.1. The case l �∈ S and l �= 2

For a finite Z-module C we write Cl∞ for the l-Sylow
subgroup of C. From [Burns and Flach 96, (1.35)–(1.37)]
we derive

H0
f (Q , Tl) = H0(ZSl , Tl) = 0,

H3
f (Q , Tl) =

(
H1(ZSl , T

∗
l (1))tors

)∨
� ((E(K)⊗Z Zl)tors)

∨ ,
Hi
f (Q , Tl) = 0 for i ≥ 4.

Defining �(T ∗l (1)) as in [Burns and Flach 96], we
have the short exact sequence (see [Burns and Flach 96,
(1.36)])

0 −→�(T ∗l (1))∨ −→ H2
f (Q , Tl)

−→ H1
f (Q , T ∗l (1))∗ −→ 0. (4–2)

By this sequence we identify H2
f (Q , Tl)tors with

�(T ∗l (1))∨, and H2
f (Q , Tl)tf with H1

f (Q , T ∗l (1))∗.
We let

C(Q p , Tl) � H0 (Q p ,H
1(Ip , Tl)tors

)
be the module introduced in [Burns and Flach 96,
(1.38)], so that we have exact sequences (by
[Burns and Flach 96, (1.38)] and the displayed ex-
act sequence succeeding it)

0 −→ H1
f (Q p , Tl) −→ H1

f (Q p , Tl)BK

−→ C(Q p , Tl) −→ 0 (4–3)

and

0 −→ H1
f (Q , Tl) −→ H1

f (Q , Tl)BK −→ C
−→�(T ∗l (1))∨ −→�(T ∗l (1))∨BK −→ 0, (4–4)

with

C :=
⊕
p∈Sl

C(Q p , Tl).

We claim that under our assumptions, the module C
is trivial. If p = l, then H1(Il , Tl) = Homcont(Il , Tl), be-
cause Il acts trivially on Tl (recall that l �∈ S). Therefore
H1(Il , Tl) is torsion-free, and C(Q l , Tl) is trivial. Assume
now that p �= l. We fix a place v of K above p and set
L := KvQ ur

p , where Q ur
p denotes the maximal unramified

extension of Q p . Furthermore, we put U := Gal(Q̄ p/L).
From the inflation–restriction sequence we derive

0 −→ H1(Īp , T Ul ) −→ H1(Ip , Tl)

−→ H1(U, Tl)Īp −→ H2(Īp , T Ul ).

If p ∈ Sram(K/Q ), then p �∈ Sbad(E) because of Hypoth-
esis 4.1(3), and we obtain TUl = Zl [G]⊗Zl

Tl(E), which
is a cohomologically trivial Īp -module. Hence

H1(Ip , Tl) � H1(U, Tl)Īp � Homcont(U, Tl)Īp ,

where the second isomorphism holds because U acts
trivially on Tl . It follows that H1(Ip , Tl) is torsion-
free, which, in turn, proves the claim for primes p ∈
Sram(K/Q ).

For p �∈ Sram(K/Q ) we have Īp = 1, so that we get
H1(Ip , Tl) � H1(U, Tl). Now U = Ip acts trivially on
Zl [G], and we obtain

H1(Ip , Tl) � Zl [G]⊗Zl
H1(U, Tl(E)).

It follows that

H1(Ip , Tl)
Gp

tors

� (
Zl [G]⊗Zl

H1(Ip , Tl(E))tors
)Gp

� Zl [G]⊗Zl [Ḡp ] H
1(Ip , Tl(E))Gal(Q̄ p /Kv )

tors .

By [Grothendieck 72, Exposé IX, (11.3.8)], the group
H1(Ip , Tl(E))Gal(Q̄ p /Kv )

tors can be identified with the l-
primary part of E(Kv )/E0(Kv ), and the claim follows
now from Hypothesis 4.1(5).

From (4–3) and (4–4), we now deduce

H1
f (Q p , Tl) � H1

f (Q p , Tl)BK ,

H1
f (Q , Tl) � H1

f (Q , Tl)BK ,

�(T ∗l (1)) ��(T ∗l (1))BK .

By [Burns and Flach 96, (1.39)], we may identify
�(T ∗l (1))∨BK with �(Tl)BK , which in turn identifies with
�(E/K)⊗Z Zl .

We recall from [Bloch and Kato 90, Proposition 5.4]
that H1

f (Q , Tl)BK � E(K)⊗Z Zl , so that

H1
f (Q , Tl) � E(K)⊗Z Zl ,

H2
f (Q , Tl)tf � (E(K)⊗Z Zl)

∗ .

Our next aim is to compute the refined Euler char-
acteristic χZl [G ],C l

(RΓf (Q , Tl), δ−1) introduced in (3–2)
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in terms of classical modules of the theory of ellip-
tic curves. In full generality, this is a very difficult
task, because it seems to be very hard to compute the
complex RΓf (Q , Tl). Our hypotheses allow us to use
[Burns and Flach 01, Proposition 2.1 (4)], so that we can
work entirely with the cohomology modules.

Lemma 4.3. Assume Hypotheses 4.1 and write χ =
χZl [G ],C l

. Then

χ(RΓf (Q , Tl), δ−1)

= [(E(K)⊗Z Zl)
∗ , δ−1 , E(K)tf ⊗Z Zl ]

− χ(�(E/K)l∞ , 0) + χ(E(K)l∞ , 0)
+ χ(E(K)∨l∞ , 0).

Proof. The proof follows from the preceding computation
of cohomology and Lemma 2.4.

Remark 4.4. If we relax Hypothesis 4.1(5), the module
C is possibly nontrivial. Combining the exact sequences
(4–2) and (4–4), we derive

0 −→ H1
f (Q , Tl) −→ H1

f (Q , Tl)BK

−→ C −→ H2
f (Q , Tl) −→ S −→ 0, (4–5)

with a module S that sits in a short exact sequence of
the form

0 −→�(E/K)⊗Z Zl −→ S −→ H1
f (Q , Tl)∗ −→ 0.

(4–6)
The module S is related to the integral Selmer
group defined in [Mazur and Tate 87] (see [Burns 09,
Lemma 12.2.2] and its proof). It is certainly possi-
ble to compute χ(RΓf (Q , Tl), δ−1) in this more gen-
eral setting for l � #G. However, any description of
χ(RΓf (Q , Tl), δ−1) would then involve the modules S,
C, and �(T ∗l (1)). For computational purposes this seems
to be less useful.

We now compute χ(RΓf (Q p , Tl), 0) for p �= l,∞. Re-
call that we are still in the case l �∈ S, l �= 2. From the
definition of RΓf (Q p , Tl), we immediately obtain

χ(RΓf (Q p , Tl), 0) = [T Ipl , 1− Fr−1
p , T

Ip
l ].

By Remark 3.3, this Euler characteristic is represented
by (L(E/Q , χ̄, 1))χ∈Irr(G) .

We let E be a Néron model for E over Z. Because of
Hypothesis 4.1(3), we may regard Spec(OK )×Spec(Z) E
as a Néron model EK of E over K. Recall that we made

the identification

tdR(MK ) := MdR/M
0
dR � H1(EK ,OEK

)
� K ⊗Q Ω1

E (E)∗.

In this way, the integral lattice H1(EK ,OEK ) is
identified with OK ⊗Z Ω1

E(E)∗. Recall that Ω1
E(E)∗ =

Zω∗0 . We define HK,Z :=
⊕

σ∈Σ(K ) Z ⊆ HK and HZ :=
HomZ(H1(E(C ),Z), 2πiZ) ⊆ H. Finally, we define

HK,Zl
:= Zl ⊗Z HK,Z

and

HZl
:= Zl ⊗Z HZ.

