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In this paper we formulate a conjecture that partially general-
izes the Gross–Kohnen–Zagier theorem to higher-weight mod-
ular forms. For f ∈ S2k(N) satisfying certain conditions, we
construct a map from the Heegner points of level N to a com-
plex torus �/Lf defined by f . We define higher-weight ana-
logues of Heegner divisors on �/Lf .

We conjecture that they all lie on a line and that their positions
are given by the coefficients of a certain Jacobi form correspond-
ing to f . In weight 2, our map is the modular parameterization
map (restricted to Heegner points), and our conjectures are im-
plied by Gross–Kohnen–Zagier. For any weight, we expect that
our map is the Abel–Jacobi map on a certain modular variety,
and so our conjectures are consistent with the conjectures of
Beilinson–Bloch. We have verified that our map is the Abel–
Jacobi map for weight 4. We provide numerical evidence to
support our conjecture for a variety of examples.

1. INTRODUCTION

For integers N , k ≥ 1, let S2k(N) denote the set of cusp
forms of weight 2k on the congruence group Γ0(N). Let
X0(N) be the usual modular curve and J0(N) its Jaco-
bian. By D we will always mean a negative fundamental
discriminant that is a square modulo 4N . For each D,
one can construct a Heegner divisor yD in J0(N) defined
over �. Suppose f ∈ S2(N) is any normalized newform
whose sign in the functional equation of L(f, s) is −1.
Then the celebrated theorem of Gross, Kohnen, and Za-
gier [Gross et al. 87, Theorem C] says that as D varies,
the f -eigencomponents of the Heegner divisors yD all lie
on a line in the quotient J0(N)f . (We will say that a sub-
set X of an abelian group J lies on a line if X ⊆ � · x0

for some x0 ∈ J .) Furthermore, their theorem states
that the positions of the f -eigencomponents on this line
are given by the coefficients of a certain Jacobi form. In
particular, when N is prime, the positions are the coeffi-
cients of a half-integer-weight modular form in Shimura
correspondence with f .
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Now suppose f ∈ S2k(N) is a normalized newform
of weight 2k and level N . In addition, assume that
the coefficients in its Fourier series are rational, and the
sign in the functional equation of L(f, s) is −1. Let
HN/Γ0(N) ⊂ X0(N) denote the Heegner points of level
N . In this paper we construct a map

α : HN/Γ0(N) → �/Lf ,

where �/Lf is a complex torus defined by the periods of
f . Let h(D) denote the class number of the imaginary
quadratic field of discriminant D. For each D and fixed
choice of its square root ( mod 2N), we get precisely h(D)
distinct representatives τ1, . . . , τh(D) of HN/Γ0(N).

Define (YD)f = α(τ1) + · · · + α(τh(D)) and define
(yD)f = (YD)f + (YD)f in �/Lf . When k = 1, α is the
usual modular parameterization map restricted to Heeg-
ner points, and (yD)f is equal to the f -eigencomponent
of yD in J0(N) as described in the first paragraph. For
k ≥ 1 we formulate conjectures similar to Gross–Kohnen–
Zagier. We predict that the (yD)f all lie on a line in
�/Lf , that is, that there exists a point yf ∈ �/Lf such
that

(yD)f = mDyf ,

up to torsion, with mD ∈ �. Furthermore, we predict
that the positions mD on the line are coefficients of a
certain Jacobi form corresponding to f . In the case that
N is prime and k is odd, the mD should be the coef-
ficients of a weight-(k + 1/2) modular form in Shimura
correspondence with f .

Our map is equivalent to the Abel–Jacobi map on
Kuga–Sato varieties in the following sense. Let Y = Y k

be the Kuga–Sato variety associated to weight-2k forms
on Γ0(N). (See [Zhang 97, p. 117] for details.) This is
a smooth projective variety over � of dimension 2k − 1.
Set Zk(Y )hom to be the null-homologous codimension-
k algebraic cycles, and CHk(Y )hom the group Zk(Y )hom

modulo rational equivalence. Let Φk be the usual kth
Abel–Jacobi map,

Φk : CHk(Y )hom → Jk(Y ),

where Jk(Y ) is the kth intermediate Jacobian of Y .
Given any normalized newform f =

∑
n≥1 anq

n ∈
S2k(N) with rational coefficients, there exists an f -
isotypical component Jkf (Y ) of Jk(Y ), and thus an in-
duced map

CHk(Y )hom
Φk

��

Φk
f ���

�
�

�
�

Jk(Y )

��
Jkf (Y )

Our result (to appear in a future publication) is that
the image of Φkf on classes of CM cycles in CHk(Y )hom

is equal (up to a constant) to the image of our map α

on Heegner points in X0(N). This implies our conjec-
tures are consistent with the conjectures of Beilinson and
Bloch. In this setting they predict

rank� CHk(YF )hom = ords=kLF (H2k−1(Y ), s).

