
Experimental Mathematics, 20(1):57–90, 2011
Copyright C© Taylor & Francis Group, LLC
ISSN: 1058-6458 print
DOI: 10.1080/10586458.2011.544581

Knot Tightening by Constrained Gradient Descent
Ted Ashton, Jason Cantarella, Michael Piatek, and Eric J. Rawdon

CONTENTS

1. Introduction
2. A Discretization for the Ropelength Problem
3. Bridging Theory and Computation
4. Program Design
5. Results of Computations
6. Future Directions
7. Appendix: Ropelength Data
References

2000 AMS Subject Classification: 49M25, 49Q10, 53A04, 57M25
Keywords: ropelength, tight knots, ideal knots, constrained
gradient descent, sparse nonnegative least-squares problem
(snnls), knot-tightening

We present new computations of approximately length-
minimizing polygons with fixed thickness. These curves model
the centerlines of “tight” knotted tubes with minimal length and
fixed circular cross-section. Our curves approximately minimize
the ropelength (or quotient of length and thickness) for polygons
in their knot types. While previous authors have minimized ro-
pelength for polygons using simulated annealing, the new idea
in our code is to minimize length over the set of polygons of
thickness at least one using a version of constrained gradient
descent.

We rewrite the problem in terms of minimizing the length of the
polygon subject to an infinite family of differentiable constraint
functions. We prove that the set of variations of a polygon of
thickness one that does not decrease thickness to first order is
a finitely generated polyhedral cone, and give an explicit set of
generators. Using this cone, we give a first-order minimization
procedure and a Karush–Kuhn–Tucker criterion for polygonal-
ropelength criticality.

Our main numerical contribution is a set of 379 almost-critical
knots and links, including all prime knots with ten and fewer
crossings and all prime links with nine and fewer crossings. For
links, these are the first published ropelength figures, and for
knots they improve on existing figures. We give new maps of
the self-contacts of these knots and links, and discover some
highly symmetric tight knots with particularly simple-looking
self-contact maps.

1. INTRODUCTION

1.1. Overview

Knots tied in rope are flexible machines that organize
tensions and contact forces to bind tightly and resist un-
raveling. As a technology, knots have proved remarkably
effective. For this reason there is a vast body of knowledge
about their practical uses. Yet in many ways, the design
of these machines remains mysterious. As early as 1987,
Maddocks and Keller were able to study different types of
hitches and predict their holding power by an analysis of
their equilibrium shapes [Maddocks and Keller 87]. But
these shapes were rather simple, and there was no way

57



58 Experimental Mathematics, Vol. 20 (2011), No. 1

to infer the structures of more complicated knots from
these examples. It was obvious that what was needed
was data, and by the end of the century, a series of
numerical experiments in knot-tightening was underway
[Rawdon 97, Pierański 98, Laurie 98, Sullivan 02]. This
paper describes a new computational approach to knot-
tightening that yields improved numerical results (a pre-
liminary report on some of our findings appeared in the
conference proceedings [Cantarella et al. 05]). To build
our method, we derive some new results in the theory of
ropelength for polygonal knots.

1.2. Defining the Problem

Given any space curve γ, we can define the thickness
Thi(γ) of γ to be the supremal ε for which any point
in an ε-neighborhood of γ has a unique nearest neigh-
bor on the curve.1 Any curve with nonzero thickness is
C1,1 (that is, it is C1 with a Lipschitz first derivative)
[Federer 59, Cantarella et al. 02]. Given this, the follow-
ing proposition has been proved.

Proposition 1.1. [Litherland et al. 99] If γ is a C1 curve,
then the thickness Thi(γ) is given by the supremal radius
of all embedded tubes formed by taking the union of disks
of uniform radius centered on γ(s) in the planes normal
to γ′(s).

This idea of thickness was first pro-
posed in [Krötenheerdt and Veit 76], see also
[Krötenheerdt and Veit 05], and was rediscovered in
the 1990s [Nabutovsky 95, Buck and Orloff 95]. The
thickness can be used to define a scale-invariant quantity
called ropelength:

Definition 1.2. The ropelength of a curve γ is defined by

Rop(γ) =
Len(γ)
Thi(γ)

,

where Len(γ) is the length of γ. The minimal ropelength
Rop(L) of a knot or link type L is the minimal ropelength
of all curves in that knot or link type.

The knot-tightening problem is to find and describe
the minimal-ropelength curves in a given knot type. It
is known that such curves exist, but very few examples
are known explicitly (see [Gonzalez and de la Llave 03,
Gonzalez et al. 02, Cantarella et al. 02]). Once found (or

1 Federer referred to this number as the reach of γ [Federer 59].

computed to sufficient accuracy), these configurations
have been used to predict the relative speed of DNA
knots under gel electrophoresis [Katritch 96], the pitch
of double-helical DNA [Micheletti et al. 99], the aver-
age values of different spatial measurements of random
knots [Dobay et al. 03], and the breaking points of knots
[Pierański et al. 01]. They also provide a model for the
structure of a class of subatomic particles known as glue-
balls [Buniy and Kephart 03].

1.3. Another Form of the Problem

Let γ : S1 → R
3 now be a C2 parameterized curve, and

define the self-distance function d : S1 × S1 → R of γ by
d(s, t) := ‖γ(s) − γ(t)‖. As usual, let κ(s) denote the cur-
vature of γ. We then define the set dcsd(γ) of doubly
critical self-distances to be the set of critical points of
d with s �= t. Taking the partial derivatives of d, we see
that (s, t) ∈ dcsd(γ) if and only if

〈γ(s) − γ(t), γ ′(s)〉 = 0 and 〈γ(s) − γ(t), γ ′(t)〉 = 0.

A key idea in [Litherland et al. 99] is that for any
τ < Thi(γ), the surface of the tube of radius τ around
γ has no self-intersections and is C2 smooth. But when
τ = Thi(γ), the tube is pinched or has a tangential self-
intersection. This leads to an alternative characterization
of thickness:

Theorem 1.3. [Litherland et al. 99] The thickness of γ is
the minimum of

min
s

1
κ(s)

and min
(s,t)∈dcsd(γ )

d(s, t)
2

.

Figure 1 shows curves in which the first and second of
these terms control the thickness.

Since length and thickness scale together, minimizing
ropelength is the same as minimizing length over the set
of curves with thickness at least one. Since thickness is
a min-function, the condition Thi(γ) ≥ 1 can be viewed
as an infinite family of inequality constraints on γ. These

FIGURE 1. The thickness of a smooth curve γ is con-
trolled by curvature (as in the left-hand picture) and
the length of chords in dcsd(γ) (as in the right-hand
picture).
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constraints are active at places where the tube around γ

forms kinks (where 1/κ is in control of the minimum in
Theorem 1.3) or has self-contacts (where the self-distance
d(s, t)/2 is in control of the minimum).

1.4. Numerical Approaches to the Knot-Tightening
Problem

Previous authors have defined discretized versions of
thickness for polygons or spline curves and viewed the
problem as one of minimizing the nonsmooth quotient of
length and thickness. The advantage of this approach is
that it is a very simple and robust way to obtain approx-
imately ropelength-minimizing curves. The disadvantage
is that it is very difficult to take advantage of the fact that
thickness (as given in Theorem 1.3) is a min-function.

Our approach is to define a discrete version of thick-
ness as a min-function and think of the problem as one
of minimizing a differentiable function Len(V) subject to
a family of differentiable constraints Thip(V) ≥ 1. While
our approach will not quite fit into the standard frame-
work of constrained optimization (our family of con-
straints is infinite), we will be able to define a version
of constrained gradient descent that minimizes polygo-
nal ropelength effectively.

1.5. Theoretical Framework

For an equilateral space polygon V we first prove that
our function Thip(V) can be written as a minimum over a
fixed compact family of differential functions. From here
we use Clark’s theorem to show that Thip has a one-sided
derivative in the direction of any variation W of V. For
a polygon with Thip(V) = 1 we use these derivatives to
define a cone of infinitesimal variations I(V) that do not
decrease Thip to first order and the dual cone of “resolv-
able” variations R(V). Our next main theorem is that
R(V) is a finitely generated polyhedral cone whose gen-
erators are the gradients of the lengths of certain chords
of the polygon (called struts) and of a function of certain
turning angles of the polygon (called kinks). We give ex-
plicit formulas for these gradients in terms of the vertex
positions.

We then compute the gradient of Len(V) and define
the constrained gradient of length to be the projection
of Len(V) onto the polyhedral cone I(V). At this point
we give the expected result that a polygon is critical for
polygonal ropelength if and only if the constrained gradi-
ent of length is zero. Equivalently, a polygon is critical for
polygonal ropelength if there is a set of positive Lagrange
multipliers on the struts and kinks that combine to equal

the negative of the length gradient. The theory section
ends with a discussion of how to compute the constrained
gradient numerically.

1.6. Numerical Methods

Sections 3 and 4 describe the design of our polygonal-
ropelength-minimizing software. Our algorithm essen-
tially consists in computing the constrained gradient of
length and taking small steps in this direction until the
constrained gradient is sufficiently small. However, the
details of the process are not quite so simple. Since the
constraint functions are nonlinear, even steps that are
in the direction of the constrained gradient violate some
constraints to second order. Further, newly active con-
straints are discovered throughout the run as previously
distant sections of tube come into contact with one an-
other. As a result, we must choose step sizes carefully and
correct errors periodically. It is also important that the
algorithm run efficiently, since the size of our problem (a
few thousand variables and a similar number of active
constraints) is fairly large.

We have solved these technical and engineering prob-
lems and used our software to minimize all prime knots
with ten or fewer crossings and all prime links with nine
or fewer crossings, for a total of 379 different knot and
link types. We intend to address the ropelength of com-
posite knots and links in a future publication.

1.7. New Ropelength Bounds

We check our figures against previous computations of
the minimum ropelength of knots and links and against
some of the few known theoretical results for the lengths
of tight links. Our results improve on all previously pub-
lished computational results except for the trefoil knot.
For example, we improve the best known upper bound
for the ropelength of the well-studied figure-eight knot
41 by 0.06 to 42.0887 (as compared to the bound of
[Carlen et al. 05]) and improve the best known upper
bound for the ropelength of the 920 knot by 8.12% to
80.2219 (compared to the bound of [Rawdon 03]). To
get a sense of the difference between the configurations
produced by our method and the configurations pro-
duced by the simulated annealer of [Rawdon 03], we
show both configurations in Figure 2. For links, our fig-
ures are the first computational results to appear in
print, but compare well to known theoretical results. For
example, the upper bound provided by our computa-
tion of the Borromean rings link 63

2 is 58.0070—within
0.0017% of the exact value around 58.0060 suggested by
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FIGURE 2. These two images of the 920 knot show the tightest configurations obtained by our algorithm (left) and by
the TOROS algorithm described in [Rawdon 03] (right). It is clear that our algorithm performs better once there are
many self-contacts in the knot. In fact, the ropelength of the left-hand configuration is bounded by 80.2219, while the
configuration on the right has ropelength bounded by 87.31. (Figure is available in color online)

[Cantarella et al. 06], while our computation of the tight
shape of the “simple chain” link is 41.7086588—within
0.02% of the correct value of 6π + 2 [Cantarella et al. 02].

We also compared our results to those of [Gilbert 11],
which are unpublished but available on Bar-Natan’s Knot
Atlas wiki. Gilbert provides Fourier coefficients and in-
structions for reconstructing the vertices of his config-
urations from those data. We followed his instructions,
but our software did not verify his claimed ropelength
numbers.2 According to our measurement of the rope-
length of Gilbert’s configurations, our knots are tighter
in all cases but 22

1 by an average of 3.714%, with some
outliers, such as our 92

37 link, which is 71% shorter. If we
compare our results to Gilbert’s claimed ropelengths, our
knots and links are tighter in 309 cases and less tight in
33. Overall, our knots and links are (on average) 1.104%
tighter than the bounds claimed by Gilbert, with our 92

28
link about 4% shorter than Gilbert’s claim.

1.8. Self-Contact Maps

The authors of [Schuricht and von der Mosel 04] and
[Cantarella et al. 06] have given versions of a ropelength
criticality criterion for knots without kinks that state
roughly that a knot γ is ropelength-critical when the
elastic force given by the gradient of the length of the
curve is balanced by a system of Lagrange multipliers
on the self-contacts of the tube around γ. The latter au-

2 Our measurement of curvature by MinRad is sensitive to edge
length and seems to come out much larger than his ropelengths
would indicate. This is probably a discretization effect, and it is
certainly possible that the Fourier knots defined by Gilbert’s data
have ropelengths corresponding to Gilbert’s claimed numbers.

thors used their condition to derive a ropelength-critical
configuration of the Borromean rings and a surprising
ropelength-critical configuration of a clasp formed by two
tubes stretched across each other.

