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Let Xm,n be the Segre–Veronese variety P
m × P

n embedded by
the morphism given by O(1, 2). In this paper, we provide two
functions s(m, n) ≤ s(m,n) such that the sth secant variety of
Xm,n has the expected dimension if s ≤ s(m, n) or s(m,n) ≤
s. We also present a conjecturally complete list of defective
secant varieties of such Segre–Veronese varieties.

1. INTRODUCTION

Let X ⊂ PN be an irreducible nonsingular variety of
dimension d. Then the sth secant variety of X , denoted
by σs(X), is defined to be the Zariski closure of the union
of the linear spans of all s-tuples of points of X .

The study of secant varieties has a long history. Inter-
est in this subject goes back to the Italian school at the
turn of the twentieth century. This topic has received re-
newed interest over the past several decades, mainly due
to its increasing importance in an ever widening collec-
tion of disciplines including algebraic complexity theory
[Bürgisser et al. 97, Landsberg 06, Landsberg 08], alge-
braic statistics [Garcia et al. 05, Eriksson et al. 05, Aoki
et al. 07], and combinatorics [Sturmfels and Sullivant
06, Sullivant 08].

The major questions surrounding secant varieties re-
volve around finding invariants of those objects such as
dimension. A simple dimension count suggests that the
expected dimension of σs(X) is min {N, s(d + 1) − 1}.
We say that X has a defective sth secant variety if σs(X)
does not have the expected dimension. In particular, X

is said to be defective if X has a defective sth secant
variety for some s. For instance, the Veronese surface
X in P

5 is defective, because the dimension of σ2(X) is
four, while its expected dimension is five. A well-known
classification of the defective Veronese varieties was com-
pleted in a series of papers by Alexander and Hirschowitz
[Alexander and Hirschowitz 95] (see also [Brambilla and
Ottaviani 08]).
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There are corresponding conjecturally complete lists
of defective Segre varieties [Abo et al. 09b] and defective
Grassmann varieties [Baur et al. 07]. However, secant
varieties of Segre–Veronese varieties are less well under-
stood. In recent years, considerable efforts have been
made to develop techniques to study secant varieties of
such varieties (see, for example, [Catalisano et al. 05, Car-
lini and Chipalkatti 03, Carlini and Catalisano 07, Otta-
viani 06, Catalisano et al. 08, Ballico 06, Abrescia 08]).
But even the classification of defective two-factor Segre–
Veronese varieties is still far from complete.

In order to classify defective Segre–Veronese varieties,
a crucial step is to prove the existence of a large family of
nondefective such varieties. A powerful tool to establish
nondefectiveness of large classes of Segre–Veronese vari-
eties is the inductive approach based on specialization
techniques, which consist in placing a certain number of
points on a chosen divisor. For a given n = (n1, . . . , nk) ∈
Nk, we write Pn for Pn1 × · · · × Pnk .

Let Xa
n be the Segre–Veronese variety Pn embedded by

the morphism given by O(a) with a = (a1, . . . , ak) ∈ Nk.
As we shall see in Section 2, the problem of determining
the dimension of σs(Xa

n) is equivalent to the problem of
determining the value of the Hilbert function hPn(Z, ·) of
a collection Z of s general double points in Pn at a, i.e.,

hPn(Z,a) = dim H0(Pn,O(a)) − dimH0(Pn, IZ(a)).

Suppose that ak ≥ 2. Denote by n′ and a′ the k-tuples
(n1, n2, . . . , nk − 1) and (a1, a2, . . . , ak − 1) respectively.
Given P

n′ ⊂ P
n, we have an exact sequence

0 → IZ̃(a′) → IZ(a) → IZ∩Pn′ ,Pn′ (a) → 0,

where Z̃ is the residual scheme of Z with respect to Pn′
.

This exact sequence gives rise to the so-called Castel-
nuovo inequality

hPn(Z,a) ≥ hPn(Z̃,a′) + h
Pn′ (Z ∩ P

n′
,a).

Thus, we can conclude that

• if hPn(Z̃,a′) and h
Pn′ (Z ∩ Pn′

,a) are the expected
values and

• if the degrees of Z̃ and Z ∩ Pn′
are both less

than or both greater than dimH0(Pn,O(a′)) and
dimH0(Pn′

,O(a)) respectively,

then hPn(Z,a) is also the expected value.
By semicontinuity, the Hilbert function of a general

collection of s double points in Pn has the expected value

at a. This enables one to check whether σs(Xa
n) has the

expected dimension by induction on n and a.
To apply this inductive approach, we need some ini-

tial cases regarding either dimensions or degrees. The
class of secant varieties of two-factor Segre–Veronese va-
rieties embedded by the morphism given by O(1, 2) can
be viewed as one such initial case. In fact, in this case
the above-mentioned specialization technique would in-
volve secant varieties of two-factor Segre varieties, most
of which are known to be defective, and thus we cannot
apply this technique to find dim σs(Xa

n) for n = (m, n)
and a = (1, 2). To sidestep this problem, we therefore
need an ad hoc approach.

This paper is devoted to studying secant varieties of
Segre–Veronese varieties Pm ×Pn embedded by the mor-
phism given by O(1, 2). Let

q(m, n) =

⌊
(m + 1)

(
n+2

2

)
m + n + 1

⌋
.

Our main goal is to prove the following theorem:

Theorem 1.1. Let n = (m, n) and a = (1, 2). If n is
sufficiently large, then σs(Xa

n) has the expected dimension
for s = q(m, n).

A straightforward consequence of this theorem is the
following:

Corollary 1.2. Let n = (m, n) and a = (1, 2). If n is
sufficiently large, then σs(Xa

n) has the expected dimension
for all s ≤ q(m, n).

In order to prove Theorem 1.1, we show that if m ≤
n + 2, then σs(m,n)(Xa

n) has the expected dimension,
where

s(m, n)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(m + 1) �n/2	 − (m−2)(m+1)

2 n even;

(m + 1) �n/2	 − (m−3)(m+1)
2 m, n odd;

(m + 1) �n/2	 − (m−3)(m+1)+1
2 m even, n odd.

Theorem 1.1 then follows immediately, because s(m, n) =
q(m, n) for a sufficiently large n (an explicit bound for n

can be found just before Corollary 3.14).
To prove that σs(m,n)(Xa

n) has the expected dimen-
sion, we will use double induction on m and n. More
precisely, we will prove the following two claims:
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(i) Let n = (n + 1, n). Then the secant variety
σs(n+1,n)(Xa

n) has the expected dimension. Note
that the case n = (n + 2, n) is trivial, since
s(n + 2, n) = 0.

(ii) Let n′ = (m, n − 2) and n = (m, n). If
σs(m,n−2)(Xa

n′) has the expected dimension, then
σs(m,n)(Xa

n) also has the expected dimension.

Claim (i) can be proved by an inductive approach that
specializes a certain number of points on a subvariety of
Pm×Pn of the form Pm′ ×Pn (see Section 2 for more de-
tails). Note that a similar approach has been successfully
applied to the study of secant varieties of Segre varieties
(see, for example, [Abo et al. 09b]).

The proof of (ii) relies on a different specialization
technique that allows one to place a certain number of
points on a two-codimensional subvariety of Pm × Pn of
the form Pm×Pn−2 (see Section 3 for more details). This
approach can be regarded as a modification of the ap-
proach introduced in [Brambilla and Ottaviani 08] that
simplifies the proof of the Alexander–Hirschowitz theo-
rem for cubic Veronese varieties. We also would like to
mention that the same approach was extended to secant
varieties of Grassmannians of planes in [Abo et al. 09a].

In Section 4, we will modify the above techniques to
prove the following theorem:

Theorem 1.3. Let n = (m, n), a = (1, 2), and

s̄(m, n) =

{
(m + 1) �n/2	 + 1 if n is even;
(m + 1) �n/2	 + 3 otherwise.

Then σs(Xa
n) has the expected dimension for any s ≥

s̄(m, n).

Theorems 1.1 and 1.3 complete the classification of de-
fective Segre–Veronese varieties X1,2

m,n for m = 1, 2. To be
more precise, the following is an immediate consequence
of these theorems:

Corollary 1.4. Let n = (m, n) and a = (1, 2).

(i) If m = 1, then σs(Xa
n) has the expected dimension

for any s.

(ii) If m = 2, then σs(Xa
n) has the expected dimension

unless (n, s) = (2k + 1, 3k + 2) with k ≥ 1.

