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Let hn denote the class number of Q(2 cos(2π/2n+2)). Weber
proved that hn is odd for all n ≥ 1. We claim that if � is a prime
number less than 107, then for all n ≥ 1, � does not divide hn.

1. INTRODUCTION

Let Ωn = Q(2 cos(2π/2n+2)). Then Ωn, the nth layer of
the cyclotomic Z2-extension of Q, is a cyclic extension
of Q of degree 2n. Let hn denote the class number of
Ωn. More than one hundred years ago, Weber [Weber
86] proved that hn is odd for all n ≥ 1. Later, Iwasawa
[Iwasawa 56] gave another beautiful proof in a more gen-
eral situation.

We are led to investigate the odd part of hn, or the
whole class number hn. It is very hard to compute hn. It
was shown that h1 = h2 = h3 = 1 by Weber; h4 = 1 by
Cohn [Cohn 60], Bauer [Bauer 69], and Masley [Masley
78]; and h5 = 1 by van der Linden [Linden 82]. Van
der Linden also showed that h6 = 1 if the generalized
Riemann hypothesis (GRH) is valid.

On the other hand, concerning the odd part of hn,
there are Washington’s results [Washington 75], which
claim that the �-part of hn is bounded as n tends to ∞
for a fixed prime number �. Precisely, he gave explicitly
a bound on n for which the growth of en stops, where
hn = �enq with q not divisible by �, using the theory of
Zp-extensions.

The next step is to consider how large en is or whether
en is zero. Washington’s techniques also enable us to de-
rive an explicit upper bound for en, which unfortunately
is very large.

A breakthrough was achieved in successive papers of
Horie [Horie 05a, Horie 05b, Horie 07a, Horie 07b]. He
proved that if � satisfies a certain congruence relation and
exceeds a certain bound, which is explicitly described,
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then � does not divide hn for all n ≥ 1, namely the �-
part of hn is trivial for all n ≥ 1. The following is a part
of Horie’s results.

Theorem 1.1. Horie Let � be a prime number.

(1) If � ≡ 3, 5 mod 8, then � does not divide hn for all
n ≥ 1.

(2) If � ≡ 9 mod 16 and � > 34797970939, then � does
not divide hn for all n ≥ 1.

(3) If � ≡ 7 mod 16 and � > 210036365154018, then �

does not divide hn for all n ≥ 1.

Although Horie’s results were very striking and very
effective, there remained small prime numbers � for which
we did not know whether � divides hn. For exam-
ple, it was not known whether � | hn, n ≥ 6, for
� = 7, 17, 23, 31, 41, . . . .

In this paper, we give a criterion for nondivisibility of
hn for given n and prove that if � does not divide hm for
some m ≥ 1, then � does not divide hn for all n ≥ 1. A
bound m, which depends on �, is explicitly given and is
small enough to make it possible to verify computation-
ally that � does not divide hm. For a real number x, we
denote by [x] the largest integer not exceeding x. Let δ�
denote 0 or 1 according as � ≡ 1 mod 4 or not.

Theorem 1.2. Let � be an odd prime number and 2c the
exact power of 2 dividing � − 1 or �2 − 1 according as
� ≡ 1 mod 4 or not. Put

m = 3c− 1 + 2 [log2(�− 1)] − 2δ�.

If � does not divide the class number of Ωm, then � does
not divide the class number of Ωn for all n ≥ 1.

Typical values of m are as follows:

� 7 17 31 257 8191 65537 524287 7340033
m 13 19 25 39 65 79 95 103

We prove the above theorem using Sinnott and Wash-
ington’s method [Washington 97, Section 16.3]. Theorem
1.2, together with numerical calculations based on Sec-
tion 3, allows us to obtain the following corollary.

Corollary 1.3. Let � be a prime number less than 107.
Then � does not divide the class number of Ωn for all
n ≥ 1.

