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We establish properties of and propose a conjecture concern-
ing

∑
m(S(x + m))2, where S is a piecewise polynomial cardinal

spline in L 2(R).

1. INTRODUCTION

Let S(x) be a piecewise polynomial cardinal spline of or-
der n in L2(R) as considered in [Schoenberg 73]. Assume
that all scalars are real.

Then S(x) enjoys the representation

S(x) =
∞∑

k=−∞
bkB(x + k),

where

B(x) =
n∑

j=0

(−1)j

(
n

j

)
(x − j)n−1

+

is the B-spline of order n, and

‖{bk}‖2 =
∞∑

k=−∞
|bk |2 < ∞.

We are interested in

Φ(x) =
∞∑

k=−∞
(S(x + k))2 .

In the case n = 1, the function Φ(x) is equal to a positive
constant c0 . More generally, Φ(x) is a piecewise polyno-
mial of degree 2(n − 1), periodic with

Φ(x + 1) = Φ(x),

and in Cn−2(R).

Proposition 1.1. The function Φ(x) has the development

Φ(x) = c0 + 2
∞∑

k=1

ck cos 2πkx, (1–1)

where

ck = (n − 1)!2
∫ ∞

−∞

(
sin πξ

π

)2n (
1

(ξ − k)ξ

)n

|b̂(ξ)|2 dξ

(1–2)
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with b̂(ξ) =
∑∞

k=−∞ bkei2πkξ . The series converges point-
wise, and if n ≥ 4, it converges absolutely.

Corollary 1.2. If n ≥ 2, then on the interval [0, 1) the
maximum of Φ(x) is taken on at only one point, which is
0 when n is even and 1/2 when n is odd.

Further considerations of symmetry lead to the follow-
ing result.

Proposition 1.3. The function Φ(x) can be expressed as

Φ(x) =
n−1∑
k=0

akxk (1 − x)k (1–3)

whenever 0 ≤ x ≤ 1.

Note that

a0 =
∞∑

k=−∞
(S(k))2 =

∞∑
k=−∞

( n−1∑
j=0

bk+jB(j)
)2

,

and it is clear that a0 > 0.
Considerations of smoothness imply the following.

Proposition 1.4. For n ≥ 2, the coefficients ak satisfy

(m−1)/2∑
j=0

(−1)j

(
m − j

j

)
am−j = 0 (1–4)

for m odd and less than or equal to n − 2.

Roughly speaking, the coefficients ak are certain com-
binations of l2 norms squared of various differences of the
coefficients {bk}.

Direct computations give us the following.

Proposition 1.5. If n ≥ 2, then

an−1 = (−1)n−1
∥∥{

∆n−1bm

}∥∥2
.

If n ≥ 4, then

an−2 = (−1)n−1(n − 1)(n − 3)
∥∥{

∆n−2bm

}∥∥2
.

If n ≥ 6, then

an−3 = (−1)n−1(n − 1)(n − 2)

×
{

(n − 4)(n − 5)
4

∥∥{
∆n−3bm + ∆n−3bm+1

}∥∥2

+
(n − 3)(n − 4)

6

∥∥{
∆n−2bm

}∥∥2

}
,

and if n ≥ 8,

an−4 = (−1)n−1(n − 1)(n − 2)(n − 3)(n − 5)

×
{

(n − 6)(n − 7)
36

× ∥∥{
∆n−4bm + 4∆n−4bm+1 + ∆n−4bm+2

}∥∥2

+
(n − 1)(n − 4)

60

∥∥{
∆n−2bm

}∥∥2

+
(n − 4)(n − 6)

30

∥∥{
∆n−4bm − ∆n−4bm+2

}∥∥2

}
.

Here ∆ denotes the standard forward difference oper-
ator. For its definition and that of its higher powers, see
the discussion immediately following identity (5–2).

Proposition 1.5 together with Proposition 1.4 allows us
to determine all the coefficients in the cases n ≤ 9. These
coefficients are all listed in Section 6. As a consequence
we have the following.

Proposition 1.6. If 2 ≤ n ≤ 9, then

(−1)n−1ak ≥ 0 for k = 1, . . . , n − 1.

Presumably, an explicit formula for an−5 if n ≥ 10 will
allow us to come to the same conclusion in the cases
n = 10 and n = 11.

Conjecture 1.7. If n ≥ 2, then

(−1)n−1ak ≥ 0 for k = 1, . . . , n − 1.

The properties of splines exploited here can all be
found in [de Boor 78, Schoenberg 73]. We bring atten-
tion to the fact that for the sake of convenience we use
variants of the classical B-splines that are not normal-
ized.