In both of these examples, the most difficult part of
the result was the deduction of the structure of the set
of self-contacts for the tight configuration. Since these
contact maps are very sensitive to small perturbations
of the centerline, it has been difficult to resolve them
using previous numerical methods.3 These contacts and
the system of Lagrange multipliers on them are explicitly
computed by our algorithm, allowing us to give medium-
quality contact maps for a large number of knots and
links. The contact maps offer some support for the hy-
pothesis that a relatively small number of structures may
reappear often in tight knots and links.

1.9. Previous Work

This is not the first time gradient-like methods have
been attempted for the knot-tightening problem. Our
work has been inspired by Piotr Pierański’s SONO algo-
rithm [Pierański 98], which follows a version of the length
gradient, but does not include an explicit resolution of
this vector against the active constraints. Our thinking
is also informed by John Sullivan’s “energy-ropelength
method” [Sullivan 02], which optimizes thickness instead
of length, estimating the maximum diameter of a uni-
form embedded tube around the core curve by an Lp

average of the radii of embedded cross-sectional disks

3 The notable exception to this rule has been the “biarc” spline-
annealing method of [Carlen et al. 05], which has produced well-
resolved contact maps for the 31 and 41 knots.
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and minimizing the resulting smooth functional using the
conjugate-gradient implementation in Brakke’s evolver

[Brakke 92].

2. A DISCRETIZATION FOR THE ROPELENGTH
PROBLEM

2.1. Polygonal Thickness

Consider a closed space polygon V with vertices
v1 , . . . , vV and edges e1 , . . . , eV . We will think of V as
the vector (v1 , . . . , vV ) in (R3)V = R

3V , and assume that
all subscripts on vertices and edges are taken modulo V .
The unit tangent vector Ti to each edge of a polygon is
well defined on the interior of the edge. At the vertex vi

joining edges ei−1 and ei , there are two tangent vectors
Ti−1 and Ti . The curvature of V at vi is usually thought
of as a delta function whose mass is given by the turning
angle θi from Ti−1 to Ti . We will use a somewhat different
definition of curvature for polygons:

Definition 2.1. The minimum radius of curvature (or
MinRad) of V at vi is given by the radius of the unique
circle that is tangent to the two edges meeting at vi and
that touches the midpoint of the shorter one.

It is shown in [Rawdon 97] that if θi is the turning
angle of V at vi , then we can give MinRad(vi) (and define
MinRad±(vi)) by the expressions

min
{ |ei−1 |

2 tan(θi/2)
,

|ei |
2 tan(θi/2)

}

= min{MinRad−(vi),MinRad+(vi)}. (2–1)

It is clear that while MinRad vi is not necessarily a dif-
ferentiable function, the two functions MinRad± vi are
differentiable when they are defined. The motivation for
this definition is that we can round off all the corners
of V by splicing in these circle arcs, generating a C1,1

curve with radii of curvature equal to the MinRad(vi).
We could have defined Thip(V) to be the thickness of
this curve. It turns out, however, that there is no closed-
form computation for that number (although it can be
computed approximately, as we will see in Section 5.3).

We now define a set corresponding to dcsd for poly-
gons:

Definition 2.2. Let dcsd(V) be the set of (p, q) on V with
p �= q that are local minima of the self-distance function
on V.

There are several possible cases for (p, q) in dcsd(V),
since the polygon might have a vertex at one or both of
the endpoints of the chord. These are shown in Figure 3.

We can then define Rawdon’s polygonal thickness:

Definition 2.3. The polygonal thickness Thip(V) of a
space polygon V without self-intersections is given by the
minimum

Thip(V) := min
{

min
i

MinRad(vi), min
(p,q)∈dcsd(V)

d(p, q)
2

}
.

We have carefully constructed this definition so that
when polygons Vn with increasing numbers of edges
are inscribed in a space curve γ under some mild geo-
metric hypotheses, then Thip(Vn ) → Thi(γ) [Rawdon 97,
Rawdon 98, Rawdon 03].

2.2. The Problem with Thip

Definition 2.3 allows us to define the set of polygons with
Thip(V) ≥ 1 as the polygons obeying a family of con-
straints of the form MinRad(vi) ≥ 1 and d(p, q) ≥ 2 for
(p, q) ∈ dcsd(V). This is almost the standard form for
constrained optimization problems

min
V∈R3 V

f(V) subject to gi(V) ≥ 0, (2–2)

where f and the gi are differentiable. The problem is that
the set of constraint functions d(p, q) for (p, q) ∈ dcsd(V)
depends on the polygon. We will need a common set of
constraint functions for all polygons in a neighborhood
of a solution.

2.3. Constraint Thickness

To solve this problem, we will define a new thickness
measure for polygons called the constraint thickness that
is given in the form 2–2. We will then prove that for

FIGURE 3. We see three types of local minima of the
self-distance function on a space polygon V in the three-
dimensional drawings above. From left to right, these
are an edge–edge pair, a vertex–edge pair, and a vertex–
vertex pair.
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equilateral polygons, the new constraint thickness defines
the same set of polygons as the old polygonal thickness.

We first define a subset of the pairs of points on a
polygon:

Definition 2.4. For a given positive τ and �, let θ(τ, �)
be the turning angle of a pair of edges of length � with
MinRad = τ . We set

VB(τ, �) =
{

(p, q) ∈ V × V : vb(p, q) ≥ π

θ(τ, �)

}
,

where vb(p, q) is the smaller number of vertices between
points p and q (counting p and/or q if they are vertices
and remembering that there are two ways to determine
this number, depending on which way we go from p to q

around the closed polygon V ).

We note that an easy computation shows that θ(τ, �) =
2 arctan(�/2τ). We can now define our new thickness
measure. If p and q are on different components, we take
vb(p, q) = ∞.

Definition 2.5. The (τ ,�)-constraint thickness
CThi(τ, �,V) of a polygon V is given by

CThi(τ, �,V)

= min
{

min
MinRad(vi)

τ
, min
(p,q)∈VB(τ ,�)

d(p, q)
2

}
.

We note that V need not be equilateral or have
edge length � to define the constraint thickness. We
can view τ as the “stiffness” of the rope (compare
the definition of λ-thickness in [Cantarella et al. 11] and
[Buck and Rawdon 04]), since it provides a lower bound
on the radius of curvature of a tube of unit radius. Al-
though our theory (and our code) should work for any
τ ≥ 1, we have not experimented with values for τ other
than 1 and so will write the (1, �)-constraint thickness
CThi(1, �,V) as CThi(�,V).

We can now prove that CThi(�,V) is an equiva-
lent thickness to Thip for equilateral polygons of edge
length �.

Theorem 2.6. If V is an equilateral polygon of edge length
�, then Thip(V) ≥ 1 ⇐⇒ CThi(�,V) ≥ 1.

To prove the theorem we will need a lemma (cf.
[Rawdon 00, Lemma 13]):

Lemma 2.7. If V is an equilateral polygon of edge length
� and MinRad ≥ τ , then dcsd(V) ⊂ VB(τ, �).

Proof: The proof has two parts. In the first, we show that
the shorter of the two arcs between any (p, q) �∈ VB(τ, �)
has total curvature t less than π, while in the second we
will show that any pair joined by such an arc cannot be
in dcsd(V). So suppose that t ≥ π. We will prove that
(p, q) ∈ VB(τ, �).

Since MinRad(V) ≥ τ , we know that each turning an-
gle of V is less than θ(τ, �). If the total curvature of the
arc joining p and q is at least π, then vb(p, q) · θ(τ, �) ≥ π,
so

vb(p, q) ≥ π

θ(τ, �)

and (p, q) ∈ VB(τ, �), proving the claim.
Now suppose that (p, q) ∈ dcsd(V). We claim that the

total curvature t of each arc joining p and q is at least
π, and hence that (p, q) ∈ VB(τ, �). Suppose not. The arc
of V joining p and q together with the chord from p to
q forms a closed space polygon V′. The total curvature
of this polygon is equal to t plus the turning angles at
p and q. By Fenchel’s theorem [do Carmo 76], that total
curvature is at least 2π. So the angle at p and the angle
at q must sum to more than π. Thus either the angle at
p or the angle at q must exceed π/2. But in that case, we
could reduce d(p, q) to first order by moving p or q along
an edge from the arc that connects p and q, contradicting
our assumption that (p, q) ∈ dcsd(V).

We are now ready to prove Theorem 2.6:

Proof: Suppose that CThi(�,V) ≥ 1. This implies that
mini MinRad(vi) ≥ 1 by the definition of CThi. Lemma
2.7 tells us that dcsd(V) ⊂ VB(1, �), so we know that

min
(p,q)∈dcsd(V)

d(p, q) ≥ min
(p,q)∈VB(1,�)

d(p, q). (2–3)

Together, these facts imply that Thip(V) ≥ 1, proving
one direction of the theorem.

Suppose that Thip(V) ≥ 1. As above, this means that
mini MinRad(vi) ≥ 1, so Lemma 2.7 applies and (2–3)
holds. If the minimum on the right-hand side of (2–3) is
achieved on the interior of VB(1, �), then it is a local min-
imum of d(p, q) where p �= q and so is in dcsd(V). In this
case, (2–3) is an equality and CThi(�,V) ≥ 1, completing
the proof.

We are left with the case that the minimum of d(p, q)
over VB(1, �) is realized by some (p, q) on the boundary of
VB(1, �). We claim that d(p, q)/2 ≥ 1. This will complete
the proof that CThi(�,V) ≥ 1.

By definition, (p, q) is on the boundary of VB(1, �) only
if vb(p, q) = �π/θ(1, �)�. And since vb(p, q) is constant
on the interiors of edges, one of p and q (without loss
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p′

q′

2

θ(1,�)

FIGURE 4. The key step in the proof of Theorem 2.6
is the proof that points p′ and q′ on an arc P are at
least distance 2 apart. This arc has equal edge lengths �,
each turning angle equal to θ(1, �) := 2 arctan(�/2), and
n := �π/θ(1, �)� edges. We see above that these condi-
tions imply that P has an inscribed circle of unit ra-
dius. Further, the marked point q′ must have a larger
y-coordinate than the top of the circle, providing the
required lower bound on the distance from p′ to q′.

of generality, q) must be a vertex. Since each turning
angle of the arc of V between p and q is bounded by
θ(1, �), Schur’s theorem [Chern 67] implies that d(p, q) is
bounded below by the distance between the endpoints
of p′, q′ of a planar polygonal arc P with the same edge
lengths and each turning angle equal to θ(1, �). We depict
the situation in Figure 4.

We know that P has n = vb(p, q) edges and total cur-
vature (n − 1)θ(1, �). Since n = vb(p, q) = �π/θ(1, �)�, we
have

n − 1 <
π

θ(1, �)
≤ n,

and so

(n − 1)θ(1, �) < π ≤ nθ(1, �).

Thus if we add an edge to P at q′ with turning angle
θ(1, �) to form an arc P+, the total curvature of P is
less than π, while the total curvature of P+ is at least
π. These facts imply that if the first edge of P lies along
the x-axis, the point q′ has the largest y-coordinate on
P+. But our turning-angle and edge-length conditions
imply that P+ has an inscribed circle of unit radius, so
the y-coordinate of q′ is at least two. This implies that
d(p′, q′) ≥ 2, completing the proof.

These proofs imply an obvious corollary, which will be
useful in practice:

Corollary 2.8. If dcsd(V) ⊂ VB(τ, �) and the distance be-
tween any two vertices on the boundary of VB is strictly

greater than Thip(V), then CThi = Thip for polygons in a
neighborhood of V (regardless of whether V is equilateral
with edge length �).

Proof: The argument is the same as that of Theorem
2.6, using the hypotheses instead of Lemma 2.7 and the
argument about turning angles.

2.4. Struts and Kinks

In our definition of Thip , we saw that pairs of points in
dcsd and vertices with minimum MinRad were in con-
trol of thickness. We now want to develop similar sets of
“controlling” pairs of points and vertices for CThi. This
will require a bit of care.

Given any two line segments e1 and e2 in space, a
calculation reveals that the minimum distance between
them is attained at a single point except in some special
cases in which e1 and e2 are parallel. In that case, the
minimum is attained at an interval of corresponding pairs
(as in Figure 5). The endpoints of these intervals are self-
distances measured from an endpoint of one segment to
a point on the other. Following this line of argument we
see that for any space polygon the local minima of the
self-distance function d(p, q) are isolated unless there are
pairs of parallel edges, in which case there may be families
of local minima as above. Using these observations we
make the following definition:

Definition 2.9. The strut set Strut(V) is the set of pairs
(p, q) in VB(1, �) with d(p, q)/2 = 1 and either

� (p, q) is an isolated local minimum of d(p, q), or
� (p, q) is an endpoint of a family of local minima of

d(p, q).

vi−1

vi=q

vj−1 = r s vj

FIGURE 5. When the edges ei and ej are parallel, many
chords realize the minimum distance between the seg-
ments. In this case, we show that the minimum deriva-
tive of distance between any of these pairs occurs at one
end or the other. We name the endpoints of this family
of chords p and q on ei and r and s on ej . One of each
of these pairs must be an endpoint—in this case it is
q = vi and r = vj−1 that are endpoints.
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In the second case, (p, q) must be a vertex–edge pair join-
ing two parallel edges of V.