Note that (i) is well known; see, for example, [Carlini
and Chipalkatti 03]. We also mention that [Baur and

Draisma 07, Theorem 1.3] gives a complete classification
of the case m = 1, n = 2 for any degree a = (d1, d2),
where d1, d2 ≥ 1. On the other hand, to our best knowl-
edge, (ii) was previously unknown. The defectivity of
the (3k +2)th secant variety of X1,2

2,2k+1 has already been
established (see [Carlini and Chipalkatti 03, Ottaviani
06] for the proofs). Thus Corollary 1.4(ii) completes the
classification of defective secant varieties of X1,2

2,n.
In Section 5, we will give a conjecturally complete list

of defective secant varieties of X1,2
m,n. Evidence for the

conjecture is provided by results in [Catalisano et al.
05, Carlini and Chipalkatti 03, Ottaviani 06]. Further
evidence in support of the conjecture was obtained via
the computational experiments we carried out. Thus the
first part of this section will be devoted to explaining
these experiments, which were done with the computer
algebra system Macaulay2, developed by Dan Grayson
and Mike Stillman.1

The proofs of Lemmas 3.10 and 4.5 are also based on
computations in Macaulay2.

2. SPLITTING THEOREM

Let V be an (m+1)-dimensional vector space over C and
let W be an (n+1)-dimensional vector space over C. For
simplicity, we write Pm,n for Pm×Pn = P(V )×P(W ). In
this section, for simplicity we indicate by Xm,n the Segre–
Veronese variety P

m,n embedded by the morphism ν1,d

given by O(1, d). Let Tp(Xm,n) be the affine cone over
the tangent space Tp(Xm,n) to Xm,n at a point p ∈ Xm,n.

For each p ∈ Xm,n, there are two vectors u ∈ V \ {0}
and v ∈ W \ {0} such that p = [u⊗ vd] ∈ P(V ⊗Sd(W )).
In this way, p can be identified with ([u], [v]) ∈ Pm,n

through ν1,d. Thus p is also denoted by ([u], [v]). Let p =
[u⊗ vd] ∈ Xm,n. Then Tp(Xm,n) = V ⊗ vd + u⊗ vd−1W .
We denote by Yp(Xm,n) (or just by Yp) the (m + 1)-
dimensional subspace V ⊗ vd of V ⊗ Sd(W ).

Definition 2.1. Let p1, . . . , ps, q1, . . . , qt be general points
of Xm,n and let Um,n(s, t) be the subspace of V ⊗Sd(W )
spanned by

∑s
i=1 Tpi(Xm,n) and

∑t
i=1 Yqi(Xm,n). Then

Um,n(s, t) is expected to have dimension

min
{

s(m + n + 1) + t(m + 1), (m + 1)
(

n + d

d

)}
.

1Available online (http://www.math.uiuc.edu/Macaulay2/).
All the Macaulay2 scripts needed to carry out these compu-
tations are available at http://www.webpages.uidaho.edu/∼abo/
programs.html.
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We say that S(m, n; 1, d; s; t) is true if Um,n(s, t) has
the expected dimension. For simplicity, we denote
S(m, n; 1, d; s; 0) by T (m, n; 1, d; s).

Note that Um,n(s, 0) is the affine cone of σs(Xm,n).

Remark 2.2. Let q1, . . . , qt be general points of Xm,n

and let σs(Xm,n) be the sth secant variety of Xm,n.
By Terracini’s lemma [Terracini 11], the span of the
tangent spaces to Xm,n at s generic points is equal
to the tangent space to σs(Xm,n) at the generic z

point in the linear subspace spanned by the s points.
Thus the vector space Um,n(s, t) can be thought of
as the affine cone over the tangent space to the join
J(P(Yq1), . . . , P(Yqt), σs(Xm,n)) of P(Yq1), . . . , P(Yqt) and
σs(Xm,n) at a general point in the linear subspace
spanned by q1, . . . , qt and z. Therefore, S(m, n; 1, d; s; t)
is true if and only if J(P(Yq1 ), . . . , P(Yqt), σs(Xm,n)) has
the expected dimension. In particular, σs(Xm,n) has the
expected dimension if and only if S(m, n; 1, d; s; 0) is true.

Remark 2.3. Let N = (m + 1)
(
n+d

d

)
. Then

H0(Pm,n,O(1, d)) can be identified with the set of hyper-
planes in PN−1. Since the condition that a hyperplane
H ⊂ PN contains Tp(Xm,n) is equivalent to the condition
that H intersects Xm,n in the first infinitesimal neigh-
borhood of p, the elements of H0(Pm,n, Ip2(1, d)) can be
viewed as hyperplanes containing Tp(Xm,n).

Let q ∈ Xm,n. A similar argument shows that
the elements of H0(Pm,n, Iq2|P(Yq)

(1, d)) can be identified
with hyperplanes containing Yq, where q2|P(Yq) is a zero-
dimensional subscheme of Xm,n of length m + 1.

Let p1, . . . , ps, q1, . . . , qt ∈ Xm,n and let

Z = {p2
1, . . . , p

2
s, q

2
1 |P(Yq1), . . . , q

2
t |P(Yqt)

}.

Recall that Terracini’s lemma says that the linear sub-
space spanned by Tp1(Xm,n), . . . , Tps(Xm,n) is the tan-
gent space to σs(Xm,n) at a general point in the lin-
ear subspace spanned by p1, . . . , ps. This implies that
dimJ(P(Yq1 ), . . . , P(Yqt), σs(Xm,n)) equals the value of
the Hilbert function hPm,n(Z, ·) of Z at (1, d), i.e.,

hPm,n(Z, (1, d)) = dimH0(Pm,n,O(1, d))

− dimH0(Pm,n, IZ(1, d)).

In particular,

hPm,n(Z, (1, d)) = min {s(m + n + 1) + t(m + 1), N}

if and only if S(m, n; 1, d; s; t) is true.

Definition 2.4. A sextuple (m, n; 1, d; s; t) is called sub-
abundant if

s(m + n + 1) + t(m + 1) ≤ (m + 1)
(

n + d

d

)
,

and it is called superabundant if

s(m + n + 1) + t(m + 1) ≥ (m + 1)
(

n + d

d

)
.

We say that (m, n; 1, d; s; t) is equiabundant if it is both
subabundant and superabundant. For brevity, we will
write the quintuple (m, n; 1, d; s) instead of the sextuple
(m, n; 1, d; s; 0).

Assume that S(m, n; 1, d; s; t) is true. Note that
when (m, n; 1, d; s; t) is superabundant, Um,n(s, t) coin-
cides with the whole space V ⊗ Sd(W ), whereas for sub-
abundant (m, n; 1, d; s; t), Um,n(s, t) can be a proper sub-
space of the whole space.

Remark 2.5. Given two vectors (s, t) and (s′, t′), we
say that (s, t) ≥ (s′, t′) if s ≥ s′ and t ≥ t. Sup-
pose that S(m, n; 1, 2; s; t) is true and that (m, n; 1, 2; s; t)
is subabundant (respectively superabundant). Then
S(m, n; 1, 2; s′; t′) is true for any choice of s′ and t′ with
(s, t) ≥ (s′, t′) (respectively with (s, t) ≤ (s′, t′)).

Remark 2.6. Suppose that m = 0. We make the following
simple remarks:

(i) Let q ∈ X0,n. Then P(Yq(X0,n)) is just q it-
self. If q1, . . . , qt are general points of X0,n and if
(0, n; 1, d; s; t) is subabundant, then S(0, n; 1, d; s; t)
is true if and only if T (0, n; 1, d; s) is true.

(ii) By the Alexander–Hirschowitz theorem [Alexander
and Hirschowitz 95], we know that T (0, n; 1, d; n+1)
is true. Then if (0, n; 1, d; s) is superabundant and
if s ≥ n + 1, then T (0, n; 1, d; s) is true.

Theorem 2.7. Let m = m′+m′′+1 and let s = s′+s′′. If
(m′, n; 1, d; s′; s′′ + t) and (m′′, n; 1, d; s′′; s′ + t) are sub-
abundant (respectively superabundant, equiabundant) and
if S(m′, n; 1, d; s′; s′′ + t) and S(m′′, n; 1, d; s′′; s′ + t) are
true, then (m, n; 1, d; s; t) is subabundant (respectively su-
perabundant, equiabundant) and S(m, n; 1, d; s; t) is true.

Proof: Here we prove the theorem only in the case that
(m′, n; 1, d; s′; s′′ + t) and (m′′, n; 1, d; s′′; s′ + t) are both
subabundant, because the remaining cases can be proved
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in a similar manner. Let V ′ and V ′′ be subspaces of
V of dimensions m′ + 1 and m′′ + 1 respectively. Sup-
pose that V is the direct sum of V ′ and V ′′. Let
p = [u ⊗ vd] ∈ Xm,n. If u ∈ V ′, then we have

Tp(Xm,n) = V ⊗ vd + u ⊗ vd−1W

= (V ′ ⊗ vd + u ⊗ vd−1W ) ⊕ (V ′′ ⊗ vd)

= Tp(Xm′,n) ⊕ Yp′′ (Xm′′,n)

for some p′′ ∈ Xm′′,n (p′′ must be of the form [u′′ ⊗ vd]
with u′′ ∈ V ′′). Similarly, one can prove that if u ∈
V ′′, then Tp(Xm,n) = Yp′(Xm′,n) ⊕ Tp(Xm′′,n) for some
p′ ∈ Xm′,n.