Our interest in Φ(x) arises from a question related to
statistics in which the independent variable, here x, is
usually denoted by t. If {φ(t + k)}k∈Z is an orthogonal
basis for a subspace V of L2(R), namely if φ(t) satisfies∫ ∞

−∞
φ(t)φ(t + k)dt = δ0,k ,

then Φ(t) =
∑

k∈Z(φ(t + k))2 is the variance of the Gaus-
sian process

X(t) =
∫ ∞

−∞

∑
k∈Z

φ(t + k)φ(s + k)dW (s),
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where W is Brownian motion and∑
k∈Z

φ(t + k)φ(s + k)

is the kernel of the orthogonal projection onto the sub-
space V .

This process plays a role in density estimation by pro-
jections of wavelet type. More concretely, under con-
ditions on the smoothness of the density and on the
resolution levels of the estimates, the sup norm over
a fixed interval of the discrepancy between the density
and its estimate has the same distributional behavior in
the limit as the sup norm over increasing intervals of
the Gaussian process X(t), and the limiting distribution
of its sup norm is determined by its variance Φ(t). See
[Giné and Nickl 10, Proposition 5 and Section 4.2.3] for
more details.

If Φ(t) has a unique maximum on [0, 1), then
[Piterbarg and Seleznjev 94, Theorem 1] yields
the limiting distribution of sup0≤t≤T |X(t)|. See
also [Konstant and Piterbarg 93, Theorem 3.1] and
[Giné and Nickl 10, Theorem 2]. That Φ(t) indeed does
have a unique maximum on [0, 1) was established in
[Giné and Nickl 10, Lemma 1] in the cases in which
φ(t) =

∑
m bm B(t + m) is such that {φ(t + k)}k∈Z is an

orthogonal basis for the subspace V = Vn consisting of
piecewise polynomial cardinal splines of order n = 2, 3, 4.
In this article we note that when the subspace V consists
of piecewise polynomial cardinal splines of order n, the
above-mentioned unique maximum property of Φ(t)
remains valid even if φ is replaced by any member S

of V . We extend this result to all n, record several
additional properties of Φ, and propose a conjecture
concerning its nature.

2. PROOF OF PROPOSITION 1.1 AND ITS
COROLLARY

To prove Proposition 1.1, we use the normalization

f̂(ξ) =
∫ ∞

−∞
f(x) e−i2πξx dx

for the Fourier transform f̂(ξ) of the integrable function
f . The smoothness and periodicity properties of Φ allow
us to express it as

Φ(x) =
∞∑

k=−∞
ckei2πkx . (2–1)

The above series converges pointwise, and if n ≥ 4, then
it converges absolutely.

The fact that Φ is an even function of x, which follows,
for instance, from (3–5) below, implies that ck = c−k and
allows us to rewrite (2–1) as the cosine series (1–1). In
view of the Poisson summation formula, the coefficients
ck may be expressed as

ck = Ŝ ∗ Ŝ(k) =
∫ ∞

−∞
Ŝ(k − ξ)Ŝ(ξ)dξ. (2–2)

To see the explicit formula for ck , write

Ŝ(ξ) = b̂(ξ)B̂(ξ), (2–3)

where

b̂(ξ) =
∞∑

k=−∞
bkei2πkξ .

The periodic function b̂(ξ) enjoys

b̂(k − ξ) = b̂(−ξ) = b̂(ξ),

because the coefficients {bk} are real. Since

B̂(ξ) = ae−iπnξ

(
sin πξ

πξ

)n

with a = (n − 1)! (see, for example, [Schoenberg 73,
(1.4), (1.5), and (1.7) in Lecture 2]), it follows that

Ŝ(k − ξ)Ŝ(ξ) = a2
(

sin πξ

π

)2n (
1

(ξ − k)ξ

)n

|b(ξ)|2 ,

which yields (1–2) and completes the proof of Proposi-
tion 1.1.

To prove the corollary, observe that if n is even, then
in view of (1–2), the coefficients in (1–1) satisfy ck > 0 for
all k. From this it follows that in this case, Φ(0) > Φ(x)
for all x, 0 < x < 1.

The case of odd n is a bit more intricate. Combine
(2–1), (2–2), and (2–3) to write

Φ(x) =
∞∑

k=∞

(∫ ∞

−∞
B̂(k − ξ)B̂(ξ)|b̂(ξ)|2dξ

)
ei2πkx .

Express each term in the sum as∫ ∞

−∞
B̂(k − ξ)B̂(ξ)ei2πkx |b̂(ξ)|2dξ

=
∫ 1/2

−1/2

( ∞∑
m=−∞

B̂(k − (ξ + m))B̂(ξ + m)
)

ei2πkx

× ∣∣b̂(ξ)∣∣2dξ

=
∫ 1/2

−1/2

( ∞∑
m=−∞

B̂(k − m − ξ)ei2π (k−m )xB̂(ξ + m)ei2πmx

)

× ∣∣b̂(ξ)∣∣2 dξ,
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so that summing over k and interchanging the order of
summation results in

Φ(x) =
∫ 1/2

−1/2

( ∞∑
k=−∞

B̂(k − ξ)ei2πkx

)

×
( ∞∑

m=−∞
B̂(ξ + m)ei2πmx

)
|b̂(ξ)|2dξ.