We note that Strut(V) is a finite subset of dcsd(V)
(dcsd(V) may be infinite if two edges are parallel). It is
much easier to define the kink set :

Definition 2.10. The kink set Kink(V) is the set of ver-
tices vi and signs ± with MinRad± vi = 1.

The strut and kink sets are both empty if we have
CThi(�,V) > 1.

2.5. Polygon Space and Variations of CThi

We now want to describe the space of variations of a poly-
gon that preserve or increase CThi to first order. Given
a polygon V ∈ R

3V we can define a variation of V by
any W = (w1 , . . . , wV ) ∈ R

3V . This variation generates
a family of polygons

Vt = V + tW = (v1 + tw1 , . . . , vV + twV ).

This specifies a variation of the vertices of the polygon,
but we will actually need to extend this to a variation
of the entire polygon. We do so by writing each point p

on V as a convex combination of adjacent vertices p =
svi + (1 − s)vi+1 and defining

pt = s(vi + twi) + (1 − s)(vi+1 + twi+1). (2–4)

We can now define the distance between p and q as a
function of the vertex positions of V by writing p = svi +
(1 − s)vi+1 and q = s′vj + (1 − s′)vj+1, where vi , vi+1,
and vj , vj+1 are the endpoints of the edges containing p

and q and letting

d(p, q) = d(svi + (1 − s)vi+1 , s
′vj + (1 − s′)vj+1)

be a function from R
3V to R. The gradient of this func-

tion with respect to the vertex positions (that is, holding
s and s′ constant), denoted by ∇d(p, q), is then a vector in
R

3V . For any vertex vi ∈ V, the functions MinRad± vi are
also functions of the vertex positions, with corresponding
gradient vectors ∇MinRad± vi .

We now want to prove that CThi(�,V) has a one-sided
derivative as we vary V according to any variation W and
to give a finite procedure for computing that variation.
This will require some setup.

Proposition 2.11. Suppose that CThi(�,V) = 1. Then
viewing every pair of points (p, q) on V and every
MinRad± vi as functions of t, the forward time deriva-

tive exists and satisfies

DW CThi(�,V) (2–5)

=
d

dt+
CThi(Vt)

∣∣∣∣
t=0

= min
{

min
(vi ,±)∈Kink(V)

d
dt+

(MinRad± vi)(t)
∣∣∣∣
t=0

,

min
Strut(V)

d
dt+

d(p(t), q(t))
2

∣∣∣∣
t=0

}
.

Proof: We begin by ignoring any MinRad vi functions
that are not defined (which happens when vi−1 , vi , and
vi+1 are collinear). Since CThi(�,V) is equal to 1, the
MinRad of these vertices will not affect CThi(V + tW )
for small enough t. The function CThi is then the mini-
mum of a set of differentiable functions MinRad± vi and
d(p, q)/2 indexed by the (compact) disjoint union of com-
pact sets {v1 ,±} � · · · � {vV ,±} � VB(1, �) (where we as-
sume that any vi with MinRad vi undefined are missing).
Clark’s theorem for min-functions [Clarke 75] tells us im-
mediately that the derivative in (2–5) exists.

However, Clark’s theorem tells us that

DW CThi(�,V)

= min
{

min
(vi ,±)

MinRad± vi =1

d
dt+

∣∣∣
t=0

(MinRad± vi)(t),

min
(p,q)∈VB(1,�)

d(p,q)/2=1

d
dt+

∣∣∣
t=0

d(p(t), q(t))
2

}
.

The first set {(i,±) | MinRad± vi = 1} is the kink set,
which matches (2–5). But if a pair of edges in V are par-
allel and at distance 2 from one another, then Strut(V)
is only a subset of {(p, q) ∈ VB(1, �) | d(p, q)/2 = 1}. We
must prove that

min
(p,q)∈VB(1,�)

d(p,q)/2=1

d
dt+

d(p(t), q(t))
2

∣∣∣∣
t=0

(2–6)

= min
(p,q)∈Strut(V)

d
dt+

d(p(t), q(t))
2

∣∣∣∣
t=0

.

For any pair of parallel edges with distance 2, we may
assume that the situation is as in Figure 5.

We label points p, q, r, and s as in the figure, and
parameterize the line segments between p and q and be-
tween r and s by η ∈ [0, 1]. The pairs with η = 0 and
η = 1 are in the strut set of V, but the pairs given by all
other values of η are not. To prove (2–6) we must find

min
η∈[0,1]

d
dt+

‖ηp + (1 − η)q − ηr − (1 − η)s‖ ,
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and show that it is attained at η = 0 or η = 1. If we view
p, q, r, and s as functions of time, then for any given η, the
time derivative of the corresponding length is given by

1
2
〈ηp + (1 − η)q − ηr − (1 − η)s, ηp′

+ (1 − η)q′ − ηr′ − (1 − η)s′〉,
where we have used the fact that d(ei, ej )/2 = 1. Re-
grouping, we can rewrite this as

1
2
〈η(p − r) + (1 − η)(q − s), η(p − r)′ + (1 − η)(q − s)′〉,

and using the fact that p − r = q − s at time 0, we can
again rewrite this as

η〈p − r, p′ − r′〉 + (1 − η)〈q − s, q′ − s′〉.
Now as η varies between 0 and 1, we note that the η

derivative of the above quantity is

〈p − r, p′ − r′〉 − 〈q − s, q′ − s′〉.
In particular, this derivative is nonzero for all η ∈ [0, 1]
unless 〈p − r, p′ − r′〉 = 〈q − s, q′ − s′〉, in which case it
vanishes identically. This means that the minimum value
of this expression is always realized when η = 0 or η = 1.
This completes the proof.

We can use Proposition 2.11 to define two sets of vari-
ations that will be of particular interest to us. The first
set consists of variations that are tangent to the bound-
ary or pointing into the interior of the set of polygons
CThi(�,V) ≥ 1. We will allow our polygons to move in
these directions.

Definition 2.12. Suppose we have a polygon V and a
variation W of V. If CThi(�,V) = 1, we say that W is
an infinitesimal motion of V if the forward directional
derivative

DW CThi(�,V)

is greater than or equal to zero. If CThi(�,V) > 1, we call
every variation W an infinitesimal motion. The set of all
infinitesimal motions of V is denoted by I(V).

Given our definitions of ∇d(p, q) and ∇MinRad± vi

above, the following corollary follows directly from
Proposition 2.11.

Corollary 2.13. The set I(V) is the dual cone of the set
−∇d(p, q)/2 for (p, q) ∈ Strut(V) and −∇MinRad± vi

for (vi,±) ∈ Kink(V).

Proof: We need only recall that the dual cone A+ to a set
of vectors A is the set of vectors X for which 〈X,W 〉 ≤
0 for all W ∈ A. Since the directional derivatives of
d(p, q)/2 and MinRad± vi in the direction X are the dot
products of X with −∇d(p, q)/2 and −∇MinRad± vi , X

is in the dual cone if and only if all these directional
derivatives are nonnegative. But by the proposition, this
implies that DX CThi(�,V) is nonnegative as well.

The second set of variations of interest will be the
normal cone of the boundary of the set of polygons with
CThi(�,V) ≥ 1. We will forbid our polygons from moving
in these directions.

Definition 2.14. The convex cone of resolvable motions
R(V) of V is the cone generated by the set −∇d(p, q)/2
for (p, q) ∈ Strut(V) and −∇MinRad± vi for (vi,±) ∈
Kink(V). Here R(V) is the set of vectors R ∈ R

3V that
can be expressed in the form

R =
∑

(p,q)∈Strut(V)

−λ2
i ∇

d(p, q)
2

+
∑

vj ∈Kink(V)

−λ2
j∇MinRad vj .

(2–7)
Here the indices i and j just number the elements of
the strut and kink sets. The constants λ2

i and λ2
j are

nonnegative numbers, as suggested by the notation.

It is a standard fact from optimization theory that
R(V) = I(V)+ , since for any set of vectors {v}, the double
dual {v}++ is the cone generated by {v}.

2.6. Theory of Constrained Optimization

Given a function f(V) on the space of polygons R
3V ,

we can compute the negative gradient −∇f , which is a
variation vector in R

3V . We are now interested in under-
standing how this gradient is modified by the constraint
CThi(�,V) ≥ 1. This thickness constraint models the ef-
fect of an embedded tube around the polygon: it allows
some motions of V and blocks others.

Definition 2.15. The constrained gradient (−∇f)I of −f

is the closest vector in I(V) to −∇f(V).

We now recall that any convex cone and its dual cone
provide a kind of orthogonal decomposition of their am-
bient vector space, as shown in Figure 6.

Proposition 2.16. [Stoer and Witzgall 70, Theorem 2.8.7]
Any vector W ∈ R3V may be uniquely written

W = WR + WI ,
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R(V)

I(V)

W

WR

WI

FIGURE 6. The infinitesimal motions I(V) and the re-
solvable motions R(V) of V form dual convex cones.
Hence, although these are not orthogonal subspaces of
R

3V , a similar decomposition property holds: any vec-
tor W may be written uniquely as a sum of a vector
WI ∈ I(V) and a vector WR ∈ R(V).

where 〈WR,WI , 〉 = 0, WR ∈ R(V) is the closest resolv-
able motion to W , and WI ∈ I(V) is the closest infinites-
imal motion to W .

We note that this proposition shows that the con-
strained gradient of −f is well defined. Further, it is easy
to show that the constrained gradient is the direction of
steepest descent for f within I(V). This makes us guess
that the constrained gradient should vanish at a critical
point for minimizing f . To prove it, we define critical
points more carefully:

Definition 2.17. We say that V is thickness-critical for
minimizing f if either

� DW f = 0, or
� CThi(�,V) = 1 and for any W with DW f(V) < 0,

we have DW CThi(�,V) < 0.

In the first case, we are at an unconstrained critical
point of the objective function f . In the second, we are
at a constrained critical point where motion in the di-
rection of the negative gradient of f is blocked by active
constraints. We then have a version of the Kuhn–Tucker
Theorem (restated in our language from the original form
in [Cantarella et al. 06]), which gives a verifiable condi-
tion for thickness-criticality.

Theorem 2.18. The polygon V is thickness-critical for
minimizing f if and only if −∇f is in R(V) if and only
if the constrained gradient (−∇f)I vanishes.

Proof: It suffices to show that the first two statements are
equivalent, since the second and third are clearly equiv-
alent by Proposition 2.16.

If −∇f is not in R(V), then Farkas’s theorem implies
that there exists some W with 〈W,∇f〉 = DW f < 0 and
〈W,R〉 ≤ 0 for all R ∈ R(V) [Panik 93, p. 118]. Using
the definition of R(V) and Proposition 2.11, this implies
DW CThi(�,V) ≥ 0. Thus V is not thickness-critical for
minimizing f .

If −∇f is in R(V), we will prove that V is thickness-
critical for minimizing f . We first observe that the dual
cone of −∇f contains the dual cone R+(V). Now suppose
we have some W with DW f < 0. Then 〈W,−∇f〉 > 0,
so W �∈ (−∇f)+ , and in particular, W �∈ R+(V). But
this means that 〈W,R〉 > 0 for some R ∈ R(V), so
DW CThi(�,V) < 0. Hence V is thickness-critical for min-
imizing f .

We can give a natural interpretation of this theorem
in mathematical and physical terms by considering the
condition −∇f ∈ R(V). By definition, this means that

−∇f +
∑

(p,q)∈Strut(V)

λ2
i ∇

d(p, q)
2

(2–8)

+
∑

vj ∈Kink(V)

λ2
j ∇MinRad vj = 0.

Mathematically, the λ2
i and λ2

j are Lagrange multipliers.
If we think of the thickness constraint as an embedded
tube around V, we can interpret these scalars as magni-
tudes of compression forces transmitted by tube contacts
(for struts) and angles where the polygon resists further
bending (for kinks).

In general, we cannot expect every local minimum of
a constrained function to be a constrained critical point
in the sense of Definition 2.17. If the set of polygons de-
fined by CThi(�,V) had an outward-pointing cusp, we
might reach a point where some W with DW f < 0 had
DW CThi = 0. For example, the constrained system

minimize f(x, y) = −x,

subject to g(x, y) = min{x3 − y, y} ≥ 0,

has this property at the local minimum (0, 0) for W =
(1, 0). The problem here is simply that DW g ≤ 0 for all
W . This does not happen for thickness-constrained poly-
gons, but we will need another idea to prove it:



Ashton et al.: Knot Tightening by Constrained Gradient Descent 67

Definition 2.19. We say that V is constraint-qualified (in
the sense of [Mangasarian and Fromovitz 67]) if there ex-
ists some W such that DW CThi > 0.