2. PROOF OF THEOREM 1.2

We begin by explaining our notation. Let K be an alge-
braic number field of finite degree. We denote by C(K)
and h(K) the ideal class group and the class number of
K, respectively. If K is an imaginary abelian field, we de-
note by C−(K) and h−(K) the minus part of C(K) and
the relative class number of K, respectively. We denote
by Q� the algebraic closure of the �-adic number field Q�.

Let c be the integer as in Theorem 1.2, n an integer
satisfying n ≥ c, � an odd prime number, χ a character
mod � with χ(−1) = −1, and ψn an even character mod
2n+2 whose order is 2n. Note that ψn generates the
character group of the Galois group G(Ωn/Q). Then a
generalized Bernoulli number B1,χψn is defined by

B1,χψn =
1

2n+2�

2n+2�∑
b=1

bχψn(b).

Let ζψn be a primitive 2n+2th root of unity with
ζ2n+2−c

ψn
= ψn(1 + 2n+2−c). Moreover, we define a ra-

tional function f1(T ) in the rational function field Q�(T )
by

f1(T ) =
( ∑
b≡1 mod 2c

0<b<2c+1�

χ(b)T b
)(
T 2c+1� − 1

)−1

. (2–1)

Then we have the following by [Washington 97, p. 387]:

Lemma 2.1. Let χ, ψn be as above and n ≥ 2c − 1. If
B1,χψn ≡ 0 mod � in Z�[ζψn ], then f1(ζψn) ≡ 0 mod �

in Z�[ζψn ], where � is the ideal of Z�[ζψn ] generated by �.

From now on, we assume n ≥ 2c − 1 and put d =
2c − 2 + [log2(� − 1)] − δ�. Moreover, we put ζ� =
cos(2π/�) +

√−1 sin(2π/�) and work in Kn,� = Ωn(ζ�).
We abbreviate h−(Kn,�) as h−n,�. Then we have the fol-
lowing:

Lemma 2.2. If n ≥ d, then � does not divide h−n,�/h
−
d,�.

Proof: Put

g(T ) = f1(T )(T 2c� − 1)T−1.

Then

g(T ) = T−1(T 2c� + 1)−1
∑

b≡1 mod 2c

0<b<2c+1�

χ(b)T b

=
∑

b≡1 mod 2c

0<b≤1+2c(�−1)

χ(b)T b−1. (2–2)
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Hence g(T ) is contained in Q�[T ] and

deg g(T ) ≤ 2c(�− 1),

where deg g(T ) denotes the degree of g(T ). The assertion
of the lemma is trivially valid for n = d. So we assume
n ≥ d + 1. Then we have g(ζ) �≡ 0 mod � for any
primitive 2n+2th root of unity ζ in Q� by

[Q�(ζ) : Q�] = 2n+2−c+δ� ≥ 2d+3−c+δ� = 2c+1+[log2(�−1)]

> 2c(�− 1).

The class number formula (cf. [Washington 97, Theorem
4.17])

h−n,� = Qn,�2�
∏
χ

2n∏
b=1

(
−1

2
B1,χψb

n

)
(2–3)

yields our assertion by Lemma 2.1, where Qn,� is 1
or 2 and χ runs over all characters modulo � with
χ(−1) = −1.

We denote by r−n,� the �-rank of C−(Kn,�) and ab-
breviate h(Ωn) as hn. Then the following follows from
[Washington 97, Theorems 10.8 and 10.11]:

Lemma 2.3. If � divides hn and if � does not divide hn−1,
then 2n−c+δ� ≤ r−n,�.

Proof of Theorem 1.2: Using a rough estimate

∣∣∣∣12B1,χψn

∣∣∣∣ ≤
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2n+3�

2n+1�∑
i=1

(2i− 1) = 2n−1� if n ≥ 1,

1
2�

�−1∑
i=1

i =
�− 1

4
< 2−2� if n = 0,

and (2–3), we have

h−n,� < 22�(2−2�)
�−1
2

n∏
i=1

(2i−1�)2
i−1 �−1

2

= 4� · 2(n−2)(�−1)2n−1
�(�−1)2n−1

, (2–4)

which implies

r−n,� < log�(4�) + (n− 2)(�− 1)2n−1 log�(2)

+ (�− 1)2n−1.