Let q = [u′⊗v′d] ∈ Xm,n. Then there exist q′ ∈ Xm′,n

and q′′ ∈ Xm′′,n such that

Yq(Xm,n) = V ⊗ v′d

= (V ′ ⊗ v′d) ⊕ (V ′′ ⊗ v′d)

= Yq′(Xm′,n) ⊕ Yq′′ (Xm′′,n).

Thus one can conclude that

Um,n(s, t) � Um′,n(s′, s′′ + t) ⊕ Um′′,n(s′′, s′ + t).

By assumption,

dimUm′,n(s′, s′′ + t) = s′(m′ + n + 1) + (s′′ + t)(m′ + 1)

and

dimUm′′,n(s′′, s′ + t) = s′′(m′′ +n+1)+(s′+ t)(m′′ +1).

Thus

dimUm,n(s, t)

= dimUm′,n(s′, s′′ + t) + dimUm′′,n(s′′, s′ + t)

= s(m + n + 1) + t(m + 1)

≤ (m′ + 1)
(

n + d

d

)
+ (m′′ + 1)

(
n + d

d

)
= (m + 1)

(
n + d

d

)
,

and hence (m, n; 1, d; s, t) is subabundant and
S(m, n; 1, d; s; t) is true.

Below, we will discuss three examples to illustrate how
to use Theorem 2.7. These examples will be used in later
sections.

Example 2.8. In this example, we apply Theorem 2.7
to prove that T (2, 2; 1, 2; s) is true for every s ≤ 3.
Note that (2, 2; 1, 2; s) is subabundant for s ≤ 3. Thus

it suffices to show that T (2, 2; 1, 2; 3) is true. Taking
m′ = 1, m′′ = 0 and s′ = 2, s′′ = 1, one can reduce
T (2, 2; 1, 2; 3) to S(1, 2; 1, 2; 2; 1) and S(0, 2; 1, 2; 1; 2). In-
deed, (1, 2; 1, 2; 2; 1) and (0, 2; 1, 2; 1; 2) are both sub-
abundant. The statement S(1, 2; 1, 2; 2; 1) can be reduced
again to twice S(0, 2; 1, 2; 1; 2) by taking

m′ = m′′ = 0 and s′ = s′′ = 1.

This means that T (2, 2; 1, 2; 3) is reduced to the triple
S(0, 2; 1, 2; 1; 2). Clearly S(0, 2; 1, 2; 1; 0) is true, and so
is S(0, 2; 1, 2; 1; 2) by Remark 2.6(i). Hence we have com-
pleted the proof.

Example 2.9. We prove that T (m, 1; 1, 2; 3) is true for
any m. The proof is by induction. It has already been
proved that T (1, 1; 1, 2; 3) is true (see [Catalisano et al.
05]). Suppose now that T (m − 1, 1; 1, 2; 3) is true for
some m. Note that (m, 1; 1, 2; 3) is superabundant. Since
(m−1, 1; 1, 2; 3; 0) and (0, 1; 1, 2; 0; 3) are also superabun-
dant, we can reduce T (m, 1; 1, 2; 3) to T (m− 1, 1; 1, 2; 3)
and S(0, 1; 1, 2; 0; 3). Clearly, S(0, 1; 1, 2; 0; 3) is true, by
Remark 2.6(i). Since T (m − 1, 1; 1, 2; 3) is true by the
induction hypothesis, T (m, 1; 1, 2; 3) is also true.

Example 2.10. Here we prove that T (n + 1, n; 1, 2; s) is
true for any s ≤ ⌊

n+1
2

⌋
+ 1 and any n ≥ 1. Note that

(n + 1, n; 1, 2; s) is subabundant for such an s. Thus it is
sufficient to prove that T (n + 1, n; 1, 2; s) is true if s =⌊

n+1
2

⌋
+ 1.

First suppose that n is even, i.e., n = 2k for
some integer k ≥ 1. Then s = k + 1. Since
(2k, 2k; 1, 2; k; 1) and (0, 2k; 1, 2; 1; k) are both subabun-
dant, it follows that T (2k + 1, 2k; 1, 2; k + 1) can be re-
duced to S(2k, 2k; 1, 2; k; 1) and S(0, 2k; 1, 2; 1; k). Anal-
ogously, S(2k, 2k; 1, 2; k; 1) can be reduced to S(2k −
1, 2k; 1, 2; k − 1; 2) and S(0, 2k; 1, 2; 1; k). This means
that T (2k + 1, 2k; 1, 2; k + 1) is now reduced to S(2k −
1, 2k; 1, 2; k − 1; 2) and twice S(0, 2k; 1, 2; 1; k) (we will
denote it by 2 ∗ S(0, 2k; 1, 2; 1; k)).

We can repeat the same process (k − 2) times to re-
duce T (2k + 1, 2k; 1, 2; k + 1) to S(k, 2k; 1, 2; 0; k + 1)
and (k + 1) ∗ S(0, 2k; 1, 2; 1; k). Indeed, we have only
to check that (2k + 1 − h, 2k; 1, 2; k + 1 − h; h) is sub-
abundant for any 1 ≤ h ≤ k + 1, which is true. Now
the statement S(k, 2k; 1, 2; 0; k + 1) can be reduced to
S(k − 1, 2k; 1, 2; 0; k + 1) and S(0, 2k; 1, 2; 0; k + 1), since
both (k, 2k; 1, 2; 0; k + 1) and (k − 1, 2k; 1, 2; 0; k + 1) are
subabundant.

Analogously S(k − 1, 2k; 1, 2; 0; k + 1) can be reduced
to S(k − 2, 2k; 1, 2; 0; k + 1) and S(0, 2k; 1, 2; 0; k + 1).
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Repeating the same process k − 2 times, we can re-
duce S(k, 2k; 1, 2; 0; k + 1) to (k + 1) ∗ S(0, 2k; 1, 2; 0; k +
1). Recall that (0, 2k; 1, 2; 1; k) and (0, 2k; 1, 2; 0; k +
1) are subabundant. Thus S(0, 2k; 1, 2; 1; k) and
S(0, 2k; 1, 2; 0; k + 1) are true, because T (0, 2k; 1, 2; 1)
and T (0, 2k; 1, 2; 0) are true and by Remark 2.6(i). This
implies that T (2k + 1, 2k; 1, 2; k + 1) is true.

In the same way, we can also prove that T (n +
1, n; 1, 2; s) is true when n is odd. Indeed, T (2k +2, 2k +
1; 1, 2; k + 2) can be reduced to

(k + 2) ∗ S(0, 2k + 1; 1, 2; 1; k + 1)

and

(k + 1) ∗ S(0, 2k + 1; 1, 2; 0; k + 2).

Since S(0, 2k+1; 1, 2; 1; k+1) and S(0, 2k+1; 1, 2; 0; k+2)
are true, so is T (2k + 2, 2k + 1; 1, 2; k + 2).

As immediate consequences of Theorem 2.7, we can
prove the following two propositions:

Proposition 2.11. T (m, n; 1, 2; s) is true if s ≤ m+1 and
m ≤ (

n+1
2

)
or if s ≥ (m + 1)(n + 1).

Proof: We first prove that if m ≤ (
n+1

2

)
, then

T (m, n; 1, 2; s) is true for any s ≤ m + 1. Since
(m, n; 1, 2; s) is subabundant for any s ≤ m + 1, it is
enough to prove that T (m, n; 1, 2; m + 1) is true. Ap-
plying Theorem 2.7 m + 1 times, we can reduce to
(m + 1) ∗ S(0, n; 1, 2; 1; m). Indeed, (0, n; 1, 2; 1; m) is
subabundant, since from the assumption m ≤ (

n+1
2

)
it

follows that

(n + 1) + m ≤
(

n + 2
2

)
.

It also follows that (m − h, n; 1, 2; m + 1 − h; h) is sub-
abundant for any 1 ≤ h ≤ m − 1. Since S(0, n; 1, 2; 1; 0)
is true, so is S(0, n; 1, 2; 1; m), which implies that
T (m, n; 1, 2; m + 1) is true.

To show that T (m, n; 1, 2; s) is true for any s ≥
(m+1)(n+1), it is enough to prove that T (m, n; 1, 2; (m+
1)(n + 1)) is true, since (m, n; 1, 2; (m + 1)(n + 1)) is su-
perabundant. In the same way as in the previous case the
statement can be reduced to (m + 1) ∗ S(0, n; 1, 2; m +
1; (m+1)n). Since (0, n; 1, 2; m+1) is superabundant and
T (0, n; 1, 2; m + 1) is true, it follows that (0, n; 1, 2; m +
1; (m + 1)n) is superabundant and S(0, n; 1, 2; m + 1;
(m + 1)n) is true. Thus T (m, n; 1, 2; (m + 1)(n + 1)) is
true.

Remark 2.12. In Sections 3 and 4, we will use differ-
ent techniques to improve the bounds given in Proposi-
tion 2.11.