Note that
∞∑

m=−∞
B̂(ξ + m)ei2πmx

=
( ∞∑

m=−∞
B̂(ξ + m)ei2π (ξ+m )x

)
e−i2πξx

=
( ∞∑

m=−∞
B(x + m)e−i2πmξ

)
e−i2πξx ,

where the second equality follows from the Poisson sum-
mation formula and fact that B̂(ξ + m)ei2π (ξ+m )x is the
Fourier transform evaluated at ξ + m of B(y + x) as a
function of y. Similar reasoning shows that

∞∑
k=−∞

B̂(k − ξ)ei2πkx =
( ∞∑

k=−∞
B(x + k)e−i2πkξ

)
ei2πξx .

The last three displayed expressions imply that Φ can be
expressed as

Φ(x) =
∫ 1/2

−1/2

∣∣∣ ∞∑
k=−∞

B(x + k)e−i2πkξ
∣∣∣2 |b̂(ξ)|2 dξ. (2–4)

Now,
∑∞

m=−∞ B(x + k)e−i2πkξ is simply a constant mul-
tiple of Sn−1,2πξ (x), the so-called Euler exponential spline
[Schoenberg 73, Schoenberg 83] expressed in de Boor’s
notation [de Boor 76].

In view of [de Boor 76, item (15), p. 934], for odd n we
know that for all x, 0 ≤ x < 1, we have |Sn−1,2πξ (x)| ≤ 1,
with equality if x = 1/2 and strict inequality otherwise.
This, together with (2–4), implies the conclusion of the
corollary in the case of odd n.

3. PROOF OF PROPOSITION 1.3

Recall that B(x) has support in [0, n], which we may
write as

supp(B(x)) ∈ [0, n],

so that

supp
(
B(x)B(x + k)

) ∈
{

[0, n − k] if 0 ≤ k ≤ n − 1,

[−k, n] if 1 − n ≤ k ≤ 0,

and is identically zero otherwise. Also recall that

B(n − x) = B(x). (3–1)

With these properties of B in mind, consider the func-
tion

Ψm (x) =
∞∑

k=−∞
B(x + k)B(x + k + m)

for every integer m. Then Ψm (x) is a piecewise polyno-
mial of degree 2(n − 1), is periodic with

Ψm (x + 1) = Ψm (x),

is in Cn−2(R), and satisfies

Ψ−m (x) = Ψm (x).

It is identically zero when the integer m is outside the
range [1 − n, n − 1].

Furthermore, the function Ψm (x) has the following
properties:

Ψm (−x) = Ψm (x), (3–2)
Ψm (1 − x) = Ψm (x), (3–3)

and can be expressed as

Ψm (x) =
n−1∑
k=0

ckxk (1 − x)k (3–4)

whenever 0 ≤ x ≤ 1.
To establish (3–2), write

Ψm (x) =
∞∑

k=−∞
B(x + k)B(x + k + m)

=
∞∑

k=−∞
B(n − k − x)B(n − k − m − x) by (3–1)

=
∞∑

k=−∞
B(k − x)B(k − m − x) by periodicity

=
∞∑

k=−∞
B(k + m − x)B(k − x) by periodicity

= Ψm (−x).

Identity (3–3) follows from (3–2) and periodicity.
To prove (3–4), observe that the fact that Ψm (x) is a

polynomial of degree 2(n − 1) on [0, 1] allows us to write,
with γ0 = 0,

Ψm (x) =
n−1∑
k=0

{
ckxk (1 − x)k + γkx2k−1}



Giné et al.: On the Periodized Square of L 2 Cardinal Splines 181

whenever 0 ≤ x ≤ 1. In view of (3–3), it follows that
n−1∑
k=1

γk (1 − x)2k−1 =
n−1∑
k=1

γkx2k−1

for all x ∈ [0, 1], from which we may conclude that γ1 =
· · · = γn−1 = 0.

Note that

Ψn−1(x) = xn−1(1 − x)n−1 .

For other values of m, that is, for m = 0, . . . , n − 2,
Ψm (x) is not so easy to determine.