We will compare the refined Euler characteristic of

RΓf (Q ∞, Tl)⊕RΓf (Q l , Tl)

with the l-part of[
(HK,Z ⊗Z HZ)+ , πK ,H

1(EK ,OEK )
]

=
[
(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1

E(E)∗
]

in K0(Zl [G],C l).
Using the fixed embedding ι : K −→ C , we identify

HK,Z � Z[G]. It is easily shown that

(HK,Zl
⊗Zl
HZl

)+

= Zl [G]
(

1 + τ

2
⊗ γ∗+ +

1− τ
2
⊗ γ∗−

)
.

By (4–1), we may therefore identify RΓf (Q ∞, Tl) =
TG∞l [0] and (HK,Zl

⊗Zl
HZl

)+ .
For each prime p, we write tp(Vp) for the tangent space

DdR(Vp)/F 0DdR(Vp) of Vp (see [Burns and Flach 01,
p. 521] for the precise definition) and

κp : Q p ⊗Q tdR(MK ) −→ tp(Vp)

for the canonical comparison isomorphism of
[Burns and Flach 01, (23)]. For any embedding
j : R −→ C l we write πK,j for the composite map

C l ⊗R ,j R ⊗Q (HK ⊗Q H)+ ]
(C l⊗πK )−→ C l ⊗R ,j R ⊗Q K ⊗Q Ω1

E (E)∗

(C l⊗κl )−→ C l ⊗Q l
tl(Vl).

Since l �∈ S and l �= 2, the theory of Fontaine and Mess-
ing implies that

κl
(
Zl ⊗Z H

1(EK ,OEK )
)

= Dl/F 0Dl
(see the proof of [Burns 09, Lemma 12.4.1]). In particu-
lar, Dl/F 0Dl is Zl [G]-projective, since

Zl ⊗Z H
1(EK ,OEK ) � Zl ⊗Z OK ⊗Z Ω1

E(E)∗
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is Zl [G]-free, since l �∈ S is unramified in K/Q .

Since Dl 1−φl−→ Dl is injective, the short exact sequence
of complexes (with vertical differentials)

0 ��F 0Dl ⊆ ��

1−φ0
l

��

Dl ��

1−φl

��

Dl/F 0Dl ��

��

0

0 ��Dl = ��Dl ��0

implies that

0 −→ Dl/F 0Dl −→ H1
f (Q l , Tl) −→ Dl/(1− φl)Dl −→ 0

is exact. It follows that H1
f (Q l , Tl) is Zl [G]-perfect and

j∗
([

(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1
E(E)∗

])
=

[
TG∞l , πK,j , κl

(
Zl ⊗Z OK ⊗Z H

1(EK ,OEK )
)]

=
[
TG∞l , πK,j ,Dl/F 0Dl

]
=

[
TG∞l , πK,j ,H

1
f (Q l , Tl)

]
− [Dl , 1− φl,Dl ]

= χZl [G ],C l
(RΓf (Q ∞, Tl)⊕RΓf (Q l , Tl), πK )

− [Dl , 1− φl,Dl ] ,
where the last equality follows from Lemma 2.4.

In summary, we obtain for l �∈ S, l �= 2,

RΩl = [(E(K)⊗Z Zl)
∗ , δ−1 , E(K)tf ⊗Z Zl ]

+ χ(E(K)l∞ , 0)
+ χ(E(K)∨l∞ , 0)− χ(�(E/K)l∞ , 0)

−
∑
p∈S

[
T
Ip
l , 1− Fr−1

p , T
Ip
l

]
(4–7)

− j∗
([

(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1
E(E)∗

])
− [Dl , 1− φl,Dl ] .

4.2. The case l ∈ S or l = 2

By our assumptions, l � #G. We recall from
[Burns and Flach 96, end of Section 1.5] that

Hi
f (Q , Tl)BK = 0 for i �= 1, 2, 3,

H1
f (Q , Tl)BK = E(K)⊗Z Zl ,

H3
f (Q , Tl)BK = E(K)∨l∞ ,

and

0 −→�(E/K)⊗Z Zl −→ H2
f (Q , Tl)BK

−→ (E(K)⊗Z Zl)
∗ −→ 0.

As before, we write χ = χZl [G ],C l
for the refined Eu-

ler characteristic. If v is a finite place of K, we also
put χv = χZl [Gv ],C l

for the refined Euler characteristic

in K0(Zl [Gv ],C l). If we write

indGGv
: K0(Zl [Gv ],C l) −→ K0(Zl [G],C l)

for the natural induction map, then χ = indGGv
◦ χv .

Applying Lemma 2.4, we obtain

χ(RΓf (Q , Tl), δ−1) = [(E(K)⊗Z Zl)∗, δ−1, E(K)tf ⊗Z Zl ]
+ χ(E(K)l∞ , 0) + χ(E(K)∨l∞ , 0)
− χ(�(E/K)l∞ , 0).

We write Ê for the formal group associated with E.
Then we have the basic short exact sequence

0 −→ Ê(mv ) −→ E0(Kv ) −→ Ēns(kv ). −→ 0. (4–8)

We recall that H1
f (Q p , Tl) �

⊕
v |p E(Kv )∧l . For p �= l

and v | p, we first note that Ê(mv )∧l = 0. From (4–8), we
derive the short exact sequence

0 −→ Ēns(kv )l∞ −→ E(Kv )∧l

−→ (E(Kv )/E0(Kv ))l∞ −→ 0,

so that H1
f (Q p , Tl)BK is finite, and by Lemma 2.4,

χ(RΓf (Q p , Tl), 0) = indGGv
χv

(
Ēns(kv )l∞ , 0

)
+ indGGv

χv ((E(Kv )/E0(Kv ))l∞ , 0) .

As in the previous case, we must now relate the Eu-
ler characteristic of RΓf (Q ∞, Tl)⊕RΓf (Q l , Tl) and the
element

[
(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1

E(E)∗
]
l
.

We write

expBK
p : tp(Vp) −→ H1

f (Q p , Vp)

for the isomorphism given by the Bloch–Kato exponential
map and recall that the logarithm attached to the formal
group Ê induces an isomorphism

logv : E(Kv )∧l ⊗Zl
Q l � Kv .

We use the commutative diagram

Q l ⊗Q K ⊗Q Ω1
E (E)∗ κl ��

=
��

tl(Vl)

expB K
l

��⊕
v |l Kv ⊗ ω∗0

�
��

Q l ⊗Zl
H1
f (Q l , Tl)BK

�
��⊕

v |l Kv
⊕

v |l E(Kv )∧l ⊗Zl
Q l⊕ logv

��

For each place v | l we choose a positive integer nv such
that logv induces an isomorphism between Ê(mnv

v ) and
mnv
v . For every prime p, we fix a place vp above p. We

obtain the result shown in Figure 3.
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j∗
([

(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1
E(E)∗

])
=

[
TG∞
l , πK ,j , κl (Zl ⊗Z OK ⊗Z Ω1

E(E)∗)
]

=
[
TG∞
l , πK ,j , κl (⊕v |lOKv ⊗ ω∗0 )

]
=

[
TG∞
l , expBK

l ◦πK ,j , (expBK
l ◦κl )(⊕v |lOKv ⊗ ω∗0 )

]
=

[
TG∞
l , expBK

l ◦πK ,j , (expBK
l ◦κl )(⊕v |lmn v

v ⊗ ω∗0 )
]
+

[⊕v |lmn v , id,⊕v |lOKv

]
(i)
=

[
TG∞
l , expBK

l ◦πK ,j ,⊕v |l Ê(mn v
v )

]
+

[⊕v |lmn v , id,⊕v |lOKv

]
=

[
TG∞
l , expBK

l ◦πK ,j ,⊕v |l Ê(mv )
]
−

[
⊕v |l Ê(mn v ), id,⊕v |l Ê(m)

