Higher-Weight Heegner Points

Kimberly Hopkins

CONTENTS

1. Introduction

2. Higher-Weight Heegner Points
3. Conjectures
4. Algorithm
5. Examples
6. More Examples

Acknowledgments
References

2000 AMS Subject Classification: 11F11, 11F37, 11F67, 11G40
Keywords: Modular forms, elliptic curves, Gross-Kohnen-Zagier formula, Shimura-Kohnen correspondence

In this paper we formulate a conjecture that partially generalizes the Gross-Kohnen-Zagier theorem to higher-weight modular forms. For $f \in S_{2 k}(N)$ satisfying certain conditions, we construct a map from the Heegner points of level N to a complex torus \mathbb{C} / L_{f} defined by f. We define higher-weight analogues of Heegner divisors on \mathbb{C} / L_{f}.

We conjecture that they all lie on a line and that their positions are given by the coefficients of a certain Jacobi form corresponding to f. In weight 2 , our map is the modular parameterization map (restricted to Heegner points), and our conjectures are implied by Gross-Kohnen-Zagier. For any weight, we expect that our map is the Abel-Jacobi map on a certain modular variety, and so our conjectures are consistent with the conjectures of Beilinson-Bloch. We have verified that our map is the AbelJacobi map for weight 4. We provide numerical evidence to support our conjecture for a variety of examples.

1. INTRODUCTION

For integers $N, k \geq 1$, let $S_{2 k}(N)$ denote the set of cusp forms of weight $2 k$ on the congruence group $\Gamma_{0}(N)$. Let $X_{0}(N)$ be the usual modular curve and $J_{0}(N)$ its Jacobian. By D we will always mean a negative fundamental discriminant that is a square modulo $4 N$. For each D, one can construct a Heegner divisor y_{D} in $J_{0}(N)$ defined over \mathbb{Q}. Suppose $f \in S_{2}(N)$ is any normalized newform whose sign in the functional equation of $L(f, s)$ is -1 . Then the celebrated theorem of Gross, Kohnen, and Zagier [Gross et al. 87, Theorem C] says that as D varies, the f-eigencomponents of the Heegner divisors y_{D} all lie on a line in the quotient $J_{0}(N)_{f}$. (We will say that a subset X of an abelian group J lies on a line if $X \subseteq \mathbb{Z} \cdot x_{0}$ for some $x_{0} \in J$.) Furthermore, their theorem states that the positions of the f-eigencomponents on this line are given by the coefficients of a certain Jacobi form. In particular, when N is prime, the positions are the coefficients of a half-integer-weight modular form in Shimura correspondence with f.

Now suppose $f \in S_{2 k}(N)$ is a normalized newform of weight $2 k$ and level N. In addition, assume that the coefficients in its Fourier series are rational, and the sign in the functional equation of $L(f, s)$ is -1 . Let $\mathcal{H}_{N} / \Gamma_{0}(N) \subset X_{0}(N)$ denote the Heegner points of level N. In this paper we construct a map

$$
\alpha: \mathcal{H}_{N} / \Gamma_{0}(N) \rightarrow \mathbb{C} / L_{f}
$$

where \mathbb{C} / L_{f} is a complex torus defined by the periods of f. Let $h(D)$ denote the class number of the imaginary quadratic field of discriminant D. For each D and fixed choice of its square root $(\bmod 2 N)$, we get precisely $h(D)$ distinct representatives $\tau_{1}, \ldots, \tau_{h(D)}$ of $\mathcal{H}_{N} / \Gamma_{0}(N)$.

Define $\left(\mathcal{Y}_{D}\right)_{f}=\alpha\left(\tau_{1}\right)+\cdots+\alpha\left(\tau_{h(D)}\right)$ and define $\left(y_{D}\right)_{f}=\left(\mathcal{Y}_{D}\right)_{f}+\overline{\left(\mathcal{Y}_{D}\right)_{f}}$ in \mathbb{C} / L_{f}. When $k=1, \alpha$ is the usual modular parameterization map restricted to Heegner points, and $\left(y_{D}\right)_{f}$ is equal to the f-eigencomponent of y_{D} in $J_{0}(N)$ as described in the first paragraph. For $k \geq 1$ we formulate conjectures similar to Gross-KohnenZagier. We predict that the $\left(y_{D}\right)_{f}$ all lie on a line in \mathbb{C} / L_{f}, that is, that there exists a point $y_{f} \in \mathbb{C} / L_{f}$ such that

$$
\left(y_{D}\right)_{f}=m_{D} y_{f}
$$

up to torsion, with $m_{D} \in \mathbb{Z}$. Furthermore, we predict that the positions m_{D} on the line are coefficients of a certain Jacobi form corresponding to f. In the case that N is prime and k is odd, the m_{D} should be the coefficients of a weight- $(k+1 / 2)$ modular form in Shimura correspondence with f.

Our map is equivalent to the Abel-Jacobi map on Kuga-Sato varieties in the following sense. Let $Y=Y^{k}$ be the Kuga-Sato variety associated to weight- $2 k$ forms on $\Gamma_{0}(N)$. (See [Zhang 97, p. 117] for details.) This is a smooth projective variety over \mathbb{Q} of dimension $2 k-1$. Set $\mathcal{Z}^{k}(Y)_{\text {hom }}$ to be the null-homologous codimensionk algebraic cycles, and $\mathrm{CH}^{k}(Y)_{\text {hom }}$ the group $\mathcal{Z}^{k}(Y)_{\text {hom }}$ modulo rational equivalence. Let Φ^{k} be the usual k th Abel-Jacobi map,

$$
\Phi^{k}: \mathrm{CH}^{k}(Y)_{\mathrm{hom}} \rightarrow J^{k}(Y)
$$

where $J^{k}(Y)$ is the k th intermediate Jacobian of Y. Given any normalized newform $f=\sum_{n \geq 1} a_{n} q^{n} \in$ $S_{2 k}(N)$ with rational coefficients, there exists an f isotypical component $J_{f}^{k}(Y)$ of $J^{k}(Y)$, and thus an induced map

Our result (to appear in a future publication) is that the image of Φ_{f}^{k} on classes of CM cycles in $\mathrm{CH}^{k}(Y)_{\text {hom }}$ is equal (up to a constant) to the image of our map α on Heegner points in $X_{0}(N)$. This implies our conjectures are consistent with the conjectures of Beilinson and Bloch. In this setting they predict

$$
\operatorname{rank}_{\mathbb{Z}} \mathrm{CH}^{k}\left(Y_{F}\right)_{\mathrm{hom}}=\operatorname{ord}_{s=k} L_{F}\left(H^{2 k-1}(Y), s\right)
$$

If we assume $\operatorname{ord}_{s=k} L(f, s)=1$, then a refinement of their conjecture predicts that the image of Φ_{f}^{k} on CM divisors in $Y_{\mathbb{Q}}$ should have rank at most 1 in $J_{f}^{k}(Y)$.