Proposition 2.13. Suppose that m ≥ 1 and d ≥ 3. Let

� =

⌊ (
n+d

d

)
m + n + 1

⌋
and h =

⌈(
n+d

d

)
n + 1

⌉
.

Then

(i) T (m, n; 1, d; s) is true for any s ≤ �(m + 1).

(ii) If (n, d) �= (2, 4), (3, 4), (4, 3), (4, 4) and if s ≥
h(m + 1), then T (m, n; 1, d; s) is true.

(iii) If (n, d) = (2, 4), (3, 4), (4, 3), or (4, 4), then
T (m, n; 1, d; s) is true for any s ≥ (h + 1)(m + 1).

Proof: (i) Suppose that s = �(m + 1). Since

�(n + 1) + �m = �(m + n + 1)

≤
(
n+d

d

)
m + n + 1

(m + n + 1)
(

n + d

d

)
,

then (0, n; 1, d; �; �m) is subabundant (this implies that
(h, n; 1, d; � + h�; �(m − h)) is also subabundant for all
1 ≤ h ≤ m). Then T (m, n; 1, d; �(m + 1)) can be re-
duced to (m + 1) ∗S(0, n; 1, d; �; �m). Furthermore, since
� <

⌊(
n+d

d

)
/n + 1

⌋
, then S(0, n; 1, d; �; 0) is true by the

Alexander–Hirschowitz theorem. Thus S(0, n; 1, d; �; �m)
is true by Remark 2.6(i). This implies, by Theorem 2.7,
that T (m, n; 1, d; �(m + 1)) is true.

(ii) Let s = h(m + 1). Then (m, n; 1, d; s) is clearly
superabundant. The statement T (m, n; 1, d; s) can be re-
duced to (m + 1) ∗ S(0, n; 1, d; h; hm). Suppose that n �=
3, 4. Then the Alexander–Hirschowitz theorem says that
T (0, n; 1, d; h) is true, and so is S(0, n; 1, d; h; hm). Hence
by Theorem 2.7 it follows that T (m, n; 1, d; h(m + 1))
is true.

(iii) Suppose that (n, d) = (2, 4), (3, 4), (4, 3) or
(4, 4). Then T (0, n; 1, d; h + 1) is true by the Alexander–
Hirschowitz theorem, and thus S(0, n; 1, d; h; (h+1)m) is
also true. Therefore the same argument as in (ii) proves
that T (m, n; 1, d; (h + 1)(m + 1)) is true.

3. SEGRE–VERONESE VARIETIES P
m×P

n EMBEDDED
BY O(1, 2): SUBABUNDANT CASE

Let V be an (m+1)-dimensional vector space over C with
basis {e0, . . . , em} and let W be an (n + 1)-dimensional
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vector space over C with basis {f0, . . . , fn}. As in the
previous section, Xm,n denotes X1,2

m,n. Let UL be a two-
codimensional subspace of W and let L = P(V )×P(UL).
Note that if p is a point of ν1,2(L), then the affine cone
Tp(Xm,n) over the tangent space to Xm,n at p modulo
V ⊗S2(UL) has dimension (m+n+1)−(m+n−2+1) = 2.

Definition 3.1. Let k = �n/2	 and let

s(m, n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(m + 1)k − (m−2)(m+1)

2 , n even;

(m + 1)k − (m−3)(m+1)
2 , m, n odd;

(m + 1)k − (m−3)(m+1)+1
2 , m even, n odd.

Note that s(m, m − 2) = 0. We will sometimes drop
the parameters m, n when they are clear from the
context.

The goal of this section is to prove that if m ≤ n + 2,
then T (m, n; 1, 2; s) is true for any s ≤ s(m, n). Since
(m, n; 1, 2; s) is subabundant, it is sufficient to prove that
T (m, n; 1, 2; s(m, n)) is true. The key point is to restrict
to subspaces of codimension 2 and to use two-step induc-
tion on n.

It is obvious that T (m, m − 2; 1, 2; 0) is true. It also
follows from Example 2.10 that

T (m, m− 1; 1, 2; s(m, m − 1))

is true. Thus it remains only to show that if T (m, n −
2; 1, 2; s(m, n−2)) is true, then so is T (m, n; 1, 2; s(m, n)).
To do this, we need to introduce the auxiliary statements
R(m, n) and Q(m, n) (see Definitions 3.2 and 3.6) and
use double induction on m and n to prove such auxiliary
statements.

Definition 3.2. Let k and s = s(m, n) be as given in
Definition 3.1. Note that

s(m, n − 2) = s − (m + 1).

Let p1, . . . , ps−(m+1) be general points of L, let
q1, . . . , qm+1 be general points of Pm,n \ L, and let V m,n

be the vector space

〈
V ⊗ S2(UL),

s−(m+1)∑
i=1

Tpi(Xm,n),
m+1∑
i=1

Tqi(Xm,n)
〉
.

Note that the following inequality holds:

dim V m,n

≤ (m + 1)
(

n

2

)
+ 2[s − (m + 1)]

+ (m + 1)(m + n + 1)

=

{
(m + 1)

(
n+2

2

)
, n even, or m, n odd;

(m + 1)
(
n+2

2

)− 1, m even, n odd.

We say that R(m, n) is true if equality holds.

Remark 2.3 implies that R(m, n) is true if and only if

dimH0(Pm,n, IZ∪L(1, 2)) =

{
0, n even or m, n odd;
1, m even, n odd,

where Z = {p2
1, . . . , p

2
s−(m+1), q

2
1 , . . . , q

2
m+1}.

Proposition 3.3. Let k and s = s(m, n) be as given in Def-
inition 3.1. If R(m, n) is true and if T (m, n− 2; 1, 2; s−
(m + 1)) is true, then T (m, n; 1, 2; s) is true.

Proof: Let p1, . . . , ps ∈ Pm,n and Z = {p2
1, . . . , p

2
s}. Then

it is easy to check that

dimH0(Pm,n, IZ(1, 2))

≥
{

m3−m
2 , n even or m, n odd;

k + 1 + m3

2 , m even, n odd.

Suppose that
p1, . . . , ps−(m+1) ∈ L

and that
ps−m, . . . , ps ∈ P

m,n \ L.

Let Z = {p2
1, . . . , p

2
s} and

Z ′ = Z ∩ L = {p2
1, . . . , p

2
s−(m+1)}.

Then we have the following short exact sequence:

0 → IZ∪L(1, 2) → IZ(1, 2) → IZ′,L(1, 2) → 0.

Taking cohomology, we have

0 → H0(Pm,n, IZ∪L(1, 2)) → H0(Pm,n, IZ(1, 2))

→ H0(L, IZ′(1, 2)).

Thus we must have

dimH0(Pm,n, IZ(1, 2)) ≤ dimH0(Pm,n, IZ∪L(1, 2))

+ dimH0(L, IZ′(1, 2)).
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Since R(m, n) and T (m, n− 2; 1, 2; s− (m + 1)) are true,
we have

dimH0(Pm,n, IZ(1, 2))

≤
{

dim H0(L, IZ′(1, 2)) + 1, m even, n odd;
dim H0(L, IZ′(1, 2)), otherwise,

from which the proposition follows.

To prove that T (m, n; 1, 2; s(m, n)) is true, it is therefore
enough to show that R(m, n) is true if m ≤ n. The proof
is again by two-step induction on n. To be more precise,
we first prove that R(m, m) and R(m, m + 1) are true.
Then we show that if R(m, n − 2) is true, then R(m, n)
is also true.

Proposition 3.4. R(m, m) is true for any m ≥ 1.

Proof: Without loss of generality, we may assume that
UL = 〈f2, . . . , fm+1〉. Let p0, . . . , pm ∈ P

m,m \ L. For
each i ∈ {0, . . . , m}, we have pi = [ui⊗v2

i ], where ui ∈ V

and vi ∈ W \ UL. Recall that

Tpi(Xm,m) = V ⊗ v2
i + ui ⊗ viW.

To prove the proposition, we will find explicit vectors ui

and vi such that

V ⊗ S2(W ) ≡
m∑

i=0

Tpi(Xm,m) (mod V ⊗ S2(UL)).

Let ui = ei for each i ∈ {0, . . . , m} and let

vi =

{
fi for i = 0, 1,
if0 + f1 + fi for 2 ≤ i ≤ m.

Then we have

Tpi(Xm,m)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
e0 ⊗ f2

0 , . . . , em ⊗ f2
0 , e0 ⊗ f0f1, . . . , e0 ⊗ f0fm

〉
,

if i = 0;〈
e0 ⊗ f2

1 , . . . , em ⊗ f2
1 , e1 ⊗ f0f1, . . . , e1 ⊗ f1fm

〉
,

if i = 1;〈
e0 ⊗ (if0 + f1 + fi)2, . . . , em ⊗ (if0 + f1 + fi)2,

ei ⊗ (if0 + f1 + fi)f0, . . . ,

ei ⊗ (if0 + f1 + fi)fm

〉
,

if i ≥ 2.