If we assume ords=kL(f, s) = 1, then a refinement of
their conjecture predicts that the image of Φkf on CM
divisors in Y� should have rank at most 1 in Jkf (Y ).

To verify the equivalence of α and Φ2
f in the case of

weight 4, for example, we used an explicit description
of Φ2

f on CM cycles given in [Schoen 86]. In fact, in
[Schoen 93], Schoen uses this map to investigate a con-
sequence of Beilinson–Bloch similar to the one described
above. For a specific Y = Y 4 and f , he computes Φf
on certain CM divisors in Y defined over the quadratic
number field�(i). From this he finds numerical evidence
that the images lie on a line and that their positions are
given by a certain weight-5/2 form corresponding to f .

The sections of this paper are divided as follows. In
Section 2 we describe our map and its lattice of periods.
In Section 3 we give explicit statements of our conjec-
tures. In Section 4 we describe the algorithm we created
to verify the conjectures numerically in a variety of exam-
ples. Note that our algorithm could be applied to com-
pute coefficients of half-integer-weight modular forms. In
Sections 5 and 6 we compute some examples and use
them to verify our conjectures in two different ways.

2. HIGHER-WEIGHT HEEGNER POINTS

Let h denote the upper half-plane. Suppose f is a nor-
malized newform in S2k(N) having a Fourier expansion
of the form

f(τ) =
∞∑
n=1

anq
n, q = exp(2πiτ), τ ∈ h,

with an ∈ �.
Recall that the L-function of f is defined by the Dirich-

let series

L(f, s) =
∞∑
n=1

an
ns
, Re(s) > k +

1
2
,

and has an analytic continuation to all of �. Moreover,
the function Λ(f, s) = Ns/2(2π)−sΓ(s)L(f, s) satisfies
the functional equation

Λ(f, s) = εΛ(f, 2k − s),
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where ε = ±1 is the sign of the functional equation of
L(f, s).

For each prime divisor p of N , let q = p�, � ∈ N, be
such that gcd(q,N/q) = 1 and set ωq =

(
qx0 1
Ny0 q

)
, for

some x0, y0 ∈ �, with qx0 − (N/q)y0 = 1 . Define Γ∗
0(N)

to be the group generated by Γ0(N) and each ωq. Let
S be a set of generators for Γ∗

0(N). Define the period
integrals of f for the set S by

P =
{

(2πi)k
γ(i∞)∫
i∞

f(z)zmdz : m ∈ {0, . . . , 2k − 2}, γ ∈ S

}

⊆ �.

These are sometimes referred to as Shimura integrals. It
is straightforward to see that every integral of the form

(2πi)k
∫ γ(i∞)

i∞
f(z)zmdz, γ ∈ Γ∗

0(N), 0 ≤ m ≤ 2k − 2,

is an integral linear combination of elements in P . (See
[Shimura 94, Section 8.2], for example.) In fact, the �-
module generated by P forms a lattice as described in
the following lemma.

Lemma 2.1. L := Span�(P) is a lattice in �.

Proof. By [Razar 77, Theorem 4] and Šokurov [Šokur-
ov 80, Lemma 5.6], the set P is contained in some lattice.
Hence L is of rank at most 2. To show that its rank is in
fact 2, it suffices to show that there exist nonzero complex
numbers u+, u− ∈ L with u+ ∈ � and u− ∈ i�.

Suppose m is a prime not dividing N , and χ a prim-
itive Dirichlet character modulo m. Define (f ⊗ χ) :=∑

n≥1 χ(n)anqn, and L(f ⊗ χ, s) its Dirichlet series. Let

Λ(f ⊗ χ, s) = (2π)−s(Nm2)s/2Γ(s)L(f ⊗ χ, s).