Proposition 1.3 is a consequence of relation (3–4). Take
x in [0, 1] and write

Φ(x) =
∞∑

j=−∞

{ ∞∑
k=−∞

bkB(x + j + k)
}2

=
∑

j

∑
k,l

bk blB(x + j + k)B(x + j + l)

=
∑
k,l

bk bl

∑
j

B(x + j + k)B(x + j + l)

=
∑
k,l

bk bl

∑
j

B(x + j)B(x + j + l − k)

=
∑
k,l

bk blΨl−k (x)

=
n−1∑
m=0

εm

{ ∞∑
k=−∞

bk bk+m

}
Ψm (x),

where

εm =

{
1 if m = 0,

2 otherwise.

If we use the abbreviation

βm =
∞∑

k=−∞
bk bk+m ,

then the last identity for Φ(x) can be expressed more
succinctly as

Φ(x) =
n−1∑
m=0

εm βm Ψm (x). (3–5)

Identities (3–4) and (3–5) imply (1–3).

4. PROOF OF PROPOSITION 1.4

If −1 ≤ x < 0, then 0 ≤ 1 + x < 1, and for such x we may
write

Φ(x) = Φ(1 + x) =
n−1∑
k=0

ak (1 + x)k (−x)k . (4–1)

Note that

xj (−x)k = (−1)j+kxk (−x)j ,

so that the coefficients of odd powers of x in (4–1) are the
negatives of those of the corresponding powers in (1–3).
Since Φ(x) is in Cn−2(R), it follows that these coefficients
must be 0. (For the record, note that the coefficients of
the even powers of x in (4–1) are the same as of those of
the corresponding powers in (1–3).)

For the reader’s convenience and future reference, we
list in Table 1 the coefficients of xk in Φ(x) when 0 ≤
x < 1 for k = 1, 2, . . . , 2(n − 1), in the case n = 10.

k Coefficient of xk

1 a1

2 −a1 +a2

3 −2a2 +a3

4 +a2 −3a3 +a4

5 +3a3 −4a4 +a5

6 −a3 +6a4 −5a5 +a6

7 −4a4 +10a5 −6a6 +a7

8 +a4 −10a5 +15a6 −7a7 +a8

9 +5a5 −20a6 +21a7 −8a8 a9

10 −a5 +15a6 −35a7 +28a8 −9a9

11 −6a6 +35a7 −56a8 +36a9

12 +a6 −21a7 +70a8 −84a9

13 +7a7 −56a8 +126a9

14 −a7 +28a8 −126a9

15 −8a8 +84a9

16 +a8 −36a9

17 +9a9

18 −a9

TABLE 1. Coefficients of xk in Φ(x) when 0 ≤ x < 1 for k = 1, 2, . . . , 2(n − 1), in the case n = 10.
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The coefficients of all the odd powers k that are less
than or equal to n − 2 must vanish. In the cases n = 9, 10,
this of course implies that

a1 = 0,

−2a2 +a3 = 0,

+3a3 −4a4 +a5 = 0,

−4a4 +10a5 −6a6 +a7 = 0.

In the general case we have (1–4).
Note that it follows from these constraints that when

n = 2m or 2m + 1, all the coefficients a1 , . . . , an−1 in the
expression (1–3) for Φ(x) can be deduced from the top
m terms an−1 , . . . , an−m .

5. PROOF OF PROPOSITION 1.5

In what follows, we use the notation S(k)(x) to denote
the derivative of order k of S. Also, because we will be
working with B-splines of various orders simultaneously,
the B-spline of order n will be denoted by Bn (x), and
extensive use will be made of the identity

B(1)
n (x) = (n − 1)

{
Bn−1(x) − Bn−1(x − 1)

}
. (5–1)

Furthermore, we will need to know some of the values
Bn (k). To this end, recall that the B-splines enjoy the
recurrence relation

Bn+1(x) = xBn (x) + (n + 1 − x)Bn (x − 1)

with

B1(x) =

{
1 if 0 ≤ x < 1,

0 otherwise.

Thus the values Bn (k) can be computed directly from the
definition or the recurrence formula. For easy reference,
we include a table of these values for n = 1, . . . , 7; see Ta-
ble 2. Finally, unless it makes sense otherwise, all values
of x should be assumed to be in the range 0 ≤ x < 1.

n k = 0 1 2 3 4 5 6 7
1 1 0
2 0 1 0
3 0 1 1 0
4 0 1 4 1 0
5 0 1 11 11 1 0
6 0 1 26 66 26 1 0
7 0 1 57 302 302 57 1 0

TABLE 2. Some values of Bn (k).

The evaluation of an−l , l = 1, 2, 3, 4, relies on the cor-
responding expressions for Φ(2(n−l))(x).

Because S(k)(x) = 0 for 0 < x < 1 whenever k ≥ n, for
l ≤ n/2 we may write

Φ(2(n−l))(x) =
l−1∑
j=0

εj

(
2(n − l)
n − l + j

)
(5–2)

×
∞∑

m=−∞
S(n−l+j )(x − m)S(n−l−j )(x − m),

where

εj =

{
1 if j = 0,

2 otherwise.