Now we prove that every monomial in

{ei ⊗ fjfk | 0 ≤ i, j ≤ 1, j ≤ k ≤ m}
lies in 〈V ⊗ S2(UL),

∑m
i=0 Tpi(Xm,m)〉.

For each i ∈ {2, . . . , m}, we have

e0 ⊗ (if0 + f1 + fi)2

≡ e0 ⊗ (i2f2
0 + f2

1 + f2
i + 2if0f1 + 2if0fi + 2f1fi)

≡ e0 ⊗ 2f1fi

(mod 〈V ⊗ S2(UL), Tp1(Xm,m), Tp2(Xm,m)〉).

Indeed, e0⊗f2
0 , e0⊗f0f1 and e0⊗f0fi are in Tp1(Xm,m),

e0⊗f2
1 is in Tp2(Xm,m), e0⊗f2

i is in V ⊗S2(UL). Similarly,
one can prove that

e1 ⊗ (if0 + f1 + fi)2 ≡ e1 ⊗ 2if0fi

(mod 〈V ⊗ S2(UL), Tp1(Xm,m), Tp2(Xm,m)〉)

for each i ∈ {2, . . . , m}. So we have proved that

ei ⊗ fjfk ∈
m∑

i=0

Tpi(Xm,m)

if i, j ∈ {0, 1} and k ∈ {0, . . . , m}.
Note that for each i ∈ {2, . . . , m},

ei ⊗ (if0 + f1 + fi)f0 ≡ iei ⊗ f0f1 + ei ⊗ f0fi;

ei ⊗ (if0 + f1 + fi)2 ≡ 2iei ⊗ f0f1 + 2iei ⊗ f0fi

+ 2ei ⊗ f1fi;

ei ⊗ (if0 + f1 + fi)f1 ≡ iei ⊗ f0f1 + ei ⊗ f1fi

modulo 〈V ⊗ S2(UL),
∑m

i=0 Tpi(Xm,m)〉. Thus

ei ⊗ (if0 + f1 + fi)2 − 2ei ⊗ (if0 + f1 + fi)f0

− (2 − 2/i)ei ⊗ (if0 + f1 + fi)f1

is congruent to (2/i)ei ⊗ f1fi modulo〈
V ⊗ S2(UL),

m∑
i=0

Tpi(Xm,m)
〉
.

Thus ei ⊗ f1fi and hence ei ⊗ f0f1 and ei ⊗ f0fi as well
are in 〈V ⊗ S2(UL),

∑m
i=0 Tpi(Xm,m)〉.

For every integer j such that i �= j and j ≥ 2, we have

ei ⊗ (if0 + f1 + fi)fj ≡ iei ⊗ f0fj + ei ⊗ f1fj ;

ei ⊗ (jf0 + f1 + fj)2 ≡ 2jei ⊗ f0fj + 2ei ⊗ f1fj

modulo 〈V ⊗ S2(UL),
∑m

i=0 Tpi(Xm,m)〉. Hence

ei ⊗ (jf0 + f1 + fj)2 − (2j/i)ei ⊗ (if0 + f1 + fi)fj

≡ (2 − 2j/i)ei ⊗ f1fj.

This implies that ei ⊗ f1fj , and hence ei ⊗ f0fj , is con-
tained in 〈V ⊗ S2(UL),

∑m
i=0 Tpi(Xm,m)〉, which com-

pletes the proof.
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Proposition 3.5. R(m, m + 1) is true for any m ≥ 1.

Proof: We prove the statement only for m even, since the
other case can be proved in the same way.

If m is even, then s(m, m + 1) = 3m/2 + 1. Let
p1, . . . , pm/2 ∈ L and q1, . . . , qm+1 ∈ Pm,m+1 \L. Choose
a subvariety Pm,m = P(V ) × P(W ′) ⊂ Pm,m+1 in
such a way that the intersection of Pm,m with L is
Pm,m−2. We denote it by H . Specialize q1, . . . , qm+1

on H \ L. Suppose that p1, . . . , pm/2 �∈ H . Let Z =
{p2

1, . . . , p
2
m/2, q

2
1 , . . . , q

2
m+1}. Then we have an exact se-

quence

0 → IZ∪L∪H(1, 2) → IZ∪L(1, 2) → I(Z∪L)∩H,H(1, 2)

→ 0.

By Proposition 3.4, statement R(m, m) is true. Thus
dimH0(I(Z∪L)∩H,H(1, 2)) = 0. So we have

dimH0(Pm,m+1, IZ∪L∪H(1, 2))

= dimH0(Pm,m+1, IZ∪L(1, 2)).

Thus we need to prove that

dim H0(Pm,m+1, IZ∪L∪H(1, 2)) = 1.

Let Z̃ be the residual of Z ∪ L by H . Then

H0(Pm,m+1, IZ∪L∪H(1, 2)) � H0(Pm,m+1, IZ̃(1, 1)).

Note that Z̃ consists of L, m + 1 simple points
q1, . . . , qm+1, and m/2 double points p2

1, . . . , p
2
m/2.

We denote by X ′
m,m+1 the Segre variety X1,1

m,m+1 ob-
tained from embedding Pm,m+1 by the morphism given
by O(1, 1). The condition that

dim H0(Pm,m+1, IZ̃(1, 1)) = 1,

i.e.,

hPm,m+1(Z̃, (1, 1)) = (m + 1)(m + 2) − 1,

is equivalent to the condition that the following subspace
of V ⊗ W has dimension (m + 1)(m + 2) − 1:

〈
V ⊗ UL,

m/2∑
i=1

Tpi(X
′
m,m+1),

m+1∑
i=1

〈u′
i ⊗ v′i〉

〉
,

where qi = [u′
i ⊗ v′i]. Without loss of generality, we

may assume that UL = 〈f0, . . . , fm−1〉 and that W ′ =
〈f1, . . . , fm+1〉. Since pi ∈ L for each i ∈ {1, . . . , m/2},
there are ui ∈ V and vi ∈ UL such that pi = [ui ⊗ vi].
Recall that Tpi(X ′

m,m+1) = V ⊗ vi + ui ⊗W . So we have

Tpi(X
′
m,m+1) ≡ ui ⊗ 〈fm, fm+1〉 (mod V ⊗ UL),

which implies that

〈V ⊗ UL, Tpi(X
′
m,m+1)〉

= (V ⊗ f0) ⊕
〈
V ⊗ (UL ∩ W ′),

m/2∑
i=1

ui ⊗ 〈fm, fm+1〉
〉
.

Thus

〈
V ⊗ UL,

m/2∑
i=1

Tpi(X
′
m,m+1),

m+1∑
i=1

〈u′
i ⊗ v′i〉

〉
= (V ⊗ f0)⊕〈

V ⊗ (UL ∩ W ′),
m/2∑
i=1

ui ⊗ 〈fm, fm+1〉,
m+1∑
i=1

〈u′
i ⊗ v′i〉

〉
.

Note that
T1 = {ei ⊗ f0 | 0 ≤ i ≤ m}

and

T2 = {ei ⊗ fj | 0 ≤ i ≤ m, 1 ≤ j ≤ m − 1}

are bases for V ⊗ f0 and V ⊗ (UL ∩W ′) respectively. Let
ui = ei−1 for every i ∈ {1, . . . , m/2}. Then

T3 = {ei ⊗ fj | 0 ≤ i ≤ m/2 − 1, m ≤ j ≤ m + 1} .

Let T4 be the set of vectors of the standard basis for
V ⊗ W not included in the set T1 ∪ T2 ∪ T3. Then T4

consists of m + 2 distinct nonzero vectors. Choose m + 1
distinct elements of T4 as u′

i ⊗ v′i’s. Then
⋃4

i=1 Ti spans
a vector space of dimension (m+1)(m+2)− 1. Thus we
have completed the proof.

Let UM be another two-codimensional subspace of W

and let M be the subvariety of P
m,n of the form P(V ) ×

P(UM ). If L and M are general, then we have

dimH0(Pm,n, IL∪M (1, 2))

= (m + 1)
[(

n + 2
2

)
− 2

(
n

2

)
+
(

n − 2
2

)]
= 4(m + 1).

This is equivalent to the condition that the subspace of
V ⊗W spanned by V ⊗UL and V ⊗UM has codimension
4(m + 1).

Definition 3.6. Let p1, . . . , pm+1 be general points of
L and let q1, . . . , qm+1 be general points of M . We
denote by Wm,n the subspace of V ⊗ S2(W ) spanned
by V ⊗ S2(UL), V ⊗ S2(UM ),

∑m+1
i=1 Tpi(Xm,n), and∑m+1

i=1 Tqi(Xm,n). Then dimWm,n is expected to be
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(m + 1)
(
n+2

2

)
. We say that Q(m, n) is true if Wm,n has

the expected dimension.

Remark 3.7. Keeping the same notation as in the pre-
vious definition, we denote by Z the zero-dimensional
subscheme {p2

1, . . . , p
2
m+1, q

2
1 , . . . , q

2
m+1}. Then Q(m, n)

is true if and only if dimH0(Pm,n, IZ∪L∪M (1, 2)) = 0.