Then for Re(s) > k + 1/2, we have

is(Nm2)−s/2Λ(f ⊗ χ, s) =
∫ i∞

0

(f ⊗ χ)(z)zs
dz

z
. (2–1)

Let g(χ) denote the Gauss sum associated to χ. Then
an expression for χ in terms of the additive characters is
given by

χ(n) = m−1g(χ)
∑

u mod m

χ̄(−u)e2πinu/m.

So

(f ⊗ χ)(τ) = m−1g(χ)
∑

u mod m

χ̄(−u)f(z + u/m).

Substituting this into (2–1) gives

is(Nm2)−s/2Λ(f ⊗ χ, s)

= m−1g(χ)
∑

u mod m

χ̄(−u)
∫ i∞

0

f(z + u/m)zs
dz

z
,

and replacing z by z − u/m and rearranging implies

i−sg(χ)−1N−s/2Λ(f ⊗ χ, s)

= (−1)s−1
∑

u mod m

χ̄(−u)
∫ u/m

i∞
f(z)(mz − u)s−1dz.

Now let s = 2k − 1 in the above equation, and mul-
tiply both sides by (2πi)k. In addition, suppose χ is a
quadratic Dirichlet character modulom. Ifm ≡ 3 mod 4,
then g(χ) = i

√
m, and if m ≡ 1 mod 4, then g(χ) =

√
m.

Hence since Λ(f ⊗ χ, 2k − 1) is real-valued and nonzero,
the right-hand side of this equation is either purely real
or purely imaginary depending on the choice of m. Then
this proves the lemma, since the right-hand side is in L

for any m.

Let D < 0 be a fundamental discriminant, and assume
that D is a square modulo 4N . Fix a residue class r mod
2N satisfying D ≡ r2 mod 4N . Then

QD
N (r) :=

⎧⎪⎪⎨
⎪⎪⎩

[A,B,C] : A > 0, B, C ∈ �,
D = B2 − 4AC,
A ≡ 0 mod N,
B ≡ r mod 2N

⎫⎪⎪⎬
⎪⎪⎭

corresponds to a subset of the positive definite binary
quadratic forms of discriminant D. We define HD

N (r) to
be the roots in h of QD

N(r):

HD
N (r) :=

{
τ = −B+

√
D

2A : [A,B,C] ∈ QD
N (r),

C = |D|+B2

4A

}
.

The group Γ0(N) preserves HD
N (r), and the classes of

HD
N (r)/Γ0(N) are in bijection with the classes of reduced

binary quadratic forms of discriminant D. We will call
HD
N (r)/Γ0(N) the set of Heegner points of level N , dis-

criminant D, and root r. Define HN to be the union of
HD
N (r) over all D, r, and so HN/Γ0(N) are the Heegner

points of level N .
For each τ = −B+

√
D

2A ∈ HD
N (r), set Qτ (z) := Az2 +

Bz+C. We now define a function α = αf : HN → � by

α(τ) := (2πi)k
∫ τ

i∞
f(z)Qτ (z)k−1dz.

Lemma 2.2. The map α induces a well-defined map
(which we will also denote by α)

α : HN/Γ0(N) → �/L.
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Proof. For any τ ∈ HN of discriminant D and γ ∈
Γ0(N), we will show that

α(γτ) − α(τ) = (2πi)k ·
∫ γ(i∞)

i∞
f(z)Qγτ (z)k−1dz.

Since Qγτ (z) has integer coefficients, this will imply
α(γτ) − α(τ) ∈ L for all γ ∈ Γ0(N).

Let γ =
(
a b
c d

) ∈ Γ0(N). Then

α(γτ) − (2πi)k ·
∫ γ(i∞)

i∞
f(z)Qγτ (z)k−1dz

= (2πi)k ·
∫ γτ

γ(i∞)

f(z)Qγτ(z)k−1dz

= (2πi)k ·
∫ τ

i∞
f(γz)Qγτ(γz)k−1d(γz)

= α(τ),

where in the last equality we used

f(γz) = (cz + d)2kf(z),

Qγτ(z) = (−cz + a)2Qτ (γ−1z),

d(γz) = (cz + d)−2dz.