]
+

[⊕v |lmn v , id,⊕v |lOKv

]
(ii)
=

[
TG∞
l , expBK

l ◦πK ,j ,⊕v |lE0 (Kv )∧l
]− χ(⊕v |l Ēns (kv )l∞ , 0) +

[⊕v |lm, id,⊕v |lOKv

]
=

[
TG∞
l , expBK

l ◦πK ,j , H
1
f (Q l , Tl )BK

]− χ(⊕v |l (E(Kv )/E0 (Kv ))l∞ , 0)− χ(⊕v |l Ēns (kv )l∞ , 0) +
[⊕v |lm, id,⊕v |lOKv

]
=

[
TG∞
l , expBK

l ◦πK ,j , H
1
f (Q l , Tl )BK

]− indGGv l

(
χvl (

(
E(Kvl )/E0 (Kvl )

)
l∞ , 0)

) − indGGv l

(
χvl (Ēns (kv l )l∞ , 0)

)
+ indGGv l

(
χvl (kv l , 0)

)
(iii)
= χ (RΓf (Q ∞, Tl )⊕RΓf (Q l , Tl ), πK )− indGGv l

(
χvl (

(
E(Kvl )/E0 (Kvl )

)
l∞ , 0)

) − indGGv l

(
χvl (Ēns (kv l )l∞ , 0)

)
+ indGGv l

(
χvl (kv l , 0)

)
.

FIGURE 3. Computation of equivariant period.

Here the equality in the figure labeled (i) is induced
by the diagram and our choice of integers nv , (ii) comes
from (4–8), and (iii) follows from Lemma 2.4.

In summary, we obtain for l ∈ S or l = 2 (always as-
suming l � #G),

RΩl = [(E(K)⊗Z Zl)∗, δ−1 , E(K)tf ⊗Z Zl ]

− j∗
([

(HK,Z ⊗Z HZ)+ , πK ,OK ⊗Z Ω1
E(E)∗

])
+ χ(E(K)l∞ , 0) + χ(E(K)∨l∞ , 0)
− χ(�(E/K)l∞ , 0)

−
∑
p∈Sl

indGGv p

(
χvp (Ēns(kvp )l∞ , 0)

)
(4–9)

−
∑
p∈Sl

indGGv p

(
χvp (

(
E(Kvp )/E0(Kvp )

)
l∞ , 0)

)
+ indGGv l

(χvl (kvl , 0)) .

If E(K)tf ⊗Z Zl and (E(K)⊗Z Zl)∗ are Zl [G]-
projective, then by the arguments of Remark 2.7(a), we
can find a Zl [G]-module Z such that both (E(K)tf ⊗Z

Zl)⊕ Z and (E(K)⊗Z Zl)∗ ⊕ Z are Zl [G]-free. Then one
has

[(E(K)⊗Z Zl)∗, δ−1 , E(K)tf ⊗Z Zl ]
= [(E(K)⊗Z Zl)∗ ⊕ Z, δ−1 ⊕ id, (E(K)tf ⊗Z Zl)⊕ Z],

so that without loss of generality we may assume that we
can work with Zl [G]-bases.

If T is a finite perfect Zl [G]-module, then we write
χ̃Zl [G ],C l

(T, 0) for any lift of χZl [G ],C l
(T, 0) via the mid-

dle vertical map of Figure 2. Analogously, we use the
notation χ̃ and χ̃v .

Recall the definition of u = L∗R
ΩReg in Conjecture 3.5.

Proposition 4.5. Assume Hypotheses 4.1 and let α0 be a
normal basis element such that OK,l = Zl [G]α0 . Assume
that u = ul is computed with respect to α0 and a Zl [G]-
basis of E(K)tf ⊗Z Zl and (E(K)⊗Z Zl)∗. Assume also
that the rationality conjecture holds.

If l �∈ S and l �= 2, we set

ξl := χ̃(E(K)l∞ , 0)−1 · χ̃(E(K)∨l∞ , 0)−1

· χ̃(�(E/K)l∞ , 0).

If l ∈ S or l = 2, we set

ξl := χ̃(E(K)l∞ , 0)−1 · χ̃(E(K)∨l∞ , 0)−1

· χ̃(�(E/K)l∞ , 0)

·
∏
p∈Sl

indGGv p
χ̃vp

(
Ēns(kvp )l∞ , 0

)
·
∏
p∈Sl

indGGv p
χ̃vp

((
E(Kvp )/E0(Kvp )

)
l∞ , 0

)
· indGGv l

χ̃vl (kvl , 0)−1
∏
p∈Sl

(Lp(E, χ̄, 1))−1
χ∈IrrQ (G) .

Then

TΩl = 0 ⇐⇒ ul = ξl ∈ cok(µl)⊕ Il(C). (4–10)

Proof. The Euler factor terms
[
T
Ip
l , 1− Fr−1

p , T
Ip
l

]
and [Dl , 1− φl,Dl ] in (4–7) cancel, because of the
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identification made in [Burns and Flach 01, (24)] applied
to [Burns and Flach 01, (19) and (22)]. See Remark 3.3.

For the same reason we obtain the local Euler factors
(Lp(E, χ̄, 1))χ∈IrrQ (G) in (4–9). Indeed, by (3–1), the local
factors (Lp(E, χ̄, 1))χ∈IrrQ (G) represent the refined Euler

characteristics of the complexes (Vp
φp−→ Vp) that occur

in [Burns and Flach 01, (19) and (22)].

Remark 4.6. The local Euler factors in the above formulas
can be computed using their explicit definition. For the
computation of the refined Euler characteristics of finite
modules we use the method explained in Example 2.8.
Hence we obtain ξl as an element in C×.

If ulξ−1
l = (η1 , . . . , ηr ) with ηi ∈ Ki , then TΩl = 0 if

and only if vP(ηi) = 0, ∀i ∈ {1, . . . , r}, P | l ∈ Ki/Q ,

and (η̄1 , . . . , η̄r ) ∈ im(µl), where η̄i denotes the image of
ηi under the projection O×Ki ,l

−→ (OKi
/gi,l)

×, and µl is
the isomorphism from (2-4). Recall that this means that
the ηi have to satisfy certain complicated congruences. In
Section 2.3, we made these congruences explicit for cyclic
groups Zl , dihedral groupsD2l , and the alternating group
A4 . For explicit examples see Sections 6.1, 6.2, and 6.3,
where we consider dihedral extensions K/Q of degree 2l
for an odd prime l. In each of these examples, the prime
l is of particular interest, because we have to check that
the BSD quotients satisfy the congruence (2-6).

Remark 4.7. The element ul in (4–10) depends on the
choice of α0 . However, the validity of the statement
ul = ξl ∈ cok(µl)⊕ Il(C) is independent of this choice.
If β0 is another Zl [G]-generator of OK,l , then β0 = λα0

with a unit λ ∈ Zl [G]×. As in Remark 3.6, we see that
ul(β0) = NrdQ l [G ](λ)ul(α0). Hence the independence fol-
lows from the fact that NrdQ l [G ](λ) is a unit in OC,l that
is contained in the image of µl .

We fix a normal basis element α0 and Q [G]-bases
of E(K) ⊗Z Q and (E(K) ⊗Z Q )∗ in the sense of Re-
mark 2.7(b) and compute u with respect to these bases.
Note that for almost all primes l, the element α0 consti-
tutes a Zl [G]-basis of OK,l , and the chosen Q [G]-basis
of E(K) ⊗Z Q , respectively (E(K) ⊗Z Q )∗, is a Zl [G]-
basis of E(K)tf ⊗Z Zl , respectively (E(K)⊗Z Zl)∗. For
all these primes l we can use this fixed u as ul in Propo-
sition 4.5.