It is then standard to show the following:

Proposition 2.20. [Cantarella et al. 06] Any constraint-
qualified local minimum of f is a thickness-critical point
for minimizing f .

In our case, scaling V provides the desired motion, so
we have the following corollary.

Corollary 2.21. If the polygon V is a local minimum for
f , then it is a thickness-critical point for minimizing f .

We make a final note that in general, our criticality
theory works equally well for CThi and Thip (even for
polygons V that are not equilateral), as long as they obey
the hypotheses of Corollary 2.8. This is true in practice
in all of our numerically computed configurations.

3. BRIDGING THEORY AND COMPUTATION

3.1. Overview of the Algorithm

We have now derived enough theory to describe our
algorithm in general terms. We wish to minimize the
function Len(V) subject to the constraint CThi(�,V) ≥ 1.
We will do so by computing the constrained gradient
(−LenV)I and stepping in this direction. These steps
will reduce Len(V) while keeping V close to the set
CThi(�,V) ≥ 1 (since the constraints are nonconvex, we
cannot stay entirely inside this set). When (−LenV)I

vanishes, the algorithm will terminate. By Theorem
2.18, if the constrained gradient were exactly zero, the
resulting configuration would be a thickness-critical
point for minimizing length. We note that our algorithm
will attempt to maintain an approximately equilateral
polygon V, but it is not required to: constant edge length
� is not a hypothesis of Theorem 2.18. Our only caveat
is that we must remember that CThi(V) may not be
equal to Thip(V) if the final configuration fails to obey
the hypotheses of Corollary 2.8. We also note that there
is nothing special about choosing Len(V) as the function
to minimize—both our theory and our code would work
just as well for any other function.

3.2. Computing the Constrained Gradient

To implement this algorithm, we must be able to com-
pute the constrained gradient (−∇f)I . This is a standard

problem in linear algebra. By definition, if −∇f is written
as (−∇f)R + (−∇f)I using Proposition 2.16, the con-
strained gradient is equal to (−∇f)I . We can compute
this by computing (−∇f)R , which is easy to do, since we
know the generators of the cone R(V).

Definition 3.1. If CThi(�,V) = 1, the rigidity matrix A

of V is the matrix whose columns are the gradients
−∇d(p, q)/2 for (p, q) ∈ Strut(V) and −∇MinRad± vi for
(vi,±) ∈ Kink(V).

We can construct the rigidity matrix by finding the
members of Strut(V) and Kink(V). It follows from the
definition that R(V) is the image of the positive orthant
under the matrix A. By Proposition 2.16, (−∇f)R is the
closest vector in that image to −∇f . So if we solve the
nonnegative least-squares (NNLS) problem

min
Λ≥0

‖AΛ − (−∇f)‖, (3–1)

then (−∇f)R = AΛ and (−∇f)I = −∇f − AΛ. This
least-squares problem is a special kind of quadratic pro-
gramming problem that has been well studied in numeri-
cal linear algebra (see [Björck 96]). In our case, the prob-
lem is much easier because A is extremely sparse—the
gradients of the d(p, q)/2 involve no more than four ver-
tices (and so 12 variables), while the gradients of the
MinRad± involve only three vertices (and nine variables).
So each column of A, which is typically 1000 or more en-
tries long, contains at most 12 nonzero entries.

3.3. The Gradient of Length

We can now compute (−∇Len)I if we can compute
−∇Len, build the rigidity matrix A from the strut and
kink sets, and solve the NNLS problem in (3–1). We will
take these problems in order.

Length is a differentiable function of polygons V ∈
R

3V , whose gradient is given by a straightforward cal-
culation:

Proposition 3.2. The gradient of length of a polygon Vn

is given by the collection of n vectors

∇Len(V)k =
vk−1 − vk

‖vk−1 − vk‖ +
vk+1 − vk

‖vk+1 − vk‖ .

3.4. The Gradient of d( p, q)/2

Given a pair of points (p, q) on V, the gradient of the
distance between them is a set of four vectors located at
the endpoints of the edges on which p and q lie. These
vectors are given by a calculation:
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Proposition 3.3. Suppose that (p, q) ∈ Strut(V). If p =
αvi + (1 − α)vi+1 and q = βvj + (1 − β)vj+1 , then

∇d(p, q)
2

=
1

2d(p, q)
{
α(p − q), (1 − α)(p − q), β(q − p),

(1 − β)(q − p)
}
,

where these three vectors are applied to vi, vi+1 , vj , and
vj+1 in order.

3.5. The Gradient of MinRad±

As we noted above, the MinRad± are differentiable where
they are defined. We now compute the gradient on
MinRad+, noting that the gradient of MinRad− is simi-
lar.

Proposition 3.4. Given a vertex i on Vn with finite
MinRad±(vi), we let n denote the oriented normal vector
to the plane defined by vi−1 , vi , vi+1 and define the scalar
constant

K =
‖vi+1 − vi‖
2 cos θ − 2

and the vector constants

V =
vi+1 − vi

2 tan(θ/2)‖vi+1 − vi‖ ,

W = K
(vi−1 − vi) × n

‖vi−1 − vi‖2 ,

X = K
n × (vi+1 − vi)
‖vi+1 − vi‖2 .

Then if we write the gradient of MinRad+ as a triple of
vectors located at vi−1 , vi, and vi+1 , we have

∇MinRad+(vi) = {W,−W − X − V,X + V }.

Proof: The proof is a lengthy calculation. We want to
compute the gradient of

MinRad+(vi) =
‖vi+1 − vi‖
2 tan(θ/2)

,

where θ is the turning angle at vertex vi . We start with a
change of variables. Let A = vi−1 − vi and B = vi+1 − vi .
We can rewrite MinRad+ in terms of these variables and
compute its gradient as follows:

∇ ‖B‖
2 tan(θ/2)

=
1

2 tan(θ/2)

(
0,

B

‖B‖
)

(3–2)

− 1
2

[ ‖B‖
tan2(θ/2)

· d

dθ
tan(θ/2)

]
∇θ.

Now

d

dθ
tan(θ/2) =

1
2 cos2(θ/2)

=
1

21+cos θ
2

=
1

1 + cos θ
,

(3–3)

tan2(θ/2) =
1 − cos θ

1 + cos θ
.

So we can rewrite (3–2) as

∇ ‖B‖
2 tan(θ/2)

=
1

2 tan(θ/2)

(
0,

B

‖B‖
)
− ‖B‖

2 − 2 cos θ
∇θ

= (0, V ) + K∇θ.

Keeping track of the sign of the exterior angle, we see that
if n is the oriented unit normal to the plane containing
A and B, we have

∇θ =
(

A × n

‖A‖2 ,
n × B

‖B‖2

)
,

and so

∇ ‖B‖
2 tan(θ/2)

= (W,X + V ).

Using the definition of A and B to change back to the
original variables completes the proof.

The function MinRad(vi) provides a discrete analogue
to the radius of curvature for the polygonal curve V at
vi . Since this is a numerical computation of a second
derivative, we expect the function to be quite sensitive to
small changes in the positions of the vertices of V. This
sensitivity will limit the accuracy of our computations,
so we record an estimate of the norm of the gradient of
MinRad+(vi).

Corollary 3.5. If V is an equilateral polygon with edge
length � and MinRad vi = 1, then

‖∇MinRad± vi‖ ≥ 2
�2 .

Proof: Consider

‖W‖ =
‖vi+1 − vi‖
|2 cos θ − 2|

‖(vi−1 − vi) × n‖
‖vi−1 − vi‖2 .

Since the polygon is equilateral and n is a unit vector
normal to vi−1 − vi , this is just ‖W‖ = 1/|2 cos θ − 2|.
If MinRad = 1, then (squaring MinRad and using both
half-angle formulas for the tangent), we see that ‖W‖ =
|2 + 2 cos θ|/�2 . Since W appears alone in the formula for
∇MinRad+, this is a lower bound for the norm of the
entire gradient.
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4. PROGRAM DESIGN

4.1. Issues of Scale

The design and implementation of our algorithm
ridgerunner were shaped by the scale of the knot-
minimizing problems we intended to solve and the
amount of computer power we had on hand to solve them.
To inform the discussion that follows, we will now take a
moment to consider the dimensions of our problems. In a
typical run, we started by minimizing the length of a low-
resolution version of our knot or link with two vertices
per unit of ropelength (80 to 150 vertices).

Once that configuration was minimized, a medium-
resolution run at four vertices per unit of ropelength was
performed. A final run followed at eight vertices per unit
ropelength. Most of the runtime was spent during the
final run, which took 20–40 CPU hours on a desktop
computer. During the final run, the average edge length
� for our curves was approximately 0.061, which meant
that there were 658 edges. The average size of the strut
set was 892 pairs of points, while the average size of the
kink set was 19 vertices. The rigidity matrix was then on
average a 911 × 1974 matrix that was 99.4% sparse (no
more than 10875 of its 1798314 entries were nonzero). A
typical run contained several hundred thousand steps.

4.2. The Algorithm

Our method is based loosely on the method of con-
strained gradient descent. The basic idea is to generate
a series of polygons Vi that converge to a limit polygon
that is thickness-critical for minimizing a function f(V)
by taking a series of steps in the form

Vk+1 = Vk + α(−∇f)I ,

where α is chosen by a search algorithm. When
CThi(�,V) > 1, this is just the method of steepest de-
scent, since (−∇f)I = −∇f . When CThi(�,V) = 1, these
steps are tangent to the boundary of CThi(�,V) ≥ 1 and
in principle decrease CThi by no more than O(α2).

In some circumstances, such as when two sections of
tube touch for the first time, we can decrease CThi by
O(α) (which is much larger, since α � 1). We control
this error by searching for an α that keeps CThi(�,Vk +
α(−∇f)I ) within acceptable bounds. When CThi(�,Vk )
becomes too small, we correct the accumulated error us-
ing a Newton’s-method-type solver. The code terminates
when the constrained gradient is small enough to con-
vince us that we are near a point that is thickness-critical
for minimizing f . This procedure is summarized in
Algorithm 1.

Algorithm 1: The outline of the ridgerunner

algorithm.

input : A polygon V0 and an error bound MaxErr.
output: A sequence of positions Vk with

CThi(�,Vk ) ≥ 1 − MaxErr.

1 repeat
2 Compute −∇f = −∇Len(Vk ) + −∇Eq(Vk );
3 Find Strut(V) and Kink(V) and construct the

rigidity matrix A;
4 Compute constrained gradient (−∇f )I ;
5 Search for α such that Vk + α(−∇f )I

minimizes ropelength and is computationally
acceptable and set Vk+1 = Vk + α(−∇f )I ;

6 if CThi(�,Vk+1 ) < 1 − MaxErr then
7 Correct CThi(�,Vk+1 ) by Newton’s

method;
8 end
9 until ‖(−∇f )I ‖/‖−∇f‖ is sufficiently small ;

In the rest of this section, we will comment on each of
these steps in turn.

4.3. Line 2. Equilateral Polygons, CThi and Thip

We have proved that CThi ≥ 1 ⇐⇒ Thip ≥ 1 only for
equilateral polygons. It is therefore important that our Vk

remain at least approximately equilateral during a run.
We enforce this constraint by defining a penalty function
Eq(V) that is minimized when Vk is equilateral and min-
imizing the sum Len(V) + Eq(V). This is quite effective
(a typical run recorded an average error in edge length of
about 0.385%) in practice. We note that while CThi and
Thip might not be equal for nonequilateral polygons, we
avoid any problems that might result by performing all
of our final ropelength calculations with respect to the
original Thip thickness.

4.4. Line 3. Finding Strut(V) and Kink(V)

In principle, the strut and kink sets could be found by
direct inspection of all pairs of edges and all vertices
of V. But since there are usually 106 such pairs, this
naive method is too slow. So to find the strut and kink
sets, we used the clustering code octrope described in
[Ashton and Cantarella 05].

4.5. Line 4. Finding the Constrained Gradient

Once we have Strut(V) and Kink(V), we can use the
gradient formulas given in Propositions 3.3 and 3.4 to
construct the rigidity matrix A. We must then solve
the sparse nonnegative least-squares (SNNLS) prob-
lem minΛ≥0‖AΛ − (−∇f)‖, which we recall as equa-
tion (3–1).
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We use the freely available tsnnls library
[Cantarella et al. 08], which is an implementation
of the block-pivoting algorithm of [Portugal et al. 94].
The PJV algorithm solves a sequence of unconstrained
least-squares problems to find a partition of the variables
of Λ into complementary sets F and G representing
variables that will be nonzero and zero in the solution to
(3–1). It is very important to take advantage of the spar-
sity of A in order to solve these (rather large) problems
in an acceptable amount of time, since this step makes
the dominant contribution to our overall runtime in
most cases. To this end, tsnnls solves the least-squares
problem Ax = b by solving the “normal equations”
AT Ax = AT b. Since AT A is symmetric, we can solve
this system using a Cholesky factorization. This is done
very quickly using the multifrontal supernodal sparse
Cholesky code TAUCS of [Toledo et al. 03].