To verify the equivalence of α and Φ_{f}^{2} in the case of weight 4, for example, we used an explicit description of Φ_{f}^{2} on CM cycles given in [Schoen 86]. In fact, in [Schoen 93], Schoen uses this map to investigate a consequence of Beilinson-Bloch similar to the one described above. For a specific $Y=Y^{4}$ and f, he computes Φ_{f} on certain CM divisors in Y defined over the quadratic number field $\mathbb{Q}(i)$. From this he finds numerical evidence that the images lie on a line and that their positions are given by a certain weight- $5 / 2$ form corresponding to f.

The sections of this paper are divided as follows. In Section 2 we describe our map and its lattice of periods. In Section 3 we give explicit statements of our conjectures. In Section 4 we describe the algorithm we created to verify the conjectures numerically in a variety of examples. Note that our algorithm could be applied to compute coefficients of half-integer-weight modular forms. In Sections 5 and 6 we compute some examples and use them to verify our conjectures in two different ways.

2. HIGHER-WEIGHT HEEGNER POINTS

Let \mathfrak{h} denote the upper half-plane. Suppose f is a normalized newform in $S_{2 k}(N)$ having a Fourier expansion of the form

$$
f(\tau)=\sum_{n=1}^{\infty} a_{n} q^{n}, \quad q=\exp (2 \pi i \tau), \tau \in \mathfrak{h}
$$

with $a_{n} \in \mathbb{Q}$.
Recall that the L-function of f is defined by the Dirichlet series

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}, \quad \operatorname{Re}(s)>k+\frac{1}{2}
$$

and has an analytic continuation to all of \mathbb{C}. Moreover, the function $\Lambda(f, s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L(f, s)$ satisfies the functional equation

$$
\Lambda(f, s)=\varepsilon \Lambda(f, 2 k-s)
$$

where $\varepsilon= \pm 1$ is the sign of the functional equation of $L(f, s)$.

For each prime divisor p of N, let $q=p^{\ell}, \ell \in \mathbb{N}$, be such that $\operatorname{gcd}(q, N / q)=1$ and set $\omega_{q}=\left(\begin{array}{ll}q x_{0} & 1 \\ N y_{0} & q\end{array}\right)$, for some $x_{0}, y_{0} \in \mathbb{Z}$, with $q x_{0}-(N / q) y_{0}=1$. Define $\Gamma_{0}^{*}(N)$ to be the group generated by $\Gamma_{0}(N)$ and each ω_{q}. Let S be a set of generators for $\Gamma_{0}^{*}(N)$. Define the period integrals of f for the set S by

$$
\begin{aligned}
\mathcal{P} & =\left\{(2 \pi i)^{k} \int_{i \infty}^{\gamma(i \infty)} f(z) z^{m} d z: m \in\{0, \ldots, 2 k-2\}, \gamma \in S\right\} \\
& \subseteq \mathbb{C} .
\end{aligned}
$$

These are sometimes referred to as Shimura integrals. It is straightforward to see that every integral of the form

$$
(2 \pi i)^{k} \int_{i \infty}^{\gamma(i \infty)} f(z) z^{m} d z, \quad \gamma \in \Gamma_{0}^{*}(N), 0 \leq m \leq 2 k-2
$$

is an integral linear combination of elements in \mathcal{P}. (See [Shimura 94, Section 8.2], for example.) In fact, the \mathbb{Z} module generated by \mathcal{P} forms a lattice as described in the following lemma.

Lemma 2.1. $L:=\operatorname{Span}_{\mathbb{Z}}(\mathcal{P})$ is a lattice in \mathbb{C}.

Proof. By [Razar 77, Theorem 4] and Šokurov [Šokurov 80, Lemma 5.6], the set \mathcal{P} is contained in some lattice. Hence L is of rank at most 2. To show that its rank is in fact 2 , it suffices to show that there exist nonzero complex numbers $u^{+}, u^{-} \in L$ with $u^{+} \in \mathbb{R}$ and $u^{-} \in i \mathbb{R}$.

Suppose m is a prime not dividing N, and χ a primitive Dirichlet character modulo m. Define $(f \otimes \chi):=$ $\sum_{n \geq 1} \chi(n) a_{n} q^{n}$, and $L(f \otimes \chi, s)$ its Dirichlet series. Let

$$
\Lambda(f \otimes \chi, s)=(2 \pi)^{-s}\left(N m^{2}\right)^{s / 2} \Gamma(s) L(f \otimes \chi, s)
$$

Then for $\operatorname{Re}(s)>k+1 / 2$, we have

$$
\begin{equation*}
i^{s}\left(N m^{2}\right)^{-s / 2} \Lambda(f \otimes \chi, s)=\int_{0}^{i \infty}(f \otimes \chi)(z) z^{s} \frac{d z}{z} . \tag{2-1}
\end{equation*}
$$

Let $g(\chi)$ denote the Gauss sum associated to χ. Then an expression for χ in terms of the additive characters is given by

$$
\chi(n)=m^{-1} g(\chi) \sum_{u \bmod m} \bar{\chi}(-u) e^{2 \pi i n u / m}
$$

So

$$
(f \otimes \chi)(\tau)=m^{-1} g(\chi) \sum_{u \bmod m} \bar{\chi}(-u) f(z+u / m)
$$

Substituting this into (2-1) gives

$$
\begin{aligned}
& i^{s}\left(N m^{2}\right)^{-s / 2} \Lambda(f \otimes \chi, s) \\
& \quad=m^{-1} g(\chi) \sum_{u \bmod m} \bar{\chi}(-u) \int_{0}^{i \infty} f(z+u / m) z^{s} \frac{d z}{z}
\end{aligned}
$$

and replacing z by $z-u / m$ and rearranging implies

$$
\begin{aligned}
& i^{-s} g(\chi)^{-1} N^{-s / 2} \Lambda(f \otimes \chi, s) \\
& \quad=(-1)^{s-1} \sum_{u \bmod m} \bar{\chi}(-u) \int_{i \infty}^{u / m} f(z)(m z-u)^{s-1} d z
\end{aligned}
$$

Now let $s=2 k-1$ in the above equation, and multiply both sides by $(2 \pi i)^{k}$. In addition, suppose χ is a quadratic Dirichlet character modulo m. If $m \equiv 3 \bmod 4$, then $g(\chi)=i \sqrt{m}$, and if $m \equiv 1 \bmod 4$, then $g(\chi)=\sqrt{m}$. Hence since $\Lambda(f \otimes \chi, 2 k-1)$ is real-valued and nonzero, the right-hand side of this equation is either purely real or purely imaginary depending on the choice of m. Then this proves the lemma, since the right-hand side is in L for any m.