Next, using the notation

∆bk = bk − bk+1

and by induction

∆m bk =
m∑

j=0

(−1)j

(
m

j

)
bk+j ,

we may write

S(n−j )(x − m) =
∞∑

k=−∞
bkB(n−j )

n (x + k − m)

=
(n − 1)!
(j − 1)!

∞∑
k=−∞

∆n−j bkBj (x + k − m)

=
(n − 1)!
(j − 1)!

j−1∑
k=0

∆n−j bm+kBj (x + k)

when 0 ≤ x ≤ 1. Hence if 0 ≤ x ≤ 1, then

S(n−j1 )(x − m)S(n−j2 )(x − m)

=
((n − 1)!)2

(j1 − 1)!(j2 − 1)!

j1 −1∑
k1 =0

j2 −1∑
k2 =0

∆n−j1 bm+k1 ∆
n−j2 bm+k2

× Bj1 (x + k1)Bj2 (x + k2).

Now choose j1 = l − j, j2 = l + j; sum over m; use the
fact that

∞∑
m=−∞

(∆αm )βm = −
∞∑

m=−∞
αm+1∆βm ,

so that
∞∑

m=−∞
∆n−l+j bm+k1 ∆

n−l−j bm+k2

=
∞∑

m=−∞
(−1)j∆n−l bm+k1 +j∆n−l bm+k2 ;
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and let

cm = ∆n−l bm

to get
∞∑

m=−∞
S(n−l+j )(x − m)S(n−l−j )(x − m)

=
((n − 1)!)2

(l + j − 1)!(l − j − 1)!

×
∞∑

m=−∞

l−j−1∑
k1 =0

l+j−1∑
k2 =0

(−1)j cm+k1 +j cm+k2

× Bl−j (x + k1)Bl+j (x + k2).

Combining with (5–2), we have

Φ(2(n−l))(x)

=
l−1∑
j=0

εj

(
2(n − l)
n − l + j

)
((n − 1)!)2

(l + j − 1)!(l − j − 1)!

×
∞∑

m=−∞

l−j−1∑
k1 =0

l+j−1∑
k2 =0

(−1)j cm+k1 +j cm+k2

× Bl−j (x + k1)Bl+j (x + k2).

For l = 1 we have

B1(x) =

{
1 if 0 ≤ x < 1,

0 otherwise,

and thus

Φ(2(n−1))(x) =
(

2(n − l)
n − 1

)
((n − 1)!)2

∞∑
m=−∞

cm cm

= (2(n − 1))!
∞∑

m=−∞
(∆n−1bm )2 .

Since

(−1)n−1(2(n − 1))!an−1 = Φ(2(n−1))(0) = Φ(2(n−1))(x),

we may conclude that

an−1 = (−1)n−1
∥∥{

∆n−1bm

}∥∥2
. (5–3)

If l > 1 we may take

Φ(2(n−1))(0)

= lim
x→0

Φ(2(n−1))(x)

=
l−1∑
j=0

εj

(
2(n − l)
n − l + j

)
((n − 1)!)2

(l + j − 1)!(l − j − 1)!

×
∞∑

m=−∞

l−j−1∑
k1 =0

l+j−1∑
k2 =0

(−1)j cm+k1 +j cm+k2 Bl−j (k1)

× Bl+j (k2).

For l = 2, reading off the appropriate values of Bj (k)
from Table 2 results in

Φ(2(n−2))(0)

=
(

2(n − 2)
n − 2

)
((n − 1)!)2

∞∑
m=−∞

cm+1cm+1

+ 2
(

2(n − 2)
n − 1

)
((n − 1)!)2

2
(−1)

×
∞∑

m=−∞
{cm+1cm+1 + cm+1cm+2},

which can be simplified to

Φ(2(n−2))(0)
(2(n − 2))!

= (n − 1)2
∞∑

m=−∞
cm cm − (n − 1)(n − 2)

×
∞∑

m=−∞
{cm cm + cm cm+1}.

This should be compared to

Φ(2(n−2))(0)
(2(n − 2))!

= (−1)n−2an−2 + (−1)n−3
(

n − 1
n − 3

)
an−1

= (−1)n−2
{

an−2 − (n − 1)(n − 2)
2

(−1)n−1

×
∞∑

m=−∞
(cm − cm+1)2

}
.

Solving for an−2 results in

an−2 = (−1)n−1(n − 1)(n − 3)
∞∑

m=−∞
c2
m ,

which can be reexpressed as

an−2 = (−1)n−1(n − 1)(n − 3)
∥∥{

∆n−2bm

}∥∥2
. (5–4)
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For l = 3, reading off the appropriate values of Bj (k)
from Table 2 results in

Φ(2(n−3))(0)

=
(

2(n − 3)
n − 3

)
((n − 1)!)2

2!2!

