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An amicable pair for an elliptic curve E /Q is a pair of primes
(p, q) of good reduction for E #Ẽ p(Fp) = q and #Ẽ q(Fq) = p.
In this paper we study elliptic amicable pairs and analogously
defined longer elliptic aliquot cycles. We show that there ex-
ist elliptic curves with arbitrarily long aliquot cycles, but that
CM elliptic curves (with j �= 0) have no aliquot cycles of length
greater than two. We give conjectural formulas for the frequency
of amicable pairs. For CM curves, the derivation of precise con-
jectural formulas involves a detailed analysis of the values of
the Grössencharacter evaluated at primes p in End(E ) having the
property that #Ẽ p (Fp ) is prime. This is especially intricate for the
family of curves with j = 0.

1. INTRODUCTION

Let E/Q be an elliptic curve. In this paper we study pairs
of primes (p, q) such that E has good reduction at p and
q and such that the reductions Ẽp and Ẽq of E at p and
q satisfy

#Ẽp(Fp) = q and #Ẽq (Fq ) = p.

By analogy with a classical problem in number theory
(cf. Remark 3.2), we call (p, q) an amicable pair for the
elliptic curve E/Q.

Example 1.1. Searching for amicable pairs using primes
smaller than 107 on the two elliptic curves

E1 : y2 + y = x3 − x and E2 : y2 + y = x3 + x2

yields one amicable pair on the curve E1 ,

(1622311, 1622471),

and four amicable pairs on the curve E2 ,

(853, 883), (77761, 77999), (1147339, 1148359),
(1447429, 1447561).

Example 1.2. The curve

E3 : y2 = x3 + 2
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exhibits strikingly different amicable pair behavior.
There are more than 800 amicable pairs for E3 using
primes smaller than 106, the first few of which are

(13, 19), (139, 163), (541, 571), (613, 661),
(757, 787), (1693, 1741).

One objective of this note is to present theoretical and
numerical evidence for the following conjecture.

Conjecture 1.3. Let E/Q be an elliptic curve, let

QE (X) = #

{
amicable pairs (p, q) for E/Q

with p < q and p ≤ X

}

be the amicable pair counting function, and assume that
there are infinitely many primes p such that #Ẽp(Fp) is
prime.

(a) If E does not have complex multiplication, then

QE (X) �
√
X

(logX)2 as X →∞,

where the implied constants depend on E. Here the
notation f(X) � g(X) means that there are posi-
tive constants c1 and c2 such that c1f(X) ≤ g(X) ≤
c2f(X) for all sufficiently large X.

(b) If E has complex multiplication, then there is a pos-
itive constant AE such that

QE (X) ∼ AE
X

(logX)2 .

Here the notation f(X) ∼ g(X) means that
f(X)/g(X)→ 1 as X →∞.

We do not believe that it is clear a priori why there
should be such a striking difference between the CM and
the non-CM cases. We first discovered this phenomenon
experimentally; subsequently, we found an explanation
based on Theorem 6.1, which says that if E/Q has CM
and if q = #Ẽp(Fp) is prime, then there are generally
only two possible values for #Ẽq (Fq ), one of which is p.
(The situation for j(E) = 0 is considerably more com-
plicated; see Section 7.) This contrasts with the non-CM
case, in which #Ẽq (Fq ) seems to be free to range through-
out the Hasse interval. We refer the reader to Conjectures
6.9 and 7.24 for more-precise versions of the CM part of
Conjecture 1.3.

The frequency of primes p such that #Ẽp(Fp) is prime
or almost prime has been studied by a number of authors.

In Section 2 we discuss what is known and what is con-
jectured concerning this problem.

Generalizing the notion of amicable pair, we define
an aliquot cycle of length � for E/Q to be a sequence
of distinct primes (p1 , p2 , . . . , p�) such that E has good
reduction at every pi and such that

#Ẽp1 (Fp1 ) = p2 , #Ẽp2 (Fp2 ) = p3 , . . . ,

#Ẽp�−1 (Fp�−1 ) = p�, #Ẽp� (Fp� ) = p1 .

Example 1.4. The elliptic curve y2 = x3 − 25x− 8 has the
aliquot triple (83, 79, 73). The elliptic curve

E : y2 = x3 + 176209333661915432764478x
+ 60625229794681596832262

has an aliquot cycle

(23, 31, 41, 47, 59, 67, 73, 79, 71, 61, 53, 43, 37, 29)

of length 14.

In Section 4 we give a heuristic argument suggesting
that the counting function for aliquot cycles of length �

for non-CM elliptic curves grows like
√
X/(logX)� . The

rough idea is to assume that if q = #Ẽp(Fp) is prime,
then the trace values aq (E) = q + 1−#Ẽq (Fq ) are (more
or less) equidistributed within the appropriate Hasse in-
terval.

In Section 5 we give an elementary construction (The-
orem 5.1) using the prime number theorem, the Chinese
remainder theorem, and a result of Deuring to prove that
for every � there exists an elliptic curve E/Q with an
aliquot cycle of length �.

We next consider the case of elliptic curves having
complex multiplication. These curves exhibit strikingly
different behavior from that of their non-CM counter-
parts. Our first result (Theorem 6.1) says that if E/Q
has CM with j(E) �= 0, and if q = #Ẽp(Fp) is prime, then
there are only two possible values for #Ẽq (Fq ), namely
p and 2q + 2− p. Assuming that each is equally likely
(which seems to be the case experimentally), this explains
why CM curves have so many amicable pairs. The proof
involves first proving that p and q split in End(E), and
then relating the values of the Grössencharacter ψE at
primes lying above p and q.

Theorem 6.1 can also be used to show that a CM curve
with j �= 0 has no aliquot cycles of length 3 or greater;
see Corollary 6.2. This stands in contrast to Theorem 5.1,
which says that there exist curves with arbitrarily long
aliquot cycles.
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We finally turn to the j = 0 curves y2 = x3 + k, whose
complicated analysis is given in the lengthy Section 7. For
prime values of k, we give a precise conjectural formula
for the counting function of amicable pairs that depends
on the value of k modulo 36. For example, if k is prime
and k ≡ 1 or 19 (mod 36), then we conjecture that

lim
X→∞

#
{
p < X : p is part of an amicable pair

}
#
{
p < X : #Ẽp(Fp) is prime

}
=

1
6

+
1

3k − 9
, (1–1)

while if k ≡ 11 or 23 (mod 36), then the limiting value
in (1–1) is (conjecturally) equal to 1

6 + k
3k 2−6 . There are

similar formulas for the other congruence classes.
The derivation of these formulas is in two parts. First,

by analyzing the values of the Grössencharacter and using
sextic reciprocity, we prove that (p, q) is an amicable pair
if and only if

(
ψE (p)
k

)
6

(
1− ψE (p)

k

)
6

= 1.

If the values of ψE (p) modulo k were equidistributed as
p varies, we would conjecture that the number of ami-
cable pairs is governed by the proportion of λ ∈ O/kO
satisfying

(λ(1−λ)
k

)
6 = 1. Here

O = End(E) = Z
[
(1 +

√−3)/2
]
.

This is almost true, but the allowable values of λ are often
restricted by further conditions on

(
λ
k

)
6 . Sorting out these

restrictions gives a precise conjectural value for the limit
(1–1) in terms of the sizes of certain subsets of O/kO.

The second part of the proof is to derive explicit for-
mulas for the sizes of these sets. This is done by relating
the points in these sets to the O/kO-points on a cer-
tain family of curves C(γ ,δ) of genus four. We count these
points by explicitly decomposing the Jacobian of C(γ ,δ)

into a product of four j = 0 elliptic curves and using the
Grössencharacter formula for the number of points on
such curves. The resulting formulas are quite involved,
especially in the case that k splits in O, but eventually
most of the terms cancel, leaving a relatively compact
formula.

We have no good explanation for why the final formula
has such a simple form; see Remark 7.22 for a discussion
of the delicacy of the computation.

The conjectures in this paper are supported by heuris-
tic arguments and, especially for CM curves, by theorems

describing the allowable values of the Grössencharacter
ψE . But heuristic arguments have been known to fail,
and indeed our CM argument depends on the assump-
tion that ψE (p) mod k is uniformly distributed among
its allowable values, where we claim to have character-
ized the set of allowable values. It is thus reassuring that
extensive experiments are in close agreement with the
conjectural values derived by theory. These experiments
are described in Section 9. Finally, in Section 10 we de-
scribe some possible generalizations that deserve further
study.1

Remark 1.5. We briefly indicate our original motiva-
tion for studying elliptic amicable pairs and aliquot cy-
cles. They appeared in a natural fashion when we gen-
eralized to elliptic divisibility sequences Smyth’s results
[Smyth 10] on index divisibility of Lucas sequences. Let
(Dn )n≥1 be a normalized minimal regular elliptic divisi-
bility sequence associated with an elliptic curve E/Q (see
[Silverman and Stange 11] for definitions), and consider
the set

S = {n ≥ 1 : n | Dn}.
The index divisibility set S is constructed multiplica-
tively by describing, for a given n ∈ S, the set of minimal
multiples of n that are in S, which we denote by

An =

{
d ≥ 1 : nd ∈ S, and nd′ /∈ S
for all d′ | d with 1 < d′ < d

}
.

For example, if p is a prime divisor of Dn , then
p ∈ An . We prove in [Silverman and Stange 11] that
if (p1 , . . . , p�) is an aliquot cycle of length � ≥ 2 for
E/Q with pi � n, then p1p2 · · · p� ∈ An . Conversely, let
p1p2 · · · p� be a product of � ≥ 2 distinct primes of good
reduction for E not dividing n, and assume that

min pi >
(
2−1/2� − 1

)−2
and p1p2 · · · p� ∈ An .

Then (p1 , . . . , p�) is an aliquot cycle for E. Thus any de-
scription of the index divisibility set of an elliptic divis-
ibility sequence will, of necessity, require knowledge of
aliquot cycles. See [Silverman and Stange 11] for further
details.

2. HOW OFTEN IS # Ẽ p(Fp) PRIME?

If an elliptic curve E/Q is to have any amicable pairs
or aliquot cycles, then it is clearly necessary that there
exist primes p such that Ẽp(Fp) is prime. The question

1 We also note that some supplemental material for this article is
available at http://www.math.brown.edu/∼jhs/amicable.html.
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of existence and density of such primes has been studied
by various authors.

Remark 2.1. If E(Q)tors �= {O}, then #Ẽp(Fp) will be
composite for all but finitely many p, since E(Q)tors ↪→
Ẽp(Fp) for all p � 2∆E/Q. Using this observation, it is
quite easy to produce curves having no nontrivial aliquot
cycles, for example the curves y2 = x3 + x and y2 =
x3 + 1.

Koblitz has given a precise conjecture for the number
of primes p ≤ X such that #Ẽp(Fp) is prime.

Conjecture 2.2. [Koblitz 88] Let E/Q be an elliptic curve,
and let

NE (X) = #

{
primes p ≤ X such that

#Ẽp(Fp) is prime

}

count how often E modulo p has a prime number of
points. Then there is a constant CE/Q such that

NE (X) = CE/Q

X

(logX)2 + o

(
X

(logX)2

)
.

In his paper, Koblitz gave a conjectural formula
for the constant CE/Q that turned out to be incor-
rect in some cases. Zywina has given a corrected value
for CE/Q [Zywina 09]. The formula for CE/Q is in
terms of the image of the representation Gal(Q̄/Q)→
Aut(Etors). In principle, this allows one to approximate
CE/Q to high precision, and Koblitz and Zywina both
give a number of examples. We also note recent work
of Jones showing that the condition CE/Q > 0 involves
subtle properties of the curve E [Jones 10]. For ad-
ditional work on the (almost) primality of #Ẽp(Fp),
see [Balog et al. 07, Cojocaru 05, Cojocaru et al. 09,
Friedlander and Shparlinski 09, Jiménez Urroz 08].

3. ALIQUOT CYCLES AND AMICABLE PAIRS FOR
ELLIPTIC CURVES

We formally give the following definitions as previously
described in the introduction.

Definition 3.1. Let E/Q be an elliptic curve. An aliquot
cycle of length � for E/Q is a sequence of distinct primes
(p1 , p2 , . . . , p�) such that E has good reduction at every
pi and such that

#Ẽp1 (Fp1 ) = p2 , #Ẽp2 (Fp2 ) = p3 , . . . ,

#Ẽp�−1 (Fp�−1 ) = p�, #Ẽp� (Fp� ) = p1 .

An aliquot cycle is normalized if p1 = min pi . Every
aliquot cycle can be normalized by a cyclic shift of its ele-
ments. An amicable pair is an aliquot cycle of length two.

Remark 3.2. Classically, an amicable pair is a pair of in-
tegers (m,n) satisfying σ̃(m) = n and σ̃(n) = m, where
σ̃(n) is the sum of the proper divisors of n. Similarly, a
number n is perfect if σ̃(n) = n, and a (classical) aliquot
cycle is a list of distinct integers (n1 , n2 , . . . , n�) satisfy-
ing

σ̃(n1) = n2 , σ̃(n2) = n3 , . . . , σ̃(n�−1) = n�,

σ̃(n�) = n1 .

(Numbers appearing in an aliquot cycle are also called
sociable numbers.) Perfect numbers and amicable pairs
were studied in ancient Greece, and aliquot cycles of all
lengths continue to attract interest to the present day.
See, for example, [Garćıa et al. 04, Te Riele 82, Yan 96].

We have thus appropriated a classical name. More
generally, for any arithmetic function f(n), one might
say that an integer n is f-perfect if f(n) = n, that a
pair (m,n) is f-amicable if f(m) = n and f(n) = m, and
that an �-tuple (n1 , . . . , n�) is f-aliquot if f(ni mod �) =
ni+1 mod � . However, in our situation, a “perfect prime”
for E/Q, i.e., a prime satisfying #Ẽp(Fp) = p, already
has a name. Such primes are called anomalous primes
and appear as exceptional cases in diverse applications;
see, for example, [Mazur 72, Olson 76]. In particular,
anomalous primes are to be avoided in cryptography
because the elliptic curve discrete logarithm problem
(ECDLP) for anomalous primes can be solved in linear
time [Satoh and Araki 98, Semaev 98, Smart 99].

Remark 3.3. Kowalski calls a pair of primes (p, q) a twin
pair for E if #Ẽp(Fp) = #Ẽq (Fq ) [Kowalski 06]. He ex-
plains why they are a natural elliptic analogue of clas-
sical twin primes (p, p+ 2), discusses their conjectural
distribution, and proves some interesting results in the
CM case.

We begin our study of aliquot cycles with the following
general observation concerning amicable pairs.

Proposition 3.4. Let E/Q be an elliptic curve, and let
(p, q) be a normalized amicable pair for E/Q with p ≥ 5.
Then

End(Ẽp/Fp)⊗Q ∼= End(Ẽq /Fq )⊗Q.