Let $D<0$ be a fundamental discriminant, and assume that D is a square modulo $4 N$. Fix a residue class $r \bmod$ $2 N$ satisfying $D \equiv r^{2} \bmod 4 N$. Then

$$
\mathcal{Q}_{N}^{D}(r):=\left\{\begin{array}{ll}
{[A, B, C]} & : A>0, B, C \in \mathbb{Z} \\
& D=B^{2}-4 A C \\
& A \equiv 0 \bmod N \\
& B \equiv r \bmod 2 N
\end{array}\right\}
$$

corresponds to a subset of the positive definite binary quadratic forms of discriminant D. We define $\mathcal{H}_{N}^{D}(r)$ to be the roots in \mathfrak{h} of $\mathcal{Q}_{N}^{D}(r)$:

$$
\mathcal{H}_{N}^{D}(r):=\left\{\begin{array}{ll}
\tau=\frac{-B+\sqrt{D}}{2 A} & :[A, B, C] \in \mathcal{Q}_{N}^{D}(r) \\
& C=\frac{|D|+B^{2}}{4 A}
\end{array}\right\}
$$

The group $\Gamma_{0}(N)$ preserves $\mathcal{H}_{N}^{D}(r)$, and the classes of $\mathcal{H}_{N}^{D}(r) / \Gamma_{0}(N)$ are in bijection with the classes of reduced binary quadratic forms of discriminant D. We will call $\mathcal{H}_{N}^{D}(r) / \Gamma_{0}(N)$ the set of Heegner points of level N, discriminant D, and root r. Define \mathcal{H}_{N} to be the union of $\mathcal{H}_{N}^{D}(r)$ over all D, r, and so $\mathcal{H}_{N} / \Gamma_{0}(N)$ are the Heegner points of level N.

For each $\tau=\frac{-B+\sqrt{D}}{2 A} \in \mathcal{H}_{N}^{D}(r)$, set $Q_{\tau}(z):=A z^{2}+$ $B z+C$. We now define a function $\alpha=\alpha_{f}: \mathcal{H}_{N} \rightarrow \mathbb{C}$ by

$$
\alpha(\tau):=(2 \pi i)^{k} \int_{i \infty}^{\tau} f(z) Q_{\tau}(z)^{k-1} d z
$$

Lemma 2.2. The map α induces a well-defined map (which we will also denote by α)

$$
\alpha: \mathcal{H}_{N} / \Gamma_{0}(N) \rightarrow \mathbb{C} / L
$$

Proof. For any $\tau \in \mathcal{H}_{N}$ of discriminant D and $\gamma \in$ $\Gamma_{0}(N)$, we will show that

$$
\alpha(\gamma \tau)-\alpha(\tau)=(2 \pi i)^{k} \cdot \int_{i \infty}^{\gamma(i \infty)} f(z) Q_{\gamma \tau}(z)^{k-1} d z
$$

Since $Q_{\gamma \tau}(z)$ has integer coefficients, this will imply $\alpha(\gamma \tau)-\alpha(\tau) \in L$ for all $\gamma \in \Gamma_{0}(N)$.

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$. Then

$$
\begin{aligned}
\alpha & (\gamma \tau)-(2 \pi i)^{k} \cdot \int_{i \infty}^{\gamma(i \infty)} f(z) Q_{\gamma \tau}(z)^{k-1} d z \\
= & (2 \pi i)^{k} \cdot \int_{\gamma(i \infty)}^{\gamma \tau} f(z) Q_{\gamma \tau}(z)^{k-1} d z \\
= & (2 \pi i)^{k} \cdot \int_{i \infty}^{\tau} f(\gamma z) Q_{\gamma \tau}(\gamma z)^{k-1} d(\gamma z) \\
= & \alpha(\tau),
\end{aligned}
$$

where in the last equality we used

$$
\begin{aligned}
f(\gamma z) & =(c z+d)^{2 k} f(z) \\
Q_{\gamma \tau}(z) & =(-c z+a)^{2} Q_{\tau}\left(\gamma^{-1} z\right) \\
d(\gamma z) & =(c z+d)^{-2} d z
\end{aligned}
$$

3. CONJECTURES

Let $\left\{\tau_{1}, \ldots, \tau_{h(D)}\right\} \in \mathcal{H}_{N}^{D}(r)$ be any set of distinct class representatives of $\mathcal{H}_{N}^{D}(r) / \Gamma_{0}(N)$. Define

$$
P_{D, r}:=\sum_{i=1}^{h(D)} \tau_{i} \in \operatorname{Div}\left(X_{0}(N)\right)
$$

where $\operatorname{Div}\left(X_{0}(N)\right)$ denotes the group of divisors on $X_{0}(N)$. If $D=-3$ (respectively $D=-4$), scale $P_{D, r}$ by $1 / 3$ (respectively $1 / 2$). Extend α to P_{D} by linearity and define

$$
\left(y_{D, r}\right)_{f}=\alpha\left(P_{D, r}\right)+\overline{\alpha\left(P_{D, r}\right)} \in \mathbb{C} / L
$$

where the bar denotes complex conjugation in \mathbb{C}. We write $y_{D, r}$ or y_{D} for $\left(y_{D, r}\right)_{f}$, and P_{D} for $P_{D, r}$ when the context of f, r is clear.

By the actions of complex conjugation and AtkinLehner on \mathcal{H}_{N}, we have

$$
\overline{\alpha\left(P_{D, r}\right)}=-\varepsilon \alpha\left(P_{D, r}\right),
$$

where ε is the sign of the functional equation of $L(f, s)$. Thus if $\varepsilon=+1$, then $y_{D, r}$ are in L for all D, r. This is, in some sense, the trivial case. Hence we restrict our attention to the case $\varepsilon=-1$.

Conjectures 3.1 and 3.3 give a partial generalization of the Gross-Kohnen-Zagier theorem to higher weights.