×
∞∑

m=−∞
{2cm+1cm+1 + 2cm+1cm+2}

− 2
(

2(n − 3)
n − 2

)
((n − 1)!)2

3!

×
∞∑

m=−∞
{cm+2cm+1 + 4cm+2cm+2 + cm+2cm+3}

+ 2
(

2(n − 3)
n − 1

)
((n − 1)!)2

4!

×
∞∑

m=−∞
{cm+2cm+1 + 11cm+2cm+2

+ 11cm+2cm+3 + cm+2cm+4},

which can be simplified to

Φ(2(n−3))(0)
(2(n − 3))!

= (n − 1)(n − 2)

×
{

(n − 1)(n − 2)
4

∞∑
m=−∞

{
2c2

m + 2cm cm+1
}

− 2
(n − 1)(n − 3)

3!

∞∑
m=−∞

{
4c2

m + 2cm cm+1
}

+ 2
(n − 3)(n − 4)

4!

×
∞∑

m=−∞
{11c2

m + 12cm cm+1 + cm cm+2}
}

.

This should be compared to

Φ(2(n−3))(0)
(2(n − 3))!

= (−1)n−3an−3 + (−1)n−4
(

n − 2
n − 4

)
an−2

+ (−1)n−5
(

n − 1
n − 5

)
an−1

= (−1)n−3

{
an−3 −

(
n − 2
n − 4

)
(−1)n−1(n − 1)(n − 3)

×
∞∑

m=−∞
(cm − cm+1)2

+
(

n − 1
n − 5

)
(−1)n−1

∞∑
m=−∞

(cm − 2cm+1 + cm+2)2

}

= (−1)n−3an−3 − (n − 1)(n − 2)(n − 3)2

2

×
∞∑

m=−∞
{2c2

m − 2cm cm+1}

+
(n − 1)(n − 2)(n − 3)(n − 4)

4!

×
∞∑

m=−∞
{6c2

m − 8cm cm+1 + 2cm cm+2},

while paying particular attention to the term involving
cm cm+2. Solving for an−3 results in

(−1)n−3an−3 = (n − 1)(n − 2)

×
{

(n − 1)(n − 2)
4

∞∑
m=−∞

{2c2
m + 2cm cm+1}

− 2
(n − 1)(n − 3)

3!

∞∑
m=−∞

{4c2
m + 2cm cm+1}

+
(n − 3)2

2

∞∑
m=−∞

{2c2
m − 2cm cm+1}

+
(n − 3)(n − 4)

4!

∞∑
m=−∞

{16c2
m + 32cm cm+1}

}
.

To make sense of this, let

X =
∞∑

m=−∞
2c2

m , Y =
∞∑

m=−∞
2cm cm+1 ,

and let α, . . . , δ be the appropriate coefficients so that
the expression in large braces above reduces to

α(X + Y ) + β(2X + Y ) + γ(X − Y ) + δ(X + 2Y ).

We want to reexpress it as

A(X + Y ) + B(X − Y ).

This implies that

2A = 2α + 3β + 3δ

= 2
(n − 1)(n − 2)

4
+ 3

(
− (n − 1)(n − 3)

3

)

+ 3
(n − 3)(n − 4)

3

=
(n − 4)(n − 5)

2
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and

2B = β + 2γ − δ

= − (n − 1)(n − 3)
3

+ 2
(n − 3)2

2

− (n − 3)(n − 4)
3

=
(n − 3)(n − 4)

3
.

Thus the last expression for an−3 reduces to

(−1)n−3an−3

= (n − 1)(n − 2)

{
(n − 4)(n − 5)

4
(
X + Y

)

+
(n − 3)(n − 4)

6
(
X − Y

)}
.

Since

X + Y =
∞∑

m=−∞

{
2c2

m + 2cm cm+1
}

=
∞∑

m=−∞
(cm + cm+1)2

= ‖{∆n−3bm + ∆n−3bm+1}‖2 ,

X − Y =
∞∑

m=−∞

{
2c2

m − 2cm cm+1
}

=
∞∑

m=−∞
(cm − cm+1)2 = ‖{∆n−2bm‖2 ,

and (−1)n−3 = (−1)n−1 , we may express an−3 suc-
cinctly as

an−3 = (−1)n−1(n − 1)(n − 2) (5–5)

×
{

(n − 4)(n − 5)
4

‖{∆n−3bm + ∆n−3bm+1}‖2

+
(n − 3)(n − 4)

6
‖{∆n−2bm}‖2

}
.

For l = 4, reading off the appropriate values of Bj (k)
from Table 2 and simplifying as in the cases l = 2, 3 re-

sults in

Φ(2(n−4))(0)
(2(n − 4))!