We define two finite sets of rational primes: The first
is

HP1 = S ∪ {2} ∪ {l : l | #G} ∪ {l : l | #E(Kv )/E0(Kv )

for

v ∈ Sl(K)} ∪ {l : l | #E(K)tors} ∪ {l : l | #�(E/K)},
and the second is

HP2 = {l : ul �= u}.
So for all l �∈ HP2 we can use the fixed u as ul in Propo-
sition 4.5. Note that HP2 depends on the choice of α0

and the Q [G]-bases of E(K) ⊗Z Q and (E(K) ⊗Z Q )∗.
Finally, we set

HP := HP1 ∪HP2 .

We say that an element w = (w1 , . . . , wr ) ∈ ζ(Q [G])×

has support in HP if (wi, p) = 1 for i = 1, . . . , r and all
primes p �∈ HP.

Corollary 4.8. Assume Hypotheses 4.1(0) and (3) and the
rationality conjecture. Let l �∈ HP be a rational prime.
Then l satisfies Hypotheses 4.1(1), (2), (4), and (5), and

TΩl = 0 ⇐⇒ u has support in HP .

Proof. The first assertion is clear from the definition of
HP. If l �∈ HP, then we are in the case l �∈ S and l �= 2. By
definition of HP1, the element ξl is trivial. By definition of
HP2, we have u = ul . Since l � #G, we have cok(µl) = 0,
so that TΩl = 0 if and only if u is prime to l in the sense
of Remark 4.6.

By the corollary we can, in principle, numerically ver-
ify ETNC for almost all primes l as soon as we have com-
puted a good approximation of u ∈∏

χ∈Irr(G) C×. If the
computed u makes us believe that the rationality conjec-
ture holds, and if we are able to round u to an element
of u′ ∈∏

χ∈IrrQ (G) Q (χ)×, we have only to check whether
u′ has support in HP.

Of course, the main restriction to our approach is our
incapability of computing the Mordell–Weil group and
the Tate–Shafarevich group. In order to obtain at least
some numerical evidence, we will usually trust in the
equivariant rank conjecture and thus assume that the
analytic rank equals the geometric rank r and compute
r by computing approximations to the L-values. Even
here, our approach is rather vague, since we do not make
use of a criterion that would allow us to decide whether
an L-value is actually 0 from the knowledge of numerical
approximations.

However, numerical computations can prove that the
analytic rank is 0, and in this case (assuming that K is
totally real), we can use results proved independently by
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Longo and by Tian and Zhang (see [Darmon 06, Theo-
rem 3.7]) to deduce that the algebraic rank is also 0.

If r = 0 or in the rare case that r > 0 and we know gen-
erators for E(K), we use the usual Birch and Swinnerton-
Dyer conjecture to compute a conjectural value for
#�(E/K). In a sense, our results can be characterized
as “deducing numerical evidence for ETNC from the clas-
sical BSD-conjecture for E/K.”

5. COMPUTATIONAL REMARKS

In this section we describe how we perform our compu-
tations.

5.1. Computation of L -Values

For the computation of the leading coefficients
L∗(E/Q , χ, 1), χ ∈ Irr(G), we use the algorithm de-
scribed in [Dokchitser 04]. Actually, we apply the
Magma implementation of this algorithm.

We use the algorithm to compute complex approxi-
mations to the derivatives L(k)(E/Q , χ, 1) of the twisted
Hasse–Weil L-functions at s = 1. We also use these val-
ues to guess the order of vanishing of L(E/Q , χ, s) at
s = 1 in a very naive way. Explicitly, we set

r̃(χ) := min{k ≥ 0 | |L(k)(E/Q , χ, 1)| > ε},
where ε > 0 is a chosen lower bound that seems to be
reasonable in an unspecific way. At least one can hope
that r̃(χ) is equal to the order of L(E/Q , χ, s) at s = 1.

5.2. Computation of Periods

For the computation of periods associated with
h1(EK )(1) considered as a motive over Q with coeffi-
cients in Q [G], we apply Proposition 3.1. The compu-
tation of Ω+ and Ω− is standard, and we just use the
implementation provided by Magma. It is usually very
efficient to compute a normal basis element α0 just by
trial and error. Without loss of generality, we assume
that α0 ∈ OK . Then the exceptional set HP2 contains

HP′2 = {l | l divides [OK : Z[G]α0 ]},
which can be computed easily.

If we want to check the conjecture for primes l ∈ HP,
we must assume Hypotheses 4.1, in particular, that l is
at most tamely ramified in K/Q . In this case, we can
use [Bley and Wilson 09, Algorithm 4.2] to compute α0 ∈
OK such that OK,l = Zl [G]α0 .

However, it is reasonable to compute u such that
the exceptional set HP is as small as possible. Under

certain assumptions on the group G (which are sat-
isfied, for example, for all groups with #G < 32), we
can often use the methods of [Bley and Johnston 08,
Bley and Johnston 11] to compute α0 ∈ OK such that
HP′2 ⊆ HP1. This is possible because for small groups G,
the ring of integers OK is often free over the associated
order

A = A(Q [G];OK ) := {λ ∈ Q [G] | λ(OK ) ⊆ OK },
and in this case, [Bley and Wilson 09, Algorithm 4.2]
computes a free generator α0 such that OK = Aα0 . Ba-
sic properties of associated orders then imply thatOK,l =
Zl [G]α0 for all l � #G.

5.3. Computation of Equivariant Regulators

Our possibilities to compute regulators are very limited,
because in most cases, we are not able to compute the
Mordell–Weil group E(K) when K �= Q (or a subgroup
of finite index in E(K)). Henceforth, we assume r > 0
and that

E(K) = E(K)tors ⊕ ZP1 ⊕ · · · ⊕ ZPr

is explicitly known. Note, however, that for the rational-
ity conjecture it would be enough to know a subgroup of
finite index.

We consider E(K)⊗Z Q and remind the reader of
Remark 2.7(b), where the general recipe for the com-
putation of regulators is described. However, for our
actual computations described in the next section, it
will be enough to consider irreducible rational charac-
ters χ ∈ IrrQ (G) that factor through the commutator
subgroup G′. For all other characters, we assume that
eχ(E(K)⊗Z Q ) is trivial. Under these circumstances, it
is rather straightforward to compute a Q [G]-basis in the
sense of Remark 2.7(b). We describe the computation of
the equivariant regulator in this case.

Let ψ ∈ Irr(G) denote an absolutely irreducible
abelian character and set F := Kker(ψ ) . Let

χ =
∑

σ∈Gal(Q (ψ )/Q )

ψσ

be the associated rational character. Then eχQ [G] �
Q (ψ) is a field and eχ(E(K)⊗Z Q ) = eχ(E(F )⊗Z Q ) is
a finite-dimensional eχQ [G]-vector space. Let Q1 , . . . , Qd

be a eχQ [G]-basis.
For an abelian character ϕ we write ϕ | χ if ϕ is a

constituent of χ. If

a = (aϕ )ϕ∈Irr(G) ∈
∏

ϕ∈Irr(G)

� ζ(C [G]),
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then we write aχ for the χ-part

(aϕ )ϕ |χ ∈
∏
ϕ |χ
� ζ(eχC [G]).

Proposition 5.1. Assume the above notation. With respect
to the eχQ [G]-bases Q1 , . . . , Qd and Q∗1 , . . . , Q

∗
d with Q∗i

defined below in (5–1), the χ-part of the regulator is given
by

Regχ :=
(
det

(〈Qi, eψ̄ σ Qj 〉
)
1≤i,j≤d

)
σ∈Gal(Q (ψ )/Q )

.

Proof. The set {eϕQi | i = 1, . . . , d, ϕ | χ} is a C -basis of
eχ(E(K)⊗Z C ). We define the dual basis by

(eϕQi)
∗ (eλQj ) =

{
1, if ϕ = λ and i = j,

0, otherwise.

Then one easily verifies that

eλ (eϕQi)
∗ =

{
(eϕQi)

∗ , if ϕ = λ̄,

0, otherwise.