Conjecture 3.1. Let $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2 k}(N)$ be a normalized newform with rational coefficients, and assume $\varepsilon=-1$ and $L^{\prime}(f, k) \neq 0$. Then for all fundamental discriminants $D<0$ and $r \bmod 2 N$ with $D \equiv r^{2} \bmod 4 N$, there exist integers $m_{D, r}$ such that

$$
t y_{D, r}=t m_{D, r} y_{f} \quad \text { in } \mathbb{C} / L
$$

where $y_{f} \in \mathbb{C} / L$ and $t \in \mathbb{Z}$ are both nonzero and independent of D and r.

Remark 3.2. Equivalently, we could say that $y_{D, r}=$ $m_{D, r} y_{f}$ up to a t-torsion element in \mathbb{C} / L.

To state the second conjecture we will need to use Jacobi forms. (See [Eichler and Zagier 85] for background.) Let $J_{2 k, N}$ denote the set of all Jacobi forms of weight $2 k$ and index N. Then such a $\phi \in J_{2 k, N}$ is a function $\phi: \mathfrak{h} \times \mathbb{C} \rightarrow \mathbb{C}$, which satisfies the transformation law

$$
\phi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right)=(c \tau+d)^{2 k} e^{2 \pi i N \frac{c z^{2}}{c \tau+d}} \phi(\tau, z)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, and has a Fourier expansion of the form

$$
\begin{equation*}
\phi(\tau, z)=\sum_{\substack{n, r \in \mathbb{Z} \\ r^{2} \leq 4 N n}} c(n, r) q^{n} \zeta^{r}, \quad q=e^{2 \pi i \tau}, \zeta=e^{2 \pi i z} \tag{3-1}
\end{equation*}
$$

The coefficient $c(n, r)$ depends only on $r^{2}-4 N n$ and on the class $r \bmod 2 N$.

Suppose $f \in S_{2 k}(N)$ is a normalized newform with $\varepsilon=-1$. Then by [Skoruppa and Zagier 88], there exists a nonzero Jacobi cusp form $\phi_{f} \in J_{k+1, N}$ that is unique up to scalar multiple and has the same eigenvalues as f under the Hecke operators T_{m} for m, N coprime. We predict that the coefficients of ϕ_{f} are related to the $m_{D, r}$ from above in the following way.

Conjecture 3.3. Let $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2 k}(N)$ be a normalized newform with rational coefficients, and assume $\varepsilon=-1$ and $L^{\prime}(f, k) \neq 0$. Assume Conjecture 3.1. Then

$$
m_{D, r}=c(n, r)
$$

where $n=\frac{|D|+r^{2}}{4 N}$ and $c(n, r)$ is up to a scalar multiple the (n, r) th coefficient of the Jacobi form $\phi_{f} \in J_{k+1, N}$.

Remark 3.4. When $2 k=2$, the points $\left(y_{D, r}\right)_{f}$ and y_{f} are the same as those defined in [Gross et al. 87], and both of
our conjectures are implied by Theorem C of that paper. (Actually, that theorem is only for D coprime to $2 N$, but the authors state that the result remains "doubtless true" with this hypothesis removed. See [Hayashi 95] and [Borcherds 99] for more details.) Particular to weight 2 is the fact that \mathbb{C} / L is defined over \mathbb{Q}, and that y_{D} is a rational point on the elliptic curve $E_{f} \simeq \mathbb{C} / L$. In contrast, we should stress that for weight $2 k>2$, the elliptic curve $E \simeq \mathbb{C} / L$ is not expected to be defined over any number field. For instance, the j-invariants for our examples all appear to be transcendental over \mathbb{Q}.

Remark 3.5. For $N=1$ or a prime and k odd, we can state Conjecture 3.3 in terms of modular forms of halfinteger weight. Specifically, let $\phi \in J_{k+1}(N)$ be a Jacobi form with a Fourier expansion as in (3-1), and set

$$
g(\tau)=\sum_{M=0}^{\infty} c(M) q^{M}, \quad q=e^{2 \pi i \tau}
$$

where $c(M)$ is defined by

$$
c(M):= \begin{cases}c\left(\frac{M+r^{2}}{4 N}, r\right) & \text { if } M \equiv-r^{2} \bmod 4 N \forall r \in \mathbb{Z} \\ 0, & \text { otherwise }\end{cases}
$$

This function is well defined because $c(n, r)$ depends only on $r^{2}-4 n N$ when N is equal to 1 or is prime and k is odd. Then by [Eichler and Zagier 85, p. 69], g is in $M_{k+1 / 2}(4 N)$, the space of modular forms of weight $k+1 / 2$ and level $4 N$. In addition, if $f \in S_{2 k}(N)$ is a normalized newform with $\varepsilon=-1$, then the form g defined by ϕ_{f} is in Shimura correspondence with f.

4. ALGORITHM

Let $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{2 k}(N)$ be a normalized newform with rational Fourier coefficients. The $\operatorname{sign} \varepsilon$ of the functional equation of $L(f, s)$ can be computed with the identity

$$
f\left(\frac{-1}{N z}\right)=(-1)^{k} \varepsilon N^{k} z^{2 k} f(z)
$$

given by the action of the Fricke involution of level N on f. We will consider only f such that $\varepsilon=-1$ and $L^{\prime}(f, k) \neq 0$.

The first step is to find a basis of our lattice L, which is the \mathbb{Z}-module generated by the periods \mathcal{P} as described above. Suppose p_{1}, p_{2}, p_{3} are three periods in \mathcal{P}. Since L has rank 2 , these are linearly dependent over \mathbb{Z}, that is,

$$
a_{1} p_{1}+a_{2} p_{2}+a_{3} p_{3}=0, \quad \text { for some } a_{i} \in \mathbb{Z}
$$

We may assume $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}\right)=1$. Let $d=\operatorname{gcd}\left(a_{1}, a_{2}\right)$. Then there exist integers $x, y \in \mathbb{Z}$ such that $x a_{1}+y a_{2}=d$. Similarly, $\operatorname{gcd}\left(d, a_{3}\right)=1$, so there exist integers $u, v \in \mathbb{Z}$ such that $u d+v a_{3}=1$. Define the matrix M by

$$
M=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
-y & x & 0 \\
-v a_{1} / d & -v a_{2} / d & u
\end{array}\right)
$$

Observe that $M \in \mathrm{GL}_{3}(\mathbb{Z})$ and

$$
\begin{aligned}
& M \cdot{ }^{\mathrm{T}}\left(p_{1}, p_{2}, p_{3}\right) \\
& \quad={ }^{\mathrm{T}}\left(0,-y p_{1}+x p_{2},-v a_{1} p_{1} / d-v a_{2} p_{2} / d+u p_{3}\right)
\end{aligned}
$$

Hence $-y p_{1}+x p_{2}$ and $-v a_{1} p_{1} / d-v a_{2} p_{2} / d+u p_{3}$ are a basis for the \mathbb{Z}-module generated by p_{1}, p_{2}, p_{3}.