= (n − 1)(n − 2)(n − 3)

×
{

(n − 1)(n − 2)(n − 3)
3!3!

×
∞∑

m=−∞

{
18c2

m + 16cm cm+1 + 2cm cm+1
}

− 2
(n − 1)(n − 2)(n − 4)

4!2!

×
∞∑

m=−∞

{
22c2

m + 24cm cm+1 + 2cm cm+2
}

+ 2
(n − 1)(n − 4)(n − 5)

5!

×
∞∑

m=−∞

{
66c2

m + 52cm cm+1 + 2cm cm+2
}

− 2
(n − 4)(n − 5)(n − 6)

6!

×
∞∑

m=−∞

{
302c2

m + 359cm cm+1 + 58cm cm+2

+ cm cm+3
}}

.

This should be compared to

Φ(2(n−4))(0)
(2(n − 4))!

= (−1)n−4an−4 + (−1)n−5
(

n − 3
n − 5

)
an−3

+ (−1)n−6
(

n − 2
n − 6

)
an−2 + (−1)n−7

(
n − 1
n − 7

)
an−1

= (−1)n−4

{
an−4 −

(
n − 3
n − 5

)
(−1)n−1(n − 1)(n − 2)

× (n − 4)
{

(n − 5)
4

∞∑
m=−∞

{
2c2

m − 2cm cm+2
}

+
(n − 3)

6

∞∑
m=−∞

{
6c2

m − 8cm cm+1 + 2cm cm+2
}}

+
(

n − 2
n − 6

)
(−1)n−1(n − 1)(n − 3)

×
∞∑

m=−∞

{
6c2

m − 8cm cm+1 + 2cm cm+2
}

−
(

n − 1
n − 7

)
(−1)n−1

∞∑
m=−∞

{
20c2

m − 30cm cm+1

+ 12cm cm+2 − 2cm cm+3
}}

,

while paying particular attention to the term involving
cm cm+3.
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Solving for an−4 results in

(−1)n−4an−4

=
(

n − 1
n − 4

)2 ∞∑
m=−∞

{18c2
m + 16cm cm+1 + 2cm cm+2}

−
(

n − 1
n − 5

)
(n − 1)(n − 2)

×
∞∑

m=−∞
{22c2

m + 24cm cm+1 + 2cm cm+2}

+
(

n − 1
n − 6

)
(n − 1)

×
∞∑

m=−∞
2{66c2

m + 52cm cm+1 + 2cm cm+2}

−
(

n − 1
2

)(
n − 3

2

)(
n − 4

2

) ∞∑
m=−∞

{2c2
m − 2cm cm+2}

−
(

n − 1
n − 5

)
(n − 3)2

×
∞∑

m=−∞
{6c2

m − 8cm cm+1 + 2cm cm+2}

−
(

n − 1
n − 7

)

×
∞∑

m=−∞
{624c2

m + 688cm cm+1 + 128cm cm+2}.

To make sense of this, let

X =
∞∑

m=−∞
2c2

m , Y =
∞∑

m=−∞
2cm cm+1 ,

Z =
∞∑

m=−∞
2cm cm+2 ,

and let α, . . . , ζ be the appropriate coefficients so that
the last expression for (−1)n−4an−4 above reduces to

α(9X + 8Y + Z) + β(11X + 12Y + Z)
+ γ(66X + 52Y + 2Z) + δ(X − Z) + ε(3X − 4Y + Z)
+ ζ(312X + 344Y + 64Z).

We want to reexpress it as

A(9X + 8Y + Z) + B(3X − 4Y + Z) + C(X − Z).

This implies that

18A = 18α + 24β + 120γ + 720ζ

= − (n − 1)(n − 2)(n − 3)(n − 5)(n − 6)(n − 7)
2

,

while

4B = 8A − (8α + 12β + 52γ − 4ε + 344ζ)

= − (n − 1)2(n − 2)(n − 3)(n − 4)(n − 5)
15

and

C = A + B − (α + β + 2γ − δ + ε + 64ζ)

= − (n − 1)(n − 2)(n − 3)(n − 4)(n − 5)(n − 6)
30

.

Finally, the fact that

9X + 8Y + Z

= ‖{(∆n−4bm + 4∆n−4bm+1 + ∆n−4bm+2}‖2 ,

3X − 4Y + Z = ‖{∆n−2bm}‖2 ,

X − Z = ‖{∆n−4bm − ∆n−4bm+2}‖2

together with the observation that (−1)n−4 = −(−1)n−1

allows us to express an−4 succinctly as

an−4 = (−1)n−1(n − 1)(n − 2)(n − 3)(n − 5) (5–6)

×
{

(n − 6)(n − 7)
36

‖{∆n−4bm + 4∆n−4bm+1

+ ∆n−4bm+2}‖2 +
(n − 1)(n − 4)

60
‖{∆n−2bm}‖2

+
(n − 4)(n − 6)

30
‖{∆n−4bm − ∆n−4bm+2}‖2

}
.