3. CONJECTURES

Let {τ1, . . . , τh(D)} ∈ HD
N (r) be any set of distinct class

representatives of HD
N (r)/Γ0(N). Define

PD,r :=
h(D)∑
i=1

τi ∈ Div(X0(N)),

where Div(X0(N)) denotes the group of divisors on
X0(N). If D = −3 (respectively D = −4 ), scale PD,r by
1/3 (respectively 1/2). Extend α to PD by linearity and
define

(yD,r)f = α(PD,r) + α(PD,r) ∈ �/L,
where the bar denotes complex conjugation in �. We
write yD,r or yD for (yD,r)f , and PD for PD,r when the
context of f , r is clear.

By the actions of complex conjugation and Atkin–
Lehner on HN , we have

α(PD,r) = −εα(PD,r),

where ε is the sign of the functional equation of L(f, s).
Thus if ε = +1, then yD,r are in L for all D, r. This
is, in some sense, the trivial case. Hence we restrict our
attention to the case ε = −1.

Conjectures 3.1 and 3.3 give a partial generalization
of the Gross–Kohnen–Zagier theorem to higher weights.

Conjecture 3.1. Let f =
∑

n≥1 anq
n ∈ S2k(N) be a nor-

malized newform with rational coefficients, and assume
ε = −1 and L′(f, k) �= 0. Then for all fundamental dis-
criminants D < 0 and r mod 2N with D ≡ r2 mod 4N ,
there exist integers mD,r such that

tyD,r = tmD,ryf in �/L,

where yf ∈ �/L and t ∈ � are both nonzero and inde-
pendent of D and r.

Remark 3.2. Equivalently, we could say that yD,r =
mD,ryf up to a t-torsion element in �/L.

To state the second conjecture we will need to use Ja-
cobi forms. (See [Eichler and Zagier 85] for background.)
Let J2k,N denote the set of all Jacobi forms of weight
2k and index N . Then such a φ ∈ J2k,N is a function
φ : h ×�→ �, which satisfies the transformation law

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)2ke2πiN

cz2
cτ+dφ(τ, z),

for all
(
a b
c d

) ∈ SL2(�), and has a Fourier expansion of
the form

φ(τ, z) =
∑
n,r∈�
r2≤4Nn

c(n, r)qnζr, q = e2πiτ , ζ = e2πiz.

(3–1)
The coefficient c(n, r) depends only on r2 − 4Nn and on
the class r mod 2N .

Suppose f ∈ S2k(N) is a normalized newform with
ε = −1. Then by [Skoruppa and Zagier 88], there exists
a nonzero Jacobi cusp form φf ∈ Jk+1,N that is unique
up to scalar multiple and has the same eigenvalues as
f under the Hecke operators Tm for m,N coprime. We
predict that the coefficients of φf are related to the mD,r

from above in the following way.

Conjecture 3.3. Let f =
∑

n≥1 anq
n ∈ S2k(N) be a nor-

malized newform with rational coefficients, and assume
ε = −1 and L′(f, k) �= 0. Assume Conjecture 3.1. Then

mD,r = c(n, r),

where n = |D|+r2
4N and c(n, r) is up to a scalar multiple

the (n, r)th coefficient of the Jacobi form φf ∈ Jk+1,N .

Remark 3.4. When 2k = 2, the points (yD,r)f and yf are
the same as those defined in [Gross et al. 87], and both of
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our conjectures are implied by Theorem C of that paper.
(Actually, that theorem is only for D coprime to 2N ,
but the authors state that the result remains “doubtless
true” with this hypothesis removed. See [Hayashi 95] and
[Borcherds 99] for more details.) Particular to weight 2
is the fact that �/L is defined over �, and that yD is
a rational point on the elliptic curve Ef � �/L. In
contrast, we should stress that for weight 2k > 2, the
elliptic curve E � �/L is not expected to be defined
over any number field. For instance, the j-invariants for
our examples all appear to be transcendental over �.

Remark 3.5. For N = 1 or a prime and k odd, we can
state Conjecture 3.3 in terms of modular forms of half-
integer weight. Specifically, let φ ∈ Jk+1(N) be a Jacobi
form with a Fourier expansion as in (3–1), and set

g(τ) =
∞∑
M=0

c(M)qM , q = e2πiτ ,

where c(M) is defined by

c(M) :=

⎧⎨
⎩c
(
M+r2

4N , r

)
if M ≡ −r2 mod 4N ∀ r ∈ �;

0, otherwise.