Proof: The fact that p is odd and q = #Ẽp(Fp) = p+
1− ap is prime implies in particular that ap �= 0, so E
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has ordinary reduction at p. (This is where we use the
assumption that p ≥ 5; cf. [Silverman 09, Exercise 5.10].)
Reversing the roles of p and q shows that E also has
ordinary reduction at q.

The assumption that (p, q) is an amicable pair is equiv-
alent to the assertions that

q = p+ 1− ap and p = q + 1− aq ,
and then a little bit of algebra shows that

a2
p − 4p = a2

q − 4q. (3–1)

The field End(Ẽp/Fp)⊗Q is generated by the Frobe-
nius element Frobp(x) = xp , which is a root of

T 2 − apT + p = 0.

Thus

End(Ẽp/Fp)⊗Q ∼= Q
(√

a2
p − 4p

)
.

The analogous formula is true for q, and then (3–1) com-
pletes the proof of the proposition.

4. COUNTING ALIQUOT CYCLES FOR NON-CM
ELLIPTIC CURVES

In this section we study the aliquot cycle counting func-
tion

QE ,�(X) = #

{
normalized aliquot cycles (p1 , . . . , p�)
of length � for E/Q satisfying p1 ≤ X

}
.

Conjecture 4.1. Let E/Q be an elliptic curve that does
not have complex multiplication, and assume that there
are infinitely many primes p such that #Ẽp(Fp) is prime.
Then the aliquot cycle counting function satisfies

QE ,�(X) �
√
X

(logX)�
as X →∞,

where the implied positive constants depend on E and �,
but are independent of X.

Remark 4.2. As noted in Section 10, an aliquot cycle (p)
of length one consists of a single anomalous prime. In this
case, Conjecture 4.1 follows from a general conjecture of
Lang and Trotter, which predicts the stronger result

QE ,1(X) = c

√
X

logX
+ o

( √
X

logX

)
.

[Lang and Trotter 76]. More generally, we have stated
Conjecture 4.1 in its present form because we have a

heuristic argument to support this formulation. However,
as one of the referees noted, if Conjecture 4.1 is true, then
most likely there will be an asymptotic formula

QE ,�(X) = cE ,�

√
X

(logX)�
+ o

( √
X

(logX)�

)
. (4–1)

It would be interesting to describe, even conjecturally,
the value of cE ,� in (4–1). We also note that for curves
with CM, we give such a formula in Conjecture 6.9 (for
j(E) �= 0) and Conjectures 7.10 and 7.14 (for j(E) = 0).

We now give a heuristic argument in support of Con-
jecture 4.1. To ease notation, let

Np = #Ẽp(Fp).

Then, setting p1 = p, we have

Prob(p is part of an aliquot cycle of length �) (4–2)

= Prob

(
p2

def= Np1 is prime, p3
def= Np2 is prime,

. . . , p�
def= Np�−1 is prime, and Np� = p1

)

≈
(�−1∏
i=1

Prob(pi+1
def= Npi is prime)

)
Prob(Np� = p1).

(We ignore the small probability that there is some i < �

such that Npi is equal to an earlier pj .)
Under our assumption that Np is prime for infinitely

many p, Conjecture 2.2 says that

Prob(Np is prime) � 1
log p

,

and since

pi+1 = Npi = pi +O (
√
pi) ,

every term in the sequence p = p1 , p2 , . . . , p� satisfies pi =
p+O(

√
p). Hence

Prob(Npi is prime) � 1
log pi

∼ 1
log p

.

Substituting this into (4–2) gives

Prob (p is part of an aliquot cycle of length �)

≈ 1
(log p)�−1 · Prob(Np� = p1). (4–3)

In order to estimate the last factor, we use the Sato–
Tate conjecture [Silverman 09, C.21.1], which says that
as q varies, the values of Nq are distributed in the interval
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[
q + 1− 2

√
q, q + 1 + 2

√
q
]

according to the Sato–Tate
distribution,

#
{
q ≤ X : a ≤ q + 1−Nq

2
√
q

≤ b
}

∼ π(X) · 2
π

∫ b

a

√
1− t2 dt.

(See [Taylor 08] for a proof of the Sato–Tate conjecture
in certain cases, although our use of the conjecture is
purely heuristic.) Then for primes p and q = p+O(

√
p),

a rough estimate gives

Prob(Nq = p) � 1√
q
∼ 1√

p
. (4–4)

Combining (4–3) and (4–4) yields

Prob (p is part of an aliquot cycle of length �)

� 1√
p(log p)�−1 .

We now estimate the number of normalized aliquot
cycles of length � whose initial prime is less than X:

QE ,�(X)

≈
∑
p≤X

Prob

(
p is the initial element of a nor-
malized aliquot cycle of length �

)

�
∑
p≤X

1√
p(log p)�−1 .

It remains only to use the rough approximation

∑
p≤X

f(X) ≈
∑

n≤X/ log X

f(n log n) ≈
∫ X/ log X

f(t log t) dt

≈
∫ X

f(u)
du

log u

to obtain

QE ,�(X) �
∫ X 1√

u(log u)�−1 ·
du

log u
�

√
X

(logX)�
.

Remark 4.3. It seems hopeless at present to prove Con-
jecture 4.1 unconditionally for any particular curve.
However, Balog, Cojocaru, and David have proven
[Balog et al. 07] that a version of Koblitz’s conjecture
(Conjecture 2.2), with corrected constant as given in
[Zywina 09], holds on average over families of curves
y2 = x3 + ax+ b with |a| < A and |b| < B. (See also
[Jones 09, Sakagawa 08].) It would be interesting to see
whether their techniques could be used to prove an
average-case version of Conjecture 4.1. Of course, it
would first be necessary to give an explicit estimate for

the implied constants in Conjecture 4.1. (We thank Igor
Shparlinski for this suggestion.)

5. ALIQUOT CYCLES OF ARBITRARY LENGTH

In this section we prove that there exist elliptic curves
with aliquot cycles of arbitrary length. After submitting
this paper, we became aware that our proof is similar
to the proof of [Kowalski 06, Proposition 4.9], in which
Kowalski constructs elliptic curves such that #Ẽp(Fp) is
constant for all p in a given Hasse interval.

Theorem 5.1. For every � ≥ 1 there exists an elliptic curve
E/Q that has an aliquot cycle of length �. More generally,
for any positive integers �1 , . . . , �r , there exists an ellip-
tic curve E/Q that has distinct aliquot cycles of lengths
�1 , . . . , �r .

Proof: A theorem from [Deuring 41] (vastly generalized
in [Waterhouse 69]; see also [Rück 87]) says that if p is a
prime and t is an integer satisfying |t| ≤ 2

√
p, then there

exists an elliptic curve Ẽ/Fp satisfying

#Ẽ(Fp) = p+ 1− t.
In other words, every Frobenius trace in the Hasse inter-
val for p actually occurs as the trace of an elliptic curve
defined over Fp .

Now fix � and let p1 , p2 , . . . , p� be a sequence of primes
with the property that

|pi + 1− pi+1 |≤ 2
√
pi for all 1 ≤ i ≤ �, (5–1)

where by convention we set p�+1 = p1 . It is easy enough
to find such a sequence. To be precise, we can use a weak
form of the prime number theorem [Apostol 76, Theorem
4.7] that says that there are positive constants a and b

such that the nth prime qn satisfies

an log(n) ≤ qn ≤ bn log(n).

It follows that for any given �, if we choose n to be suffi-
ciently large, then

qn+� − qn − 1 ≤ 2
√
qn .

This implies that the sequence of primes
(qn+1 , qn+2 , . . . , qn+�) satisfies (5–1), so we take this to
be our sequence (p1 , . . . , p�).

Applying the theorem of Deuring cited earlier, for each
pi we can find an elliptic curve Ẽi/Fpi satisfying

#Ẽi(Fpi ) = pi+1 .
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(This includes the case i = �, in which p�+1 = p1 .) We
now use the Chinese remainder theorem on the coeffi-
cients of the Weierstrass equations for Ẽ1 , . . . , Ẽ� to find
an elliptic curve E/Q satisfying

E mod pi ∼= Ẽi for all 1 ≤ i ≤ �.
Then by construction, the sequence (p1 , . . . , p�) is an
aliquot cycle of length � for E/Q.

In a similar fashion, we can construct elliptic curves
over Q that have aliquot cycles of any specified lengths
using different sets of primes, and then we can use the
Chinese remainder theorem on the coefficients of these
curves to obtain a single elliptic curve over Q with
any specified number of aliquot cycles of any specified
lengths.

Example 5.2. The algorithm described in Theorem 5.1
works well in practice, although it naturally yields equa-
tions having large coefficients. We used it in Example 1.4
to find an aliquot cycle of length 14. Here is another ex-
ample. The following elliptic curve has an aliquot cycle
of length 25, starting with the prime p = 41:

y2 = x3 + 45454821336074985792685677385148329222\
89740324532x+ 59586726546211211829143024589\
4379464967885794713.

6. AMICABLE PAIRS FOR CM CURVES WITH j �= 0

Our next goal is to formulate and provide evidence for
more-precise versions of the CM part of Conjecture 1.3. A
key observation is that if E has CM, then the assumption
that q = #Ẽp(Fp) is prime severely limits the possible
values of Ẽq (Fq ). It turns out that the case of elliptic
curves with j(E) = 0 is significantly more complicated
than the other cases, so we deal with the j(E) �= 0 curves
in this section and leave the j(E) = 0 curves for the next
section.

Theorem 6.1. Let E/Q be an elliptic curve and assume:

(1) E has complex multiplication by an order O in an
imaginary quadratic field K = Q(

√−D).

(2) p and q are primes of good reduction for E with p ≥ 5
and

q = #Ẽp(Fp).

(3) j(E) �= 0, or equivalently, O �= Z
[

1+
√−3
2

]
.

Then D ≡ 3 (mod 4), and either

#Ẽq (Fq ) = p or #Ẽq (Fq ) = 2q + 2− p.

Theorem 6.1 has an interesting consequence concern-
ing the allowable lengths of aliquot cycles for CM elliptic
curves. This may be compared with Theorem 5.1, which
says that there exist (necessarily non-CM) curves having
aliquot cycles of arbitrary length, and with Conjecture
4.1, which implies that every non-CM elliptic curve has
aliquot cycles of arbitrary length, provided that there are
infinitely many primes p such that #Ẽp(Fp) is prime.

Corollary 6.2. A CM elliptic curve E/Q with j(E) �=
0 has no aliquot cycles of length � ≥ 3 consisting of
primes p ≥ 5.

Remark 6.3. Another way to state the conclusion of Theo-
rem 6.1 is that either #Ẽq (Fq ) = p, or else the nontrivial
quadratic twist Ẽχ

q of Ẽq satisfies #Ẽχ
q (Fq ) = p. This is

clear, because the trace of Frobenius for a curve and its
quadratic twist satisfy

a(Ẽq ) + a(Ẽχ
q ) = 0.

See Remark 7.7 for the analogous statement for j(E) = 0
curves, which have six twists.

Remark 6.4. There are various ways in which one might
generalize Theorem 6.1. For example, replacing assump-
tion (2) by the assumption that L is an integer such that
the quantity

q = L2 − (p+ 1−#Ẽp(Fp)
)
L+ p

is prime and splits in K leads to the following conclusion:

aq (E) = ±(ap(E) + 2L
)
.

Theorem 6.1 is the case L = 1. We omit the proof of the
generalization, since it is similar and is not required in
this paper.

Remark 6.5. Corollary 6.2 omits curves with j(E) = 0. It
turns out that j = 0 curves possess a rich and compli-
cated amicable pair structure, which will be investigated
in detail in Sections 7 and 8. Corollary 7.6 gives an ana-
logue of Theorem 6.1 saying that there are (often) six
possible values for #Ẽq (Fq ), rather than only the two
possibilities given in Theorem 6.1. Using this result, we
are able to prove by a detailed case-by-case analysis that
j = 0 curves cannot have aliquot cycles of length three;
see Section 8. But we do not have a proof that there are
no aliquot cycles of length greater than three when j = 0.
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Before commencing the proofs of Theorem 6.1 and
Corollary 6.2, we prove a basic result concerning the split-
ting of primes in CM fields.

Lemma 6.6. Let E/Q be an elliptic curve with complex
multiplication by K, let p ≥ 5 be a prime of good reduc-
tion for E/Q, and suppose that #Ẽp(Fp) is odd. Then p

splits in K.

Proof: We have

#Ẽp(Fp) = p+ 1− ap ,
so the assumptions that p �= 2 and #Ẽp(Fp) is odd im-
ply that ap is odd, so in particular ap �= 0. Hence E has
ordinary reduction at p. (Note that our assumption that
p ≥ 5 and Hasse’s bound |ap | ≤ 2

√
p imply that p | ap if

and only if ap = 0.) It follows that the field K is iso-
morphic to End(Ẽp)⊗Q, which is generated by a root of
the characteristic polynomial T 2 − apT + p of Frobenius.

Therefore K = Q
(√

a2
p − 4p

)
, and

p =

⎛
⎝ap +

√
a2
p − 4p

2

⎞
⎠
⎛
⎝ap −

√
a2
p − 4p

2

⎞
⎠

either splits or is ramified in K. But we can rule out the
latter case by noting that

p ramified in K =⇒ p | a2
p − 4p =⇒ p | ap =⇒ ap = 0.

This contradicts the fact that ap is odd, and hence p

splits in K.

Proof of Theorem 6.1: Up to Q̄-isomorphism, there are
13 elliptic curves defined over Q that have complex mul-
tiplication. For a list, see, for example, [Silverman 94, A
§3]. There are three isomorphism classes whose conductor
NE is a power of two:

E : y2 = x3 + x, NE = 26 ,

E : y2 = x3 + 6x2 + x, NE = 25 ,

E : y2 = x3 + 4x2 + 2x, NE = 28 .

All three of these curves have a nontrivial two-torsion
point, as do all of their Q̄/Q twists, so #E(Fp) is even
for all p ≥ 3. Hence none of these curves admit an amica-
ble pair; cf. Remark 2.1. The remaining CM curves have
complex multiplication by a field Q(

√−D) with D ≡ 3
(mod 4).

The endomorphism ring of E is an order in the field
K = Q(

√−D), where D ≡ 3 (mod 4), so it has the form

End(E) ∼= O = Z + fZ

[
1 +
√−D
2

]

for some integer f ≥ 1, which is called the conductor of
O. In particular, we have O∗ = {±1}, since our assump-
tion that j(E) �= 0 excludes the case (D, f) = (3, 1).

The theory of complex multiplication says that there
is a Grössencharacter ψE such that for every prime ideal
p of OK of residue characteristic p ≥ 5 at which E has
good reduction, we have

(i) ψE (p) ∈ O with ψE (p)OK = p.

(ii) #Ẽp(Fp) = NK/Q(p) + 1− Tr
(
ψE (p)

)
.