The elements

Q∗i :=
∑
ϕ |χ

(eϕ̄Qi)
∗ , i = 1, . . . , d, (5–1)

form an eχQ [G]-basis of (eχ(E(K)⊗Z Q ))∗. Then

〈eϕQi, 〉 =
∑
j,λ

〈eϕQi, eλQj 〉(eλQj )∗

=
∑
j,λ

〈Qi, eϕ̄eλQj 〉(eλQj )∗

=
∑
j

〈Qi, eϕ̄Qj 〉(eϕ̄Qj )∗.

Hence

〈eχQi, 〉 =
∑
ϕ |χ

∑
j

〈Qi, eϕ̄Qj 〉(eϕ̄Qj )∗

=
∑
j

(∑
ϕ |χ
〈Qi, eϕ̄Qj 〉eϕ

)(∑
ϕ |χ

(eϕ̄Qj )∗
)

=
∑
j

(∑
ϕ |χ
〈Qi, eϕ̄Qj 〉eϕ

)
Q∗j .

Therefore, with respect to the bases Q1 , . . . , Qd and
Q∗1 , . . . , Q

∗
d , the regulator map is represented by the ma-

trix (
∑

ϕ |χ〈Qi, eϕ̄Qj 〉eϕ )1≤i,j≤d , and the result follows
upon computing the reduced norm.

For integrality considerations we restrict ourselves to
the case that l �= 2 and l � #G. Then E(K)⊗Z Zl is
Zl [G]-perfect, and we wish to compute an eχZl [G]-basis
Q1 , . . . , Qd of eχ(E(K)⊗Z Zl). Since eχZl [G] naturally

identifies with
∏

P|l Zl [ψ], which is a product of discrete
valuation rings, such a basis always exists. From

Q∗i (Qj ) =

{
χ(1), if i = j,

0, if i �= j,

we see that

1
χ(1)

Q∗1 , . . . ,
1

χ(1)
Q∗d

is an eχZl [G]-basis of eχ(E(K)⊗Z Zl)∗.
Working with localizations rather than completions,

we can also consider eχ(E(K)⊗Z Z(l)) as a module over
eχZ(l) [G] � Z(l) [ψ] ⊆ Q (ψ), which is a principal ideal
ring (because it is Dedekind with only finitely many max-
imal ideals). It is then quite standard to compute a basis
from the knowledge of P1 , . . . , Pr .

Example 5.2. In [Fearnley and Kisilevsky 10], the au-
thors consider the situation that K/Q is a cyclic ex-
tension of odd prime degree l and examine the case
that L(E/Q , ψ, s) has simple zeros for all nontrivial
characters ψ ∈ Irr(G). We write Ĝ for the group of
linear characters of G and fix a generator ψ0 of Ĝ.
Let χ :=

∑
γ∈Gal(Q (ψ0 )/Q ) ψ

γ
0 denote the associated irre-

ducible rational character. The computations described
in [Fearnley and Kisilevsky 10] suggest that for nontriv-
ial ψ and a point P ∈ E(K) of infinite order with trace
0 (i.e., P ∈ eχ(E(K)⊗Z Q ) is a eχQ [G]-basis), one has

L′(E/Q , ψ, 1) =
τ(ψ)
fψ

Ω+λψ (P )αψ (P ),

with a Gauss sum τ(ψ), the conductor fψ of ψ,

λψ (P ) :=
∑
σ∈G

ψ(σ−1)〈P, Pσ 〉,

and an algebraic number αψ (P ) ∈ Q (ψ) that satisfies
αψγ (P ) = αψ (P )γ for all γ ∈ Gal(Q (ψ)/Q ). In other
words, this means that (αψ (P ))ψ |χ ∈ ζ(eχQ [G])×.

The results and computations of
[Fearnley and Kisilevsky 10] are completely consis-
tent with the rationality conjecture (Conjecture 3.5)
and provide numerical evidence for it. Indeed, one easily
shows that λψ (P ) = 〈P, eψ̄ P 〉, so that we deduce from
Proposition 5.1 that

Regχ ≡
(
λψγ

0
(P )

)
γ∈Gal(Q (ψ0 )/Q )

,

where ≡ means up to a multiplicative factor in
eχQ [G]× ⊆∏

ψ �=1 C×. Furthermore, by [Fröhlich 89,
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Section 9(i), (ii)] one has

(τ(ψγ0 ))γ∈Gal(Q (ψ0 )/Q )

≡
(∑
σ∈G

ψγ0 (σ)σ(α0)
)
γ∈Gal(Q (ψ0 )/Q )

.

Recall that the right-hand side is exactly the χ-part of
the resolvent R from Conjecture 3.5.

5.4. Computation of Refined Euler Characteristics of
Finite Perfect Modules

Let T be a finite perfect Zl [G]-module. The recipe for the
computation of χZl [G ],Q l

(T ) is already given in Example
2.8. We give two applications.

Proposition 5.3. Let F/Q p denote a finite Galois exten-
sion with group D. Let v denote the normalized discrete
valuation of F . Let E/Q p be an elliptic curve such that
E/F has split multiplicative reduction. Then

(a) #E(F )/E0(F ) = c with c := −v(j(E)).

(b) Let l be a prime. Then E(F )/E0(F )⊗Z Zl is Zl [D]-
perfect if and only if l � c or l � #D.

(c) Set cl := # (E(F )/E0(F )⊗Z Zl). If l � c or l � #D,
then χZl [D ],Q l

(E(F )/E0(F )⊗Z Zl) is represented by
(cl , 1, . . . , 1) ∈ ζ(Q [D])×.

Proof. We apply [Silverman 86, Theorem 14.1]. We see
that E is isomorphic over F to the Tate curve Eq with
v(q) = c. The isomorphism Eq (F ) � F×/qZ induces a D-
equivariant isomorphism

E(F )/E0(F ) � F×/(qZ ×O×F ).

Note that D acts trivially on the right-hand side, so that
F×/(qZ ×O×F ) � Z/cZ as Galois modules. Parts (a) and
(b) are now immediate. To prove (c), we may assume
l � #D. Then we have a projective resolution of Z(l) [D]-
modules

0 −→ Z(l) [D]
cl eD +(1−eD )−→ Z(l) [D] −→ Z/clZ −→ 0.

The result follows.

Proposition 5.4. Let F/Q l denote a finite Galois exten-
sion with group D and ramification subgroup I. Let v
denote the normalized discrete valuation of F . Let kv de-
note the residue class field. Then kv is Zl [D]-perfect if
and only if l � #I. In this case, χZl [D ],Q l

(kv ) is repre-
sented by (aψ )ψ ∈ ζ(Q [D])× �∏

ψ∈IrrQ (D ) Q (ψ) with

aψ =

{
l, if I ⊆ ker(ψ),
1, otherwise.

Proof. By the normal basis theorem, one has kv �
F l [D/I]. One easily shows that Ĥ0(D,F l [D/I]) �
F l/|I|F l . It follows that if kv is perfect, then l � #I. Con-
versely, if l � #I, then we have the projective resolution

0 −→ Zl [D]
leI +(1−eI )−→ Zl [D] −→ kv −→ 0,

and the result follows.

In general, we assume that the finite perfect Zl [G]-
module T is given by a Z[G]-generating set t1 , . . . , td with
explicitly known G-action, i.e.,

gti =
d∑

j=1

ag,j tj , ag,j ∈ Z[G], g ∈ G.

It is then easy to compute a Z[G]-resolution of the form

0 −→ Q −→ P
π−→ T −→ 0

with P := Z[G]d , π(ei) := ti , where ei denotes the canon-
ical basis and Q := ker(π). We then proceed as described
in Example 2.8.