Proposition 3.8. If Q(m, n) and R(m, n − 2) are true,
then R(m, n) is also true.

Proof: Let s = s(m, n), p1, . . . , ps−(m+1) ∈ L,
and q1, . . . , qm+1 ∈ P

m,n \ L. Suppose that
p1, . . . , ps−2(m+1) ∈ L ∩ M , ps−2m−1 . . . , ps−(m+1) ∈
L \ (L ∩ M), and q1, . . . , qm+1 ∈ M . Let Z ′ = Z ∩ M .
Then we have the exact sequence

0 → IZ∪L∪M (1, 2) → IZ∪L(1, 2) → IZ′∪(L∩M),M (1, 2)

→ 0.

Taking cohomology gives rise to the following exact se-
quence:

0 → H0(Pm,n, IZ∪L∪M (1, 2)) → H0(Pm,n, IZ∪L(1, 2))

→ H0(M, IZ′∪(L∩M),M (1, 2)).

By the assumption that Q(m, n) is true, we have
dimH0(Pm,n, IZ∪L∪M (1, 2)) = 0. Thus the following in-
equality holds:

dim H0(Pm,n, IZ∪L(1, 2))

≤ dim H0(M, IZ′∪(L∩M),M (1, 2)).

Hence if R(m, n − 2) is true, then so is R(m, n).

Lemma 3.9. If Q(m − 2, n) and Q(1, n) are true, then
Q(m, n) is also true.

Proof: Let V ′ be an (m − 1)-dimensional subspace of V

and let V ′′ be a two-dimensional subspace of V . Suppose
that V can be written as the direct sum of V ′ and V ′′.
Let U = 〈V ⊗ S2(UL), V ⊗ S2(UM ), Tp(Xm,n)〉. Suppose
that p = ([u], [v]) ∈ Pm−2,n = P(V ′) × P(UL). Then
V ⊗ v2 ⊂ V ⊗ S2(W ). Thus

Tp(Xm,n) ≡ Tp(Xm−2,n) (mod V ⊗ S2(UL)).

Similarly, one can prove that

Tq(Xm,n) ≡ Tq(X1,n) (mod V ⊗ S2(UL))

if q = ([u], [v]) ∈ P(V ′′) × P(W ).

This means that if p1, . . . , pm+1 ∈ P(V ′) × P(W ) and
if q1, . . . , qm+1 ∈ P(V ′′) × P(W ), then

〈
V ⊗ S2(UL),

m+1∑
i=1

Tpi(Xm,n),
m+1∑
i=1

Tqi(Xm,n)
〉

=
〈
V ′ ⊗ S2(UL),

m+1∑
i=1

Tpi(Xm−2,n)
〉

⊕
〈
V ′′ ⊗ S2(UL),

m+1∑
i=1

Tqi(X1,n)
〉
.

In other words, Wm,n � Wm−2,n ⊕ W1,n. Therefore, if
Q(m − 2, n) and Q(1, n) are true, so is Q(m, n).

Lemma 3.10. Let n ≥ 3. Then Q(1, n) and Q(2, n) are
true.

Proof: Here we prove that Q(1, n) is true only for n ≥ 3,
because the proof of the remaining case follows the same
path.

Without loss of generality, we may assume that UL =
〈f0, . . . , fn−2〉 and UM = 〈f2, . . . , fn〉. Let UK =
〈f0, f1, fn−1, fn〉 and let K = P(V ) × P(UK). Note that
S2(W ) = 〈S2(UL), S2(UM ), S2(UK)〉, and so

V ⊗ S2(W ) = 〈V ⊗ S2(UL), V ⊗ S2(UM ), V ⊗ S2(UK)〉.

In other words, H0(P1,n, IL∪M∪K(1, 2)) = 0. Special-
izing p1 and p2 on K ∩ L and q1 and q2 on K ∩ M

yields the following short exact sequence, where Z =
{p2

1, p
2
2, q

2
1 , q

2
1}:

0 → IZ∪L∪M∪K(1, 2) → IZ∪L∪M (1, 2)

→ I(Z∪L∪M)∩K,K(1, 2) → 0.

Since H0(P1,n, IL∪M∪K(1, 2)) vanishes, so does
H0(P1,n, IZ∪L∪M∪K(1, 2)). Thus, in order to show
that Q(1, n) is true, it is enough to prove that Q(1, 3) is
true.

Let p1 and p2 be general points of L and let q1 and q2

be general points of M . To prove that Q(1, 3) is true, we
show directly that

W1,3 =
〈
V ⊗ S2(UL), V ⊗ S2(UM ), Tp1(X1,3), Tp2(X1,3),

Tq1(X1,3), Tq2(X1,3)
〉
. (3–1)

Recall that Tp(X1,3) for p = [u ⊗ v2] is isomorphic to
V ⊗ v2 + u ⊗ vW . Thus we can check equality (3–1)
as follows. Let S = C[e0, e1, f0, . . . , f3]. Choose ran-
domly u1, . . . , u4 ∈ V , v1, v2 ∈ UL, and v3, v4 ∈ UM . For
each i ∈ {1, . . . , 4}, let Ti be the ideal of S generated by
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ui⊗v2
i , e1⊗v2

i , ui⊗vif0, . . . , ui⊗vif3. Let IL and IM be
the ideals of S generated by V ⊗S2(UL) and V ⊗S2(UM )
respectively and let I =

∑4
i=1 Ti +IL +IM . The minimal

set of generators for I can be computed in Macaulay2,
and we checked that the members of the minimal gener-
ating set form a basis for V ⊗ S2(W ).

Proposition 3.11. Let n ≥ 3. Then Q(m, n) is true for
any m.

Proof: The proof is by two-step induction on m. Since
we have already proved this proposition for m = 1 and
2, we may assume that m ≥ 3. By the induction hy-
pothesis, Q(m − 2, n) is true. Since Q(1, n) is true by
Lemma 3.10, it immediately follows from Lemma 3.9 that
Q(m, n) is true.

As we have already mentioned, the following is an imme-
diate consequence of Proposition 3.11:

Corollary 3.12. Let m ≤ n. Then R(m, n) is true.

Proof: The proof is by induction on n. By Proposi-
tion 3.4, R(m, m) is true. The statement R(m, m + 1)
is also true by Proposition 3.5. Assume that R(m, n− 2)
is true for some n ≥ m. We may also assume that n ≥ 3.
From Proposition 3.8 and Proposition 3.11 it therefore
follows that R(m, n) is true. Thus we have completed
the proof.

Theorem 3.13. Let k and s = s(m, n) be as given in
Definition 3.1 and suppose that m ≤ n + 2. Then
T (m, n; 1, 2; s) is true for any s ≤ s.

Proof: Since (m, n; 1, 2; s) is subabundant, it is enough
to prove that T (m, n; 1, 2; s) is true. The proof is by
induction on n. If n = m − 2, then s(m, m − 2) = 0.
Thus T (m, m − 2; 1, 2; 0) is clearly true. If n = m − 1,
then s(m, m − 1) = �(m − 1)/2	 + 1. By Example 2.10,
T (m, m− 1; 1, 2; s) is true for any s ≤ �m/2	+ 1.

Now suppose that the statement is true for some
m ≤ n. By Proposition 3.3, T (m, n; 1, 2; s) reduces to
T (m, n − 2; 1, 2; s − (m + 1)) and R(m, n). By Corol-
lary 3.12, R(m, n) is true for any m ≤ n. It follows
therefore that T (m, n; 1, 2; s) is true, which completes the
proof.

Define a function r(m, n) as follows:

r(m, n) =

{
m3 − 2m if m is even and if n is odd;
(m−2)(m+1)2

2 otherwise.

Corollary 3.14. Suppose that n > r(m, n). Then
T (m, n; 1, 2; s) is true if

s ≤
⌊

(m + 1)
(
n+2

2

)
m + n + 1

⌋
.

Proof: Since (m, n; 1, 2; s) is subabundant, it suffices to

show that T (m, n; 1, 2; s) is true for s =
⌊

(m+1)(n+2
2 )

m+n+1

⌋
.

Note that

s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m + 1)k − (m−2)(m+1)
2 +

⌊
m3−m

2(m+n+1)

⌋
,

n even;

(m + 1)k − (m−3)(m+1)
2 +

⌊
m3−m

2(m+n+1)

⌋
,

m, n odd;

(m + 1)k − (m−3)(m+1)+1
2 +

⌊
n+m3+2

2(m+n+1)

⌋
,

otherwise.

It is straightforward to show that if n > r(m, n), then s =
s(m, n). Thus it follows immediately from Theorem 3.13
that T (m, n; 1, 2; s) is true.

Remark 3.15. If m = 1, then r(1, n) < 0. Since
s(1, n) = n + 1, it follows that T (1, n; 1, 2; n + 1) is true.
Since (1, n; 1, 2; n + 1) is equiabundant, T (1, n; 1, 2; s) is
therefore true for any s.