See, for example, [Rubin and Silverberg 09, Proposition
4.1] or [Silverman 94, II §9]. (Note that our assumption
that p has residue characteristic p ≥ 5 implies that p does
not divide the conductor of O, since the fact that E has
CM and is defined over Q forces O to have class number
one, which in turn means that the conductor of O is at
most 3.)

We are given that p ≥ 5 and that #Ẽp(Fp) = q is
prime. It follows from Lemma 6.6 that p splits in K,
say

pOK = pp̄.

Then Fp = Fp, so

q = #Ẽp(Fp) = #Ẽp(Fp) = NK/Q

(
1− ψE (p)

)
. (6–1)

Notice that this implies, in particular, that q splits in K.
So writing qOK = qq̄, we have

q = NK/Q

(
ψE (q)

)
. (6–2)

Comparing (6–1) and (6–2), and using the fact that
ψE (p) and ψE (q) are in O, we see that there is a unit
u ∈ O∗ such that either

ψE (q) = u
(
1− ψE (p)

)
or ψE (q) = u

(
1− ψE (p)

)
.

(6–3)
(This follows from the fact that the factorization of the
ideal qO is unique, up to switching the factors.)

As noted earlier, we have O∗ = {±1}, so

Tr
(
ψE (q)

)
= ±Tr

(
1− ψE (p)

)
from (6–3) with u = ±1

= ± (2− Tr
(
ψE (p)

))
linearity

= ±(2− (p+ 1− q)) since #Ẽp(Fp) = q

= ±(q + 1− p).
Hence

#Ẽq (Fq ) = #Ẽq(Fq) = q + 1− Tr
(
ψE (q)

)
= q + 1± (q + 1− p).

This completes the proof of Theorem 6.1.
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Proof of Corollary 6.2: Let (p1 , p2 , . . . , p�) be a normal-
ized aliquot cycle of length � ≥ 3 for E/Q such that all
pi ≥ 3. Since the primes in the cycle are distinct, Theo-
rem 6.1 tells us that

pi − pi−1 = pi−1 − pi−2 + 2 for 3 ≤ i ≤ �. (6–4)

Further, since the term in the aliquot cycle following p�
is p1 , Theorem 6.1 gives

p1 − p� = p� − p�−1 + 2. (6–5)

We have assumed that the cycle is normalized, i.e.,
p2 − p1 > 0. Induction using (6–4) shows that pi −
pi−1 > 0 for all 2 ≤ i ≤ �, and then (6–5) says that
p1 − p� > 0. Hence (p1 , . . . , p� , p1) is a strictly increasing
list of integers, a contradiction that completes the proof
of Corollary 6.2.

Remark 6.7. Suppose that E/Q has CM and that
(p1 , . . . , p�) satisfies #Ẽpi (Fpi ) = pi+1 for 1 ≤ i < �, but
we do not require that the sequence form a cycle. Then
(6–4) gives a (degenerate) linear recurrence for the pi
whose solution is

pi = (i− 1)p2 − (i− 2)p1 + (i− 1)(i− 2). (6–6)

If the sequence (pi) did cycle, then we would have p�+1 =
p1 and p�+2 = p2 . Putting first i = �+ 1 and then i =
�+ 2 into (6–6) yields (after some algebra) p1 = p2 + �−
1 and p1 = p2 + �+ 1, a contradiction that provides an
alternative proof of Corollary 6.2.

Remark 6.8. Let E/Q be an elliptic curve having no ra-
tional torsion, having CM by Q(

√−D), and satisfying
j �= 0. Suppose that p is a prime for which #Ẽp(Fp) = q
is prime, and suppose that p lies over p. Write

ψE (p) =
(
m+

1
2

)
+
�

2

√−D,

wherem and � are integers. (This is always possible, since
D ≡ 3 (mod 4).) Then

p = N(ψE (p)) = m2 +m+
1 + �2D

4
,

q = N(1− ψE (p)) = (m− 1)2 + (m− 1) +
1 + �2D

4
.

(If ψE (q) for q above q has trace −2m+ 1, then this will
result in an amicable pair.) Thus prime reduction is re-
lated to the occurrence of “twin primes” in the quadratic
progression of values of a quadratic polynomial of the
form x2 + x+ a. See [Olson 79] for more about this con-
nection. For example, it is well known that the polyno-
mial x2 + x+ 41 is prime for the 40 values of x between
0 and 39, and we find the following amicable pairs in the

range 1 < p ≤ 1600 for the elliptic curve

y2 = x3 + x2 − 2174420x+ 1234136692

having CM by Q(
√−163):

(41,43), (61, 71), (97, 113), (151,173), (197, 223),
(347, 383), (503, 547), (673, 709), (853,911),
(971, 1033), (1039, 1049), (1097, 1163), (1129, 1151),
(1301,1373), (1423, 1489), (1523,1601).

In this list, the pairs that are in bold appear in the list
of prime values of x2 + x+ 41.

Write Twin(a) for the set of such “quadratic twin
primes” in the values of x2 + x+ a. Conjecture 1.3(b),
or Conjecture 2.2 of Koblitz, then implies the existence
of a constant C such that

#
⋃
�≥0

Twin
(

1 + �2D

4

)
∼ C X

(logX)2 .

See [Baier and Zhao 08] for background on primes in
quadratic progression.

We now use Theorem 6.1 to give a heuristic justifica-
tion for the following conjecture.

Conjecture 6.9. Let E/Q be an elliptic curve with complex
multiplication, and assume that j(E) �= 0. Define count-
ing functions

NE (X) = #

{
primes p ≤ X such that

#Ẽp(Fp) is prime

}
,

QE (X) = #

{
amicable pairs (p, q) for E/Q

with p < q and p ≤ X

}
.

Then either NE (X) is bounded, or else

lim
X→∞

QE (X)
NE (X)

=
1
4
.

We note that Conjecture 2.2 says that if NE (X) is
unbounded, then it is asymptotic to CE/QX/(logX)2 .
So the combination of Conjectures 2.2 and 6.9 gives a
strengthened version of the CM part of Conjecture 1.3.

Our justification for Conjecture 6.9 is to observe that
Theorem 6.1 says that if #Ẽp(Fp) = q is prime, then
there are two possibilities for #Ẽq (Fq ), one of which is
p. Experiments indicate that each possibility occurs with
equal probability, and we have no theoretical reasons for
expecting otherwise, so we will accept the hypothesis that

Prob
(
#Ẽq (Fq ) = p

∣∣ #Ẽp(Fp) = q is prime
)

=
1
2
.
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Further, if we assume Conjecture 2.2, then

Prob
(
#Ẽp(Fp) is prime

∣∣ p ≤ X) ∼ NE (X)
π(X)

.

Combining these estimates yields

#
{
p ≤ X : #Ẽp(Fp) = q is prime and #Ẽq (Fq ) = p

}

≈
∑
p≤X

Prob

(
#Ẽp(Fp) = q is prime
and #Eq (Fq ) = p

)

≈
∑
p≤X

Prob
(
#Ẽq (Fq ) = p

∣∣ #Ẽp(Fp) = q is prime
)

× Prob
(
#Ẽp(Fp) is prime

)
≈
∑
p≤X

1
2
· NE (X)
π(X)

=
NE (X)

2
.

Finally, we need to divide by 2, because QE (X) counts
only amicable pairs (p, q) that are normalized to sat-
isfy p < q.

Remark 6.10. The referee has pointed out that if E/Q
has CM, then one can show that

NE (X)� X

(logX)2 ,

which of course yields the same upper bound for QE (X).
This at least gives an upper bound of the right order
of magnitude in Conjecture 1.3(b). The proof is a basic
application of sieve theory, but lacking a reference, we
briefly sketch the proof as shown to us by Ram Murty.

Let A be a finite multiset, and for each d, let Ad be
the subset of A of elements divisible by d. Suppose that
we write #Ad = #A/f(d) +Rd for some function f . In
order to give an upper bound for the number of elements
in A that are not divisible by primes p < z, sieve theory
says that we need to have a good estimate for the error
sum ∑

d<z 2

|Rd |. (6–7)

We now take A to be the multiset of #Ẽ(Fp) with
p < X. Then an estimate for (6–7) is obtained in the
CM case using a version of the Bombieri–Vinogradov
theorem for imaginary quadratic fields with z = xt with
t < 1

4 . (See [Murty and Murty 87] for the Bombieri–
Vinogradov-type theorem for number fields that is re-
quired.) This easily leads to estimates of the form
NE (X)� π(X)/ logX. Indeed, it would suffice to have
a good estimate for (6–7) with z = xt for any fixed t > 0.

7. AMICABLE PAIRS FOR CM CURVES WITH j = 0

In this section we study elliptic curves having j-invariant
zero. The analysis of amicable pairs on these curves is
significantly more complicated than that on all other
CM elliptic curves, due primarily to the extra units in
the endomorphism ring. In particular, experiments de-
scribed in Section 9 suggest that the limiting value of
QE (X)/NE (X) for the curve y2 = x3 + k varies for dif-
ferent values of k; see Conjecture 7.24.

We continue with the Grössencharacter notation from
the previous section and set some additional notation
that will remain in effect for this section. We let

ω =
1 +
√−3
2

, K = Q(
√−3), OK = Z[ω],

so ω is a primitive sixth root of unity. We note that the
unit group (OK /3OK )∗ is a group of order 6, and that
the natural map

µ6 = O∗K ∼−→ (OK /3OK )∗

is an isomorphism. Further, for any prime ideal p of OK
that is relatively prime to 3 and any α ∈ OK � p, we
recall that the sextic residue symbol

(
α
p

)
6

is defined by
the conditions(

α

p

)
6
∈ µ6 and

(
α

p

)
6
≡ α(NK / Q p−1)/6 (mod p).

Theorem 7.1. Let k ∈ Z be a nonzero integer, let E/Q be
the elliptic curve

E : y2 = x3 + k,

so E has CM by OK , and let ψE be the Grössencharacter
associated to E. Suppose that p ≥ 5 and q ≥ 5 are primes
of good reduction for E such that

#Ẽp(Fp) = q.

Then:

(a) The prime p splits in K, say pOK = pp̄, and satisfies

ψE (p)
(
1− ψE (p)

) ≡ 1 (mod 3OK ).

(b) The ideal defined by q =
(
1− ψE (p)

)OK satisfies
qOK = qq̄. In particular, the prime q splits in K.

(c) The values of the Grössencharacter at p and q are
related by

1− ψE (p) =
(

4k
p

)
6

(
4k
q

)
6
ψE (q). (7–1)
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(d) Let ε ∈ {±1}. Then the trace aq (E) = q + 1−
#Ẽq (Fq ) satisfies

aq (E) = ε(q + 1− p)⇐⇒
(

4k
p

)
6

(
4k
q

)
6

= ε. (7–2)

Remark 7.2. The expressions in (c) and (d) appear natu-
rally in the course of proving Theorem 7.1, but we note
that they may be simplified using Proposition 7.5, which
says that

(4
p

)
6

(4
q

)
6

= 1. This allows us to rewrite (7–1)
and (7–2) as

1− ψE (p) =
(
k

p

)
6

(
k

q

)
6
ψE (q), (7–1′)

aq (E) = ±(q + 1− p)⇐⇒
(
k

p

)
6

(
k

q

)
6

= ±1.

(7–2′)

Proof: The fact that p splits in OK follows from Lemma
6.6, which proves the first part of (a). Next, as noted
during the proof of Theorem 6.1, the Grössencharacter
of a CM elliptic curve satisfies

#Ẽp(Fp) = NK/Q

(
ψE (p)

)
+ 1− TrK/Q

(
ψE (p)

)
.

Using the given value q = #Ẽp(Fp), this can be written
as

q = NK/Q

(
1− ψE (p)

)
.

Hence q =
(
1− ψE (p)

)OK satisfies qOK = qq̄, which
proves (b).

Further, both ψE (p) and 1− ψE (p) have norms that
are relatively prime to 3. This implies first that ψE (p) ≡
ωj (mod 3) for some j ∈ Z, and second that j is odd,
since otherwise, 1− ωj would be divisible by

√−3. On
the other hand, for any odd value of j it is easy to check
that

(1− ωj )ωj ≡ 1 (mod 3OK ),

so we find that

ψE (p)
(
1− ψE (p)

) ≡ 1 (mod 3OK ). (7–3)

This proves the second assertion in (a).
For the proof of (c), we use the explicit formula for

the Grössencharacter of curves of the form y2 = x3 + k

in terms of sextic residue symbols. This formula says
that ψE (p) = −(4k

p

)−1

6
π, where the generator π is a

primary generator for p, i.e., π ≡ 2 (mod 3OK ). (See
[Ireland and Rosen 90, Chapter 18, Theorem 4, and Sec-
tion 7] or [Rubin and Silverberg 09, Proposition 4.1].)

Reducing this formula for ψE modulo 3 and applying
it to both of the primes p and q, we obtain

ψE (p) ≡
(

4k
p

)−1

6
(mod 3OK ), (7–4)

ψE (q) ≡
(

4k
q

)−1

6
(mod 3OK ).

By definition, the ideal q is generated by 1− ψE (p).
On the other hand, the Grössencharacter has the prop-
erty that ψE (q) generates the ideal q. It follows that there
is a unit u ∈ O∗K = µ6 such that 1− ψE (p) = uψE (q).
Using (7–3) and (7–4), we find that

u =
1− ψE (p)
ψE (q)

≡ 1
ψE (p)ψE (q)

≡
(

4k
p

)
6

(
4k
q

)
6

(mod 3OK ).

Since a sixth root of unity is determined by its residue
modulo 3, this last congruence is an equality, which com-
pletes the proof of (c).

Using the defining property of the Grössencharacter
and formula (7–1) from (c), we have

aq (E) = TrK/Q

(
ψE (q)

)
= TrK/Q

((
4k
p

)−1

6

(
4k
q

)−1

6

(
1− ψE (p)

))
.

Similarly, using the assumption that #Ẽp(Fp) = q, we
find that

TrE/Q

(
1− ψE (p)

)
= 2− TrE/Q

(
ψE (p)

)
= 2− (p+ 1− q) = q + 1− p.

Hence for ε ∈ {±1}, we have

aq (E) = ε(q + 1− p)⇐⇒

TrK/Q

(
ε

(
4k
p

)−1

6

(
4k
q

)−1

6

(
1− ψE (p)

))

= TrE/Q

(
1− ψE (p)

)
.

We now use the following lemma, which may be applied
because the quantity NE/Q

(
1− ψE (p)

)
= q is neither a

square nor 3 times a square. The lemma allows us to
conclude that

aq (E) = ε(q + 1− p)⇐⇒ ε

(
4k
p

)−1

6

(
4k
q

)−1

6
= 1,

which completes the proof of (e).

Lemma 7.3. Let α ∈ OK have the property that NK/Q(α)
is neither a square nor 3 times a square. Then

TrK/Q(ζα) = TrK/Q(α) with ζ ∈ µ6 ⇐⇒ ζ = 1.
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Proof: We have

TrK/Q(ζα) = TrK/Q(α)
⇐⇒ TrK/Q

(
(ζ − 1)α

)
= 0

⇐⇒ (ζ − 1)α = c
√−3 for some c ∈ Z

⇐⇒ ζ = 1 or α = c

√−3
ζ − 1

.