We have sacrificed some accuracy in favor of speed,
since the condition number of AT A is the square of the
condition number of A. A standard “rule of thumb” in
such situations is that the error in the solution is on the
order of machine epsilon (10−16) multiplied by the condi-
tion number. To verify that this was small in practice, we
used the rcond function in LAPACK to estimate the con-
dition number of the rigidity matrices of all of our final
configurations. The average condition number was on the
order of 104, with none being worse than 8 × 105. Thus
we expect to have an average error on the order of 10−8

and a worst-case error of 10−6 in our final computations
of the constrained gradient.

It is also worth noting that the TAUCS code will fail
if the rigidity matrix is singular, which will occur when
there is more than one way to balance the gradient force.
This is expected for very complicated knots, but seems
to be rare among knots in our data set. A more advanced
version of tsnnls would calculate a minimum-norm so-
lution to the least-squares problem in this case.

4.6. Line 5. Choosing a Step Size

When CThi(V) > 1, our code sets a small maximum step
size of 10−2 and proceeds by Euler integration.4 Once
CThi(V) = 1, thickness typically decreases by a small
amount at each step. We choose α by a line search al-
gorithm, finding the minimum ropelength of configura-

4 We could improve the accuracy and speed of this portion of the
computation by using a smarter ODE solving method. But these
steps have no linear algebra involved, so they are already orders of
magnitude faster than those to come. In practice, this portion of
the run consumes less than one percent of the total runtime.

tions in the given direction using Brent’s method with a
relatively low precision.

However, we do not always accept the ropelength-
minimizing α. Instead, we apply a collection of ad hoc
conditions, which we describe as α being “computation-
ally acceptable.” These include an upper bound on the
step size of 10−2 , a lower bound of 10−6 , and the re-
quirement that the linear algebra solver of Step 4 be able
to compute a new direction −∇fI at the new location.
These are motivated by several practical considerations.
If the step size is permitted to be too large, loose config-
urations will often form large kinked regions before the
tube contacts itself. Kinks reduce step sizes by orders of
magnitude. In practice, this means that such a run takes
an unacceptably long time to converge. If the step size
is permitted to be too small, the solver can stall just
before discovering a new self-contact. In these cases it
has proved better to take the risk of a slight increase in
ropelength in order to improve the strut set.

Finally, even when the step size is less than 10−2 , if
an arc of the knot suddenly contacts another arc, intro-
ducing too many new struts into the rigidity matrix, the
matrix can become numerically singular, defeating the
tsnnls solver of Step 4. Thus, we must look ahead and
make sure that the next position will be acceptable to
tsnnls before locking in a step size.

4.7. Line 7. Error Correction

When the error bound MaxErr = 10−4 is reached, we use
Newton’s method to return Vk to a configuration with
larger thickness. For any given variation W of V we can
estimate the change in the d(p, q)/2 for (p, q) ∈ Strut(V)
and in MinRad± vi for (vi,±) ∈ Kink(V) by AT W , where
A is the rigidity matrix we have already computed.

We use this observation in a straightforward way.
We construct a vector C of desired corrections that is
equal to (1 − MaxErr/2) − d(p, q)/2 for (p, q) ∈ Strut(V)
and (1 − MaxErr/2) − MinRad± vi for (vi,±) ∈ Kink(V).
Having done so, we find a minimum-norm solution to
AT W = C. We then step according to W , using a search
algorithm to decide the step size, rebuild the rigidity ma-
trix in case we have changed the strut or kink set in the
correction step, and iterate.

We note that we do not attempt to correct all of the
error in CThi(V) during this procedure. If we did so, we
would risk losing struts and kinks when we rebuild the
rigidity matrix. In that case, the next Newton step, ig-
noring those pairs or vertices, might rediscover them as
struts and kinks. In principle, this cycling behavior could
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delay or prevent convergence of the Newton procedure,
as noted in [Fletcher 01]. Our method does not elimi-
nate this possibility entirely (in the current version of the
code, we have observed occasional failures of the Newton
solver), but in practice, the Newton solver almost always
converges in only a few iterations.

The main problem with the Newton solver is that it is
slow for large problems. The matrix AT is mapping from
a high-dimensional space of variations to a relatively low-
dimensional space of struts and kinks, so it has a large
kernel. Hence the matrix AAT is not positive definite,
and so we cannot solve AT W = C using the method of
normal equations and the fast Cholesky decomposition
of TAUCS. Instead, we must use the older lsqr code of
[Paige and Saunders 82] to find a minimum-norm solu-
tion to the problem. This can be as much as a hundred
times slower than a regular step.

We always have the option of sidestepping Newton
correction by simply scaling the knot (as in Pierański’s
SONO algorithm). This preserves ropelength but de-
stroys the strut set completely, requiring us to rebuild
the strut set during subsequent steps. Our experience
has been that this can improve performance during the
middle stages of a run, when a fairly large number of
struts and kinks have formed but the knot is still far
from tight, but it is better to use Newton correction in
the final stages of a run when one is trying to adjust a
converged strut set to improve the final results.

At the moment, the speed of lsqr controls the overall
performance of our code. We hope to find an improved
error-correction procedure in future versions of the soft-
ware.

4.8. Modified Versions of the Algorithm

We have also modified our algorithm to handle some spe-
cial cases, such as open curves with fixed endpoints or
endpoints constrained to lie in planes. In these cases,
the gradients of the endpoint constraints are added to
the rigidity matrix and the gradient of length is resolved
against them in Step 4. In addition, a specialized error-
correction algorithm enforces the constraints after each
step to prevent numerical error from causing the end-
points to drift away from their positions over time. The
general Newton’s method algorithm for error-correction
is also modified in these cases to take endpoint con-
straints into account.

In addition, we have found that curves whose final
tight positions have long segments with no struts or kinks
as well as tightly curved regions with many struts and

kinks often take a very large number of steps to tighten
completely. Sections of the curve with no struts or kinks
simply minimize length with no constraints and must
therefore end up as straight lines. But as they approach
this position, the gradient of length approaches zero,
while regions where the gradient of length is balanced
by struts and kinks have comparatively large length gra-
dients. Since the step size is controlled by the tightly
curved regions, it may take a very long time for the strut-
and kink-free regions to finish straightening. We have had
some success in these cases with a modified version of our
algorithm that detects sections of curve with no struts or
kinks and scales up the length gradient on those portions
of the curve alone.

5. RESULTS OF COMPUTATIONS

We now present the main results of our computations.
To summarize, we have significantly extended the range
and quality of existing computations of tight knots and
links. The new data support some interesting conjectures
about the geometric structure of these configurations.

5.1. Validation of ridgerunner Computations

To verify that the system works, we checked the results
of ridgerunner against some theoretical results. The re-
sults of the comparison appear in Table 1. As we can
see from the table, the relative error in these ropelength
computations is as small as 0.0017%.

The paper [Cantarella et al. 06] also gives an explicit
strut set for the Borromean rings. To compare the nu-
merically computed strut set to the theoretical one, we
plot them together in Figure 7. The figure shows that
the numerically computed strut set is quite close to the
actual one. Figure 8 shows a similar comparison be-
tween theoretical results and a ridgerunner computa-
tion for the strut set of the “simple clasp” formed by
two strands looped over one another. The theoretical re-
sults in [Cantarella et al. 06] for this clasp assume that
the curvature of the clasp is not bounded, so we compare
with the results of a run of our software that did not
enforce curvature constraints.

5.2. Computing Polygonal-Ropelength Minimizers for
Many Knots and Links

We minimized polygonal ropelength for all prime knots
of ten and fewer crossing and all prime links of nine
and fewer crossings (a total of 379 knot and link types)
at resolutions of at least eight vertices per unit of



72 Experimental Mathematics, Vol. 20 (2011), No. 1

Borromean Rings

Link Name Clasp Hopf Link (22
1) 22

1#22
1 (63

2)

Vertices 332 216 384 930
Ropp bound 4.2841 25.1406 41.7131 58.0192
Rop bound 4.2837 25.1334 41.7086588 58.0070
Smooth length 4.2629

[Cantarella et al. 06]
8π

[Cantarella et al. 02]
12π + 4

[Cantarella et al. 02]
58.0060
[Cantarella et al. 06]

Relative error 0.4% 0.02% 0.02% 0.0017%

TABLE 1. Numerical results from ridgerunner compared to the minimum ropelength values from [Cantarella et al. 02] and
[Cantarella et al. 06]. The relative errors in the computations are quite small.

ropelength (several hundred vertices in total). For a few
knots and links of special interest, we computed high-
resolution runs with 16, 32, or 74 vertices per unit ro-
pelength. The largest runs in our data set contain about
2400 vertices.

The computations were performed on clusters at the
University of St. Thomas, the University of Georgia, and
the ACCRE cluster at Vanderbilt University. We began
our computations with an initial low-resolution (200 ver-
tices or fewer) polygon, which we ran until the resid-
ual (‖(−∇f)I ‖/‖−∇f‖) was sufficiently low. We then
increased resolution by a minrad-preserving version of
spline interpolation and minimized again from the re-
sulting new starting configurations.

Our initial goal was a residual less than 0.01, which
we achieved for 375 of the 379 knots and links in our
data set. We were able to reach a residual of 0.001
for 286 of the knots and links in our data set, prov-
ing that our knots are close to being critical for the
CThi thickness. While our knots are not quite equilat-
eral, they all satisfy the hypotheses of Corollary 2.8 and
are hence also close to critical for the original Thip thick-
ness. Because of this corollary, we know that both thick-
nesses are equal for our configurations, so we have com-
puted and reported the Thip thickness and ropelength
below.

We started each knot from at least five initial con-
figurations, including the configurations from Knot-

Plot5 (similar to the configurations in Rolfsen’s table),
the TOROS simulated annealer [Rawdon 03], Gilbert’s
minimized configurations from the online Knot Atlas
[Gilbert 11], hand-drawn configurations from Kawauchi’s
A Survey of Knot Theory [Kawauchi 96], and positions
generated from KnotPlot’s diagram command. The re-
sults shown describe the lowest ropelength we achieved
from any of these starting configurations.

The polygonal ropelengths for our curves appear in
the column Ropp of Tables 3–5 of the appendix (Section
7), while a plot of the ropelengths organized by crossing
number appears in Figure 10.

5.3. Generating Upper Bounds for Smooth Ropelength

Our computations yielded a large set of approximate min-
imizers of Len(V)/Thip(V). From these, we wanted to
generate upper bounds on the minimum (smooth) rope-
length of these knots and links. Rawdon has given general
bounds [Rawdon 98, Rawdon 03] on the rate at which
Thip → Thi, which we could have used for this purpose.
But we were interested in small improvements in rope-
length, so we used a more careful approach.

Our procedure for constructing smooth ropelength
bounds from polygonal data is as follows. Beginning with

5 Available at http://www.knotplot.com.
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FIGURE 7. The diagonal above is labeled with arc-length values along the three components of the Borromean rings
link, which is numbered 63

2 in Rolfsen’s table. Every pair (s, t) ∈ Strut(V) is represented by a dark green square centered
on (s, t). As we see from the top plot, no tube around a component of the link is in contact with itself (so the three
triangles near the diagonal are empty). But each of the components makes contact with the other two, as shown by
the boxes plotted in the rectangles forming the remainder of the plot. We can see that the contacts break up naturally
into “lantern-shaped” structures. In the bottom plot, we compare one “lantern” to the self-contact set predicted by
[Cantarella et al. 06], which is represented by a black line (Figure is available in color online).

V, we splice circle arcs of radius MinRad(vi) into the cor-
ners at vertices vi as shown on the left-hand side of Figure
9 to create a piecewise C2 curve V (s). The minimal ra-
dius of curvature for this curve is equal to MinRad(V).
But the self-distances of V (s) may be different from
those of the polygon V if they involve the new circle
arcs.

We must therefore compute the self-distances of V(s).
This poses a problem: V(s) is composed of arcs of cir-
cles and line segments, and Neff has shown that there is
no simple formula for the distance between two arbitrary
circle arcs in 3-space [Neff 90]. So we estimate the self-
distances of the smooth curve V (s) by taking distances
between a finite number of sample points on the curve
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FIGURE 8. The left-hand picture shows a (loose) configuration of the “simple clasp”—a simple two-strand tangle
that serves as an interesting model for the interaction between two ropes passing over each other at right angles. A
ropelength-critical configuration of this tangle has been derived and studied extensively in [Cantarella et al. 06] and
[Cantarella et al. 11]. Since this derivation included an explicit strut set, it is natural to compare ridgerunner’s results
to this theoretical picture. This comparison is shown in the two plots center and right, which plot the positions of struts
in arc-length coordinates with the origin located where each curve first begins to turn. The enlarged plot (right) shows
the agreement between theoretical and computational results. The data shown are from a 332-edge polygonal clasp.

separated from one another by some ε. These distances
are presumably larger than the minimum self-distance
along the curve, but we can use them to bound the min-
imum self-distance using the following proposition.