In this way, it is, in principle, possible to compute
the refined Euler characteristics of E(K)l∞ , E(K)∨l∞ , and
Ēns(kvp )l∞ , at least in small examples where we are
able to provide an explicit generating set with explic-
itly known G-action. If v is a place of bad reduction, we
can use Tate’s algorithm to determine the reduction type
and then use [Silverman 86, Exercise III, 3.5] in order to
compute Ēns(kv )l∞ .

5.5. Computation of E (K ) and �(E /K )

The computation of E(K) is very difficult even if K = Q ,
and it usually does not work if K �= Q . In our examples,
we mostly consider pairs (E,K) such that the analytic
rank of E/K is 0 and K is totally real. In this case, we
use [Darmon 06, Theorem 3.7] to deduce that the alge-
braic rank is also equal to 0. In small examples (see, e.g.,
Section 6.1), it is sometimes possible to prove that the
algebraic rank is trivial by a Selmer group computation.

If r > 0, we generally assume the validity of the equiv-
ariant rank conjecture and consider only examples in
which the equivariant rank conjecture implies that E(K)
is built from subgroups E(F ) where F ranges over the
subfields ofK/Q with [F : Q ] ≤ 2. For F = Q , we use the
Magma routine to compute E(Q ), and if F is a quadratic
extension, we look at the associated quadratic twist Ed

of E and compute Ed(Q ). Computing the isomorphism
E � Ed (defined over F ), we then obtain E(F ).

Our ability to compute �(E/K) is even more limited.
We remind the reader that throughout the manuscript
we assume finiteness of �(E/K). In order to compute
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#�(E/K), we use the classical BSD conjecture for E/K.
In this way, we obtain a conjectural value for #�(E/K)
that we wish to use to compute the associated refined
Euler characteristic. Since we have at our disposal only
the (conjectural) order of �(E/K), we are usually re-
stricted to dealing with primes l that do not divide this
order. However, in some rare cases (see, e.g., Section 6.2),
it suffices to know this order to compute the refined Euler
characteristic of �(E/K). Moreover, in some examples
(see Sections 6.1 and 6.3), the computations lead to a
conjectural description of the structure of �(E/K) as a
Galois module.

5.6. Computation of Induction

If H is a subgroup of G, then there is a canonical
induction map indGH : K0(Zl [H],Q l) −→ K0(Zl [G],Q l).
We refer the reader to [Bley and Wilson 09, Section 6],
where we provide an algorithmic description of this map.

6. EXAMPLES

In this section we illustrate our results with some explicit
examples. The computational results of this section can
be reproduced using the author’s Magma implementa-
tions.2

6.1. Navilarekallu’s Example

In this subsection we redo the example from
[Navilarekallu 88]. Let

E : y2 + y = x3 − x2 − 10x− 20,

and let K be the splitting field of f(x) = x3 − 4x+ 1.
Then K/Q is an S3-extension. The elliptic curve E is
denoted by 11A1 in Cremona’s database. Its conduc-
tor is NE = 11, and the discriminant of K is given by
dK/Q = 2293. The field K is totally real and contains
the quadratic subfield F := Q (

√
229). In fact, K is the

Hilbert class field of F .
We have S = {11, 229}. For a rational prime q, we fix

a place vq of K above q. One easily computes

#Ī229 = 2, #Ēns(kv2 ) = 5,
#Ēns(kv3 ) = 20, #Ēns(kv5 ) = 140,

#Ēns(kv1 1 ) = 1330, #Ēns(kv2 2 9 ) = 215,
E(K)tors = E(Q )tors is cyclic of order 5,

2 Available online at http://www.mathematik.uni-muenchen.de/
∼bley/pub.html

E has split multiplicative reduction at v11 with cv1 1 = 5,

(L11(E/Q, χ̄, 1)) = (10/11, 10/11, 133/121),
(L229(E/Q, χ̄, 1)) = (215/229, 1, 215/229),

and

indGGv 1 1
χGv 1 1

(kv1 1 ) = (11, 11, 121),

indGGv 2 2 9
χGv 1 1

(kv2 2 9 ) = (229, 1, 229).

The L-values can easily be computed with a preci-
sion of 20 or more decimal digits. We give here only
the first six decimal digits: (L(E/Q , χ̄, 1))χ∈IrrQ (G) =
(0.253842, 0.419359, 2.66127). Therefore, the analytic
rank for each of the L-functions is trivial. By [Darmon 06,
Theorem 3.7] (which has been proved independently
by Longo and by Tian and Zhang), we have E(K) =
E(K)tors = E(Q )tors .

In this small case, this can also be proved by algo-
rithmic methods. Let K1 be the number field defined
by f(x) = x3 − 4x+ 1. Then the computation of Selmer
groups using the Magma routine TwoSelmerGroup shows
that Sel(2)(E/K1) and Sel(2)(E/F ) are trivial. It follows
quite easily that E(K) must be torsion.

We obtain

u = (0.200000,−5.00000,−25.0000),

which numerically confirms the rationality conjecture.
We point out that the resolvents and therefore also
the value for u depend on the choice of the in-
tegral normal basis element α0 . The algorithm of
[Bley and Johnston 08] does not always produce the
same generator, so that one may obtain different results
when running the algorithm. Note, however, that the va-
lidity of the ETNC does not depend on this choice (see
Remark 4.7).

From the BSD conjecture we conclude the conjectural
order #�(E/K) = 625, so that HP = {2, 3, 5, 11, 229}.
By Corollary 4.8 we immediately obtain a numerical con-
firmation for all primes l �∈ HP.

For l = 2, Hypothesis 4.1(2a) is not satisfied, and for
l = 5, we do not have Hypothesis 4.1(5). For l = 3, we
have ξl = (1, 1, 1). So u = uξ−1

l is a torsion element in
K0(Z3 [G],Q 3). Here K0(Z3 [G],Q 3)tors is cyclic of order
2, and by the methods of [Bley and Wilson 09], we can
check that u is indeed trivial in this group. We can also
directly check the explicit congruence (2-6), which be-
comes −1 ≡ −25 (mod 3) in this example.

For l ∈ {11, 229} the group K0(Zl [G],Q l)tors is trivial,
and from the above data, one easily deduces the validity
of the l-part of ETNC.
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Although we do not have Hypothesis 4.1(5) for l = 5,
one can try to proceed as in Remark 4.4. By Proposi-
tion 5.3, we can compute the refined Euler characteris-
tic of C (see Remark 4.4 for the notation). Since we do
not know how to compute the Euler characteristics of S
and H1

f (Q , Tl)∗ rigorously, we get only a very vague idea
about the Galois structure of �(E/K). However, by the
conjectural validity of ETNC at l = 5, one is tempted to
guess that χ̃(�(E/K)5∞) = (1, 1, 1

25 ). One may therefore
guess that �(E/K)5∞ lives in the 2-dimensional compo-
nent of Q 5 [G] and has the resolution

0 −→M2(Z5)
( 5 0

0 5 )−→ M2(Z5) −→�(E/K)5∞ −→ 0.

This was verified by T. Fisher in a private communica-
tion.

6.2. A D5 Example

In this example we let E be the curve 73A1 in Cremona’s
notation. We let K be the number field defined by the
irreducible polynomial

f(x) = x10 − 2x9 − 20x8 + 2x7 + 69x6 − x5 − 69x4 + 2x3

+ 20x2 − 2x− 1.

Then K/Q is a Galois extension with dihedral group
D5 . We have NE = 73 and dK/Q = 4015. The field K

is totally real and contains the quadratic subfield F :=
Q (
√

401). Hence S = {73, 401}. In fact, K is the Hilbert
class field of F .