We would also like our basis elements to have small norm. Given a basis ω_{1}, ω_{2} of a lattice, its norm form is a real bilinear quadratic form defined by the matrix

$$
B=\left(\begin{array}{cc}
2\left|\omega_{1}\right|^{2} & 2 \operatorname{Re}\left(\omega_{1} \bar{\omega}_{2}\right) \\
2 \operatorname{Re}\left(\omega_{1} \bar{\omega}_{2}\right) & 2\left|\omega_{2}\right|^{2}
\end{array}\right)
$$

Thus it is equivalent to a reduced form of the same discriminant, that is, there exists $U \in \mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
{ }^{\mathrm{T}} U B U=\left(\begin{array}{cc}
2 \alpha & \beta \\
\beta & 2 \gamma
\end{array}\right), \quad \alpha, \beta, \gamma \in \mathbb{R}
$$

with $|\beta| \leq \alpha \leq \gamma$ and $\beta \geq 0$ if either $|\beta|=\alpha$ or $\alpha=\gamma$. Hence $\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right):=\left(\omega_{1}, \omega_{2}\right) U$ is a "reduced" basis. For a basis of all of L we simply apply this process iteratively to the elements of \mathcal{P}.

In fact, it is not hard to see that L is a real lattice, that is, $\bar{L}=L$. Thus given a basis ω_{1}, ω_{2} of L, we may assume that $\omega_{1} \in i \mathbb{R}$, and therefore $\tau:=\omega_{2} / \omega_{1}$ has real part in $\mathbb{Z} / 2$. This implies $\operatorname{Re}(L)=\operatorname{Re}\left(\omega_{2}\right)$, which will help simplify our computations.

To actually compute the elements in \mathcal{P} we need to split the path of integration from $(i \infty)$ to $\gamma(i \infty)$ at some point $\tau \in \mathfrak{h}$ that gives

$$
\begin{aligned}
& \int_{i \infty}^{\gamma(i \infty)} f(z) z^{m} d z=\int_{i \infty}^{\gamma(\tau)} f(z) z^{m} d z \\
&-\int_{i \infty}^{\tau} f(z)(a z+b)^{m}(c z+d)^{2 k-2-m} d z
\end{aligned}
$$

for $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$. We choose τ to be a point at which f has good convergence. To compute integrals of the form

$$
\int_{i \infty}^{\tau} f(z) z^{m} d z
$$

we use repeated integration by parts to obtain the formula

$$
\begin{equation*}
\int_{i \infty}^{\tau} f(z) z^{m} d z=m!(-1)^{m} \sum_{j=-1}^{m-1} \frac{(-1)^{j+1}}{(j+1)!} \tau^{j+1} f_{m-j}(\tau) \tag{4-1}
\end{equation*}
$$

where $f_{\ell}(\tau)$ is defined to be the ℓ-fold integral of f evaluated at $\tau \in \mathfrak{h}$, that is,

$$
f_{\ell}(\tau)=\frac{1}{(2 \pi i)^{\ell}} \sum_{n \geq 1} \frac{a_{n}}{n^{\ell}} q^{n}, \quad q=\exp (2 \pi i \tau)
$$

which is well defined for all $0 \leq \ell \leq 2 k-1$.
The next task is to compute $\alpha(\tau)$ for $\tau \in \mathcal{H}_{N}$. We could do this using ($4-1$), but it is computationally faster to use the following identity for α. Recall the modular differential operator

$$
\partial_{m}:=\frac{1}{2 \pi i} \frac{d}{d z}-\frac{m}{4 \pi y}, \quad z=x+i y \in \mathfrak{h}
$$

for any integer m. Define $\partial_{m}^{\ell}(f):=\partial_{m+2(\ell-1)} \circ \cdots \circ$ $\partial_{m+2} \circ \partial_{m}(f)$ to be the composition of the ℓ operators $\partial_{m}, \partial_{m+2}, \ldots, \partial_{m+2(\ell-1)}$. Then a straightforward combinatorial argument yields the following identity, whose proof we will omit.

Lemma 4.1. Let τ be a Heegner point of level N and discriminant D. Then

$$
\alpha(\tau)=\kappa_{D} \cdot \partial_{-2 k+2}^{k-1} \circ f_{2 k-1}(\tau)
$$

where $\kappa_{D}=(k-1)!(2 \pi i)^{k}(2 \pi \sqrt{|D|})^{k-1}$ is a constant depending only on D and $2 k$.

A closed formula for ∂_{m}^{ℓ} (see [Villegas and Zagier 93], for example) allows us to write α as

$$
\begin{equation*}
\alpha(\tau)=\kappa_{D}(2 \pi i)\left(\frac{-y}{\pi}\right)^{k} \sum_{n \geq 1} p\left(k, \frac{1}{4 \pi y n}\right) a_{n} q^{n} \tag{4-2}
\end{equation*}
$$

where $p(m, x)$ is the polynomial

$$
p(m, x)=\sum_{\ell=m}^{2 m-1}\binom{m-1}{2 m-1-\ell} \frac{(\ell-1)!}{(m-1)!} x^{\ell}
$$

$m \in \mathbb{Z}, x \in \mathbb{R}$. We compute $\alpha(\tau)$ using (4-2). Also notice that Lemma 4.1 perhaps provides further insight into why the $\operatorname{map} \mathcal{H}_{N} \rightarrow \mathbb{C} / L$ inducing α is invariant under $\Gamma_{0}(N)$. Loosely speaking, this is because integrating f $(2 k-1)$ times lowers its weight by $2(2 k-1)$, and $\partial_{-2 k+2}^{k-1}$ increases its weight by $2(k-1)$ to get something morally of weight 0 .

Given a set of Heegner-point representatives of level N, discriminant D, and root r, we can use the above to compute $y_{D, r}$. Verifying the first conjecture for each D, r then amounts to choosing a complex number y_{f} and an integer t, both nonzero, and establishing the linear dependence

$$
\begin{equation*}
\operatorname{Re}\left(y_{D, r}\right)-m_{D, r} \operatorname{Re}\left(y_{f}\right)+n_{D, r} \operatorname{Re}\left(\omega_{2}\right) / t=0 \tag{4-3}
\end{equation*}
$$

for some integers $m_{D, r}, n_{D, r}$. The second conjecture consists in comparing the coefficients $m_{D, r}$ of y_{f} we get above with the Jacobi form coefficients of the form ϕ_{f}.