Proposition 5.1. Suppose that c(s) and d(t) are each unit-
speed piecewise C2 arcs with curvature bounded above by
K. Further, suppose that ‖c(0) − d(0)‖ > 1/2 is the mini-
mum distance between c and d. Then for any 0 ≤ s, t ≤ ε,

‖c(0) − d(0)‖ ≥ ‖c(s) − d(t)‖ − (1 + K) ε2 . (5–1)

Proof: Since ‖c(s) − d(t)‖ has a local minimum at (0, 0),
we know that

〈c′(0), c(0) − d(0)〉 = 0 and 〈d′(0), c(0) − d(0)〉 = 0.

Further, the curvature bound tells us that ‖c′′‖, ‖d′′‖ <

K. We will use these facts to estimate ‖c(s) − d(t)‖2 . If
we let C(s) =

∫ s

0 c′(x) dx and D(t) =
∫ t

0 d′(y) dy, then we

vi−1

i

vi+1

c(0) d(0)
x

c(s) d(t)
x + (1 + K)ε2

FIGURE 9. On the left, we see the curve constructed from splicing a circular arc of radius MinRad(vi ) into vi−1vivi+1 .
This curve is C1 , but not C2 at the splice points. On the right, we see the setup for Proposition 5–1. On the left and right
are arcs c and d with curvature ≤ K and length ≤ ε. The minimum distance x between them occurs at c(0), d(0). We
prove that this distance is bounded below by the distance between any other pair of points c(s) and d(t) minus (1 + K)ε2 .

have c(s) = C(s) + c(0) and d(t) = D(t) + d(0), so

‖c(s) − d(t)‖2 = ‖C(s) − D(t)‖2 − 2
〈
C(s) − D(t),

c(0) − d(0)
〉

+ ‖c(0) − d(0)‖2 . (5–2)

Since c(s) and d(t) are unit-speed curves and 0 ≤ s, t ≤ ε,
we know that ‖C(s)‖, ‖D(t)‖ < ε, and so the first term
is bounded above by 4ε2 .

The middle term is more interesting. As before, we
can let CC(s) =

∫ s

0 c′′(x) dx and DD(t) =
∫ t

0 d′′(y) dy,
so c′(s) = CC(s) + c′(0) and d′(t) = DD(t) + d′(0). Since
c′(0) and d′(0) are normal to c(0) − d(0), we can then
write this middle term as

− 〈C(s) − D(t), c(0) − d(0)〉

= −
〈∫ s

0
CC(x) dx −

∫ t

0
DD(y) dy, c(0) − d(0)

〉
.

Since ‖c′′‖, ‖d′′‖ < K, we know that ‖CC(s)‖ < Ks,
‖DD(t)‖ < Kt. Thus (recalling that s, t < ε) the norms
of the integrals on the right above are each bounded
above by Kε2/2, and the entire dot product is bounded
above by Kε2‖c(0) − d(0)‖.
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Cr Rop Links

3 32.74 31

4 [40.0122, 42.0887] 42
1 , 41

5 [47.2016, 49.7716] 51, 52
1

6 [50.5539, 58.1013] 63
3 , 62

3

7 [55.5095, 66.3147] 72
7 , 72

6

8 [60.5754, 75.2592] 83
7 , 84

1

9 [66.0311, 83.6092] 92
49 , 92

42

10 [71.0739, 92.3565] 10124 , 10123

TABLE 2. This table shows the links of smallest and largest
minimum ropelength for each crossing number (according
to our data). Recall that we did not minimize ten-crossing
links, so it is likely that some ten-crossing link type has
larger or smaller minimum ropelength than the 10123 and
10124 knots.

Thus the right-hand side of (5–2) is bounded by
‖c(0) − d(0)‖2 + 4ε2 + 2Kε2‖c(0) − d(0)‖. Since 1/2 <

‖c(0) − d(0)‖, we have 4ε2 < 2ε2‖c(0) − d(0)‖. Using
this, we see that

4ε2 + 2Kε2‖c(0) − d(0)‖ + ‖c(0) − d(0)‖2

< ‖c(0) − d(0)‖2 + (2 + 2K)ε2‖c(0) − d(0)‖
<

(‖c(0) − d(0)‖ + (1 + K)ε2)2
.

This completes the proof.

Our code, named roundout rl,6 establishes a coarse
net of points on V (s) × V (s) � [0, 1] × [0, 1] and then
eliminates subsquares of this square from consideration
using Proposition 5–1. The remaining squares are then
subdivided and searched in turn. The process terminates
once we have computed the local minima of d(p, q) on
the square with whatever accuracy we require.

Using roundout rl in double-precision machine arith-
metic, we found upper bounds for the ropelengths of
our 379-minimized configurations. These figures appear
in column Rop of Tables 3 through 5, in Section 7. These
figures constitute the best known data set on the lengths
of tight knots and links. The data are summarized in
Figure 10 and Table 2.

To test how accurate these final results are likely to
be, we computed the relative residual ‖(−∇f)I ‖/‖−∇f‖
for all these knots and links. The average residual of
knots in our tabulation is about 0.00289. We have

6 The source code for roundout rl is freely available as part of the
octrope library.

achieved residuals as low as 2.54 × 10−5 for knots and
links of special interest, such as 818 , 10123 , the trefoil,
and the Borromean rings. A table of these residuals
appears in Section 7. We achieved residuals <0.01 for
all the minimum ropelength positions of knots and links
in our catalog except 84

3 , where a configuration built by
hand from stadium curves proved slightly better than
the best ridgerunner configuration.

5.4. Generation of Tightening Animations, Pictures,
and Strut Sets

We have saved the minimization runs for each of these
knots and links as an animation showing the tightening
knot.7

We have also generated images of the polygonal strut
sets and approximately tight configurations for each of
the 379 knots and links in our data set. Space consid-
erations prevent us from including all of these data in
this paper, so they are enclosed in the associated Atlas
of Tight Links [Ashton et al. 11]. Figure 11 shows a typ-
ical page from the Atlas. All of our tight knot and link
data, including coordinates for the tight configurations,
are publicly available with the publication of this paper.
We note that for technical reasons, our minimized con-
figurations have thickness close to 1/2 (rather than 1,
as in the discussion above), and hence their maximum
curvature is 2.

5.5. Discovery of Symmetric Tight Knots

An interesting feature of the ropelength function is that
minimizing ropelength usually breaks any symmetry
enjoyed by the original configuration of a given knot.
For instance, while the minimizing configuration for the
(3, 2) torus knot 31 appears to be threefold symmetric
(as expected), the minimizing configuration for the (5, 2)
torus knot 51 is not fivefold symmetric. It was therefore
somewhat surprising to discover two knots in our data
set, 818 and 10123 , for which the tight configurations
are highly symmetric. These knots are shown in Figure
12. Their self-contact sets (which appear on pages 67
and 358 of the Atlas, and are reproduced in Section 7 of
this paper as Figures 15 and 16) are highly suggestive,
resembling those of the Borromean rings (page 29),
and appearing to consist of a single element repeated
several times. This feature implies that these knots
may be better candidates for explicit solution than the
seemingly simpler trefoil knot.

7 These animations are posted on the web at http://www.
jasoncantarella.com/movs/.
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Link Ropp Rop

22
1 25.1415 25.1334

31 32.7437 32.7436

41 42.0971 42.0887

42
1 40.0203 40.0122

51 47.2149 47.2016
52 49.4820 49.4701

52
1 49.7864 49.7716

61 56.7178 56.7058
62 57.0381 57.0235
63 57.8531 57.8392

62
1 54.3919 54.3768

62
2 56.7087 56.7000

62
3 58.1142 58.1013

63
1 57.8286 57.8141

63
2 58.0112 58.0070

63
3 50.5602 50.5539

71 61.4234 61.4067
72 63.8684 63.8556
73 63.9430 63.9285
74 64.2836 64.2687
75 65.2705 65.2560
76 65.7068 65.6924
77 65.6235 65.6086

72
1 64.2484 64.2345

72
2 65.0363 65.0204

72
3 65.3414 65.3257

72
4 65.0759 65.0602

72
5 66.2068 66.1915

72
6 66.3281 66.3147

72
7 55.5177 55.5095

72
8 57.7714 57.7631

73
1 65.8157 65.8062

81 70.9833 70.9669
82 71.4141 71.3985

Link Ropp Rop

82 71.4141 71.3985
83 71.1736 71.1575
84 71.4872 71.4704
85 72.1519 72.1344
86 72.4903 72.4725
87 72.2292 72.2137
88 72.7438 72.7241
89 72.4568 72.4399
810 72.9580 72.9379
811 72.9110 72.8966
812 73.9707 73.9518
813 72.8194 72.8000
814 73.7784 73.7612
815 73.9076 73.8977
816 73.5207 73.5054
817 74.5075 74.4912
818 74.9114 74.9063
819 60.9970 60.9858
820 63.1066 63.0929
821 65.5387 65.5248

82
1 68.4208 68.4045

82
2 71.0493 71.0311

82
3 72.7292 72.7133

82
4 72.5995 72.5855

82
5 73.9503 73.9331

82
6 73.2133 73.1955

82
7 74.3917 74.3752

82
8 73.7714 73.7540

82
9 73.2196 73.2038

82
10 73.6729 73.6548

82
11 72.9786 72.9608

82
12 73.8018 73.7846

82
13 74.1522 74.1369

82
14 73.6878 73.6695

82
15 64.3105 64.2996

82
16 66.8148 66.8046

83
1 72.2765 72.2603

83
2 72.9357 72.9181

83
3 74.8824 74.8656

83
4 75.0026 74.9866

83
5 73.4072 73.3932

83
6 74.7320 74.7159

83
7 60.5897 60.5754

83
8 65.0195 65.0042

Link Ropp Rop

83
8 65.0195 65.0042

83
9 66.7076 66.6936

83
10 65.4704 65.4580

84
1 75.2748 75.2592

84
2 67.4087 67.3937

84
3 66.2969 66.2865

91 75.5663 75.5461
92 78.1231 78.1066
93 78.2040 78.1892
94 78.2793 78.2665
95 78.6615 78.6447
96 79.5802 79.5597
97 79.6924 79.6731
98 80.0276 80.0080
99 79.8965 79.8778
910 79.8009 79.7855
911 80.1355 80.1180
912 80.0997 80.0834
913 80.2657 80.2498
914 80.0193 80.0001
915 80.8941 80.8725
916 80.1334 80.1143
917 80.4718 80.4530
918 81.5816 81.5673
919 80.9196 80.9004
920 80.2421 80.2219
921 81.1083 81.0920
922 81.0587 81.0390
923 81.2922 81.2733
924 80.9626 80.9451
925 81.1348 81.1198
926 80.9241 80.9053
927 81.1838 81.1813
928 81.0878 81.1352
929 81.2019 81.1821
930 81.4811 81.4883
931 81.6751 81.6581
932 81.5343 81.5175
933 82.7691 82.7541
934 82.1884 82.1706
935 79.2390 79.2165
936 80.2275 80.2064
937 81.1744 81.1674
938 81.7858 81.7697

TABLE 3. Part 1 of Ropelengths of tight knots and links by knot type.
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FIGURE 10. This graph shows the relationship between ropelength (y-axis) and crossing number (x-axis) for knots and
links in our data set. The bottom lines show the bound of [Denne et al. 06] for ropelength of a nontrivial knot (horizontal
line, dropping to zero below crossing number 3) and Diao’s bound [Diao 03] for ropelength in terms of crossing number
(curve). We can see that there is a substantial overlap of ropelength values between different crossing numbers. This
is reflected in Tables 6–7 of Section 7, which show the knots in ropelength order. Table 2 shows the links of least and
greatest ropelength for each crossing number.

FIGURE 11. This figure shows simplified versions of two pages from the Atlas of Tight Links for the knot 71 and the link
42

1 . On each page, the top left pictures show three views of the link. The triangular graphic shows the struts of the link
as found by ridgerunner plotted as points (s, t) in arc-length coordinates along the link. The background of each plot
changes color to indicate the change from one component to the next. The key along the left-to-right diagonal is given
in arc-length units and color-coded with the pictures at upper left to show which component is referred to by the plot.
Recall that these configurations have thickness 1/2, so the maximum arc-length value is half the ropelength. (Figure is
available in color online)
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FIGURE 12. Two highly symmetric tight knots are the 818 knot shown above left and the 10123 knot shown above right.
Rounding the corners of these curves yields ropelength upper bounds of 74.9063 and 92.3565, respectively. Because their
strut sets break into a particularly simple form (see Figures 15 and 16), these knots may be better candidates for an
explicit solution than the trefoil. (Figure is available in color online)
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FIGURE 13. This plot shows the computed 1/ MinRad values as a function of arc length along the polygon for a 2400-
edge trefoil with thickness close to 1/2, residual 0.0018, and polygonal ropelength 32.743663 (rounding out the corners
as described above gives a smooth ropelength upper bound of 32.74352 for this configuration). The value at each vertex
is plotted above with no numerical smoothing. Although there is some noise in the portions of the plot where curvature
is not constrained, the six kinked regions are clearly resolved. A total of 117 vertices are involved in these regions.