Hence we have

r−n,� < log�(4�) + (d− 2)(�− 1)2d−1 log�(2)

+ (�− 1)2d−1

for all n ≥ 1 by Lemma 2.2.

Assume that � does not divide hm, wherem is the inte-
ger stated in the theorem. In order to prove the theorem,
we assume that there exists n such that � divides hn and
does not divide hn−1, and deduce a contradiction.

Lemma 2.3 shows that

2n−c+δ� < log�(4�) + (d− 2)(�− 1)2d−1 log�(2)

+ (�− 1)2d−1

= log�(4�) + (�− 1)22c−3+[log2(�−1)]−δ�

×
{

1 + (2c− 4 + [log2(�− 1)] − δ�) log�(2)
}

< log�(4�) + (�− 1)22c−3+[log2(�−1)]−δ�

×
{

2 +
1

log2(�)
(2c− 4)

}
< 3 + (�− 1)22c−1+[log2(�−1)]−δ� .

In the last step, we used the inequality 2c ≤ � − 1 if
� ≡ 1 mod 4 and 2c−1 ≤ �+ 1 if � ≡ 3 mod 4. Since the
left-hand side of the above inequality is a power of 2 and
the right-hand side is of the form 3 + 64k with k ≥ 1, we
have

2n−c+δ� ≤ (�− 1)22c−1+[log2(�−1)]−δ�

and hence

n− c+ δ� ≤ log2(�− 1) + 2c− 1 + [log2(�− 1)] − δ�,

which means that n ≤ m. This is a contradiction.

3. CALCULATION

In this section, we explain how to verify numerically that
an odd prime number � does not divide the class number
hn of Ωn for large n.

3.1 General Settings

Let Δn = G(Ωn/Q) be the Galois group of Ωn over Q,
and An the �-part of the ideal class group of Ωn. For a
character χ : Δn → Q�, we define the idempotent eχ by

eχ =
1

|Δn|
∑
σ∈Δn

Tr(χ−1(σ))σ ∈ Z�[Δn], (3–1)

and the χ-part An,χ of An by An,χ = eχAn as in [Gras
77], where Tr : Q�(χ(Δn)) → Q� is the trace map.

Then we have An = ⊕χAn,χ, where χ runs over all
representatives of Q�-conjugacy classes of characters of
Δn. If χ is not injective, the intermediate field of Ωn
corresponding to Kerχ is Ωk for some 0 ≤ k < n and
An,χ ∼= Ak,χ canonically. So we may assume that χ is
injective.
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Now, for n ≥ 1, let ζn denote a primitive 2nth root of
unity in C and put

ξn = (ζn+2 − 1)(ζ−1
n+2 − 1) = 2 − ζn+2 − ζ−1

n+2 ∈ Ωn.

We define a truncation eχ,� ∈ Z[Δn] of eχ by

eχ,� ≡ eχ mod �,

in order to consider an action on ξn. We note that ξn
itself is not a unit in Ωn, but ξeχ,�

n is a cyclotomic unit of
Ωn if we choose eχ,� such that the sum of coefficients is
zero. The following lemma is a special case of [Aoki and
Fukuda 06, Lemma 1].

Lemma 3.1. If there exists a prime number p that is con-
gruent to 1 modulo 2n+2� and satisfies

(ξeχ,�
n )

p−1
� �≡ 1 mod p (3–2)

for some prime ideal p of Ωn lying above p, then we have
|An,χ| = 1.

Let s = c − δ� with c as in Theorem 1.2. Then 2s is
the exact power of 2 dividing �− 1 or �+ 1 according as
� ≡ 1 mod 4 or not. When n ≤ s, the calculation of
(3–2) is straightforward, so we explain how to reduce the
amount of calculation when n ≥ s+ 1.