In view of subsequent applications, it is useful to note
that

‖{∆n−4bm −∆n−4bm+2}‖2 = ‖{∆n−3bm +∆n−3bm+1}‖2 .

6. PROOF OF PROPOSITION 1.6

n = 1. In the case n = 1, Φ(x) is simply the constant

Φ(x) = a0 =
∞∑

k=−∞
b2
k = ‖{bk}‖2 .

n = 2. The case n = 2 follows from formula (5–3) for gen-
eral an−1 . Namely,

a0 = ‖{bk}‖2 and a1 = −‖{∆bk}‖2 .

n = 3. The case n = 3 follows from (5–3) and

a1 = 0, (6–1)

which is valid when n ≥ 3. Namely,

a0 = ‖{bk + bk+1}‖2 , a1 = 0, and a2 = ‖{∆2bk}‖2 .
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n = 4. The case n = 4 can be deduced from (5–3), (6–1),
and the general formula (5–4) for an−2 , which is valid
when n ≥ 4. Specifically,

a0 = ‖{bk + 4bk+1 + bk+2}‖2 and a1 = 0,

while

a2 = −3‖{∆2bk}‖2 and a3 = −‖{∆3bk}‖2 .

n = 5. The case n = 5 can be deduced from (5–3), (5–4),
(6–1), and the general formula

2a2 = a3 , (6–2)

which is valid when n ≥ 5. Specifically,

a0 = ‖{bk + 11bk+1 + 11bk+2 + bk+3}‖2 and a1 = 0,

while

a2 = 4‖{∆3bk}‖2 ,

a3 = 8‖{∆3bk}‖2 ,

a4 = ‖{∆4bk}‖2 .

n = 6. The case n = 6 can be deduced from (5–3), (5–4),
(6–1), (6–2), and the general formula (5–5) for an−3 ,
which is valid when n ≥ 6. Specifically,

a0 = ‖{bk + 26bk+1 + 66bk+2 + 26bk+3 + bk+4}‖2 ,

a1 = 0,

while

a2 = −5‖{∆3bk + ∆3bk+1}‖2 − 10‖{∆4bk}‖2 ,

a3 = 2a2 , a4 = −15‖{∆4bk}‖2 , a5 = −‖{∆5bk}‖2 .

n = 7. The case n = 7 can be deduced from (5–3), (5–4),
(5–5), (6–1), (6–2), and the general formula

3a3 = 4a4 − a5 , (6–3)

which is valid when n ≥ 7. Specifically,

a0 = ‖{bk + 57bk+1 + 302bk+2 + 302bk+3 + 57bk+4

+ bk+6}‖2 ,

a1 = 0,

while

a2 =
a3

2
,

a3 = 60‖{∆4bk + ∆4bk+1}‖2 + 72‖{∆5bk}‖2 ,

a4 = 45‖{∆4bk + ∆4bk+1}‖2 + 60‖{∆5bk}‖2 ,

a5 = 24‖{∆5bk}‖2 ,

a6 = ‖{∆6bk}‖2 .

n = 8. In the case n = 8, in addition to the formulas used
above, we also make use of (5–6), which is valid when
n ≥ 8, to get

a7 = −‖{∆7bk}‖2 ,

a6 = −35‖{∆6bk}‖2 ,

a5 = −126‖{∆5bk + ∆5bk+1}‖2 − 140‖{∆6bk}‖2 ,

a4 = −35‖{∆4bk + 4∆4bk+1 + ∆4bk+2}‖2

− 294‖{∆6bk}‖2 − 168‖{∆5bk + ∆5bk+1}‖2 ,

3a3 = 4a4 − a5 , 2a2 = a3 , a1 = 0,

and it is clear that both a3 and a2 are negative.

n = 9. In the case n = 9, in addition to all the formulas
used above, we make use of

4a4 = 10a5 − 6a6 + a7 , (6–4)

which is valid whenever n ≥ 9, to get

a8 = ‖{∆8bk}‖2 , a7 = 48‖{∆7bk}‖2 ,

a6 = 280‖{∆6bk + ∆6bk+1}‖2 + 280‖{∆7bk}‖2 ,

a5 = 224‖{∆5bk + 4∆5bk+1 + ∆5bk+2}‖2

+ 896‖{∆7bk}‖2 + 672‖{∆6bk + ∆6bk+1}‖2 ,

4a4 = 10a5 − 6a6 + a7 , 3a3 = 4a4 − a5 , 2a2 = a3 ,

a1 = 0,

from which it should be clear that all the coefficients ak ,
k = 2, . . . , 8, are positive.
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