FIGURE 14. This figure shows two views of our computed tight configuration of the link 63
3 (ropelength upper bound

50.5539). Straight segments on the blue and white components, which occur when these components lose contact with
the other components of the link, are highlighted in darker blue. (Figure is available in color online)
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Link Ropp Rop

938 81.7858 81.7697
939 81.8439 81.8264
940 81.6652 81.6474
941 81.3687 81.3540
942 69.4867 69.4756
943 71.5050 71.4901
944 71.5587 71.5427
945 74.0861 74.0761
946 68.6330 68.6169
947 74.8935 74.8785
948 74.0317 74.0228
949 73.9403 73.9286

92
1 78.6049 78.5862

92
2 79.5287 79.5152

92
3 79.9495 79.9312

92
4 78.6961 78.6764

92
5 79.6569 79.6384

92
6 80.1200 80.1017

92
7 81.1437 81.1261

92
8 80.9964 80.9766

92
9 80.3174 80.2999

92
10 80.3218 80.3036

92
11 82.0329 82.0140

92
12 81.9602 81.9414

92
13 79.3468 79.3280

92
14 80.7276 80.7104

92
15 80.5659 80.5458

92
16 81.3758 81.3565

92
17 80.3223 80.3022

92
18 81.7563 81.7461

92
19 79.4706 79.4491

92
20 80.1357 80.1147

92
21 80.6010 80.5824

92
22 81.0964 81.0794

92
23 80.2592 80.2379

92
24 81.7913 81.7691

92
25 81.7810 81.7630

92
26 82.1031 82.0859

92
27 81.0288 81.0141

92
28 81.3352 81.3222

92
29 82.1606 82.1445

92
30 82.2155 82.1987

92
31 80.5732 80.5561

92
32 81.4151 81.3990

92
33 82.1790 82.1612

Link Ropp Rop

92
33 82.1790 82.1612

92
34 81.8490 81.8320

92
35 81.2508 81.2318

92
36 80.7066 80.6866

92
37 81.9102 81.8927

92
38 82.6750 82.6561

92
39 81.8972 81.8758

92
40 81.9680 81.9460

92
41 83.6038 83.5878

92
42 83.6304 83.6092

92
43 66.2549 66.2398

92
44 72.2072 72.1896

92
45 71.0815 71.0726

92
46 73.8347 73.8215

92
47 69.9130 69.8983

92
48 73.6563 73.6426

92
49 66.0444 66.0311

92
50 69.3353 69.3284

92
51 70.5455 70.5299

92
52 72.8271 72.8106

92
53 68.0154 68.0082

92
54 71.0240 71.0089

92
55 73.8129 73.7998

92
56 72.9013 72.8833

92
57 72.2115 72.1922

92
58 74.1685 74.1499

92
59 72.3285 72.3130

92
60 73.5589 73.5442

92
61 69.3751 69.3636

93
1 81.1522 81.1333

93
2 81.7304 81.7190

93
3 82.2498 82.2346

93
4 82.5202 82.5029

93
5 80.2664 80.2456

93
6 80.9434 80.9258

93
7 82.0540 82.0378

93
8 81.1278 81.1107

93
9 81.5469 81.5295

93
10 82.3146 82.2964

93
11 82.0023 81.9867

93
12 82.4811 82.4608

93
13 71.9210 71.9119

93
14 74.4319 74.4205

93
15 74.2998 74.2810

93
16 75.0113 75.0003

Link Ropp Rop

93
16 75.0113 75.0003

93
17 72.8831 72.8705

93
18 72.4529 72.4382

93
19 72.6412 72.6275

93
20 75.9995 75.9845

93
21 74.8967 74.8908

94
1 81.6096 81.5927

101 85.1146 85.0947
102 85.6050 85.5850
103 85.4483 85.4278
104 85.8181 85.7974
105 86.4952 86.4741
106 86.8353 86.8125
107 87.2979 87.2775
108 85.8620 85.8428
109 86.8410 86.8222
1010 87.2060 87.1870
1011 86.9848 86.9630
1012 87.1055 87.0824
1013 88.9148 88.8989
1014 88.3232 88.3023
1015 87.4787 87.4606
1016 87.4946 87.4684
1017 87.0473 87.0277
1018 88.4257 88.4092
1019 87.5311 87.5099
1020 86.8731 86.8514
1021 87.0497 87.0343
1022 87.2417 87.2182
1023 88.7048 88.6901
1024 88.4160 88.3963
1025 88.7767 88.7587
1026 88.4564 88.4328
1027 89.8944 89.8795
1028 87.5276 87.5061
1029 89.2410 89.2238
1030 88.3731 88.3558
1031 88.2624 88.2401
1032 88.6809 88.6597
1033 88.2952 88.2744
1034 87.0322 87.0101
1035 88.0891 88.0697
1036 88.0424 88.0233
1037 88.1319 88.1153

TABLE 4. Part 2 of ropelengths of tight knots and links by knot type.
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Link Ropp Rop

1037 88.1319 88.1153
1038 88.3478 88.3257
1039 88.3562 88.3323
1040 89.2659 89.2464
1041 89.0725 89.0553
1042 89.9013 89.8857
1043 89.3512 89.3366
1044 88.8714 88.8515
1045 89.4836 89.4621
1046 86.4718 86.4487
1047 87.3043 87.2821
1048 87.3814 87.3643
1049 88.2914 88.2705
1050 87.3876 87.3716
1051 88.3209 88.3002
1052 88.0719 88.0565
1053 88.8361 88.8180
1054 87.5336 87.5127
1055 88.3760 88.3699
1056 89.0160 88.9973
1057 89.6126 89.5946
1058 88.9623 88.9445
1059 89.2228 89.2090
1060 89.3397 89.3190
1061 86.3754 86.3571
1062 87.5318 87.5071
1063 88.4046 88.3861
1064 87.4878 87.4742
1065 88.3918 88.3725
1066 89.0275 89.0047
1067 88.4741 88.4534
1068 88.1199 88.1013
1069 89.0983 89.0778
1070 89.2068 89.1846
1071 89.0853 89.0699
1072 89.1974 89.1779
1073 89.5332 89.5130
1074 88.1285 88.1077
1075 88.9725 88.9524
1076 88.3673 88.3479
1077 88.5689 88.5471
1078 88.5548 88.5322
1079 88.9647 88.9488
1080 89.1669 89.1556

Link Ropp Rop

1080 89.1669 89.1556
1081 90.0181 90.0007
1082 88.7011 88.6801
1083 89.5544 89.5314
1084 89.6518 89.6788
1085 87.8403 87.8164
1086 88.7050 88.6851
1087 89.1363 89.1173
1088 89.5638 89.5461
1089 89.4343 89.4178
1090 88.9330 88.9115
1091 88.9611 88.9435
1092 89.6200 89.6011
1093 88.3962 88.3773
1094 88.8514 88.8306
1095 90.0056 89.9848
1096 89.5493 89.5284
1097 89.4340 89.4163
1098 89.7172 89.6969
1099 88.8926 88.8734
10100 88.7124 88.6927
10101 89.7344 89.7210
10102 88.7969 88.7734
10103 88.7971 88.7914
10104 91.7476 91.7280
10105 89.8260 89.8055
10106 89.1546 89.1319
10107 89.7525 89.7356
10108 88.5137 88.4932
10109 91.1966 91.1789
10110 89.6275 89.6114
10111 89.6677 89.6438
10112 89.5744 89.5529
10113 90.2239 90.2141
10114 89.3062 89.2856
10115 90.4340 90.4176
10116 90.2703 90.2583
10117 89.5335 89.5245
10118 89.5261 89.5094
10119 90.1394 90.1226
10120 90.1862 90.1674
10121 89.9375 89.9240
10122 89.8258 89.8094
10123 92.3646 92.3565

Link Ropp Rop

10123 92.3646 92.3565
10124 71.0894 71.0739
10125 74.9907 74.9778
10126 77.6202 77.6026
10127 80.0235 80.0124
10128 76.4187 76.4026
10129 78.5739 78.5553
10130 78.8499 78.8356
10131 81.2871 81.2678
10132 74.7441 74.7330
10133 77.1813 77.1631
10134 78.6521 78.6377
10135 81.2305 81.2157
10136 78.0398 78.0276
10137 79.6352 79.6185
10138 82.5504 82.5320
10139 72.9001 72.8944
10140 73.8610 73.8477
10141 76.9687 76.9543
10142 75.8951 75.8754
10143 78.2422 78.2307
10144 81.4378 81.4275
10145 75.9194 75.9076
10146 79.7416 79.7322
10147 79.1666 79.1571
10148 79.0893 79.0742
10149 81.0500 81.0318
10150 80.1392 80.1219
10151 81.8414 81.8207
10152 79.1715 79.1556
10153 80.4764 80.4648
10154 81.5405 81.5218
10155 78.0648 78.0503
10156 79.5639 79.5443
10157 81.4731 81.4568
10158 81.6398 81.6220
10159 79.8863 79.8692
10160 78.1529 78.1472
10161 74.5460 74.5302
10162 81.0033 80.9838
10163 82.6629 82.6548
10164 82.1862 82.1698
10165 82.8211 82.8040

TABLE 5. Part 3 of ropelengths of tight knots and links by knot type.
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6. FUTURE DIRECTIONS

Several directions for future research suggest themselves
from these experiments. First, we note that while we have
given finite strut sets for several polygonal knots and ob-
served that they are close to the 1-dimensional strut sets
for the corresponding smooth tight configurations, we
have not proved a theorem explaining how our polygonal
strut sets converge to the strut sets of a critical polygon.
We conjecture that this is part of a larger theorem that
would show that if a family of polygonal-ropelength criti-
cal configurations Vn converges to a C1,1 curve V , then V

is ropelength-critical in the sense of [Cantarella et al. 11],
the strut sets of the Vn converge in Hausdorff distance
to the self-contact set of V , and the kink sets of the Vn

converge to the portion of V at maximum curvature.
There are several features of the tight knot data set

that we have discovered that seem worthy of further
investigation. Carlen, Smutny, and Maddocks noted in
[Carlen et al. 05] that curvature constraints seemed to
be “within a rather small tolerance of being active” at
several points on their numerical approximations of the
tight trefoil and figure-eight knots. Baranska et al. pro-
vided plots of the curvature of their approximately tight
trefoil in [Baranska et al. 08] that appear to confirm this
observation (in fact, these authors even provide approx-
imate plots of the torsion of their tight trefoil obtained
by numerical smoothing).

We have noticed the same phenomenon in our data
sets. Our computation of the curvature for the tre-
foil appears in Figure 13. In the Atlas of Tight Knots,
we highlight the active curvature constraints found by
ridgerunner as part of the minimization process by red
lines on the plot of strut sets. These active curvature
constraints occur in 359 of the 379 knots and links mini-
mized. This provides suggestive numerical evidence that
kinks are rather common in tight knots. We intend to
provide better evidence for this conjecture in an upcom-
ing publication.

Several authors have proved versions of the theorem
that an interval of a tight knot with curvature less than
the maximum allowed and no struts must be a straight
line segment [Gonzalez and Maddocks 99, Schuricht and
von der Mosel 04, Durumeric 07, Cantarella et al. 11]. We
see this phenomenon 325 times in the Atlas, for instance
in the link 63

3 on page 28 (see also Figure 14), which
appears to have three straight segments of arc lengths
2.1, 1.14, and 0.56. We highlight these segments in blue
on the plots in the Atlas. These segments are almost as
common as kinked regions in our data set, suggesting that

they are generic features of tight configurations. Gonzalez
has conjectured that every composite knot formed from
joining a knot to its mirror image has a critical config-
uration with a pair of straight segments. We do not ad-
dress this conjecture here, since we consider only prime
knots and links, but we do intend to compute approxi-
mately minimizing composite knots and links in a future
publication.

The paper [Cantarella et al. 11] (as well as [Maddocks
and Keller 87] under very different hypotheses) shows
that a pair of arcs in a tight knot coparameterized by
a single family of struts and having curvature less than
the maximum bound form a standard double helix. As
far as we can tell, this phenomenon occurs only a few
times in the Atlas, for instance in the 63

3 link on page
28, the 72

7 link on page 43, the 819 knot on page 66, and
possibly in the 83

7 link on page 91. It would be interesting
to look for more critical configurations with double-helix
sections.