5. EXAMPLES

The Fourier coefficients of the forms in these examples were computed using Sage. ${ }^{1}$ The rest of the calculations were done in PARI/GP. ${ }^{2}$

We will always take a set of generators for $\Gamma_{0}(N)$ that includes the translation matrix $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ but no other matrix whose $(2,1)$ entry is 0 . The period integrals for T are always 0 , since $i \infty$ is its fixed point. Hence we can exclude it from our computations of \mathcal{P}. In addition, the $(2 \pi)^{k}$ factor in the definitions of y_{D} and L is left off from the computations, since it is just a scaling factor and requires unnecessary extra precision.

For each example below, we list the number of digits of precision and the number M of terms of f we used. Below that is a set of generators we chose for $\Gamma_{0}^{*}(N)$ and the bases ω_{1}, ω_{2} we obtained for L from computing \mathcal{P} and applying the lattice-reduction algorithm explained in Section 4. We then provide a table listing the m_{D} that satisfy equation (4-3) for t, y_{f} of our choosing and D less than some bound. Without getting into details, the precision we chose depended on the size of the M th term of f and on the a priori knowledge of the size of the coefficients satisfying (4-3).

Example 5.1. $2 k=10, N=3$. The space of cuspidal newforms of weight 10 and level 3 has dimension 2, but only one form has $\varepsilon=-1$. The first few terms of it are

$$
\begin{aligned}
f= & q-36 q^{2}-81 q^{3}+784 q^{4}-1314 q^{5}+2916 q^{6}-4480 q^{7} \\
& -9792 q^{8}+\cdots
\end{aligned}
$$

[^0]| $\|\boldsymbol{D}\|$ | $\boldsymbol{m}_{\boldsymbol{D}}$ | $\|\boldsymbol{D}\|$ | $\boldsymbol{m}_{\boldsymbol{D}}$ |
| ---: | ---: | ---: | ---: |
| 3 | 1 | 107 | 1521 |
| 8 | -6 | 111 | -600 |
| 11 | 15 | 116 | 120 |
| 15 | 24 | 119 | 1680 |
| 20 | -24 | 120 | -1272 |
| 23 | -24 | 123 | 8358 |
| 24 | 60 | 131 | -705 |
| 35 | -126 | 132 | -3264 |
| 39 | -120 | 143 | 1128 |
| 47 | 144 | 152 | 1092 |
| 51 | 510 | 155 | 192 |
| 56 | 0 | 159 | 840 |
| 59 | 465 | 164 | 4320 |
| 68 | -480 | 167 | -4584 |
| 71 | -120 | 168 | -1176 |
| 83 | -1059 | 179 | -7905 |
| 84 | 1680 | 183 | 3000 |
| 87 | 792 | 191 | 1200 |
| 95 | -840 | 195 | -8772 |
| 104 | -1140 | | |

TABLE 1. $f \in S_{10}(3)$. List of D, m_{D} such that $y_{D}-$ $m_{D} y_{f} \in L$ for $|D|<200$.

We have the following data:

$$
\begin{aligned}
\text { precision } & =60, \quad \text { number of terms }=100 \\
\Gamma_{0}^{*}(3) & =\left\langle T,\left(\begin{array}{cc}
-1 & 1 \\
-3 & 2
\end{array}\right), \omega_{3}=\left(\begin{array}{cc}
0 & -1 \\
3 & 0
\end{array}\right)\right\rangle \\
\omega_{1} & =-i \cdot 0.00088850361439085 \ldots, \\
\omega_{2} & =0.00002189032158611 \ldots \\
y_{f} & =y_{-8} / 2 \\
t & =1
\end{aligned}
$$

The m_{D} in Table 1 give, up to scalar multiple, the coefficients of the weight-11/2 level-12 modular form found in [Eichler and Zagier 85, p. 144]. Note that we can use the theorems of Waldspurger to get information about the values $L(f, D, k)$ from this table. For example, $L(f,-56,5)=0$.

Example 5.2. $2 k=18, N=1$. The weight-18 level-1 eigenform in $S_{18}(1)$ has the closed form

$$
f(z)=\frac{-E_{6}^{3}(z)+E_{4}^{3}(z) E_{6}(z)}{1728}
$$

where $E_{2 k}(z)$ is the normalized weight- $2 k$ Eisenstein series.

$\|\boldsymbol{D}\|$	$\boldsymbol{m}_{\boldsymbol{D}}$	$\|\boldsymbol{D}\|$	$\boldsymbol{m}_{\boldsymbol{D}}$
3	1	51	108102
4	-2	52	-93704
7	-16	55	-22000
8	36	56	80784
11	99	59	-281943
15	-240	67	659651
19	-253	68	193392
20	-1800	71	-84816
23	2736	79	-109088
24	-1464	83	-22455
31	-6816	84	-484368
35	27270	87	1050768
39	-6864	88	143176
40	39880	91	195910
43	-66013	95	-370800
47	44064		

TABLE 2. $f \in S_{18}(1)$. List of D, m_{D} such that $y_{D}-$ $m_{D} y_{f} \in L$ for $|D|<100$.

We have the following data:

$$
\begin{aligned}
\text { precision } & =200, \quad \text { number of terms }=100 \\
\Gamma_{0}^{*}(1) & =S L_{2}(\mathbb{Z}) \quad\left\langle T, S=\omega_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\rangle \\
\omega_{1} & =i \cdot 0.001831876775870191761 \ldots, \\
\omega_{2} & =0.000000000519923858624 \ldots \\
y_{f} & =y_{-3} \\
t & =1
\end{aligned}
$$

The m_{D} in Table 2 are identical to the coefficients of the weight-19/2 level-4 half-integer-weight form in [Eichler and Zagier 85, p. 141], which is in Shimura correspondence with f.