(Note that c is in Z because ζ and α are in OK = Z[ω].)
Suppose that ζ �= 1. We observe that as ζ ranges over
µ6 � {1}, the quantity

√−3/(ζ − 1) takes on the five val-
ues {

2− ω, 1− ω, 1
2
− ω,−ω,−1− ω

}
.

The norms of these five numbers form the set
{
1, 3, 3

4

}
,

so the norm of α would have the form c2 , 3c2 , or 3(c/2)2,
contradicting the assumption on NK/Q(α).

We can use Theorem 7.1 to show that for some curves
with j(E) = 0, the conclusion of Theorem 6.1 is true, i.e.,
there are only two possible values for #Ẽq (Fq ).

Corollary 7.4. Let d ∈ Z be a nonzero integer, and let E be
the elliptic curve E : y2 = x3 + 2d3 . Let p be a prime with
p � 6d such that q = #Ẽp(Fp) is also prime and satisfies
q � 6d. Then

#Ẽq (Fq ) = p or #Ẽq (Fq ) = 2q + 2− p.

Proof: Using notation from Theorem 7.1, we have k =
2d3 , so(

4k
p

)
6

=
(

2d
p

)3

6
= ±1 and

(
4k
q

)
6

=
(

2d
q

)3

6
= ±1.

It follows from Theorem 7.1(d) that aq (E) is equal to
±(q + 1− p).

We next prove two useful facts.

Proposition 7.5. Let k, E, p, q, p, and q be as in the
statement of Theorem 7.1.

(a)
(
k
p

)
6

= ω or ω5 .

(b)
(2
p

)
6

(2
q

)
6

=
(2
p

)
Q

(2
q

)
Q
, so in particular,

(2
p

)
6

(2
q

)
6

= ±1.

In (b),
( ·
·
)

Q
denotes the usual quadratic residue symbol

in Z.)

Proof: (a) If k is a square modulo p, then Ẽp(Fp) has a
nontrivial 3-torsion point, so #Ẽp(Fp) cannot be prime.
Similarly, if k is a cube modulo p, then Ẽp(Fp) has a

nontrivial 2-torsion point, so again #Ẽp(Fp) cannot be
prime. Hence(

k

p

)3

6
=
(
k

p

)
2
�= 1 and

(
k

p

)2

6
=
(
k

p

)
3
�= 1.

This means that
(
k
p

)
6

cannot equal 1, ω2 , ω3 , or ω4 , so it
must be either ω or ω5 .

(b) We first note that for any α, β ∈ OK with
gcd(6, β) = 1, we have(

α

β

)−1

6
=
(
α

β

)5

6
=
(
α

β

)3

6

(
α

β

)2

6
=
(
α

β

)
2

(
α

β

)
3
. (7–5)

If, in addition, α ∈ Z, then [Ireland and Rosen 90, Chap-
ter 18, Section 7, Lemma 2] says that

(
α
β

)
2

=
(

α
NK / Q(β )

)
Q
.

In order to prove (b), we use cubic reciprocity
[Ireland and Rosen 90, Chapter 9, Section 3]. We re-
call that an element α ∈ OK is said to be primary if
α ≡ 2 (mod 3OK ). Since ψE (p) is relatively prime to 3,
there is a (unique) sixth root of unity ζ ∈ µ6 such that
ζψE (p) is primary. It follows from Theorem 7.1(a) that
ζ−1

(
1− ψE (p)

)
is also primary, and of course, the num-

ber 2 is primary. Hence cubic reciprocity yields(
2
p

)
3

(
2
q

)
3

=
(

2
ψE (p)

)
3

(
2

1− ψE (p)

)
3

=
(

2
ζψE (p)

)
3

(
2

ζ−1(1− ψE (p))

)
3

=
(
ζψE (p)

2

)
3

(
ζ−1(1− ψE (p))

2

)
3

=
(
ψE (p)(1− ψE (p))

2

)
3
. (7–6)

The primes ψE (p) and 1− ψE (p) are relatively prime to
2, so ψE (p) is congruent to either ω or 1 + ω modulo 2.
(Note that OK /2OK = {0, 1, ω, 1 + ω}.) Hence

ψE (p)
(
1− ψE (p)

) ≡ ω(1 + ω) ≡ 1 (mod 2OK ).

Substituting into (7–6) shows that
(2
p

)
3

(2
q

)
3

= 1. Using
(7–5) and its accompanying remark, we find that(

2
p

)−1

6

(
2
q

)−1

6
=
(

2
p

)
2

(
2
q

)
2

(
2
p

)
3

(
2
q

)
3

=
(

2
p

)
Q

(
2
q

)
Q

,

which completes the proof of (b).

Corollary 7.6. Let E/Q, p, and q be as in the statement
of Theorem 7.1.

(a) There exists an integer A satisfying

A2 =
2pq + 2p+ 2q − p2 − q2 − 1

3
. (7–7)
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(b) The trace aq (E) = q + 1−#Ẽq (Fq ) equals one of the
following six values:

±(q + 1− p), ±(q + 1− p)± 3A
2

. (7–8)

Remark 7.7. The six possible values of #Ẽq (Fq ) de-
scribed in Corollary 7.6(b) are #Ẽ(d)

q (Fq ) for the
sextic twists of Ẽq corresponding to the elements of
H1

(
Gal(F̄q /Fq ),Aut(Ẽq )

) ∼= H1
(
Gal(F̄q /Fq ),µ6

) ∼=
F∗q /(F

∗
q )

6 .

Remark 7.8. Using Corollary 7.6 and a case-by-case anal-
ysis, we will prove in Section 8 that j = 0 elliptic curves
have no aliquot cycles of length three.

Proof: (a) We know that Tr
(
ψE (p)

)
= ap(E), so writing

ψE (p) as an element of OK = Z[ω], it has the form

ψE (p) =
ap(E) +A

√−3
2

for some A ∈ Z. (7–9)

Since we also know that NK/Q

(
ψE (p)

)
= p, we find that

ap(E)2 + 3A2

4
= p. (7–10)

Finally, the assumption #Ẽp(Fp) = q is equivalent to
ap(E) = p+ 1− q. We substitute this value into (7–10),
and then a little bit of algebra shows that A has the form
specified by (7–7).

(b) Applying (7–1) from Theorem 7.1, we find that

TrK/Q

(
ψE (q)

)
= TrK/Q

(
ζ(1− ψE (p))

)
for some ζ ∈ µ6 . Using the value of ψE (p) from (7–9)
with the substitution ap(E) = p+ 1− q yields

TrK/Q

(
ψE (q)

)
= TrK/Q

(
ζ

(
q + 1− p−A√−3

2

))
.

Substituting in each of the six possible values ζ ∈ µ6 and
taking the trace yields the six values listed in (7–8).

Definition 7.9. Fix a nonzero integer k and let E be the
curve E : y2 = x3 + k. We let Nk denote the set

Nk =

⎧⎪⎨
⎪⎩

primes p ≥ 5 of good reduction for
E such that q = #Ẽp(Fp) is also
a prime of good reduction for E

⎫⎪⎬
⎪⎭ .

(This differs slightly from our earlier notation in that we
are now excluding a few primes, but this does not affect
our asymptotic formulas.) We define a subset of Nk by

N [1]
k =

{
p ∈ Nk : aq (E) = ±(q + 1− p)},

and we say that the primes in N [1]
k are of type 1 for E.

We write Nk (X) for the number of primes in Nk that are
less than X, and similarly for N [1]

k (X).

Only type-1 primes can be amicable, and based on ex-
periments, we expect that about half of the type-1 primes
will be part of an amicable pair. Let

Qk (X) = #

{
p < X : p < q and (p, q)
is an amicable pair for E

}
,

i.e., Qk (X) is the number of normalized amicable pairs
(p, q) on E with p < X. Then we have the following con-
jecture, where the conjectured limit is 1

4 , rather than 1
2 ,

because Qk (X) counts amicable pairs (p, q) with p < q,
while N [1]

k (X) counts both (p, q) and (q, p).

Conjecture 7.10. With notation as above, the proportion
of type-1 primes that are part of a normalized amicable
pair is given by

lim
X→∞

Qk (X)

N [1]
k (X)

=
1
4
.

Thus in order to understand the distribution of am-
icable pairs on E, we need to study the density of the
type-1 primes in Nk .

Remark 7.11. According to Corollary 7.6, there are
six possible values for aq (E), two of which give type-
1 primes, so one might expect N [1]

k to have density 1
3

inside Nk . This turns out not to be the case. At the
extreme end, Corollary 7.4 says that N [1]

2d3 = N2d3 for
any nonzero d ∈ Z. The rest of this section is devoted
to developing tools for calculating a conjectural value
for limX→∞N [1]

k (X)/Nk (X). This value depends on k in
quite a complicated way; see Conjecture 7.14. For precise
formulas when k is prime, see Conjecture 7.24, which says
that the limit should equal 1

3 +R(k), where R(k) is a ra-
tional function of k that depends on k modulo 36.

Definition 7.12. We set the notation

n
pr≡ a (mod m)⇐⇒ p ≡ a (mod m)
for every prime p | n.

Further, for any ideal K ⊂ OK , we define

O �
K,K =

{
λ ∈ OK

K
: gcd

(
λ(1− λ),K

)
= 1

}
.

If K = kOK is principal, we write simply O �
K,k .
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Now let k ∈ Z satisfy gcd(6, k) = 1. We define a setMk

that depends on k modulo 4 and on the primes dividing
k modulo 9. The definition for the four cases is as follows:

(a) k ≡ 1 (mod 4) and k
pr≡ ±1 (mod 9):

Mk =
{
λ ∈ O �

K,k :
(
λ

k

)
2

= −1 and
(
λ

k

)
3
�= 1

}
.

(b) k ≡ 1 (mod 4) and k �pr≡ ±1 (mod 9):

Mk =
{
λ ∈ O �

K,k :
(
λ

k

)
2

= −1
}
.

(c) k ≡ 3 (mod 4) and k
pr≡ ±1 (mod 9):

Mk =
{
λ ∈ O �

K,k :
(
λ

k

)
3
�= 1

}
.

(d) k ≡ 3 (mod 4) and k �pr≡ ±1 (mod 9):

Mk = O �
K,k .

Further, for every k we define a subset of Mk by

M
[1]
k =

{
λ ∈Mk :

(
λ(1− λ)

k

)
3

= 1
}
.

Remark 7.13. It is easy to check that k
pr≡ ±1 (mod 9) if

and only if every cube root of unity in OK /kOK is itself
a cube. For example, suppose that k ∈ Z is prime. If k ≡
−1 (mod 9), then OK /kOK ∼= Fk 2 is a finite field with k2

elements, and µ9 ⊂ Fk 2 . Similarly, if k ≡ 1 (mod 9), then
OK /kOK ∼= Fk × Fk , and µ9 ⊂ Fk . Thus in both cases,
every cube root of unity in OK /kOK is itself a cube.

Conjecture 7.14. Let k ∈ Z be an integer satisfying
gcd(6, k) = 1. Then

lim
X→∞

N [1]
k (X)
Nk (X)

=
#M[1]

k

#Mk
. (7–11)

Remark 7.15. For small values of k, it is not difficult to
compute the sets Mk and M[1]

k , thereby obtaining an
explicit (conjectural) value for the limit (7–11). Table 1
gives some examples corresponding to the four cases (a)–
(d) used to define Mk , further divided according to the
value of k modulo 3. (The notation (x.n) after each value
of k indicates the case x = (a), . . . , (d) and the congru-
ence class k ≡ n (mod 3).)

Our justification for Conjecture 7.14 uses the follow-
ing weak form of quadratic and cubic reciprocity for the
field Q(ω).

k #O �
K ,k #Mk #M [1 ]

k #M [1 ]
k /#Mk

37 (a.1) 1225 408 144 6
17 = 0.3529

17 (a.2) 287 96 36 3
8 = 0.3750

13 (b.1) 121 60 20 1
3 = 0.3333

5 (b.2) 23 12 4 1
3 = 0.3333

19 (c.1) 289 192 72 3
8 = 0.3750

71 (c.2) 5039 3360 1152 12
35 = 0.3429

7 (d.1) 25 25 13 13
25 = 0.5200

11 (d.2) 119 119 47 47
119 = 0.3950

TABLE 1. The sets O �
K ,k , Mk , and M

[1 ]
k .

Lemma 7.16. Let k ∈ Z satisfy gcd(k, 6) = 1, and let λ ∈
Z[ω] satisfy gcd(6k, λ) = 1. Then:

(a) (Quadratic reciprocity in Q(ω).)(
k

λ

)
2

= (−1)
N (λ )−1

2 · k −1
2

(
λ

k

)
2
.

(b) (Cubic reciprocity in Q(ω).) Let ζ ∈ µ3 be the unique
cube root of unity such that

ζλ ≡ ±1 (mod 3OK ).

Then (
k

λ

)
3

=
(
ζ

k

)
3

(
λ

k

)
3
.

Proof: Let α, β ∈ Z[ω] satisfy gcd(α, β) = gcd(αβ, 6) =
1. We start with the sextic reciprocity law for Q(ω) as
stated in [Lemmermeyer 00, Theorem 7.10]. This says
that if α and β are “E-primary” (see [Lemmermeyer 00]
for terminology), then(

α

β

)
6

(
β

α

)−1

6
= (−1)

N (α )−1
2 · N (β )−1

2 . (7–12)

Let ρ = ω2 denote a primitive cube root of unity. Then
for α ∈ OK satisfying gcd(6, α) = 1, we have by definition

α is E-primary⇐⇒ α ≡ ±1 (mod 3) and α3=A+Bρ

with A+B ≡ 1 (mod 4).

(This is a corrected version of [Lemmermeyer 00, Lemma
7.9], which omits the α ≡ ±1 (mod 3) condition and in-
cludes a superfluous 3 | B requirement.)

We note that if α ≡ ±1 (mod 3), then exactly one of
±α is E-primary.
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We now consider k ∈ Z and λ ∈ OK as in the state-
ment of the lemma. Since k is an integer and satisfies
gcd(6, k) = 1, we have

k is E-primary⇐⇒ k ≡ ±1 (mod 3) and
k3 ≡ 1 (mod 4)

⇐⇒ k ≡ 1 (mod 4),

so (−1)(k−1)/2k is E-primary. We also note that for any
α ∈ OK satisfying gcd(6, α) = 1, Euler’s formula says
that (−1

α

)
6
≡ (−1)(N(α)−1)/6 (mod αOK ), (7–13)

and since both sides of (7–13) are sixth roots of unity,
the congruence (7–13) is an equality. In particular,(−1

k

)
6

= (−1)(N(k)−1)/6 = (−1)(k 2−1)/6 = 1. (7–14)

It is an easy exercise to verify that there is
a unique ζ ∈ µ3 such that ζλ ≡ ±1 (mod 3); cf.
[Ireland and Rosen 90, Proposition 9.3.5].