This function is well defined because c(n, r) depends only
on r2 − 4nN when N is equal to 1 or is prime and k

is odd. Then by [Eichler and Zagier 85, p. 69], g is
in Mk+1/2(4N), the space of modular forms of weight
k+1/2 and level 4N . In addition, if f ∈ S2k(N) is a nor-
malized newform with ε = −1, then the form g defined
by φf is in Shimura correspondence with f .

4. ALGORITHM

Let f =
∑
n≥1 anq

n ∈ S2k(N) be a normalized new-
form with rational Fourier coefficients. The sign ε of the
functional equation of L(f, s) can be computed with the
identity

f

(−1
Nz

)
= (−1)kεNkz2kf(z)

given by the action of the Fricke involution of level N
on f . We will consider only f such that ε = −1 and
L′(f, k) �= 0.

The first step is to find a basis of our lattice L, which
is the �-module generated by the periods P as described
above. Suppose p1, p2, p3 are three periods in P . Since L
has rank 2, these are linearly dependent over �, that is,

a1p1 + a2p2 + a3p3 = 0, for some ai ∈ �.

We may assume gcd(a1, a2, a3) = 1. Let d = gcd(a1, a2).
Then there exist integers x, y∈ � such that xa1+ya2 =d.
Similarly, gcd(d, a3) = 1, so there exist integers u, v ∈ �
such that ud+ va3 = 1. Define the matrix M by

M =

⎛
⎝ a1 a2 a3

−y x 0
−va1/d −va2/d u

⎞
⎠ .

Observe that M ∈ GL3(�) and

M · t(p1, p2, p3)

= t(0,−yp1 + xp2,−va1p1/d− va2p2/d+ up3).

Hence −yp1 + xp2 and −va1p1/d− va2p2/d+ up3 are a
basis for the �-module generated by p1, p2, p3.

We would also like our basis elements to have small
norm. Given a basis ω1, ω2 of a lattice, its norm form is
a real bilinear quadratic form defined by the matrix

B =
(

2|ω1|2 2 Re(ω1ω̄2)
2 Re(ω1ω̄2) 2|ω2|2

)
.

Thus it is equivalent to a reduced form of the same dis-
criminant, that is, there exists U ∈ SL2(�) such that

tUBU =
(

2α β
β 2γ

)
, α, β, γ ∈ �,

with |β| ≤ α ≤ γ and β ≥ 0 if either |β| = α or α = γ.
Hence (ω′

1, ω
′
2) := (ω1, ω2)U is a “reduced” basis. For a

basis of all of L we simply apply this process iteratively
to the elements of P .

In fact, it is not hard to see that L is a real lattice,
that is, L̄ = L. Thus given a basis ω1, ω2 of L, we may
assume that ω1 ∈ i�, and therefore τ := ω2/ω1 has real
part in �/2. This implies Re(L) = Re(ω2), which will
help simplify our computations.

To actually compute the elements in P we need to
split the path of integration from (i∞) to γ(i∞) at some
point τ ∈ h that gives

∫ γ(i∞)

i∞
f(z)zmdz =

∫ γ(τ)

i∞
f(z)zmdz

−
∫ τ

i∞
f(z)(az + b)m(cz + d)2k−2−mdz,

for γ =
(
a b
c d

) ∈ Γ0(N). We choose τ to be a point at
which f has good convergence. To compute integrals of
the form ∫ τ

i∞
f(z)zmdz,
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we use repeated integration by parts to obtain the for-
mula∫ τ

i∞
f(z)zmdz = m! (−1)m

m−1∑
j=−1

(−1)j+1

(j + 1)!
τ j+1fm−j(τ),

(4–1)
where f�(τ) is defined to be the �-fold integral of f eval-
uated at τ ∈ h, that is,

f�(τ) =
1

(2πi)�
∑
n≥1

an
n�
qn, q = exp(2πiτ),

which is well defined for all 0 ≤ � ≤ 2k − 1.
The next task is to compute α(τ) for τ ∈ HN . We

could do this using (4–1), but it is computationally faster
to use the following identity for α. Recall the modular
differential operator

∂m :=
1

2πi
d

dz
− m

4πy
, z = x+ iy ∈ h,

for any integer m. Define ∂�m(f) := ∂m+2(�−1) ◦ · · · ◦
∂m+2 ◦ ∂m(f) to be the composition of the � operators
∂m, ∂m+2, . . . , ∂m+2(�−1). Then a straightforward com-
binatorial argument yields the following identity, whose
proof we will omit.