Example 5.3. $2 k=4, N=13$. The dimension of the new cuspidal subspace is 3 in this case, but only one form has integer coefficients in its q-expansion:
$f=q-5 q^{2}-7 q^{3}+17 q^{4}-7 q^{5}+35 q^{6}-13 q^{7}-45 q^{8}+22 q^{9}+\cdots$.
We have the following data:

$$
\begin{aligned}
\text { precision }= & 28, \quad \text { number of terms }=250, \\
\Gamma_{0}^{*}(13)= & \left\langle T,\left(\begin{array}{cc}
8 & -5 \\
13 & -8
\end{array}\right),\left(\begin{array}{cc}
-3 & 1 \\
-13 & 4
\end{array}\right),\left(\begin{array}{cc}
5 & -2 \\
13 & -5
\end{array}\right),\left(\begin{array}{cc}
-9 & 7 \\
-13 & 10
\end{array}\right),\right. \\
& \left.\omega_{13}=\left(\begin{array}{cc}
0 & -1 \\
13 & 0
\end{array}\right)\right\rangle \\
\omega_{1}= & i \cdot 0.003124357726009878347400865279 \ldots, \\
\omega_{2}= & -0.04271662498543992056668379773 \ldots \\
& -i \cdot 0.001562178863004939178984383052 \ldots, \\
y_{f}= & y_{-3}, \\
t= & 6
\end{aligned}
$$

$\|\boldsymbol{D}\|$	$\boldsymbol{m}_{\boldsymbol{D}, \boldsymbol{r}}$	$\|\boldsymbol{D}\|$	$\boldsymbol{m}_{\boldsymbol{D}, \boldsymbol{r}}$
3	1	107	4
4	-1	116	-8
23	2	120	-13
35	-7	127	14
40	3	131	-3
43	-17	139	29
51	9	152	2
55	-6	155	22
56	1	159	-6
68	-5	168	-21
79	4	179	-17
87	-6	183	-2
88	10	191	-10
95	4	199	4
103	-8		

TABLE 3. $f \in S_{4}(13)$. List of $D, m_{D, r}$ such that $t y_{D, r}-m_{D, r} y_{f} \in L$ with $t=6$, for $|D|<200$ and $\operatorname{gcd}(|D|, N)=1$.

Note that this is the first example of a nonsquare lattice. In fact,

$$
\omega_{2} / \omega_{1}=-0.5000 \cdots+i \cdot 13.67212999 \ldots
$$

so $\operatorname{Re}\left(\omega_{2} / \omega_{1}\right)=1 / 2$, as explained earlier. This is also the first example in which the choice of r matters, since $k=2$ is not odd. For each D, we chose r in the interval $0<r<13$. In addition, this is our only example in which $t>1$.

A closed-form expression for the weight-3 index-13 Jacobi form $\phi=\phi_{f}$ corresponding to f was provided to us by Nils Skoruppa:

$$
\phi(\tau, z)=\vartheta_{1}^{5} \vartheta_{2}^{3} \vartheta_{3} / \eta^{3}
$$

Here η is the usual Dedekind eta function, $\eta=$ $q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right)$ with $q=e^{2 \pi i \tau}$, and

$$
\vartheta_{a}=\sum_{r \in \mathbb{Z}}\left(\frac{-4}{r}\right) q^{\frac{r^{2}}{8}} \zeta^{\frac{a r}{2}}
$$

for $a=1,2,3, \zeta=e^{2 \pi i z}$. (This has a nice product expansion using Jacobi's triple product identity.)

We verify that the (n, r) th coefficient $c(n, r)$ in the Fourier expansion of ϕ is identically equal to the $m_{D, r}$ in Table 3 for $|D|<200$.

6. MORE EXAMPLES

The coefficients of Jacobi forms are difficult to compute, in particular for the cases in which N is composite or
k is even. We chose the previous examples in part because the Fourier coefficients for their Jacobi forms already were known, thanks to the work of Zagier, Eichler, and Skoruppa mentioned above. However, given any weight and level, we can still provide convincing evidence for our conjecture without knowing the exact coefficients of its Jacobi form. This is done using a refinement of [Waldspurger 81] given in [Gross et al. 87, p. 527].

Specifically, let $f \in S_{2 k}(N)$ be a normalized newform with $\varepsilon=-1$. Let $\phi=\phi_{f} \in J_{k+1, N}$, with Fourier coefficients denoted by $c(n, r)$, be the Jacobi form corresponding to f as described in Section 3. For a fundamental discriminant D with $\operatorname{gcd}(D, N)=1$ and square root r modulo $4 N$, [Gross et al. 87 , Corollary 1] says that

$$
|D|^{k-1 / 2} L(f, D, k) \doteq|c(n, r)|^{2}
$$

here $L(f, D, s)$ is the L-series of f twisted by D, and $n \in \mathbb{Z}$ satisfies $D=r^{2}-4 N n$. By \doteq we mean equality up to a nonzero factor depending on $N, 2 k, f$, and ϕ, but independent of D. (Gross-Kohnen-Zagier give this constant explicitly in their paper, but for us it is unnecessary.)

Thus, given two such discriminants $D_{i}=r_{i}^{2}-4 N n_{i}$, $i=1,2$, we have

$$
\frac{\left|D_{1}\right|^{k-1 / 2} L\left(f, D_{1}, k\right)}{\left|D_{2}\right|^{k-1 / 2} L\left(f, D_{2}, k\right)}=\frac{\left|c\left(n_{1}, r_{1}\right)\right|^{2}}{\left|c\left(n_{2}, r_{2}\right)\right|^{2}}
$$

Hence by computing central values of twisted L-functions of f, we can test whether ratios of squares of our $m_{D_{i}, r_{i}}$ are equal to those of $c\left(n_{i}, r_{i}\right)$.

For the examples below we have the same format as the previous examples along with a fixed choice of discriminant D_{1} for which we verified explicitly

$$
\frac{\left|D_{1}\right|^{k-1 / 2} L\left(f, D_{1}, k\right)}{|D|^{k-1 / 2} L(f, D, k)}=\frac{m_{D_{1}, r}^{2}}{m_{D, r}^{2}}
$$

for all D coprime to N less than a certain bound.

Example 6.1. $2 k=4, N=21$. The dimension of the new cuspidal subspace of $S_{4}(21)$ is 4 . We chose

$$
f=q-3 q^{2}-3 q^{3}+q^{4}-18 q^{5}+9 q^{6}+7 q^{7}+\cdots
$$

$\|D\|$	$m_{D, r}$	$\|D\|$	$m_{D, r}$
3	1	111	12
20	3	119	0
24	-3	131	-9
35	0	132	24
47	-6	143	6
56	0	152	21
59	3	159	0
68	6	164	-6
83	-15	167	-12
87	-12	195	24
104	9		

TABLE 4. $f \in S_{4}(21)$. List of $D, m_{D, r}$ such that $y_{D, r}-m_{D, r} y_{f} \in L$ for $|D|<200$.