4. SEGRE–VERONESE VARIETIES Pm×Pn EMBEDDED
BY O(1, 2): SUPERABUNDANT CASE

In this section, we keep the same notation as in Section 3.
Let k = �n/2	 and let

s̄(m, n) =

{
(m + 1)k + 1 if n is even;
(m + 1)k + 3 otherwise.

It is straightforward to show that (m, n; 1, 2; s̄(m, n))
is superabundant. The main goal of this section is to
prove that T (m, n; 1, 2; s̄(m, n)) is true, which implies
that T (m, n; 1, 2; s) is true for any s ≥ s̄(m, n).

Definition 4.1. Let s̄ = s̄(m, n), let p1, . . . , ps̄−(m+1) be
general points of L, let q1, . . . , qm+1 be general points of
Pm,n \ L, and let V m,n be the vector space〈

V ⊗ S2(UL),
s̄−(m+1)∑

i=1

Tpi(Xm,n),
m+1∑
i=1

Tqi(Xm,n)

〉
.

Then the following inequality holds:

dimV m,n ≤ (m + 1)
(

n + 2
2

)
.

We say that R(m, n) is true if equality holds.
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Remark 4.2. In the same way as in the proofs of Propo-
sitions 3.3 and 3.8, one can prove the following:

(i) If R(m, n) and T (m, n−2; 1, 2; s̄(m, n−2)) are true,
then T (m, n; 1, 2; s̄(m, n)) is true.

(ii) If Q(m, n) and R(m, n − 2) are true, then R(m, n)
is true. In particular, if R(m, n − 2) is true, then
R(m, n) is true, because Q(m, n) is true for n ≥ 3
by Proposition 3.11.

Definition 4.3. Suppose that (m, n) �= (1, 1). A 4-tuple
(m, n; 1, d) is said to be balanced if

m ≤
(

n + d

d

)
− d.

Otherwise, we say that (m, n; 1, d) is unbalanced.

Remark 4.4. The notion of unbalanced was first intro-
duced for Segre varieties (see, for example, [Catalisano et
al. 02, Abo et al. 09b]). Then it was extended to Segre–
Veronese varieties in [Catalisano et al. 08]. In the same
paper it is also proved that if (m, n; 1, d) is unbalanced,
then T (m, n; 1, d; s) fails if and only if(

n + d

d

)
− n < s < min

{
m + 1,

(
n + d

d

)}
. (4–1)

In particular, T (m, 2; 1, 2; m + 1) is true if m ≥ 5, and
T (m, 3; 1, 2; m + 1) is true if m ≥ 8.

Here we would like briefly to explain why if s satisfies
the above inequalities, then σs(Xm,n) is defective. Let
p1, . . . , ps be generic points in Xm,n. By assumption, we
have s < n+1. Thus there is a proper subvariety of P

m,n

of type Ps−1,n that contains p1, . . . , ps. Thus we have

dimσs(Xm,n) ≤ s(dim P
m,n − dim P

s−1,n) + s

(
n + d

d

)
= s

[(
n + d

d

)
+ m + 1 − s

]
.

It is straightforward to show that if s satisfies the in-
equalities (4–1), then

s

[(
n + d

d

)
+ m + 1 − s

]
< min

{
s(m + n + 1), (m + 1)

(
n + d

d

)}
.

Thus σs(Xm,n) is defective. This also says that for such
an s, the expected dimension of σs(Xm,n) is

s

[(
n + d

d

)
+ m + 1 − s

]
.

Lemma 4.5.

(i) If m ≥ 3, then R(m, n) is true for any n ≥ 2.

(ii) R(2, n) is true for any n ≥ 3.

Proof: We first prove (i) for m ≥ 8. By Proposition
3.11 and Remark 4.2(ii), it suffices to show that R(m, 2)
and R(m, 3) are true for any m ≥ 8. Suppose that
n ∈ {2, 3}. If m ≥ 8, then (m, n; 1, 2) is unbalanced.
Furthermore, (m, n; 1, 2; m + 1) is superabundant. Thus
R(m, n) can be reduced to T (m, n; 1, 2; m + 1). By Re-
mark 4.4, T (m, n; 1, 2; m+1) is true for n ∈ {2, 3}. Thus
R(m, n) is also true for m ≥ 8 and n ∈ {2, 3}.

The remaining cases of (i) can be checked directly
as follows: Let S = C[e0, . . . , em, f0, . . . , fn] and let
s̄ = s̄(m, n). Choose randomly u1, . . . , us̄ ∈ V ,
v1, . . . , vs̄−(m+1) ∈ UL, and vs̄−m, . . . , vs̄ ∈ W . For each
i ∈ {1, . . . , s̄}, let Ti be the ideal of S generated by
e0⊗v2

i , . . . , em⊗v2
i , ui⊗vif0, . . . , ui⊗vifn and let IL be

the ideal generated by V ⊗S2(UL). Let I =
∑s̄

i=1 Ti+IL.
Computing the minimal generating set of I, we can check
in Macaulay2 that the vector space spanned by homoge-
neous elements of I of multidegree (1, 2) coincides with
V ⊗ S2(W ).

Claim (ii) can also be checked in the same way.

Theorem 4.6. T (m, n; 1, 2; s) is true for any s ≥ s̄(m, n).

Proof: In Example 2.9, we showed that T (m, 1; 1, 2; 3) is
true for any m. One can directly check that T (2, 2; 1, 2; 4)
is true. So, since R(2, n) is true for any n ≥ 3 by Proposi-
tion 4.5, it follows from Remark 4.2(i) that T (2, n; 1, 2; s)
is true for any n ≥ 1.

Suppose now that m ≥ 3. If n = 0, then s̄(m, 0) =
1, and obviously T (m, 0; 1, 2; 1) is true. If n = 1,
T (m, 1; 1, 2; 3) is true. Moreover, by Proposition 4.5, we
know that R(m, n) is true for any n ≥ 2. Hence, from
Remark 4.2(i) it follows that T (m, n; 1, 2; s̄(m, n)) is true
for any n and any m ≥ 3. This concludes the proof.

5. CONJECTURE

Let Xm,n be the Segre–Veronese variety Pm,n embedded
by the morphism given by O(1, 2). The main purpose
of this section is to give a conjecturally complete list of
defective secant varieties of Xm,n.

Let V be an m-dimensional vector space over C with
basis {e0, . . . , em} and let W be an n-dimensional vec-
tor space over C with basis {f0, . . . , fn}. As men-
tioned at the beginning of Section 2, for a given point
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p = [u ⊗ v2] ∈ Xm,n, the affine cone Tp(Xm,n) over the
tangent space to Xm,n at p is isomorphic to V ⊗ v2 +
u ⊗ vW . Let A(p) be the (m + 1) × (m + 1)

(
n+2

2

)
ma-

trix whose ith row corresponds to ei ⊗ v2, and let B(p)
be the (n + 1) × (m + 1)

(
n+2

2

)
matrix whose ith row cor-

responds to u ⊗ vfi. Then Tp(Xm,n) is represented by
the (m + n + 2)× (m + 1)

(
n+2

2

)
matrix C(p) obtained by

stacking A(p) and B(p):

C(p) = (A(p)||B(p)).

For randomly chosen points p1, . . . , ps ∈ Xm,n, let
Ts(Xm,n) =

∑s
i=1 Tpi(Xm,n). Then Ts(Xm,n) is rep-

resented by the s(m + n + 2) × (m + 1)
(
n+2

2

)
matrix

C(p1, . . . , ps) defined by

C(p1, . . . , ps) = (C(p1)||C(p2)|| · · · ||C(ps)).

Thus Remark 2.2 and semicontinuity imply that if

rankC(p1, . . . , ps)

= min
{

s(m + n + 1), (m + 1)
(

n + 2
2

)}
,

then σs(Xm,n) has the expected dimension.
We programmed this in Macaulay2 and computed the

dimension of σs(Xm,n) for m, n ≤ 10 to detect “poten-
tial” defective secant varieties of Xm,n. This experiment
shows that Xm,n is nondefective except for

• (m, n; 1, 2) unbalanced;

• (m, n) = (2, n), where n is odd and n ≤ 10;

• (m, n) = (4, 3).

Remark 5.1. The defective cases we found in the experi-
ments are all well known. In Remark 4.4, we gave an ex-
planation of why if (m, n; 1, 2) is unbalanced, then Xm,n

is defective. Here we will discuss the remaining known
defective cases.