Lemma 4.1. Let τ be a Heegner point of level N and
discriminant D. Then

α(τ) = κD · ∂k−1
−2k+2 ◦ f2k−1(τ),

where κD = (k − 1)!(2πi)k(2π
√|D|)k−1 is a constant

depending only on D and 2k.

A closed formula for ∂�m (see [Villegas and Zagier 93],
for example) allows us to write α as

α(τ) = κD(2πi)
(−y
π

)k∑
n≥1

p

(
k,

1
4πyn

)
anq

n, (4–2)

where p(m,x) is the polynomial

p(m,x) =
2m−1∑
�=m

(
m− 1

2m− 1 − �

)
(�− 1)!
(m− 1)!

x�,

m ∈ �, x ∈ �. We compute α(τ) using (4–2). Also no-
tice that Lemma 4.1 perhaps provides further insight into
why the map HN → �/L inducing α is invariant under
Γ0(N). Loosely speaking, this is because integrating f

(2k−1) times lowers its weight by 2(2k−1), and ∂k−1
−2k+2

increases its weight by 2(k− 1) to get something morally
of weight 0.

Given a set of Heegner-point representatives of level
N , discriminant D, and root r, we can use the above
to compute yD,r. Verifying the first conjecture for each
D, r then amounts to choosing a complex number yf and
an integer t, both nonzero, and establishing the linear
dependence

Re(yD,r) −mD,r Re(yf ) + nD,r Re(ω2)/t = 0 (4–3)

for some integers mD,r, nD,r. The second conjecture con-
sists in comparing the coefficients mD,r of yf we get
above with the Jacobi form coefficients of the form φf .

5. EXAMPLES

The Fourier coefficients of the forms in these examples
were computed using Sage.1 The rest of the calculations
were done in Pari/GP.2

We will always take a set of generators for Γ0(N) that
includes the translation matrix T = ( 1 1

0 1 ) but no other
matrix whose (2, 1) entry is 0. The period integrals for
T are always 0, since i∞ is its fixed point. Hence we
can exclude it from our computations of P . In addition,
the (2π)k factor in the definitions of yD and L is left off
from the computations, since it is just a scaling factor
and requires unnecessary extra precision.

For each example below, we list the number of digits
of precision and the number M of terms of f we used.
Below that is a set of generators we chose for Γ∗

0(N) and
the bases ω1, ω2 we obtained for L from computing P
and applying the lattice-reduction algorithm explained
in Section 4. We then provide a table listing the mD

that satisfy equation (4–3) for t, yf of our choosing and
D less than some bound. Without getting into details,
the precision we chose depended on the size of the Mth
term of f and on the a priori knowledge of the size of the
coefficients satisfying (4–3).

Example 5.1. 2k = 10, N = 3. The space of cuspidal
newforms of weight 10 and level 3 has dimension 2, but
only one form has ε = −1. The first few terms of it are

f = q − 36q2 − 81q3 + 784q4 − 1314q5 + 2916q6 − 4480q7

− 9792q8 + · · · .
1Available online (http://www.sagemath.org).
2Available online (http://pari.math.u-bordeaux.fr). Code and

data from this paper can be found at http://www.math.utexas
.edu/users/khopkins/comp.html.
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|D| mD |D| mD

3 1 107 1521

8 -6 111 -600

11 15 116 120

15 24 119 1680

20 -24 120 -1272

23 -24 123 8358

24 60 131 -705

35 -126 132 -3264

39 -120 143 1128

47 144 152 1092

51 510 155 192

56 0 159 840

59 465 164 4320

68 -480 167 -4584

71 -120 168 -1176

83 -1059 179 -7905

84 1680 183 3000

87 792 191 1200

95 -840 195 -8772

104 -1140

TABLE 1. f ∈ S10(3). List of D, mD such that yD −
mDyf ∈ L for |D| < 200.

We have the following data:

precision = 60, number of terms = 100,

Γ∗
0(3) =

〈
T,
(−1 1
−3 2

)
, ω3 =

(
0 −1
3 0

) 〉
,

ω1 = −i · 0.00088850361439085 . . . ,

ω2 = 0.00002189032158611 . . . ,

yf = y−8/2,

t = 1.