Then one of ±ζλ is E-primary, so we can apply
(7–12) to the E-primary numbers α = (−1)(k−1)/2k and
β = ±ζλ. Then (7–12) becomes(

(−1)(k−1)/2k

λ

)
6

(±ζλ
k

)−1

6
= (−1)

k 2 −1
2 · N (λ )−1

2 = 1.

(The second equality comes from the fact that k2 ≡ 1
(mod 4).) Hence

(−1
λ

)(k−1)/2

6

(
k

λ

)
6

(±1
k

)−1

6

(
ζ

k

)−1

6

(
λ

k

)−1

6
= 1.

Using (7–13) and (7–14) gives(
k

λ

)
6

= (−1)
N (λ )−1

2 · k −1
2

(
ζ

k

)
6

(
λ

k

)
6
. (7–15)

(We note in particular that the sign used to ensure
that ζλ is E-primary turns out to be irrelevant because(−1
k

)
6 = 1.) Cubing (7–15) and using ζ3 = 1 gives the

quadratic reciprocity formula in (a), and similarly, squar-
ing (7–15) gives the cubic reciprocity formula in (b).

Justification for Conjecture 7.14: Let p ∈ Nk , so Theo-
rem 7.1(a) tells us that p splits in OK , say pOK = pp̄. As
in that theorem, we let q =

(
1− ψE (p)

)OK . Then squar-
ing Theorem 7.1(d) yields

p ∈ N [1]
k ⇐⇒

(
4k
p

)
3

(
4k
q

)
3

= 1.

Further, Proposition 7.5 implies that
(2
p

)
3

(2
q

)
3

= 1, so we
find that

p ∈ N [1]
k ⇐⇒

(
k

p

)
3

(
k

q

)
3

= 1.

The (prime) ideals p and q are generated, respectively, by
the elements ψE (p) and 1− ψE (p), and Theorem 7.1(a)
says that these elements satisfy

ψE (p)
(
1− ψE (p)

) ≡ 1 (mod 3OK ). (7–16)

Hence if we choose ξ ∈ µ6 to satisfy

ξψE (p) ≡ ±1 (mod 3OK ),

then (7–16) says that we also have

ξ−1(1− ψE (p)
) ≡ ±1 (mod 3OK ).

This allows us to apply cubic reciprocity (Lemma 7.16(b),
or [Ireland and Rosen 90, Chapter 9, Section 3, Theorem
1]) to compute(

k

p

)
3

(
k

q

)
3

=
(

k

ξψE (p)OK

)
3

(
k

ξ−1(1− ψE (p))OK

)
3

=
(
ξψE (p)
kOK

)
3

(
ξ−1(1− ψE (p))

kOK

)
3

=
(
ψE (p)
kOK

)
3

(
1− ψE (p)
kOK

)
3
.

Hence

p ∈ N [1]
k ⇐⇒

(
ψE (p)

(
1− ψE (p)

)
kOK

)
3

= 1. (7–17)

We now consider how the values ψE (p) are distributed
in OK /kOK as p varies in Nk . If p were chosen com-
pletely randomly, subject only to p ≡ 1 (mod 3), then
we might expect the values of ψE (p) to be uniformly
distributed among the congruence classes in OK /kOK .
However, Proposition 7.6(a) tells us that

(
k
p

)
6

equals ei-
ther ω or ω5 , i.e., it is a primitive sixth root of unity.
Equivalently,(

k

p

)
2

= −1 and
(
k

p

)
3

= ω2 or ω4 , (7–18)

i.e., neither
(
k
p

)
2

nor
(
k
p

)
3

equals 1. This gives a constraint
on the values of ψE (p) for p ∈ Nk . Discarding finitely
many elements of Nk , we may assume that p � 6k, and
then reciprocity (Lemma 7.16) tells us that(

k

p

)
2

= (−1)
p −1

2 · k −1
2

(
ψE (p)
k

)
2

and (
k

p

)
3

=
(
ζ

k

)
3

(
ψE (p)
k

)
3
,
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where ζ ∈ µ3 satisfies ζψE (p) ≡ ±1 (mod 3). (Note that
N
(
ψE (p)

)
= p.) Hence the constraints (7–18) on ψE (p)

from Proposition 7.6(a) become(
ψE (p)
k

)
2

= −(−1)
p −1

2 · k −1
2 , (7–19)

(
ζ

k

)
3

(
ψE (p)
k

)
3

= ω2 or ω4 .

We now make the following two assumptions, which
are supported by experiments:

(i) For p ∈ Nk , the value of p mod 4 is equally likely to
be 1 or 3.

(ii) For p ∈ Nk , the value of ζ in (7–19) is equally likely
to be 1, ω2 , or ω4 .

These assumptions have the following consequences:

1. If k ≡ 3 (mod 4), then the first equation in
(7–19) has no effect on the value of ψE (p) mod k.

2. If k �pr≡ ±1 (mod 9), i.e., if cube roots of unity
in OK /kOK are not necessarily cubes, then the
second equation in (7–19) has no effect on the
value of ψE (p) mod k.

On the other hand, if k ≡ 1 (mod 4), then the first equa-
tion in (7–19) gives the constraint

(ψE (p)
k

)
2 = −1; and

similarly, if k
pr≡ ±1 (mod 9), then the second equation

in (7–19) imposes the condition
(ψE (p)

k

)
3 �= 1.

Thus considering the four cases, we see that ψE (p) is
in the set Mk . Further, we note that (7–17) says that p ∈
N [1]
k if and only if ψE (p) ∈M[1]

k . Hence it is reasonable
to conjecture that the density of N [1]

k in Nk is given by
the ratio #M[1]

k /#Mk .

Conjecture 7.14 is reasonably satisfactory in that the
setsMk andM[1]

k are easy to compute for any particular
(not-too-large) value of k. In the remainder of this section
we derive explicit formulas for #Mk and #M[1]

k when k
is prime. We do this by breaking them up into subsets of
the following sort. For any ideal K ⊂ OK and any roots
of unity ζ ∈ µ6 and ξ ∈ µ3 , we define

MK(ζ) =
{
λ ∈ O �

K,K :
(
λ

K

)
6

= ζ

}

=
{
λ ∈ O �

K,K :
(
λ

K

)
2

= ζ3 and
(
λ

K

)
3

= ζ2
}
,

M
[1]
K (ζ, ξ) =

{
λ ∈MK(ζ) :

(
λ(1− λ)

K

)
3

= ξ

}
.

As before, if K = kOK is principal, we write Mk (ζ) and
M

[1]
k (ζ, ξ). Further, if S ⊂ µ6 is any set of roots of unity,

we write MK(S) for the union of MK(ζ) with ζ ∈ S. With
this notation, the four cases defining Mk are given by

(a) Mk = Mk

({ω, ω5}),
(b) Mk = Mk

({ω, ω3 , ω5}),
(c) Mk = Mk

({ω, ω2 , ω4 , ω5}),
(d) Mk = Mk (µ6),

and in all cases, M [1]
k = M

[1]
k (S, 1), where S ⊂ µ6 is the

set for the appropriate case.
We now restrict attention to the case that k ∈ Z is a

rational prime with gcd(6, k) = 1. If k ≡ 2 (mod 3), so k
is inert in K, then the computation of Mk and M [1]

k takes
place in the field OK /kOK ∼= Fk 2 with k2 elements. On
the other hand, if k ≡ 1 (mod 3), so k splits as kOK =
KK̄, then

OK
kOK

∼= OK
K
× OK

K̄
∼= Fk × Fk .

In this case, a condition such as
(
λ
k

)
3 �= 1 becomes more

complicated, since there are many ways for the product(
λ
K

)
3

(
λ
K̄

)
3

to be different from 1.

Proposition 7.17. Let k ≥ 5 be a rational prime. The fol-
lowing table gives the values of #Mk (S) for various sub-
sets S ⊂ µ6 , divided into cases according to whether k is
split or inert in K = Q(

√−3 ):

k ≡ 1 (mod 3) k ≡ 2 (mod 3)

(a) #Mk

({ω, ω 5 }) 1
3 (k − 1)(k − 3) 1

3 (k 2 − 1)

(b) #Mk

({ω, ω 3 , ω 5 }) 1
2 (k − 1)(k − 3) 1

2 (k 2 − 1)

(c) #Mk

({ω, ω 2 , ω 4 , ω 5 }) 2
3 (k − 1)(k − 3) 2

3 (k 2 − 1)

(d) #Mk (µ6 ) (k − 2)2 k 2 − 2

Proof: Suppose first that k is inert, so OK /kOK ∼= Fk 2 .
Then #Mk (µ6) simply counts the λ ∈ Fk 2 such that
λ and 1− λ are units, so is equal to k2 − 2. Next,
#Mk

({ω, ω3 , ω5}) counts the quadratic nonresidues in
Fk 2 , of which there are 1

2 (k2 − 1). (Here the condition
that 1− λ be a unit is irrelevant, since 1 is a quadratic
residue.) Similarly, #Mk

({ω, ω2 , ω4 , ω5}) counts cubic
nonresidues in Fk 2 , of which there are 2

3 (k2 − 1). Fi-
nally, #Mk

({ω, ω5}) counts the elements that are nei-
ther quadratic nor cubic residues, of which there are
1
3 (k2 − 1).

Next suppose that k splits, so OK /kOK ∼= Fk × Fk .
Then #Mk (µ6) counts (a, b) ∈ F2

k with neither a nor b
equal to 0 or 1. This gives k − 2 possibilities for each of
a and b, so #Mk (µ6) = (k − 2)2.

The required calculations for each of the remain-
ing cases have much in common, so we will illustrate
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only the case of Mk

({ω, ω3 , ω5}). Exactly 1
2 of invert-

ible (a, b) are quadratic nonresidues. Therefore, there
are 1

2 (k − 1)2 such elements. Of these, there are 1
2 (k −

1) of the form (1, b) and 1
2 (k − 1) of the form (a, 1).

The set Mk

({ω, ω3 , ω5}) counts invertible (a, b) that are
quadratic nonresidues having a �= 1 and b �= 1. Therefore

#Mk

({ω, ω3 , ω5}) =
1
2
(k − 1)2 − 2

(
1
2
(k − 1)

)

=
1
2
(k − 1)(k − 3).

(Note that (1, 1) is a quadratic residue, so the invert-
ible nonresidues of the form (a, 1) and (1, b) are disjoint.)
A similar argument applies to the two remaining cases,
where we rely on the fact that invertible elements of
Fk × Fk and of Fk fall evenly into the six sextic residue
classes.

The table in Proposition 7.17 gives the value of
#Mk (S) for the four subsets S ⊂ µ6 that appear in Con-
jecture 7.14. It remains to construct a similar table for
the values of #M [1]

k (S). It turns out that these values
can be expressed in terms of the number of points on a
certain curve of genus four over various finite fields. We
begin with a description of the curve that we need, after
which we count points in order to compute the desired
values.

Proposition 7.18. Let F be a perfect field of characteristic
not equal to 2 or 3. For κ ∈ F∗ we define E(κ) to be the
elliptic curve

E(κ) : y2 = x3 + κ,

and for γ, δ ∈ F∗, we define C
(γ ,δ)
6 to be a smooth pro-

jective model for the algebraic curve given by the affine
equation

C
(γ ,δ)
6 : γz6(1− γz6) = δx3 .

Then:

(a) The curve C(γ ,δ)
6 has genus four.

(b) There are finite maps from C
(γ ,δ)
6 to curves of the

form E(κ) given by the following formulas:

C
(γ ,δ)
6 → E(16δ 2 ) , (x, z) �→ (−4δx, 8γδz6 − 4δ),

C
(γ ,δ)
6 → E(4γ 3 δ 4 ) , (x, z) �→

(
δ2x2

z6 , γ2δ2z3 +
γδ2

z3

)
,

C
(γ ,δ)
6 → E(γ 5 δ 2 ) , (x, z) �→

(
γδx

z4 ,
γ2δ

z3

)
,

C
(γ ,δ)
6 → E(−γ δ 2 ) , (x, z) �→

(
−δx
z2 , γδz

3
)
.

(c) The maps in (b) are independent; hence they induce
an isogeny

E(16δ 2 ) × E(4γ 3 δ 4 ) × E(γ 5 δ 2 ) × E(−γ δ 2 )

−→ J
(γ ,δ)
6

def= Jac(C(γ ,δ)
6 ).

(d) For any prime � different from the characteristic of
F, we have isomorphisms of Gal(F̄/F)-modules,

H1
ét
(
C

(γ ,δ)
6/F

,Q�

)
∼= H1

ét
(
J

(γ ,δ)
6/F

,Q�

)
∼= H1

ét
(
E

(16δ 2 )
/F

,Q�

)×H1
ét
(
E

(4γ 3 δ 4 )
/F

,Q�

)
×H1

ét
(
E

(γ 5 δ 2 )
/F

,Q�

)×H1
ét
(
E

(−γ δ 2 )
/F

,Q�

)
.

Proof: (a) All of the C(γ ,δ)
6 curves are geometrically iso-

morphic, so it suffices to calculate the genus of C(1,1)
6 ,

which for convenience we denote by C6 . A simple calcu-
lation shows that the projective closure of C6 in P2 is
singular at (0, 0) and at the point at infinity, and that
each of these singular points resolves to three points on
the smooth model. (See Proposition 7.19 for details.) We
let C1 be the elliptic curve

C1 : z(1− z) = x3 ,

and we consider the natural degree-6 map

ψ : C6 −→ C1 , (x, z) �−→ (x, z6).

The map ψ is ramified only at (0, 0) and ∞, the sets
ψ−1(0, 0) and ψ−1(∞) each consist of three points, and
each of these points has ramification index 2. Applying
the Riemann–Hurwitz genus formula to ψ gives

2g(C6)− 2 = 6
(
2g(C1)− 2

)
+
∑
P ∈C1

(
eP (ψ)− 1

)
= 6(2− 2) + 6(2− 1) = 6.

Hence g(C6) = 4.
(b) It is an exercise to verify that the given maps are

well defined, but we briefly comment on their origin. The
automorphism group of the curve C(γ ,δ)

6 is fairly large,
since

µ3 × µ6 ⊂ Aut(C(γ ,δ)
6 ), [ζ, ξ](x, z) = (ζx, ξz).

Taking quotients of C(γ ,δ)
6 by various subgroups of µ3 ×

µ6 gives maps to curves of lower genus, which in turn
give the four maps described in (b).