We have four characters:

id τ σ σ2

χ1 1 1 1 1
χ2 1 −1 1 1
χ3 2 0 ζ5 + ζ−1

5 ζ2
5 + ζ−2

5

χ4 2 0 ζ2
5 + ζ−2

5 ζ5 + ζ−1
5

Hence Q [G] � Q ⊕ Q ⊕M2(K3) with K3 = Q (β), where
β := ζ5 + ζ−1

5 . Elements in the center of C [G] will be de-
noted by 4-tuples z = (z1 , . . . , z4), zi ∈ C . Recall that
z ∈ ζ(Q [G]) if and only if z1 , z2 ∈ Q , z3 , z4 ∈ K3 , and
ϕ(z3) = z4 , where 〈ϕ〉 = Gal(K3/Q ). Elements in z ∈
ζ(Q [G]) will be represented by tuples z = (zχ1 , zχ2 , zχ3 ).

The L-values were computed with a precision of 20
decimal digits and are given by

(L(E/Q , χ̄, 1))χ∈IrrQ (G)

= (1.1826604672413298661, 2.1261328339601570537,
0.16304872052191552777, 7.6598191709443800630).

The analytic rank of each of the twisted L-functions
is therefore 0, and as in the first example, [Darmon 06,
Theorem 3.7] allows us to conclude that E(K) is finite.

The numerical computation of L-values, resolvents,
and periods leads to

u = (0.49999999999999999999, 18.000000000000000008,
0.58359213500126187216, 27.416407864998738187).

Numerically, this confirms the rationality conjecture,
because u is close to

(1/2, 18,−12β + 8, 12β + 20),

and ϕ(−12β + 8) = 12β + 20. The minimal polynomial
of −12β + 8 is given by x2 − 28x+ 16. Again we point
out that the resolvents and therefore also the value for
u depend on the choice of the integral normal basis ele-
ment α0 .

We further see that

#Ī401 = 2, #Ēns(kv2 ) = 22,
#Ēns(kv3 ) = 16, #Ēns(kv5 ) = 3044,

#Ēns(kv7 3 ) = 2073071592, #Ēns(kv4 0 1 ) = 388,
E(K)tors = E(Q )tors is cyclic of order 2,

E has split multiplicative reduction at v73 with cv7 3 = 2,

(L73(E/Q, χ̄, 1))

=
(

72
73
,
72
73
,

1
5329

(73β + 5403),
1

5329
(−73β + 5330)

)
,

(L401(E/Q, χ̄, 1)) =
(

388
401

, 1,
388
401

,
388
401

)
,

indGGv 7 3
χGv 1 1

(kv1 1 ) = (73, 73, 5329),

and

indGGv 4 0 1
χGv 4 0 1

(kv4 0 1 ) = (401, 1, 401).

Recall that any element z ∈ ζ(Q [G]) is represented by
a tuple z = (zχ1 , zχ2 , zχ3 ). This explains why some of the
above tuples have only three components.

From the BSD conjecture we derive the conjectural
order #�(E/K) = 2304 = 2832. Thus we have HP =
{2, 3, 5, 73, 401}, and by Corollary 4.8, the ETNC is nu-
merically confirmed outside HP.

For l = 2 we cannot perform our computations, be-
cause 2 divides #G.

For l = 3, our Magma implementation terminates
without verifying the 3-part of ETNC, because 3 di-
vides the order of �(E/K). In general, we are not able
to compute the refined Euler characteristic of �(E/K)
if l divides #�(E/K), because we have no informa-
tion about its Galois structure. However, in some special
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cases like this one, it is possible to pin down the exact
Euler characteristic by purely representation-theoretic
considerations. Here �(E/K)[3] is conjecturally bicyclic
of order 9, and we may consider it a representation
over F 3 . There are three irreducible representations
over F 3 , namely the trivial character, the sign char-
acter, and a 2-dimensional representation (defined over
F 9). A BSD-computation for E/Q and E/F shows that
#�(E/Q )[3] = 1 and #�(E/F ) = 9, so that we obtain
χ̃(�(E/K)) = (1, 9, 1). Using this, we can also confirm
the validity of ETNC at l = 3.

For l ∈ {73, 401}, we have that K0(Zl [G],Q l)tors is
trivial, and from the above data one easily deduces the
validity of the l-part of the ETNC.

Most interesting is the case l = 5, because in
this case we have the nontrivial torsion subgroup
K0(Zl [G],Q l)tors , so that we must verify the explicit con-
gruence (2-6). We have ξ5 = (1, 1, 1), so that η := uξ−1

5 =
(1/2, 18,−12β + 8). Let p denote the unique prime lying
over 5 in K3 . Then one easily checks that the valuation
at p of 1

2 · 18− (−12β + 8) equals 1, as predicted by the
ETNC.

6.3. A D7 Example

In this example we let E be the curve 11A1 in Cremona’s
notation. We let K be the number field defined by the
irreducible polynomial

f(x) = x14 − 2x13 − 25x12 + 69x11 + 161x10632x9

− 147x8 + 2146x7 − 1171x6 − 2669x5 + 2682x4

+ 667x3 − 1466x2 + 336x+ 49.

Then K/Q is a Galois extension with dihedral group
D7 . We have NE = 11 and dK/Q = 5777. The field K

is totally real and contains the quadratic subfield F :=
Q (
√

577). Hence S = {11, 577}. In fact, K is the Hilbert
class field of F .

We have five characters:

id τ σ σ2 σ3

χ1 1 1 1 1 1
χ2 1 −1 1 1 1
χ3 2 0 ζ7 + ζ−1

7 ζ2
7 + ζ−2

7 ζ3
7 + ζ−3

7

χ4 2 0 ζ2
7 + ζ−2

7 ζ4
7 + ζ−4

7 ζ6
7 + ζ−6

7

χ5 2 0 ζ3
7 + ζ−3

7 ζ6
7 + ζ−6

7 ζ2
7 + ζ−2

7

Hence Q [G] � Q ⊕ Q ⊕M2(K3) with K3 = Q (β), where
β := ζ7 + ζ−1

7 . Elements in the center of C [G] will be
denoted by 5-tuples z = (z1 , . . . , z5), zi ∈ C . Recall that
z ∈ ζ(Q [G]) if and only if z1 , z2 ∈ Q , z3 , z4 , z5 ∈ K3 are

Galois conjugates. Elements in z ∈ ζ(Q [G]) will be rep-
resented by tuples z = (zχ1 , zχ2 , zχ3 ).

The L-values were computed with a precision of 30
decimal digits and are given by

(L(E/Q , χ̄, 1))χ∈IrrQ (G)

= (0.253841860855910684337758923351,
0.264189373454632540506329085616,
8.46480303158617169018788040257,
1.07820141250454111015938289065,
0.516343882321445768698269093336).

The analytic rank of each of the twisted L-functions
is therefore 0, and as before, [Darmon 06, Theorem 3.7]
allows us to conclude that E(K) is finite.

The numerical computation of L-values, resolvents,
and periods leads to

u = (−0.199999999999999999999999958641,
− 5.00000000000000000000000004909,
126.222933488057632838305516431,
16.0776033026947639028170113251,
7.69946320924760325930251071912).

Numerically, this confirms the rationality conjecture, be-
cause u is close to

(−1/5,−5, 25β2 + 50β + 25,−50β2 − 25β + 125, 25β2 − 25β),

and the last three components are Galois conjugates. The
minimal polynomial of 25β2 + 50β + 25 is given by x3 −
150x2 + 3125x− 15625. Once again we point out that the
resolvents and therefore also the value for u depend on
the choice of the integral normal basis element α0 . We
further see that

#Ī577 = 2, #Ēns(kv2 ) = 145,
#Ēns(kv5 ) = 35, #Ēns(kv7 ) = 60,

#Ēns(kv1 1 ) = 19487170,#Ēns(kv5 7 7 ) = 545,
E(K)tors = E(Q )tors is cyclic of order 5,

E has split multiplicative reduction at v73 with cv7 3 = 5,

(L11(E/Q, χ̄, 1)) =
(

10
11
,
10
11
,

1
121

(−11β2 + 144
))

,

(L577(E/Q, χ̄, 1)) =
(

545
577

, 1,
545
577

)
,

indGGv 1 1
χGv 1 1

(kv1 1 ) = (11, 11, 121),

and

indGGv 5 7 7
χGv 5 7 7

(kv5 7 7 ) = (577, 1, 577).
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Recall that any element z ∈ ζ(Q [G]) is represented by
a tuple z = (zχ1 , zχ2 , zχ3 ). This explains why the above
tuples have only three components.