The mD in Table 1 give, up to scalar multiple, the
coefficients of the weight-11/2 level-12 modular form
found in [Eichler and Zagier 85, p. 144]. Note that we
can use the theorems of Waldspurger to get information
about the values L(f,D, k) from this table. For example,
L(f,−56, 5) = 0.

Example 5.2. 2k = 18, N = 1. The weight-18 level-1
eigenform in S18(1) has the closed form

f(z) =
−E3

6(z) + E3
4(z)E6(z)

1728
,

where E2k(z) is the normalized weight-2k Eisenstein
series.

|D| mD |D| mD

3 1 51 108102

4 −2 52 −93704

7 −16 55 −22000

8 36 56 80784

11 99 59 −281943

15 −240 67 659651

19 −253 68 193392

20 −1800 71 −84816

23 2736 79 −109088

24 −1464 83 −22455

31 −6816 84 −484368

35 27270 87 1050768

39 −6864 88 143176

40 39880 91 195910

43 −66013 95 −370800

47 44064

TABLE 2. f ∈ S18(1). List of D, mD such that yD −
mDyf ∈ L for |D| < 100.

We have the following data:

precision = 200, number of terms = 100,

Γ∗
0(1) = SL2(�)

〈
T, S = ω1 =

(
0 −1
1 0

) 〉
ω1 = i · 0.001831876775870191761 . . . ,

ω2 = 0.000000000519923858624 . . . ,

yf = y−3,

t = 1.

The mD in Table 2 are identical to the coefficients of
the weight-19/2 level-4 half-integer-weight form in [Eich-
ler and Zagier 85, p. 141], which is in Shimura correspon-
dence with f .

Example 5.3. 2k = 4, N = 13. The dimension of the new
cuspidal subspace is 3 in this case, but only one form has
integer coefficients in its q-expansion:

f = q−5q2−7q3+17q4−7q5+35q6−13q7−45q8+22q9+· · · .
We have the following data:

precision = 28, number of terms = 250,

Γ∗
0(13) =

〈
T,
(

8 −5
13 −8

)
,
( −3 1
−13 4

)
,
(

5 −2
13 −5

)
,
( −9 7
−13 10

)
,

ω13 =
(

0 −1
13 0

) 〉
,

ω1 = i · 0.003124357726009878347400865279 . . . ,

ω2 = −0.04271662498543992056668379773 . . .

− i · 0.001562178863004939178984383052 . . . ,

yf = y−3,

t = 6.



264 Experimental Mathematics, Vol. 19 (2010), No. 3

|D| mD,r |D| mD,r

3 1 107 4

4 −1 116 −8

23 2 120 −13

35 −7 127 14

40 3 131 −3

43 −17 139 29

51 9 152 2

55 −6 155 22

56 1 159 −6

68 −5 168 −21

79 4 179 −17

87 −6 183 −2

88 10 191 −10

95 4 199 4

103 −8

TABLE 3. f ∈ S4(13). List of D, mD,r such that
tyD,r − mD,ryf ∈ L with t = 6, for |D| < 200 and
gcd(|D|, N) = 1.

Note that this is the first example of a nonsquare lat-
tice. In fact,

ω2/ω1 = −0.5000 · · ·+ i · 13.67212999 . . . ,

so Re(ω2/ω1) = 1/2, as explained earlier. This is also
the first example in which the choice of r matters, since
k = 2 is not odd. For each D, we chose r in the interval
0 < r < 13. In addition, this is our only example in
which t > 1.

A closed-form expression for the weight-3 index-13 Ja-
cobi form φ = φf corresponding to f was provided to us
by Nils Skoruppa:

φ(τ, z) = ϑ5
1ϑ

3
2ϑ3/η

3.

Here η is the usual Dedekind eta function, η =
q1/24

∏
n≥1(1 − qn) with q = e2πiτ , and

ϑa =
∑
r∈�

(−4
r

)
q

r2
8 ζ

ar
2

for a = 1, 2, 3, ζ = e2πiz. (This has a nice product ex-
pansion using Jacobi’s triple product identity.)

We verify that the (n, r)th coefficient c(n, r) in the
Fourier expansion of φ is identically equal to the mD,r in
Table 3 for |D| < 200.