(c) From general principles, the maps in (b) induce
isogenies E(κ) → J

(γ ,δ)
6 for the given values of κ. There

are various ways to see that these isogenies are inde-
pendent. For example, one can use the fact that the
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four E(κ) are nonisogenous over C(γ, δ), treating γ and
δ as indeterminates. Alternatively, at least in charac-
teristic 0, one can take γ = δ = 1, untwist to get four
maps C(1,1)

6 → E(1) defined over Q̄, and use the action
of Gal(Q̄/Q) on the maps to show that they are inde-
pendent. Or for a purely geometric proof, one can use
intersection theory and the fact that the pairing

〈 · , · 〉 : Map(C(1,1)
6 , E(1))/E(1) → Z,

〈φ, ψ〉 = deg(φ+ ψ)− deg φ− degψ,

is a positive definite quadratic form. (The E(1) in the de-
nominator is shorthand for the right action of the group
of translations.) We sketch the characteristic-zero Galois-
theoretic proof, so we assume that char(F) = 0.

Independence of maps is geometric, so it suffices to
prove independence for γ = δ = 1. Let ψ1 , . . . , ψ4 be the
four maps in (b), so

ψ1 : C(1,1)
6 −→ E(16) , ψ2 : C(1,1)

6 −→ E(4) ,

ψ3 : C(1,1)
6 −→ E(1) , ψ4 : C(1,1)

6 −→ E(−1) .

We compose these maps with untwisting maps E(κ) →
E(1) , so we get four maps

φ1 : C(1,1)
6

ψ1−−−−→ E(16)
(x,y )→

(
1

2 3√2
x, 1

4 y
)

−−−−−−−−−−−−→ E(1) ,

φ2 : C(1,1)
6

ψ2−−−−→ E(4)
(x,y )→

(
1

3√4
x, 1

2 y
)

−−−−−−−−−−−→ E(1) ,

φ3 : C(1,1)
6

ψ3−−−−→ E(1) (x,y )→(x,y )−−−−−−−→ E(1) ,

φ4 : C(1,1)
6

ψ4−−−−→ E(−1) (x,y )→(−x,iy )−−−−−−−−−→ E(1) .

The maps ψ1 , . . . , ψ4 are defined over Q, but the maps
φ1 , . . . , φ4 are defined only over Q̄, not Q. We consider
the action of Gal(Q̄/Q) on these maps. To do this, we
choose elements σ, τ ∈ Gal(Q̄/Q) satisfying

σ( 3
√

2) = ρ
3
√

2, σ(i) = i,

τ( 3
√

2) = 3
√

2, τ(i) = −i.
Here ρ = 1

2 (−1 +
√−3) is a fixed primitive cube root of

unity. We also note that µ3 acts on E(1) via [ρ](x, y) =
(ρx, y). Looking at the explicit formulas for φ1 , . . . , φ4 ,
we find that

φσ1 = [ρ2 ] ◦ φ1 , φσ2 = [ρ] ◦ φ2 , φσ3 = φ3 , φσ4 = φ4 ,

φτ1 = φ1 , φτ2 = φ2 , φτ3 = φ3 , φτ4 = [−1] ◦ φ4 .

Now suppose that we have a relation

[n1 ] ◦ φ1 + [n2 ] ◦ φ2 + [n3 ] ◦ φ3 + [n4 ] ◦ φ4 = 0. (7–20)

Applying the transformation τ to (7–20) has the effect of
replacing φ4 by [−1] ◦ φ4 , so subtracting the two equa-

tions yields [2n4 ] ◦ φ4 = 0. Since the map φ4 : C(1,1)
6 →

E(1) is a finite map, it follows that n4 = 0.
Applying σ and σ2 to (7–20), we end up with three

equations:

[n1 ] ◦ φ1 + [n2 ] ◦ φ2 + [n3 ] ◦ φ3 = 0, (7–21)
[n1 ] ◦ [ρ2 ] ◦ φ1 + [n2 ] ◦ [ρ] ◦ φ2 + [n3 ] ◦ φ3 = 0, (7–22)
[n1 ] ◦ [ρ] ◦ φ1 + [n2 ] ◦ [ρ2 ] ◦ φ2 + [n3 ] ◦ φ3 = 0. (7–23)

Adding (7–21), (7–22), and (7–23) and using 1 + ρ+
ρ2 = 0 gives [3n3 ] ◦ φ3 = 0, which implies n3 = 0. Sim-
ilarly, adding (7–21) to [ρ] times (7–22) to [ρ2 ] times
(7–23) gives [3n1 ] ◦ φ1 = 0, so n1 = 0. Finally, since n1 =
n3 = 0, the equation (7–21) gives n2 = 0. This completes
the proof that φ1 , . . . , φ4 are independent.

(d) It is a standard fact that H1
ét of a curve and its Ja-

cobian are isomorphic. This gives the first isomorphism,
and the second follows from (c) and the fact that an
isogeny between abelian varieties induces an isomorphism
of their étale cohomologies.

Proposition 7.19. Let K be a prime ideal in OK such that
µ6 ⊂ OK /K, i.e., NK/Q(K) ≡ 1 (mod 6). Let ζ ∈ µ6 and
ξ ∈ µ3 , choose elements γ, δ ∈ OK satisfying

(
γ
K

)
6 = ζ

and
(
δ
K

)
3 = ξ, and let C(δ,γ )

6 be the smooth projective
curve from Proposition 7.18 given by the affine equation

C
(γ ,δ)
6 : γz6(1− γz6) = δx3 .

Then

#M [1]
K (ζ, ξ) =

1
18

(
#C(γ ,δ)

6

(OK
K

)
− e(ζ, ξ)

)
,

where the error term e(ζ, ξ) is given by the formula

e(ζ, ξ) =

[
6 if ζ = 1
0 if ζ �= 1

]
+

[
3 if ζ2 = ξ

0 if ζ2 �= ξ

]
+

[
3 if ζ4 = ξ

0 if ζ4 �= ξ

]
.

Proof: Our choices of γ and δ imply that for any λ ∈ OK ,(
λ

K

)
6

= ζ

⇐⇒ γ−1λ ≡ a nonzero sixth power (mod K)

and(
λ(1− λ)

K

)
3

= ξ

⇐⇒ δ−1λ(1− λ) ≡ a nonzero cube (mod K).

We thus get a natural map{
(x, z) ∈ C(γ ,δ)

6

(OK
K

)
: x �= 0,∞

}
−→MK(ζ, ξ),

(x, z) �−→ γz6 . (7–24)
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We claim that the map (7–24) is exactly 18-to-1. To see
this, let λ ∈MK(ζ, ξ). Then λ ≡ γv6 (mod K) and λ(1−
λ) ≡ δu3 (mod K) for some u, v ∈ (OK /K)∗, so λ is the
image of the point (u, v) ∈ C(γ ,δ)

6 (OK /K). Further, for a
given value of λ, there are six choices for v and three
choices for u. (Note that OK /K contains µ6 .) Hence

#MK(ζ, ξ) =
1
18

#
(
C

(γ ,δ)
6

(OK
K

)
� {x = 0 or ∞}

)
.

It remains to count the number of OK /K-rational points
with x = 0 or ∞ on a smooth model of C(γ ,δ)

6 .
To ease notation, we let C = C

(γ ,δ)
6 , and we let C ′ be

the curve

C ′ : γ(1− γz6) = δx3 . (7–25)

The birational map

C −→ C ′, (x, z) �−→ (xz−2 , z),

is a bijection on the set of points

C � {x = 0 or ∞} ∼←→ C ′ � {x = 0 or ∞} ∪ {z = 0},
and the affine piece of C ′ defined by equation (7–25) is
smooth, so the points with x = 0 on C become the points
with x = 0 or z = 0 on C ′. (More precisely, we will see
that the singular point (0, 0) ∈ C is blown up to three
points on C ′, while there are six smooth points of the
form (0, γ−1/6) on both C and C ′.) The points on C ′

with x = 0 or z = 0 are characterized by

(0, z) ∈ C ′ ⇐⇒ z6 = γ−1

and

(x, 0) ∈ C ′ ⇐⇒ x3 = γδ−1 .

Thus there are points of the form (0, z) if and only
if
(
γ
K

)
6 = 1, and there are points of the form (0, x) if

and only if
(
γ δ−1

K

)
3 = 1. Using the values

(
γ
K

)
6 = ζ and(

γ δ−1

K

)
3 =

(
γ
K

)2
6

(
δ−1

K

)
3 = ζ2ξ−1 , we find that

#
{

(0, z) ∈ C(γ ,δ)
6

(OK
K

)}
=

{
6 if ζ = 1,

0 if ζ �= 1,

#
{

(x, 0) ∈ C(γ ,δ)
6

(OK
K

)}
=

{
3 if ζ2 = ξ,

0 if ζ2 �= ξ.

It remains to count the points at infinity on C ′. Ho-
mogenizing the equation for C ′ gives the curve γy6 −
γ2z6 = δx3y3 . The unique (singular) point at infinity is
[x, y, z] = [1, 0, 0], so dehomogenizing by setting x = 1
gives the curve

γy6 − γ2z6 = δy3 .

We blow up the singular point (0, 0) by setting y = z2u.
(This corresponds to blowing up twice. One can check
that the other coordinate charts do not yield any addi-
tional points.) The resulting curve has affine equation

γz6u6 − γ2 = δu3 .

This affine curve is smooth, and the points that map to
the point at infinity on C ′ are the points with z = 0 and
u3 = −γ2δ−1 . Using

(
γ 2 δ−1

K

)
3 =

(
γ
K

)4
6

(
δ−1

K

)
3 , we see that

#
{

points at infinity on C(γ ,δ)
6

(OK
K

)}

=

{
3 if ζ4 = ξ,

0 if ζ4 �= ξ.

This completes the proof of the proposition.

The next step is to count the number of points on
C

(γ ,δ)
6 defined over a finite field. This is done using the

decomposition of J (γ ,δ)
6 into a product of elliptic curves.

Proposition 7.20. With notation as in the statement
of Proposition 7.19, choose an element π ∈ OK satisfy-
ing K = πOK and π ≡ 2 (mod 3). Further, let ε =

(2
K

)
3 .

Then

#C(γ ,δ)
6

(OK
K

)
= NK/Q K + 1 + TrK/Q(ξπ̄)

+ TrK/Q(ε2ζ3ξ2 π̄) + TrK/Q(εζ5ξπ̄)

+ (−1)
1
2 (NK / Q K−1) TrK/Q(εζξπ̄).

If K is an inert prime, say K = kOK with k ∈ Z satisfying
k ≡ 2 (mod 3), and if we take δ = 1, then the formula
simplifies to

#C(γ ,1)
6

(OK
K

)
=

⎧⎪⎨
⎪⎩
k2 + 1 + 8k if ζ = 1,
k2 + 1− 4k if ζ = −1,
k2 + 1 + 2k if ζ �= ±1.

Proof: To ease notation, let FK = OK /K, so NK/Q K =
#FK. Further, let FK be the (NK/Q K)th-power Frobenius
map on F̄K. Then the number of points in C

(γ ,δ)
6 (FK) is

given by the trace formula [Hartshorne 77, C.4.2]

#C(γ ,δ)
6 (FK) = NK/Q K + 1− Tr

(
FK

∣∣ H1
ét(C

(γ ,δ)
6/FK

,Q�)
)
.

(7–26)
We compute the trace using Proposition 7.18, which
splits the representation for C

(γ ,δ)
6 into a product of

representations on elliptic curves with zero j-invariant.
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Thus

Tr
(
FK

∣∣ H1
ét(C

(γ ,δ)
6/FK

,Q�)
)

= Tr
(
FK

∣∣ H1
ét(E

(16δ 2 )
/FK

,Q�)
)

+ Tr
(
FK

∣∣ H1
ét(E

(4γ 3 δ 4 )
/FK

,Q�)
)

(7–27)

+ Tr
(
FK

∣∣ H1
ét(E

(γ 5 δ 2 )
/FK

,Q�)
)

+ Tr
(
FK

∣∣ H1
ét(E

(−γ δ 2 )
/FK

,Q�)
)
.

We now apply [Ireland and Rosen 90, Chapter 18, Sec-
tion 3, Theorem 4], which gives a formula for the trace in
terms of residue symbols. Writing K = πOK with π ≡ 2
(mod 3), we find that

Tr
(
FK

∣∣ H1
ét(C

(γ ,δ)
6/FK

,Q�)
)

= −
(

26δ2

K

)−1

6
π −

(
26δ2

K

)
6
π̄ −

(
24γ3δ4

K

)−1

6
π

−
(

24γ3δ4

K

)
6
π̄ −

(
22γ5δ2

K

)−1

6
π (7–28)

−
(

22γ5δ2

K

)
6
π̄ −

(−22γδ2

K

)−1

6
π −

(−22γδ2

K

)
6
π̄

= −ξ−1π − ξπ̄ −
(

2
K

)−2

3
ζ−3ξ−2π −

(
2
K

)2

3
ζ3ξ2 π̄

−
(

2
K

)−1

3
ζ−5ξ−1π −

(
2
K

)
3
ζ5ξπ̄

−
(−1

K

)
2

(
2
K

)−1

3
ζ−1ξ−1π −

(−1
K

)
2

(
2
K

)
3
ζξπ̄.

Noting that
(−1

K

)
2 = (−1)(NK / Q K−1)/2 , we combine (7–26)

and (7–28) to obtain the desired result.
In the case that K = kOK is an inert prime, we have

(−1)
1
2 (k 2−1) = 1, since k is odd. Further, both 2 and k are

primary, so cubic reciprocity gives
(2
K

)
3 =

(2
k

)
3 =

(
k
2

)
3 =

1. Further taking δ = 1 implies that ξ = 1, so the formula
for #C(γ ,1)

6 (OK /K) becomes

k2 + 1 +
(
TrK/Q(1) + TrK/Q(ζ3) + TrK/Q(ζ5)

+ TrK/Q(ζ)
)
k.

Taking the six possible values ζ ∈ µ6 yields the stated
formula.

Proposition 7.21. Let k ≥ 5 be a rational prime. The fol-
lowing table gives the values of #M [1]

k (S, 1) for various
subsets S ⊂ µ6 , divided into cases according to whether
k is split or inert in K = Q(

√−3 ); cf. Proposition 7.17:

k ≡ 1 (mod 3) k ≡ 2 (mod 3)

(a) #M
[ 1 ]
k

({ω, ω 5 }, 1) 1
9 (k − 1)2 1

9 (k + 1)2

(b) #M
[ 1 ]
k

({ω, ω 3 , ω 5 }, 1) 1
6 (k − 1)(k − 3) 1

6 (k 2 − 1)
(c) #M

[ 1 ]
k

({ω, ω 2 , ω 4 , ω 5 }, 1) 2
9 (k − 1)2 2

9 (k + 1)2

(d) #M
[ 1 ]
k (µ6 , 1) 1

3 (k 2 − 2k + 4) 1
3 (k 2 + 2k − 2)

Proof: We begin with the case that k ≡ 2 (mod 3), so
K = kOK is a prime ideal with NK/Q K = k2 . We let
ω = 1

2 (1 +
√−3) be the usual sixth root of unity, and

we choose some γ ∈ OK satisfying(
γ

K

)
6

= ω.