Owing to Lemma 3.1, we may regard χ as a character
of Δn into F� and define eχ to be an element of F�[Δn],
where F� is an algebraic closure of F� = Z/�Z. Let ηn be a
primitive 2nth root of unity in F� and K = F�(ηn). Then
[K : F�] = 2n−s for n ≥ s+ 1. Let ρ be the generator of
Δn induced by ζn+2 �→ ζ5

n+2, and χ the character of Δn

defined by χ(ρ) = ηn. Then

eχ−1 =
1
2n

2n−1∑
i=0

TrK/F�
(ηin)ρ

i.

The calculation of TrK/F�
(ηin) divides into two cases ac-

cording as � ≡ 1 mod 4 or not.

3.2 The case � ≡ 1 mod 4

Let n ≥ s + 1. Then the minimal polynomial of ηn over
F� is

X2n−s − η2n−s

n .

Namely, TrK/F�
(ηin) = 0 if i is not divisible by 2n−s.

Hence we have

eχ−1 =
1
2n

2s−1∑
i=0

TrK/F�
(η2n−si
n )ρ2n−si

=
1
2s

2s−1∑
i=0

ηisρ
2n−si.

Since there are 2s−1 nonconjugate primitive 2nth roots of
unity in F�, there are the same number of F�-conjugacy
classes of injective characters of Δn. Namely, if we put

X = {j ∈ Z | 1 ≤ j ≤ 2s − 1, j odd},

then {χj | j ∈ X} is a set of representatives of the F�-
conjugacy classes of injective characters of Δn. Since the
choice of ηn is arbitrary, we may assume that

ηs ≡ g
�−1
2s

� mod �,

where g� ∈ Z is a primitive root modulo �.
Let p be a prime number congruent to 1 modulo 2n+2�

and let gp be a primitive root of p. Then

ζn+2 + ζ−1
n+2 ≡ g

p−1
2n+2
p + g

− p−1
2n+2

p mod p

for some prime ideal p of Ωn lying above p.
Now we fix nonnegative integers z1, z2, and aij satis-

fying

z1 ≡ g
p−1
2n+2
p mod p, (3–3)

z2 ≡ z−1
1 mod p, (3–4)

aij ≡ g
�−1
2s ij

� mod �.

Then Lemma 3.1 implies the following criterion.

Lemma 3.2. Put b = 52n−s

. If for each j ∈ X, there
exists a prime number p congruent to 1 modulo 2n+2�

that satisfies

(2s−1∏
i=0

(2 − zb
i

1 − zb
i

2 )aij

) p−1
�

�≡ 1 mod p,

then � does not divide hn/hn−1.

We note that bi should be calculated modulo 2n+2,
and the aij no longer need to satisfy

∑
i aij = 0.

3.3 The Case � ≡ 3 mod 4

Let n ≥ s+ 1 and let

X2 − aX − 1

be the minimal polynomial of ηs+1 over F�. Then the
minimal polynomial of ηn over F� is

X2n−s − aX2n−s−1 − 1.
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Namely, TrK/F�
(ηin) = 0 if i is not divisible by 2n−s−1.

Hence we have

eχ−1 =
1
2n

2s+1−1∑
i=0

TrK/F�
(η2n−s−1i
n )ρ2n−s−1i

=
1

2s+1

2s+1−1∑
i=0

TrF�(ηs+1)/F�
(ηis+1)ρ

2n−s−1i,

and we need to calculate

ti = TrF�(ηs+1)/F�
(ηis+1).