We also contemplate further improvements to our nu-
merical knot-tightening methods. The constrained gradi-
ent descent method presented in this paper is a signifi-
cant improvement over simulated annealing—in practice,
it has proved to be an effective minimizer for both knots
and links. But this is surely not the last word in nu-
merical ropelength minimization. Our method is a mem-
ber of the class of “projected-gradient” methods in-
troduced by Rosen and Zoutendijk in the early 1960s
[Rosen 61, Zoutendijk 59]. These algorithms are subject
to a number of well-known numerical problems, such as a
tendency to “wobble” when confronted with a steep-sided
valley and the problem of “zigzagging,” which occurs
when elements repeatedly enter and leave the strut and
kink sets on successive minimization or error-correction
steps. Our implementation seems to suffer from both
these problems during some difficult minimizations. We
have experimented with adding conjugate-gradient fea-
tures to our existing code to solve these problems, but so
far, the results seem to yield only a slight improvement.

For these reasons, more modern methods such as se-
quential quadratic programming (SQP) have become the
norm [Fletcher 01]. Codes implementing these methods
require the user to specify a set of constraint functions in
advance. Unfortunately, in our formulation of the con-
straint thickness, an n-vertex polygon has O(n2) self-
distance constraints and O(n) turning angle or MinRad
constraints. For a typical polygon with 103 vertices,
this would mean a set of 106 constraints—too many
to be practical. However, if we know approximately
which self-distance constraints will be active in the final
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TABLE 6. Part 1 of knot and link types sorted by ropelength.
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Link
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Link
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Link
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Link
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Link
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TABLE 7. Part 2 of knot and link types sorted by ropelength.

FIGURE 15. This reproduction of the entry for 818 in the Atlas of Tight Knots and Links shows that the strut and kink
sets for this knot are highly symmetric. The Atlas provides similar information for all our computed tight knots and links.
(Figure is available in color online)
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Link Residual

22
1 2.45124e − 05

31 0.00621792

41 0.000996335
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1 0.000999549

51 0.00981995
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Link Residual

82 0.000982684
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810 0.000978418
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813 0.000993117
814 0.000981486
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816 0.000981316
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5 0.000995844
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7 0.00119532

83
8 0.00100655

Link Residual

83
8 0.00100655

83
9 0.000980533

83
10 0.0074908

84
1 0.00100006

84
2 0.000999682

84
3 0.780186

91 0.00802077
92 0.00997484
93 0.00998254
94 8.64059e − 05
95 0.00999417
96 0.000980197
97 0.000979897
98 0.00101007
99 0.000999938
910 0.00113523
911 0.000981742
912 0.000979842
913 0.00999582
914 0.000984327
915 0.000979831
916 0.000999818
917 0.00100032
918 0.00992217
919 0.000981217
920 0.00100005
921 0.0010001
922 0.000998846
923 0.000979562
924 0.000999907
925 0.000977105
926 0.00100048
927 0.00999324
928 0.00996501
929 0.000979844
930 0.000979942
931 0.000979062
932 0.000997746
933 0.00100114
934 0.000999697
935 0.000981383
936 0.000978472
937 0.00999228
938 0.000978978

Link Residual

938 0.000978978
939 0.000999482
940 0.000999343
941 0.00899161
942 0.000999996
943 0.00898749
944 0.000999789
945 0.0099754
946 0.00099973
947 0.000998991
948 0.00998933
949 0.00099957

92
1 0.00107787

92
2 0.00100115

92
3 0.00100055

92
4 0.00099991

92
5 0.00100118

92
6 0.00126944

92
7 0.00104121

92
8 0.00100133

92
9 0.000999724

92
10 0.00140283

92
11 0.000999221

92
12 0.00100137

92
13 0.00100112

92
14 0.000999788

92
15 0.000999236

92
16 0.00605

92
17 0.00899775

92
18 0.000999648

92
19 0.00100405

92
20 0.000999853

92
21 0.00898977

92
22 0.00943088

92
23 0.000998181

92
24 0.000999946

92
25 0.0009999

92
26 0.00100243

92
27 0.00099997

92
28 0.000998883

92
29 0.00100157

92
30 0.00099989

92
31 0.000999523

92
32 0.00100012

92
33 0.000999711

TABLE 8. Part 1 of residuals of tight knots and links by knot type.
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Link Residual

92
33 0.000999711

92
34 0.00100169

92
35 0.000999778

92
36 0.00100172

92
37 0.000999058

92
38 0.000999748

92
39 0.000999888

92
40 0.000999835

92
41 0.00100037

92
42 0.000998679

92
43 0.00100109

92
44 0.00100838

92
45 0.00997492

92
46 0.00100042

92
47 0.00999831

92
48 0.000999984

92
49 0.000999984

92
50 0.000999226

92
51 0.000999443

92
52 0.000999958

92
53 0.00996962

92
54 0.000999703

92
55 0.00100064

92
56 0.000979788

92
57 0.00255237

92
58 0.000999155

92
59 0.00108631

92
60 0.000999312

92
61 0.00100091

93
1 0.000999763

93
2 0.000999746

93
3 0.00100525

93
4 0.000999641

93
5 0.00100042

93
6 0.000999746

93
7 0.000999935

93
8 0.000999751

93
9 0.000996684

93
10 0.00099985

93
11 0.0010755

93
12 0.00100439

93
13 0.00749431

93
14 0.00900147

93
15 0.00112426

93
16 0.000999575

Link Residual

93
16 0.000999575

93
17 0.00749982

93
18 0.000999841

93
19 0.00101035

93
20 0.00100002

93
21 0.00100039

94
1 0.000979958

101 0.00101691
102 0.00100023
103 0.000991435
104 0.00100846
105 0.00100194
106 0.000979506
107 0.0097283
108 0.000980356
109 0.000979784
1010 0.00999688
1011 0.00760935
1012 0.000991292
1013 0.000999947
1014 0.0010261
1015 0.000979185
1016 0.000985699
1017 0.00998848
1018 0.000979621
1019 0.00098045
1020 0.000979959
1021 0.000999057
1022 0.000991413
1023 0.00999682
1024 0.00166886
1025 0.000994731
1026 0.00098015
1027 0.000999869
1028 0.00996703
1029 0.00116525
1030 0.000999376
1031 0.000979897
1032 0.000979993
1033 0.000979857
1034 0.00098555
1035 0.000982115
1036 0.000979692
1037 0.000999835

Link Residual

1037 0.000999835
1038 0.000979821
1039 0.000986038
1040 0.00100863
1041 0.00999693
1042 0.000999751
1043 0.000980157
1044 0.00322255
1045 0.000982692
1046 0.00997656
1047 0.000980999
1048 0.00999602
1049 0.000998073
1050 0.000981787
1051 0.00098231
1052 0.000999419
1053 0.00101025
1054 0.00999263
1055 0.00998728
1056 0.00999185
1057 0.000999798
1058 0.000999966
1059 0.00995441
1060 0.000980266
1061 0.00787098
1062 0.00105699
1063 0.00998227
1064 0.00997603
1065 0.00135295
1066 0.000999872
1067 0.000979823
1068 0.00100695
1069 0.000999786
1070 0.000980057
1071 0.00999226
1072 0.000999942
1073 0.00998888
1074 0.000978382
1075 0.000981812
1076 0.000980892
1077 0.00999768
1078 0.000981017
1079 0.0010001
1080 0.000979926
1081 0.000981576
1082 0.000978946

Link Residual

1082 0.000978946
1083 0.00999433
1084 0.0099812
1085 0.000981325
1086 0.000978499
1087 0.000979621
1088 0.000979845
1089 0.0010019
1090 0.000980234
1091 0.000977397
1092 0.00100005
1093 0.000979652
1094 0.00097991
1095 0.000979668
1096 0.00018365
1097 0.000999872
1098 0.00999481
1099 0.0099926
10100 0.00101003
10101 0.00999705
10102 0.000979674
10103 0.00999479
10104 0.00999683
10105 0.000979902
10106 0.000979055
10107 0.000980096
10108 0.00127554
10109 0.000979798
10110 0.000979638
10111 0.000979851
10112 0.00104599
10113 0.00999934
10114 0.00100087
10115 0.000978725
10116 0.00998661
10117 0.00998396
10118 0.00099987
10119 0.000999834
10120 0.00100037
10121 0.00099989
10122 0.000999203
10123 0.0016528
10124 0.00100133
10125 0.00998345
10126 0.00999723
10127 0.00998882

TABLE 9. Part 2 of residuals of tight knots and links by knot type.
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FIGURE 16. This reproduction of the entry for 10123 in the Atlas of Tight Knots and Links shows that it has a similar
structure to 818 . We do not believe that the repeated structures are the same (note, for instance, the different spacing of
the kinked regions). (Figure is available in color online)

configuration, we can ignore constraints that we expect
to be inactive, resulting in a reduced constraint set of
size O(n). Our approximately minimized polygons pro-
vide exactly this information. For this reason we imagine
an important use of our data will be in formulating input
problems for a future SQP-based knot-minimizer. Our
polygons are already serving as input for the biarc-based
annealer of [Carlen et al. 05].

While our data set is detailed and suggestive, solv-
ing explicitly for the structure of ropelength-minimizing
(smooth) knots and links is likely to require even bet-
ter data. It is shown in [Cantarella et al. 11] that a
critical shape for the simple clasp formed when ropes
pass over one another at right angles contains tiny
straight segments of length a few thousandths of the total
length of the curves. Resolving these features will require
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Link Residual

10127 0.00998882
10128 0.000988223
10129 0.00902523
10130 0.000999987
10131 0.00959976
10132 0.000980876
10133 0.000980018
10134 0.00999485
10135 0.00100006
10136 0.00999149
10137 0.000979856

Link Residual

10137 0.000979856
10138 0.00899453
10139 0.000979731
10140 0.0099924
10141 0.00100144
10142 0.000980204
10143 0.00993363
10144 0.00995796
10145 0.00102699
10146 0.00998505
10147 0.000999813

Link Residual

10147 0.000999813
10148 0.000981385
10149 0.00100026
10150 0.000979903
10151 0.000979813
10152 0.00999625
10153 0.0091785
10154 0.00115132
10155 0.00998753
10156 0.0009799
10157 0.000979535

Link Residual

10157 0.000979535
10158 0.000980822
10159 0.000979791
10160 0.00998455
10161 0.00899311
10162 0.000985909
10163 0.00899697
10164 0.000979519
10165 0.000979783

TABLE 10. Part 3 of residuals of tight knots and links by knot type.

converged runs for polygonal-ropelength minimizers with
tens of thousands of vertices, an ambitious goal that will
keep this area of experimental mathematics active for
some time to come.

7. APPENDIX: ROPELENGTH DATA

We present three sets of tables of ropelength data. The
first set, Tables 3–5, show the polygonal ropelength
(Ropp) and ropelength upper bounds (Rop) that we have
obtained for each of the knot types that we have consid-
ered. The knots and links are organized according to their
position in Rolfsen’s table, with the link Xy

z being the zth
example of a prime X-crossing link of y components in
the table. We have identified the two “Perko pair” knots
10161 and 10162 and renumbered the subsequent knots
accordingly, so there are only 165 ten-crossing knots in
our results.

The second set, Tables 6 and 7, show the same knot
and link types ordered by ropelength upper bound. These
tables are to be read down each column from the top
left to the bottom right. We can see that this order is
quite different from the one in Rolfsen’s table with (for
instance) the 2-component link 72

7 occurring before any
6- or 7-crossing knot and the 10124 knot occurring before
many 8- and 9-crossing links.

The third set of tables, Tables 8–10, give the residual
of each of our computed configurations. The low resid-
uals show that they are close to critical in the sense of
Theorem 2.18. We include these data as a measure of the
relative quality of each of our minimized configurations.

Figures 15 and 16 are reproductions of the pages from
the Atlas of Tight Knots for the approximately tight
818 and 10123 knots. On the top left of each page are
three views of the tight configurations, with kinked re-
gions highlighted in red. On the top right is a plot of the
self-contact map of the configuration. Each of these plots
consists of a triangular region with the hypotenuse la-
beled with arc-length values on the knot. A box is plotted
at (s, t) on the plot if there is a strut connecting L(s) and
L(t). Below the graph appears a plot of 1/MinRad (vi)
for the polygon (to the same scale). Kinked regions of
maximum curvature are highlighted on the graph. Each
such region has a key on the right-hand side of the plot
showing the arc-length positions of the start and end of
the kink (in order to give a sense of the relative scale of
the kinked region). At the bottom of the page is a line
of data giving the polygonal ropelength Ropp (as mea-
sured by octrope), ropelength upper bound Rop (from
roundout rl), filename, number of vertices and struts,
maximum and minimum curvature values, and number of
kinked regions. The last entry shows the total arc length
of straight regions in the curves (0 for these two knots,
but nonzero for many knots and links in the Atlas).
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