Then for any 0 ≤ i ≤ 5, we have

18#M [1]
k (ωi, 1)

= #C(γ i ,1)
6 (FK)−

⎡
⎢⎣

12 if i = 0
6 if i = 3
0 otherwise

⎤
⎥⎦

(from Proposition 7.19 with ζ = ωi and ξ = 1)

=

⎡
⎢⎣
k2 + 1 + 8k if i = 0
k2 + 1− 4k if i = 3
k2 + 1 + 2k otherwise

⎤
⎥⎦−

⎡
⎢⎣

12 if i = 0
6 if i = 3
0 otherwise

⎤
⎥⎦

(from Proposition 7.20 with ζ = ωi and ξ = 1)

=

⎧⎪⎪⎨
⎪⎪⎩
k2 + 8k − 11 if i = 0,

k2 − 4k − 5 if i = 3,

k2 + 2k + 1 otherwise.

It is now easy to compute

#M [1]
k (S, 1) =

∑
ζ∈S

#M [1]
k (ζ, 1)

for the four cases of the proposition. For example,

#M [1]
k (µ6 , 1) =

1
18
(
(k2 + 8k − 11) + (k2 − 4k − 5)

+ 4(k2 + 2k + 1)
)

=
1
3
(k2 + 2k − 2).

Next we consider the case that k ≡ 1 (mod 3), so
kOK = KK̄ splits. The definition of the residue symbol
says that (

λ

kOK

)
6

=
(
λ

K

)
6

(
λ

K̄

)
6
,(

λ(1− λ)
kOK

)
3

=
(
λ(1− λ)

K

)
3

(
λ(1− λ)

K̄

)
3
,

so using the Chinese remainder theorem,

OK /kOK = OK /KOK ×OK /K̄OK ,
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a quantity such as M [1]
k (ζ, ξ) breaks up into a sum of

products,

M
[1]
k (ζ, ξ) =

5∑
u=0

2∑
v=0

M
[1]
K (ωu , ω2v )M [1]

K̄
(ζω−u , ξω−2v ).

Hence for 0 ≤ i ≤ 5, we have

M
[1]
k (ωi, 1) =

5∑
u=0

2∑
v=0

M
[1]
K (ωu , ω2v )M [1]

K̄
(ωi−u , ω−2v )

=
5∑

u=0

2∑
v=0

M
[1]
K (ωu , ω2v )M [1]

K (ωu−i , ω2v ).

(7–29)

(For the second equality we have used the identity
M

[1]
K (ζ, ξ) = M

[1]
K̄

(ζ̄, ξ̄).) We choose γ and δ to satisfy(
γ

K

)
6

= ω and
(
δ

K

)
3

= ω2 .

Then Proposition 7.19 gives us the formula

18M [1]
K (ωu , ω2v ) = #C(γ u ,δv )

6 (FK)− e(ωu , ω2v ), (7–30)

where

e(ωu , ω2v ) =

[
6 if u ≡ 0 (mod 6)
0 otherwise

]

+

[
3 if u ≡ v (mod 3)
0 otherwise

]
(7–31)

+

[
3 if 2u ≡ v (mod 3)
0 otherwise

]
.

Further, Proposition 7.20 gives us the number of points
on the curve:

#C(γ u ,δv )
6 (FK) (7–32)
= k + 1 + TrK/Q(ω2v π̄) + TrK/Q(ε2ω3u+4v π̄)

+ TrK/Q(εω5u+2v π̄) + (−1)
1
2 (k−1) TrK/Q(εωu+2v π̄),

where ε =
(2
K

)
3 .

Combining (7–29), (7–30), (7–31), and (7–32) gives an
explicit, albeit quite complicated, formula forM [1]

k (ωi, 1).
In principle, this formula could be computed by hand, but
we evaluated it using pari in both the k ≡ 1 (mod 4) and
k ≡ 3 (mod 4) cases.2 The results are listed in Table 2.3

Examining Table 2, we see that the value of
#M [1]

k (ωi, 1) is independent of k modulo 4 and can be

2pari is available at http://pari.math.u-bordeaux.fr/.
3 See http://www.math.brown.edu/∼jhs/amicable.html for the pari
script that we used, and Remark 7.22 for further information about
this computation.

summarized as follows:

18#M [1]
k (ωi, 1) =

⎧⎪⎪⎨
⎪⎪⎩
k2 + 4k + 13 if i = 0,

k2 − 8k + 7 if i = 3,

k2 − 2k + 1 otherwise.

It is now a simple matter to compute the value of
#M [1]

k (S, 1) for the four cases, as shown in Table 2. For
example,

#M [1]
k (µ6 , 1) =

1
18
(
(k2 + 4k + 13) + (k2 − 8k + 7)

+ 4(k2 − 2k + 1)
)

=
1
3
(k2 − 2k + 4).

This completes the proof of Proposition 7.21.

Remark 7.22. As noted earlier, we used pari to com-
pute M [1]

k (ωi, 1) by evaluating formulas (7–29), (7–30),
(7–31), and (7–32), where we treated k, π, and ε as in-
determinates, and we formally set π̄ = k/π and ε̄ = 1/ε.
The value of M [1]

k (ωi, 1) turns out to be a quadratic poly-
nomial in k that is independent of k mod 4. We do not
have an a priori explanation for why this should be the
case. In order to illustrate the delicacy of the argument,
we suppose for a moment that the isogeny decomposition
of the Jacobian of C(γ ,δ)

6 in Proposition 7.18 looks like

E(16δ 2 ) × E(4γ 4 δ 4 ) × E(γ 5 δ 2 ) × E(−γ δ 2 ) −→ Jac(C(γ ,δ)
6 ).

(All that we have done is change the second elliptic factor
from E(4γ 3 δ 4 ) to E(4δ 4 ) .) This would have the effect in
formula (7–32) of changing the second trace term from
TrK/Q(ε2ω3u+4v π̄) to TrK/Q(ε2ω4v π̄). But with this small
modification, there is less cancellation in the computation
of M [1]

k (ωi, 1), so for example, #M [1]
k

({ω, ω5}, 1) would
equal

1
9

(
k2 + 2k + 1 + 2Tr

((
2
K

)2

3
π̄2

))
.

Thus #M [1]
k

({ω, ω5}, 1) would depend on both
(2
K

)
3 and

the factorization of k in OK .

Remark 7.23. Many of the cases of Proposition 7.21
can be obtained somewhat more easily by working on
elliptic curves z(1− z) = δx3 or genus-two curves
γz2(1− γz2) = δx3 . However, some cases require the
curves γz6(1− γz6) = δx3 of genus four, so for unity of
exposition and to save space, we have derived all cases
using these latter curves.

Combining Conjecture 7.14 with the computations in
Propositions 7.17 and 7.21 yields precise formulas for the
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k ≡ 1 (mod 4)

18#M [1]
k (ω0 , 1) = k2 + 4k + 13

18#M [1]
k (ω1 , 1) = k2 − 2k + 1

18#M [1]
k (ω2 , 1) = k2 − 2k + 1

18#M [1]
k (ω3 , 1) = k2 − 8k + 7

18#M [1]
k (ω4 , 1) = k2 − 2k + 1

18#M [1]
k (ω5 , 1) = k2 − 2k + 1

k ≡ 3 (mod 4)

18#M [1]
k (ω0 , 1) = k2 + 4k + 13

18#M [1]
k (ω1 , 1) = k2 − 2k + 1

18#M [1]
k (ω2 , 1) = k2 − 2k + 1

18#M [1]
k (ω3 , 1) = k2 − 8k + 7

18#M [1]
k (ω4 , 1) = k2 − 2k + 1

18#M [1]
k (ω5 , 1) = k2 − 2k + 1

#M [1]
k

({ω1 , ω5}, 1) = (1/9)(k2 − 2k + 1)

#M [1]
k

({ω1 , ω3 , ω5}, 1) = (1/6)(k2 − 4k + 3)

#M [1]
k

({ω1 , ω2 , ω4 , ω5}, 1) = (2/9)(k2 − 2k + 1)

#M [1]
k

({ω0 , ω1 , ω2 , ω3 , ω4 , ω5}, 1) = (1/3)(k2 − 2k + 4)

TABLE 2. Results of computing M [1 ]
k (S, 1) using pari.

conjectural density of type-1 primes on y2 = x3 + k when
k is prime.

Conjecture 7.24. Let k ≥ 5 be a rational prime. Then

lim
X→∞

N [1]
k (X)
Nk (X)

=
1
3

+R(k),

where R(k) depends on k (mod 36) and is given by the
following table:

k mod 36 R(k)

(a), (c) 1, 19 2
3(k−3)

(b) 13, 25 0

(d) 7, 31 2k
3(k−2)2

k mod 36 R(k)

(a), (c) 17, 35 2
3(k−1)

(b) 5, 29 0

(d) 11, 23 2k
3(k 2−2)

In particular, R(k) = O(1/k).

We do not have an intrinsic explanation for why R(k)
is the same in cases (a) and (c), nor do we know why
R(k) = 0 in case (b).

8. CURVES WITH j = 0 HAVE NO ALIQUOT TRIPLES

In this section we use Corollary 7.6 and a detailed case-
by-case analysis to show that an elliptic curve with j =
0 has no normalized aliquot triples (p, q, r) with p > 7.
The details are sufficiently intricate that it seems likely a
different argument would be needed to prove that there
are no aliquot cycles of length greater than three.

Proposition 8.1. Let E/Q be an elliptic curve with j(E) =
0. Then E has no normalized aliquot triples (p, q, r) with
p > 7.

Proof: We use Corollary 7.6, which says that if p and
q = #Ẽp(Fp) are prime, then r = #Ẽq (Fq ) takes one of
six possible values. One of these six possible values is p,
which is not allowed, since we are assuming that p, q, r
are distinct. Hence r has one of the following forms:

r = 2q + 2− p (Case 1),

r =
±(q + 1− p)± 3Ap,q

2
(Case 2),

where Ax,y satisfies

A2
x,y =

4xy − (x+ y − 1)2

3
.

(Of course, Case 2 is really four cases, depending on the
choice of signs.)
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For the moment letting s = #Ẽr (Fr ), we can apply
the same reasoning to (q, r, s) to deduce that

s = 2r + 2− q (Case A),

s =
±(r + 1− q)± 3Aq,r

2
(Case B).

To ease notation, we let

F (x, y) =
±(y + 1− x)± 3Ax,y

2
.

Then the two cases for r followed by the two cases for s
give four possibilities for s in terms of p and q:

s = 3q + 6− 2p (Case 1A),
s = 2F (p, q) + 2− q (Case 2A),
s = F (q, 2q + 2− p) (Case 1B),
s = F

(
q, F (p, q)

)
(Case 2B).

(Of course, each case is really several cases depending on
the choice of signs for each occurrence of F .)

The assumption that (p, q, r) is an aliquot triple is
equivalent to saying that s = p. Suppose first we are in
Case 1A. Then s = p is equivalent to

3q + 6− 2p = p,

so p = q + 2. This contradicts our assumption that the
triple is normalized, i.e., that p is the smallest element of
the triple. Hence Case 1A is not possible.

Next we consider Case 2A. Then the assumption s = p

implies that 2F (p, q) = p+ q − 2. Using the definition of
F , this can be written as

±(q + 1− p)± 3Ap,q = p+ q − 2,

which (using the definition of A) implies that(
(p+ q − 2)± (q + 1− p))2 = 9A2

p,q

= 3
(
4pq − (p+ q − 1)2). (8–1)

This gives two subcases, which we denote by 2A+ and
2A− according to the choice of sign. A little bit of algebra
yields

28p2 − 24pq + 12q2 − 72p− 24q + 48 = 0 (Case 2A+),
12p2 − 24pq + 28q2 − 24p− 40q + 16 = 0 (Case 2A−).

Both of the functions on the left-hand sides have leading
quadratic forms that are positive definite, so there are
only finitely many integral solutions (p, q). A more careful
analysis shows that the first is positive for p > 5 and the
second is positive for p > 7.

Next comes Case 1B, where the assumption that s = p

leads to the formula

F (q, 2q + 2− p) = p.

Writing this out in terms of Aq,2q+2−p , moving all the
other terms to the other side, squaring, and simplifying,
we again get two cases depending on a choice of sign.
Thus

12p2 − 12pq + 4q2 − 24p+ 12 = 0 (Case 1B+),
4p2 − 4pq + 4q2 + 12 = 0 (Case 1B−).

The quadratic function for Case 1B+ is positive for p > 7,
and the quadratic function for Case 1B− is positive for
p > 0.

Finally we turn to Case 2B, which is somewhat more
complicated because it is given by the formula

F
(
q, F (p, q)

)
= p,

which involves two iterations of the function F . The signs
on the Ax,y terms are irrelevant, since we square them,
but the other signs in the definition of F do affect the
eventual equation. After a bunch of algebra, we find that
the p and q values for an amicable triple coming from
Case 2B must satisfy one of the following equations:

Case 2B++:

4p4 + 2p3q + 3p2q2 − pq3 + q4 − 6p3 − 15p2q

− 15pq2 + 3p2 + 3pq + 3q2 = 0;

Case 2B+−:

9p2q2 − 9pq3 + 9q4 + 9p2q − 27pq2 + 3p2 − 21pq
− 3q2 − 6p+ 6q + 4 = 0;

Case 2B−+:

3p2q2 − 3pq3 + q4 + 9p2q − 9pq2 + 9p2 − 9pq + 3q2 = 0;

Case 2B−−:

4p4 − 18p3q + 33p2q2 − 27pq3 + 9q4 − 10p3 + 33p2q

− 21pq2 + 21p2 − 21pq − 3q2 − 10p+ 6q + 4 = 0.

All of these quartic functions are positive if 0 < p < q

with p sufficiently large. More precisely, it suffices to take
p > 3 for Cases 2B++ and 2B+−, p > 4 for Case 2B−+,
and p > 2 for Case 2B−−.

This completes the proof that E has no aliquot triples.

9. AMICABLE PAIRS FOR ELLIPTIC CURVES:
EXPERIMENTS

In this section we present the results of experiments that
test the reasonableness of our conjectures. We begin with
Conjecture 1.3, which deals with the case of CM curves
having nonzero j-invariant.
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We computed the number QE (X) of amicable pairs
up to X for elliptic curves with CM by the imagi-
nary quadratic order of discriminant −D and conduc-
tor f . Theorem 6.1 says that it suffices to consider
D ≡ 3 (mod 4). Further, the assumption that E is de-
fined over Q means that O has class number one, so
the classification of imaginary quadratic fields of class
number one combined with an elementary formula for
the class number of an order [Shimura 94, Exercise
4.12] implies that the only possibilities for D are D ∈
{3, 7, 11, 19, 43, 67, 163}, and the possible values of f are
given by f ∈ {1, 2, 3} if D = 3, f ∈ {1, 2} if D = 7, and
f = 1 in all other cases. See [Silverman 94, A §3] for a
Weierstrass equation for each CM type.