From the BSD conjecture we derive the conjec-
tural order #�(E/K) = 512. Thus we have HP =
{2, 5, 7, 11, 577}, and by Corollary 4.8, the ETNC is nu-
merically confirmed outside HP.

For l = 2 we cannot perform our computations, be-
cause 2 divides #G.

For l = 5 we cannot perform the computations because
5 divides the order of �(E/K) and the Tamagawa num-
bers. As in Example 6.1, we try to proceed as in Remark
4.4. By the conjectural validity of ETNC at l = 5 one may
guess that χ̃(�(E/K)5∞) = (1, 1, 1

25 ). One may therefore
guess that �(E/K)5∞ lives in the 2-dimensional compo-
nent of Q 5 [G] and has the resolution

0 −→M2(Z5 [ζ7 ]+)
( 5 0

0 5 )−→ M2(Z5 [ζ7 ]+)
−→�(E/K)5∞ −→ 0.

Note that Z5 [ζ7 ]+/5Z5 [ζ7 ]+ = F 53 , so that this matches
with the conjectural order of �(E/K).

For l ∈ {11, 577}, the subgroup K0(Zl [G],Q l)tors is
trivial, and from the above data one easily deduces the
validity of the l-part of the ETNC.

The most interesting prime is l = 7, because
in this case we have nontrivial torsion subgroup
K0(Zl [G],Q l)tors , so that we must verify the explicit con-
gruence (2-6). We have ξ7 = (1, 1, 1), so that η := uξ−1

7 =
(−1/5,−5, 25β2 + 50β + 25). Let p denote the unique
prime lying over 7 in K3 . Then one easily checks that the
valuation at p of −1

5 · (−5)− (25β2 + 50β + 25) equals 1,
as predicted by the ETNC.

6.4. More Dihedral Examples

We have numerically checked a few more Dl examples
that are completely analogous to the previous exam-
ples. We searched for cases in which we could apply our
methods for the prime l. In particular, we needed the
Mordell–Weil group E(K) to be finite. In all our exam-
ples,K is a totally real number field, so that we can apply
[Darmon 06, Theorem 3.7]. In all the examples, our com-
putations numerically confirm the l-part of ETNC.

In the following we list our examples. In each of our ex-
amples, K is the Hilbert class field of the real quadratic
field Q (

√
d). The elliptic curve is referenced as in Cre-

mona’s tables:

d E

D3 229 11a1
229 17a1
257 11a1
257 17a1
733 17a1
761 17a1

D5 19 · 43 17a1
19 · 43 37b1
7 · 199 17a1
7 · 199 19a1
1429 17a1
1429 19a1

D7 577 11a1
577 17b1
577 19a1
1009 37b1

With more effort it is certainly possible to compute more
examples. We refer the interested reader to the author’s
batch files.3

6.5. Another D5 Example (Incomplete)

In this example we again let E be the curve 11A1 in
Cremona’s notation. We take the same number field K

as in the first D5 example, namely the Hilbert class field
of F := Q (

√
401). We have NE = 11 and dK/Q = 4014.

Hence S = {11, 401}.
Recall thatQ [G] � Q ⊕ Q ⊕M2(K3) with

K3 = Q (β), where β := ζ5 + ζ−1
5 .

The computation of L-values shows that conjecturally,

ords=1(L(E/Q , χi, s)) =

{
0 for i = 1, 3, 4,

2 for i = 2.

The leading terms in the Taylor expansion of the twisted
L-series were computed with a precision of 20 decimal
digits and are given by

(L∗(E/Q , χ̄, 1))χ∈IrrQ (G)

= (0.25384186085591068434, 11.064607087619745148,
5.2651360430010329737, 0.76817299610176707595).

The validity of the rank conjecture would imply
that the χ2-eigenspace of E(K)⊗Z Q is 2-dimensional.

3 Available online at http://www.mathematik.uni-muenchen.de/
∼bley/pub.html
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Since Kker(χ2 ) = Q (
√

401) =: F , this implies that conjec-
turally, rk(E(F )) = 2. By considering the quadratic twist
of E/Q ,

E401 : y2 = x3 − 2153446992x− 69667552958832,

we compute

E(F )/E(F )tors = 〈P1 , P2〉
with

P1 =
(

74
9
,
53
54

√
401− 1

2

)
, P2 =

(
6,

1
2

√
401− 1

2

)
.

One checks that the conjugate of Pi is −Pi for i = 1, 2,
so that by Proposition 5.1, we obtain for the χ2-part of
the equivariant regulator,

det
(
(〈Pi, Pj 〉)i,j∈{1,2}

)
= 34.914427985010413291.

Possibly, 〈P1 , P2〉 is not the full Mordell–Weil group
E(K). However, if we content ourselves with checking the
rationality conjecture, then this information is enough.

Together with the computations of L-values, resol-
vents, and periods we obtain

u = (0.20000000000000000000,−5.0000000000000000017,
− 65.450849718747376977,−9.5491502812526296414).

Numerically, this confirms the rationality conjecture, be-
cause u is close to

(1/5,−5,−25β − 50, 25β − 25)

and ϕ(−25β − 5) = 25β − 25. The minimal polynomial
of −25β − 5 is given by x2 + 75x+ 625. Again we note
that u also depends on the choice of α0 .

We further see that

#Ī401 = 2, #Ēns(kv2 ) = 25, #Ēns(kv5 ) = 3025,
#Ēns(kv1 1 ) = 161050,#Ēns(kv4 0 1 ) = 400,
E(K)tors = E(Q )tors is cyclic of order 5,

E has split multiplicative reduction at v11 with cv1 1 = 5,

(L11(E/Q, χ̄, 1)) =
(

10
11
,
10
11
,

1
121

(−11β + 122)
)
,

(L401(E/Q, χ̄, 1)) =
(

400
401

, 1,
400
401

)
,

indGGv 1 1
χGv 1 1

(kv1 1 ) = (11, 11, 121),

and

indGGv 4 0 1
χGv 4 0 1

(kv4 0 1 ) = (401, 1, 401).

Recall that each element z ∈ ζ(Q [G]) is represented
by a tuple z = (zχ1 , zχ2 , zχ3 ).

Although we cannot be sure that we have computed
the full Mordell–Weil group E(K), it seems most likely
that we have found a subgroup of finite index and that
the only primes that possibly divide this index are 2 and
5. Therefore, as long as we exclude these primes from
our considerations, we still obtain some evidence for the
integrality conjecture.

Assuming E(K) = 〈P1 , P2〉, we derive from the BSD
conjecture the conjectural order #�(E/K) = 58. Thus
we have HP = {2, 5, 11, 401}, and by Corollary 4.8, the
ETNC is numerically confirmed outside HP.

As already mentioned, we cannot expect any integral-
ity statements for l = 2, 5, which would also not be possi-
ble for other reasons, because for l = 2 we cannot perform
our computations, because 2 divides #G, and l = 5 di-
vides #G and we have nontrivial cohomology modules
such as �(E/K) and E(K), which may not be Zl [G]-
perfect. Also, Hypothesis 4.1(5) is not satisfied.

For l ∈ {11, 401}, the group K0(Zl [G],Q l)tors is triv-
ial, and from the above data, one easily deduces the va-
lidity of the l-part of the ETNC.
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