We have the following data:

$$
\begin{aligned}
\text { precision }= & 40, \quad \text { number of terms }=500 \\
\Gamma_{0}^{*}(21)= & \left\langle T,\left(\begin{array}{cc}
-4 & 1 \\
-21 & 5
\end{array}\right),\left(\begin{array}{cc}
11 & -5 \\
42 & -19
\end{array}\right),\left(\begin{array}{cc}
13 & -9 \\
42 & -29
\end{array}\right),\left(\begin{array}{cc}
8 & -5 \\
21 & -13
\end{array}\right),\right. \\
& \left.\left(\begin{array}{cc}
26 & -19 \\
63 & -46
\end{array}\right),\left(\begin{array}{ll}
-16 & 13 \\
-21 & 17
\end{array}\right)\right\rangle \\
\omega_{1}= & i \cdot 0.0040435422825247 \ldots, \\
\omega_{2}= & -0.03257318919429172 \ldots, \\
y_{f}= & y-3 \\
t= & 1 \\
D_{1}= & -20
\end{aligned}
$$

For a consistent choice of each r we chose the first positive residue modulo $2 N$ that satisfies $D \equiv r^{2} \bmod$ $4 N$ for each D. See Table 4.

Example 6.2. $2 k=12, N=4$. The space of new cusp forms in $S_{12}(4)$ is spanned by one normalized newform whose Fourier series begins

$$
\begin{aligned}
f= & q-516 q^{3}-10530 q^{5}+49304 q^{7}+89109 q^{9} \\
& -309420 q^{1} 1+\cdots .
\end{aligned}
$$

We have the following data:

$$
\begin{aligned}
\text { precision } & =80, \quad \text { number of terms }=200 \\
\Gamma_{0}^{*}(4) & =\left\langle T,\binom{1-1}{4-3}\right\rangle \\
\omega_{1} & =i \cdot 0.0000800523062521663977085 \ldots \\
\omega_{2} & =-0.0018738310858243364747237244 \ldots, \\
y_{f} & =y_{-7}, \\
t & =1, \\
D_{1} & =-7
\end{aligned}
$$

$\|\boldsymbol{D}\|$	$\boldsymbol{m}_{\boldsymbol{D}, \boldsymbol{r}}$	$\|\boldsymbol{D}\|$	$\boldsymbol{m}_{\boldsymbol{D}, \boldsymbol{r}}$
7	1	103	1649
15	5	111	-765
23	-3	119	-90
31	-50	127	2664
39	-35	143	-3729
47	186	151	-505
55	215	159	-2825
71	-315	167	3819
79	-10	183	2539
87	-497	191	1830
95	405	199	-5755

TABLE 5. $f \in S_{12}(4)$. List of $D, m_{D, r}$ such that $y_{D, r}-m_{D, r} y_{f} \in L$ for $|D|<200$.

Similar to the last example, we chose the first positive residue modulo $2 N$ that satisfies $D \equiv r^{2} \bmod 4 N$ for each D. See Table 5 .

ACKNOWLEDGMENTS

I am deeply grateful to my advisor, Fernando Rodriguez Villegas, for his continuing guidance and support and for sharing his ideas that have enriched this work. I would also like to thank Don Zagier, Winfried Kohnen, and Chad Schoen for their ideas and suggestions. Thanks to Jeffrey Stopple for his careful reading of the manuscript. The coefficients of modular forms were computed with the help of William Stein. This research was partially funded by the Donald D. Harrington Endowment Fellowship.

REFERENCES

[Borcherds 99] Richard E. Borcherds. "The Gross-KohnenZagier Theorem in Higher Dimensions." Duke Math. J. 97:2 (1999), 219-233.
[Eichler and Zagier 85] Martin Eichler and Don Zagier. The Theory of Jacobi Forms, Progress in Mathematics 55. Boston: Birkhäuser, 1985.
[Gross et al. 87] Benedict H. Gross, Winfried Kohnen, and Don B. Zagier. "Heegner points and derivatives of L-series. II." Math. Ann. 278:1-4 (1987), 497-562.
[Hayashi 95] Yoshiki Hayashi. "The Rankin's L-Function and Heegner Points for General Discriminants." Proc. Japan Acad. Ser. A Math. Sci. 71:2 (1995), 30-32.
[Razar 77] Michael J. Razar. "Values of Dirichlet Series at Integers in the Critical Strip." In Modular Functions of One Variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Math. 627, pp. 1-10. Berlin: Springer, 1977.
[Schoen 86] Chad Schoen. "Complex Multiplication Cycles on Elliptic Modular Threefolds." Duke Math. J. 53:3 (1986), 771-794.
[Schoen 93] Chad Schoen. "Complex Multiplication Cycles and a Conjecture of Beilinson and Bloch." Trans. Amer. Math. Soc. 339:1 (1993), 87-115.
[Shimura 94] Goro Shimura. Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan 11. Reprint of the 1971 original, Kanô Memorial Lectures 1. Princeton: Princeton University Press, 1994.
[Skoruppa and Zagier 88] Nils-Peter Skoruppa and Don Zagier. "Jacobi Forms and a Certain Space of Modular Forms." Invent. Math. 94:1 (1988), 113-146.
[Šokurov 80] V. V. Šokurov. "Shimura Integrals of Cusp Forms." Izv. Akad. Nauk SSSR Ser. Mat. 44:3 (1980), 670718, 720.
[Villegas and Zagier 93] Fernando Rodriguez Villegas and Don Zagier. "Square Roots of Central Values of Hecke L-Series." In Advances in Number Theory (Kingston, ON, 1991), Oxford Sci. Publ., pp. 81-99. New York: Oxford Univ. Press, 1993.
[Waldspurger 81] J.-L. Waldspurger. "Sur les coefficients de Fourier des formes modulaires de poids demi-entier." J. Math. Pures Appl. (9) 60:4 (1981), 375-484.
[Zhang 97] Shouwu Zhang. "Heights of Heegner Cycles and Derivatives of L-Series." Invent. Math. 130:1 (1997), 99152.

Kimberly Hopkins, UCLA Department of Mathematics, Box 951555, Los Angeles, CA, 90095 (khopkins@math.ucla.edu)
Received April 5, 2009; accepted April 17, 2009.

[^0]: ${ }^{1}$ Available online (http://www.sagemath.org).
 ${ }^{2}$ Available online (http://pari.math.u-bordeaux.fr). Code and data from this paper can be found at http://www.math.utexas .edu/users/khopkins/comp.html.