We ignore for the moment the case (D, f) = (3, 1). As
noted in the proof of Theorem 6.1, the curves with (D, f)
equal to (3, 2), (7, 1), and (7, 2) have nontrivial 2-torsion,
so neither they nor any of their (necessarily quadratic)
twists have amicable pairs. The curve with (D, f) = (3, 3)
listed in [Silverman 94, A §3] has nontrivial 3-torsion, but
it has quadratic twists with trivial torsion, so is a can-
didate to have amicable pairs. Table 3 lists the number
QE (X) of amicable pairs up to the given bound and the
ratio of QE (X) to the number NE (X) of primes p such
that #Ẽp(Fp) is prime. For this table we used the follow-
ing Weierstrass equations.4

(D, f) = (3, 3), y2 = x3 − 120x+ 506,
(D, f) = (11, 1), y2 + y = x3 − x2 − 7x+ 10,
(D, f) = (19, 1), y2 + y = x3 − 38x+ 90,
(D, f) = (43, 1), y2 + y = x3 − 860x+ 9707,
(D, f) = (67, 1), y2 + y = x3 − 7370x+ 243528,
(D, f) = (163, 1), y2 + y = x3 − 2174420x

+ 1234136692.

The results in Table 3 are consistent with Conjecture
6.9, which predicts that the ratio QE (X)/NE (X) should
approach 1

4 .
We next considered the curves y2 = x3 + k with

j(E) = 0. Table 4, which is included for historical rea-
sons, was our first intimation that the limiting value of
QE (X)/NE (X) behaves differently for different values of
k, with no obvious pattern for 2 ≤ k ≤ 10. (Note that we
do not list values of k that are squares or cubes, since in
those cases E(Q)tors is nontrivial, so there are no amica-
ble pairs.)

4 Calculations on quadratic twists of the listed curves yielded vir-
tually identical results.

We recall the notation N [1]
k for the set of type-1 primes

for the curve y2 = x3 + k; see Section 7 for the pre-
cise definition. Conjecture 7.10 predicts that Qk (X) ∼
1
4N [1]

k (X), and in the case that k is prime, Conjecture
7.24 says that

N [1]
k (X) ∼

(
1
3

+R(k)
)
Nk (X),

where R(k) is given by an explicit formula that depends
on k modulo 36. We tested these two conjectures by com-
puting Qk (X), N [1]

k (X), and Nk (X) for X = 108. The re-
sults are listed in Table 5. Column 5 provides convincing
evidence for Conjecture 7.10, and the final two columns
show that Conjecture 7.24 is in good agreement with ex-
periment in all eight cases. (The notation (x.n) after each
value of k indicates the case x = (a), . . . , (d) and the con-
gruence class k ≡ n (mod 3) from Conjecture 7.24.)

We also checked Conjecture 7.14 experimentally for
composite values of k. The results are listed in Table
6, where the conjectural limiting ratio is obtained by
explicitly counting the size of the sets Mk and M[1]

k .
The top eight k-entries in this table are products of
two primes covering the usual eight cases; the final
four entries include two values that are not square-free
(175 = 5 · 72 and 245 = 5 · 72) and two values that are
products of three distinct primes (385 = 5 · 7 · 11 and
455 = 5 · 7 · 13).

In order to test further the validity of Conjecture 7.14,
we recomputed the final entry in the table with X = 109

and obtained

N [1]
455(109)
N455(109)

= 0.3380.

This is in excellent agreement with the theoretical value
of 4699/13915 = 0.3377.

Finally, we consider Conjecture 4.1, which deals with
non-CM curves. This conjecture is much harder to check
numerically, because the function

√
X/(logX)2 grows

quite slowly. We performed an extended search for ami-
cable pairs on the elliptic curve

E : y2 + y = x3 + x2 (9–1)

of conductor 43, which we studied in Example 1.1. We
used pari to compute all normalized amicable pairs (p, q)
with p < 1011 , and Andrew Sutherland subsequently ex-
tended our list to p < 1012 . Table 7 gives the first few
and last few pairs.5

5 The complete list is available at http://www.math.brown.edu/
∼jhs/amicable.html.



Silverman and Stange: Amicable Pairs and Aliquot Cycles for Elliptic Curves 353

(D, f ) (3, 3) (11, 1) (19, 1) (43, 1) (67, 1) (163, 1)
QE (105 ) 124 48 103 205 245 395

QE (105 )/NE (105 ) 0.251 0.238 0.248 0.260 0.238 0.246
QE (106 ) 804 303 709 1330 1671 2709

QE (106 )/NE (106 ) 0.250 0.247 0.253 0.255 0.245 0.247
QE (107 ) 5581 2267 5026 9353 12190 19691

QE (107 )/NE (107 ) 0.249 0.251 0.250 0.251 0.250 0.252

TABLE 3. QE (X) and QE (X)/NE (X) for elliptic curves with CM by Q(
√−D).

k 2 3 5 6 7 10
X = 105 0.251 0.122 0.081 0.134 0.139 0.125
X = 106 0.250 0.139 0.083 0.142 0.133 0.107
X = 107 0.249 0.139 0.082 0.1394 0.129 0.107

TABLE 4. QE (X)/NE (X) for elliptic curves y2 = x3 + k.

N [1 ]
k (X)/Nk (X)

k Qk (X) N [1 ]
k (X) Nk (X) Q/N [1 ] experiment conjecture

5 (b.2) 14595 58594 175703 0.249 0.3335 1
3 = 0.3333

7 (d.1) 21897 87825 168743 0.249 0.5205 13
25 = 0.5200

11 (d.2) 16760 66698 169062 0.251 0.3945 47
119 = 0.3950

13 (b.1) 13921 55766 167333 0.250 0.3333 1
3 = 0.3333

17 (a.2) 15899 63810 169226 0.249 0.3771 3
8 = 0.3750

19 (c.1) 15760 63066 168196 0.250 0.3750 3
8 = 0.3750

23 (d.2) 15138 61210 168512 0.247 0.3632 191
527 = 0.3624

29 (b.2) 13945 56286 168642 0.248 0.3338 1
3 = 0.3333

31 (d.1) 15054 60349 168344 0.249 0.3585 301
841 = 0.3579

37 (a.1) 14765 59430 168471 0.248 0.3528 6
17 = 0.3529

41 (b.2) 13938 56381 168567 0.247 0.3345 1
3 = 0.3333

43 (d.1) 14711 58807 168410 0.250 0.3492 589
1681 = 0.3504

47 (d.2) 14513 58400 168365 0.249 0.3469 767
2207 = 0.3475

53 (a.2) 14534 58257 168353 0.249 0.3460 9
26 = 0.3462

59 (d.2) 14588 58422 168783 0.250 0.3461 1199
3479 = 0.3446

61 (b.1) 13919 55816 168197 0.249 0.3318 1
3 = 0.3333

67 (d.1) 14522 57944 168239 0.251 0.3444 1453
4225 = 0.3439

71 (c.2) 14295 57661 168508 0.248 0.3422 12
35 = 0.3429

73 (a.1) 14389 57828 168614 0.249 0.3430 12
35 = 0.3429

79 (d.1) 14458 57937 168690 0.250 0.3435 2029
5929 = 0.3422

83 (d.2) 14415 57871 168435 0.249 0.3436 2351
6887 = 0.3414

89 (a.2) 14349 57634 168737 0.249 0.3416 15
44 = 0.3409

97 (b.1) 13908 55880 168457 0.249 0.3317 1
3 = 0.3333

TABLE 5. Density of amicable and type-1 primes with p ≤ X for the curve y2 = x3 + k, for prime k and X = 108 .
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N [1 ]
k (X)/Nk (X)

k Qk (X) N [1 ]
k (X) Nk (X) Q/N [1 ] experiment conjecture

35 (d.2) 15616 63169 168666 0.247 0.3745 43
115 = 0.3739

55 (d.1) 14725 58718 168870 0.251 0.3477 949
2737 = 0.3467

77 (b.2) 13977 56251 168921 0.248 0.3330 1
3 = 0.3333

85 (b.1) 13994 56142 168767 0.249 0.3327 1
3 = 0.3333

323 (c.2) 14095 56609 168585 0.249 0.3358 43
128 = 0.3359

629 (a.2) 14001 56269 168042 0.249 0.3349 3267
9766 = 0.3345

703 (c.1) 14181 56754 168817 0.250 0.3362 1097
3278 = 0.3347

901 (a.1) 14060 56384 168411 0.249 0.3348 3738
11189 = 0.3341

175 (d.1) 15662 63177 168840 0.248 0.3742 43
115 = 0.3739

245 (b.2) 14792 58848 175934 0.251 0.3345 1
3 = 0.3333

385 (b.1) 13934 56158 168393 0.248 0.3335 1
3 = 0.3333

455 (d.2) 14072 56627 168342 0.249 0.3364 4699
13915 = 0.3377

TABLE 6. Density of amicable and type-1 primes with p ≤ X for the curve y2 = x3 + k, for composite k and X = 108 .

(853, 883) (77761, 77999)
(1147339, 1148359) (1447429, 1447561)

(82459561, 82471789) (109165543, 109180121)
(253185307, 253194619) (320064601, 320079131)

...
...

(811569419461, 811569591827) (838059794239, 838061257667)
(851273574199, 851274251683) (885227547847, 885227943451)
(916134576373, 916134747943) (948135054247, 948136458277)
(954115635797, 954115645823) (977575750447, 977576865637)

TABLE 7. Some amicable pairs for y2 + y = x3 + x2 .

Conjectures 1.3(a) and 4.1 say that QE (X), the num-
ber of amicable pairs up toX, should grow like a multiple
of
√
X/(logX)2 . Table 8 tests this conjecture by comput-

ing the ratios

QE (X)√
X/(logX)2

and
logQE (X)

logX

for various values of X. The third column of Table 8 pro-
vides some small support for the conjecture that QE (X)
grows like a multiple of

√
X/(logX)2 . On the other hand,

although the fourth column of the table suggests that
QE (X) grows like Xδ for some δ > 0, it is far from clear
that δ is as large as 1

2 . We suspect the problem is that
we are able to compute QE (X) only up to X = 1012, and
although 1012 is a moderately large number in terms of
computation time, it is comparatively small compared to

the likely error terms in any putative asymptotic formula
for QE (X).6

Finally, we searched for normalized aliquot triples
(p, q, r) on the curve (9–1). We found no examples with
p < 1011 , and Andrew Sutherland found that there is ex-
actly one such triple with p < 1012 , namely

(658501858783, 658502719313, 658502576161).

10. GENERALIZATIONS

As we have defined them, aliquot cycles for elliptic curves
differ in a significant way from classical aliquot cycles as-
sociated with the sum of divisors function. In the classi-
cal case, every integer n leads to a possibly nonrepeating
aliquot sequence

(
n, σ̃(n), σ̃2(n), σ̃3(n), . . .

)
, and it is an

aliquot cycle if some iterate σ̃k (n) eventually returns to

6 For additional data on two other curves, see http://www.math.
brown.edu/∼jhs/amicable.html.
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X QE (X) QE (X)
/ √

X
(log X )2

log QE (X )
log X

106 2 0.382 0.050
107 4 0.329 0.086
108 5 0.170 0.087
109 10 0.136 0.111
1010 21 0.111 0.132
1011 59 0.120 0.161

2 · 1011 70 0.106 0.163
4 · 1011 88 0.099 0.168
6 · 1011 97 0.092 0.169
8 · 1011 109 0.092 0.171
1012 117 0.089 0.172

TABLE 8. Counting amicable pairs for y2 + y = x3 + x2 .

n. (A major open problem for σ̃ is whether there are
starting values for which the sequence is unbounded.)
But for elliptic curves, if we arrive at a prime p such
that #Ẽp(Fp) is not prime, then the sequence cannot be
continued. We propose here two alternative definitions of
elliptic aliquot sequences that more closely resemble the
classical definition. We leave the investigation of these
generalized sequences to a future paper.

Definition 10.1. Let E/Q be an elliptic curve, let
L(E/Q, s) =

∑
n≥1 an/n

s be the L-series of E, and define
a function

FE : N −→ N, FE (n) = n+ 1− an .

A type-L aliquot sequence for E/Q is a sequence obtained
by starting at some n ∈ N and repeatedly applying the
map FE . A type-L aliquot cycle is a type-L aliquot se-
quence that returns to its starting value.

Definition 10.2. Let E/Q be an elliptic curve, let E0/Z be
the open subset of the Néron model for E/Q consisting
of the connected components of each fiber, and define a
function

GE : N −→ N, GE (n) = #E0(Z/nZ).

A type-N aliquot sequence for E/Q is a sequence obtained
by starting at some n ∈ N and repeatedly applying the
map GE . A type-N aliquot cycle is a type-N aliquot se-
quence that returns to its starting value.

Remark 10.3. There is a natural way to generalize the
notion of elliptic amicable pairs and aliquot cycles to el-
liptic curves defined over number fields. Thus let F/Q
be a number field and E/F an elliptic curve. We will
say that a sequence of distinct degree-one prime ideals
p1 , p2 , . . . , p� is an aliquot cycle of length � for E/F if E

has good reduction at every pi and

#Ẽp1 (Fp1 ) = NK/Q(p2), #Ẽp2 (Fp2 ) = NK/Q(p3), . . . ,

#Ẽp�−1 (Fp�−1 ) = NK/Q(p�), #Ẽp� (Fp� ) = NK/Q(p1).

Many of the methods and results in this paper carry over
in a straightforward manner to the number field case. For
example, the following analogue of Theorem 6.1 holds.

Theorem 10.4. Let F/Q be a number field, and let E/F
be an elliptic curve with complex multiplication by an or-
der in the quadratic imaginary field K. Suppose that p
and q are degree-one primes of F at which E has good
reduction, that NF /Q p ≥ 5, and that

#Ẽp(Fp) = NF /Q q.

Assume further that j(E) �= 0. Then

#Ẽq(Fq) = NF /Q p

or

#Ẽq(Fq) = 2NF /Q q + 2−NF /Q p.

It would be interesting to see to what extent the other
results in this paper are valid over number fields, includ-
ing especially the analysis of amicable pairs on curves
with j(E) = 0.
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[Garćıa et al. 04] M. Garćıa, J. M. Pedersen, and H. te Riele.
“Amicable Pairs, a Survey.” In High Primes and Mis-
demeanours: Lectures in Honour of the 60th Birthday of
Hugh Cowie Williams, Fields Inst. Commun. 41, pp. 179–
196. Providence: Amer. Math. Soc., 2004.

[Hartshorne 77] R. Hartshorne. Algebraic Geometry, Gradu-
ate Texts in Mathematics 52. New York: Springer-Verlag,
1977.

[Ireland and Rosen 90] K. Ireland and M. Rosen. A Classi-
cal Introduction to Modern Number Theory, 2nd edition,
Graduate Texts in Mathematics 84. New York: Springer-
Verlag, 1990.
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