It is classically known that σ5(X2,3) is defective (see
[Carlini and Chipalkatti 03] and [Carlini and Catalisano
07] for modern proofs). Carlini and Chipalkatti proved
in their work on Waring’s problem for several algebraic
forms [Carlini and Chipalkatti 03] that T (2, 5; 1, 2; 8) is
false. In [Ottaviani 06], Ottaviani then proved, as a
generalization of the Strassen theorem [Strassen 83] on
three-factor Segre varieties, that T (2, n; 1, 2; s) fails if
(n, s) = (2k+1, 3k+2) for any k ≥ 1. Here we sketch his
proof for the defectivity of X2,2k+1. Recall that X2,2k+1

is the image of the Segre–Veronese embedding

ν1,2 : P(V ) × P(W ) → P(V ⊗ S2W ),

where V and W have dimension 3 and 2k+2 respectively.
For every tensor φ ∈ V ⊗ S2W , let Sφ : V ⊗ W∨ →
∧2V ⊗W ∼= V ∨⊗W be the contraction operator induced
by φ. If P , Q, and R are the three symmetric slices of
φ, then Sφ can be written as a skew-symmetric matrix of
order 3(2k + 2) of the form

Sφ =

⎡⎣ 0 P Q
−P 0 R
−Q −R 0

⎤⎦ .

The rank of Sφ is 3(2k + 2) for a general tensor φ ∈
V ⊗ S2W . On the other hand, since the contraction op-
erator corresponding to a decomposable tensor has rank
2, we have rankSφ ≤ 2s if φ is the sum of s decompos-
able tensors. Since the decomposable tensors correspond
to the points of the Segre–Veronese variety, we can de-
duce that if s = 3k + 2, then σs(X2,2k+1) does not fill
P

3(2k+3
2 )−1.

The defectivity of σ6(X4,3) can be proved by the ex-
istence of a certain rational normal curve in X4,3 pass-
ing through six generic points of X4,3. Let π1 : P4,3 →
P4 and π2 : P4,3 → P3 be the canonical projections.
Given generic points p1, . . . , p6 ∈ P4,3, there is a unique
twisted cubic ν3 : P1 → C3 ⊂ P3 that passes through
π2(p1), . . . , π2(p6). Let qi = ν−1

3 (π2(pi)) for each i ∈
{1, . . . , 6}. Since any ordered subset of six points in gen-
eral position in P4 is projectively equivalent to the or-
dered set {π1(p1), . . . , π1(p6)}, there is a rational quartic
curve ν4 : P1 → C4 ⊂ P4 such that ν4(qi) = π1(pi) for all
i ∈ {1, . . . , 6}. Let ν = (ν4, ν3) and let C = ν(P1). Then
C passes through p1, . . . , p6. The image of C under the
morphism given by O(1, 2) is a rational normal curve of
degree 10 (= 4 · 1 + 2 · 3) in P

10. Thus we have

dimσ6(X4,3) ≤ 10+6(7−1) = 46 < 6(4+3+1)−1 = 47,

and so σ6(X4,3) is defective. See [Carlini and Chipalkatti
03] for an alternative proof.

The experiments with our program and Remark 5.1 sug-
gest the following conjecture:

Conjecture 5.2. Let Xm,n be the Segre–Veronese variety
Pm,n embedded by the morphism given by O(1, 2). Then
σs(Xm,n) is defective if and only if (m, n, s) falls into one
of the following cases:

(a) (m, n; 1, 2) is unbalanced and(
n + 2

2

)
− n < s < min

{
m + 1,

(
n + 2

2

)}
;
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(b) (m, n, s) = (2, 2k + 1, 3k + 2) with k ≥ 1;

(c) (m, n, s) = (4, 3, 6).

It is known that the conjecture is true for m = 1 (see
[Carlini and Chipalkatti 03]). Here we prove that the
conjecture is true for m = 2 as a consequence of Theo-
rems 3.13 and 4.6.

Theorem 5.3. T (2, n; 1, 2; s) is true for every s except
(n, s) = (2k + 1, 3k + 2) with k ≥ 1.

Proof: Assume first that n = 2k is even. Then we have
s = s = 3k + 1. Hence, from Theorems 3.13 and 4.6, it
follows that T (2, 2k; 1, 2; s) is true for any s.

Suppose now that n = 2k + 1 is odd. Then we have
s = 3k +1 and s = 3k+3. Thus T (2, n; 1, 2; s) is true for
any s ≤ 3k+1, by Theorem 3.13, and for any s ≥ 3k+3,
by Theorem 4.6.

If n = 1, then s = 1 and s = 3. So it remains only to
prove that also T (2, 1; 1, 2; 2) is true. But this has been
already proved in Example 2.10. So we have completed
the proof.

In [Ottaviani 06] it is also claimed that σ3k+2(X2,2k+1)
is a hypersurface if k ≥ 1 and that this can be proved
by modifying Strassen’s argument in [Strassen 83]. Then
it follows that the equation of σ3k+2(X2,2k+1) is given
by the Pfaffian of Sφ, where Sφ is the skew-symmetric
matrix introduced in Remark 5.1(i). We conclude this
paper by giving an alternative proof of the fact that
σ3k+2(X2,2k+1) is a hypersurface for k ≥ 1.

Definition 5.4. Suppose that n is odd. Let s = 3 �n/2	+
2, let p1, . . . , ps−3 be general points of L, let q1, q2, q3 be
general points of P2,n\L, and let V2,n be the vector space

〈
V ⊗ S2(UL),

s−3∑
i=1

Tpi(X2,n),
3∑

i=1

Tqi(X2,n)
〉
.

Then the following inequality holds:

dimV2,n ≤ 3
(

n + 2
2

)
.

We say that R(2, n) is true if equality holds.

Lemma 5.5. Let n ≥ 3 be an odd integer. Then R(2, n)
is true.

Proof: The proof is very similar to that of Proposi-
tion 3.5. One can easily prove that if Q(2, n) is true

and if R(2, n − 2) is true, then R(2, n) is true. Since we
have already proved that Q(2, n) is true, it suffices to
show that R(2, 3) is true.

Let p1, p2 ∈ L and let q1, q2, q3 ∈ P2,3. Choose a
subvariety H of P2,3 of the form P2,2 = P(V )×P(W ′) such
that P2,2 intersects L in P2,0. Suppose that p1, p2 �∈ H .
Specializing q1, q2, and q3 in H \ L, we obtain the exact
sequence

0 → IZ∪L∪H(1, 2) → IZ∪L(1, 2) → I(Z∪L)∩H,H(1, 2)

→ 0,

where Z = {p2
1, p

2
2, q

2
1 , q

2
2 , q

2
3}. Since we have al-

ready proved that R(2, 2) is true, we can conclude that
dimH0(I(Z∪L)∩H,H(1, 2)) = 0. Thus it is enough to
prove that H0(IZ∪L∪H(1, 2)) = 0 or H0(IZ̃(1, 1)) = 0,
where Z̃ is the residual of Z ∪L by H . Note that Z̃ con-
sists of two double points p2

1, p2
2, and three simple points

q1, q2, q3 in H and L. Let X ′
2,3 be the Segre–Veronese va-

riety P2,3 embedded by O(1, 1). We want to prove that L,∑2
i=1 Tpi(X ′

2,3), and
∑3

i=1 Tqi(X ′
2,3) span V ⊗ W . Note

that if p = [u⊗ v], then Tp(X ′
2,3) = V ⊗ v + u⊗W . Now

assume the following:

• UL = 〈f0, f1〉 and W ′ = 〈f1, f2, f3〉;
• p1 = e0 ⊗ f0, p2 = e1 ⊗ f1 ∈ V ⊗ UL;

• q1 = e2 ⊗ f2, q2 = e2 ⊗ f3 ∈ V ⊗ W ′.

For any nonzero q3 ∈ V ⊗ W ′, one can show that

V ⊗ W =
〈
L,

2∑
i=1

Tpi(X
′
2,3),

3∑
i=1

Tqi(X
′
2,3)

〉
.

Thus we have completed the proof.

Proposition 5.6. If (n, s) = (2k + 1, 3k + 2) for k ≥ 1,
then dimσs(X2,n) = 3

(
n+2

2

)− 2.

Proof: The proof is by induction on k. It is well known
that σ5(X2,3) is a hypersurface. Thus we may assume
that k ≥ 2. Let p1, . . . , ps ∈ P2,n. Then there is a subva-
riety L of P2,n of the form P2,n−2 such that p1, p2, p3 ∈ L.
Let us suppose that p4, . . . , ps ∈ P2,n \ L. Then we have
the exact sequence

0 → IZ∪L(1, 2) → IZ(1, 2) → IZ∩L,L(1, 2) → 0.

Taking cohomology, we get

dimH0(IZ(1, 2))

≤ dimH0(IZ∪L(1, 2)) + dimH0(IZ∩L,L(1, 2)).
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By Lemma 5.5, dimH0(IZ∪L(1, 2)) = 0. Thus, by the
induction hypothesis,

dim H0(IZ(1, 2)) ≤ dimH0(IZ∩L,L(1, 2)) ≤ 1.

As already claimed, it is known that T (2, n; 1, 2; s)
does not hold, i.e., dimH0(IZ(1, 2)) ≥ 1. It follows
that σs(X2,n) is a hypersurface in the ambient space
P

3(n+2
2 )−1.
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