6. MORE EXAMPLES

The coefficients of Jacobi forms are difficult to compute,
in particular for the cases in which N is composite or

k is even. We chose the previous examples in part be-
cause the Fourier coefficients for their Jacobi forms al-
ready were known, thanks to the work of Zagier, Eich-
ler, and Skoruppa mentioned above. However, given any
weight and level, we can still provide convincing evidence
for our conjecture without knowing the exact coefficients
of its Jacobi form. This is done using a refinement of
[Waldspurger 81] given in [Gross et al. 87, p. 527].

Specifically, let f ∈ S2k(N) be a normalized newform
with ε = −1. Let φ = φf ∈ Jk+1,N , with Fourier co-
efficients denoted by c(n, r), be the Jacobi form corre-
sponding to f as described in Section 3. For a funda-
mental discriminant D with gcd(D,N) = 1 and square
root r modulo 4N , [Gross et al. 87, Corollary 1] says
that

|D|k−1/2L(f,D, k) .= |c(n, r)|2;

here L(f,D, s) is the L-series of f twisted by D, and
n ∈ � satisfies D = r2 − 4Nn. By .= we mean equality
up to a nonzero factor depending on N , 2k, f , and φ,
but independent of D. (Gross–Kohnen–Zagier give this
constant explicitly in their paper, but for us it is unnec-
essary.)

Thus, given two such discriminants Di = r2i − 4Nni,
i = 1, 2, we have

|D1|k−1/2L(f,D1, k)
|D2|k−1/2L(f,D2, k)

=
|c(n1, r1)|2
|c(n2, r2)|2 .

Hence by computing central values of twisted L-functions
of f , we can test whether ratios of squares of our mDi,ri

are equal to those of c(ni, ri).
For the examples below we have the same format as

the previous examples along with a fixed choice of dis-
criminant D1 for which we verified explicitly

|D1|k−1/2L(f,D1, k)
|D|k−1/2L(f,D, k)

=
m2
D1,r

m2
D,r

for all D coprime to N less than a certain bound.

Example 6.1. 2k = 4, N = 21. The dimension of the new
cuspidal subspace of S4(21) is 4. We chose

f = q − 3q2 − 3q3 + q4 − 18q5 + 9q6 + 7q7 + · · · .
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|D| mD,r |D| mD,r

3 1 111 12

20 3 119 0

24 -3 131 -9

35 0 132 24

47 -6 143 6

56 0 152 21

59 3 159 0

68 6 164 -6

83 -15 167 -12

87 -12 195 24

104 9

TABLE 4. f ∈ S4(21). List of D, mD,r such that
yD,r − mD,ryf ∈ L for |D| < 200.

We have the following data:

precision = 40, number of terms = 500,

Γ∗
0(21) =

〈
T,
( −4 1
−21 5

)
,
(

11 −5
42 −19

)
,
(

13 −9
42 −29

)
,
(

8 −5
21 −13

)
,(

26 −19
63 −46

)
,
(−16 13
−21 17

) 〉
,

ω1 = i · 0.0040435422825247 . . . ,

ω2 = −0.03257318919429172 . . . ,

yf = y−3,

t = 1,

D1 = −20.

For a consistent choice of each r we chose the first
positive residue modulo 2N that satisfies D ≡ r2 mod
4N for each D. See Table 4.

Example 6.2. 2k = 12, N = 4. The space of new cusp
forms in S12(4) is spanned by one normalized newform
whose Fourier series begins

f = q − 516q3 − 10530q5 + 49304q7 + 89109q9

− 309420q11 + · · · .

We have the following data:

precision = 80, number of terms = 200,

Γ∗
0(4) =

〈
T,
(

1 −1
4 −3

) 〉
,

ω1 = i · 0.0000800523062521663977085 . . . ,

ω2 = −0.0018738310858243364747237244 . . . ,

yf = y−7,

t = 1,

D1 = −7.

|D| mD,r |D| mD,r

7 1 103 1649

15 5 111 −765

23 −3 119 −90

31 −50 127 2664

39 −35 143 −3729

47 186 151 −505

55 215 159 −2825

71 −315 167 3819

79 −10 183 2539

87 −497 191 1830

95 405 199 −5755

TABLE 5. f ∈ S12(4). List of D, mD,r such that
yD,r − mD,ryf ∈ L for |D| < 200.

Similar to the last example, we chose the first positive
residue modulo 2N that satisfies D ≡ r2 mod 4N for
each D. See Table 5.
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