We start from t1 = ηs+1 + η�s+1 and proceed to

t2 = η2
s+1 + η2�

s+1 = (ηs+1 + η�s+1)
2 − 2η�+1

s+1 = t21 + 2,

t22 = η22

s+1 + η22�
s+1 = (η2

s+1 + η2�
s+1)

2 − 2η2(�+1)
s+1

= t22 − 2

· · ·
t2s−1 = η2s−1

s+1 + η2s−1�
s+1 = t22s−2 − 2 = 0,

noting that η�+1
s+1 = −1. Reversing this procedure, we

obtain the following algorithm for calculating t1. Note
that t0 = 2.

Lemma 3.3. Let a2 = 0 and define ai ∈ F�, 3 ≤ i ≤ s+1,
by the recurrence formula

ai =
√

2 + ai−1 (3 ≤ i ≤ s),

as+1 =
√−2 + as.

Then t1 = as+1.

Remark 3.4. For each step, we have two square roots. So
we have just 2s−1 instances of t1, which correspond to
the 2s−1 nonconjugate primitive 2s+1th roots of unity in
F�. We fix an arbitrary such root of unity.

Remark 3.5. Since � ≡ 3 mod 4, taking square roots
in F� is easy. Indeed, if a ∈ F� and

√
a ∈ F�, then√

a = ±a(�+1)/4.
Lemma 3.3 also determines t2, t22 , . . . , t2s−2 . But we

need ti, 1 ≤ i ≤ 2s − 1, and we obtain these from t0 and
t1 using the following recurrence formula.

Lemma 3.6. We have ti+2 = t1ti+1 + ti for i ≥ 0.

Proof: We have

t1ti+1 = (ηs+1 + η�s+1)(η
i+1
s+1 + η

(i+1)�
s+1 )

= ηi+2
s+1 + η

(i+2)�
s+1 + η�+1

s+1(η
i
s+1 + ηi�s+1)

= ti+2 − ti,

yielding the result.

In this case, we put

X = {j ∈ Z : odd | 1 ≤ j ≤ 2s−1

or 2s + 1 ≤ j ≤ 2s + 2s−1 − 1}.

Then {χj | j ∈ X} is a set of representatives of the F�-
conjugacy classes of injective characters of Δn. Let p be
a prime number congruent to 1 modulo 2n+2� and choose
z1, z2, aij ∈ Z by (3–3), (3–4), and

aij ≡ tij mod �.

Note that ij on the left-hand side is a subscript with two
indices and that on the right is the product of i and j.

Next we make some technical remarks. Let i′ = 2s+ i

and b = 52n−s−1
. Then we have

bi
′
= 52n−s−1(2s+i) = 52n−1

bi ≡ (2n+1 + 1)bi mod 2n+2,

zb
i′

1 ≡ g
p−1
2n+2 (2n+1+1)bi

p ≡ g
p−1
2

p zb
i

1 ≡ −zbi

1 mod p,

ai′j = TrF�(ηs+1)/F�
(η(2s+i)j
s+1 ) = TrF�(ηs+1)/F�

(η2sj
s+1η

ij
s+1)

= −aij .

Therefore

2s+1−1∏
i=0

(2 − zb
i

1 − zb
i

2 )aij ≡
2s−1∏
i=0

(
2 − zb

i

1 − zb
i

2

2 + zb
i

1 + zb
i

2

)aij

mod p.

Hence Lemma 3.1 yields the following criterion.

Lemma 3.7. Put b = 52n−s−1
. If for each j ∈ X, there

exists a prime number p congruent to 1 modulo 2n+2�

that satisfies

(2s−1∏
i=0

(2 − zb
i

1 − zb
i

2

2 + zb
i

1 + zb
i

2

)aij
) p−1

�

�≡ 1 mod p,

then � does not divide hn/hn−1.

3.4 A Logarithmic Version of Algorithms

When one fixes � and varies n, the running times of Lem-
mas 3.2 and 3.7 are roughly proportional to n. So we
can verify that � does not divide hn in reasonable time
for large n. For example, it takes only 24 minutes on a
computer with a Pentium IV 2-GHz processor to verify
that 3 does not divide h1000.

On the other hand, if one fixes n and varies �, the
running time is proportional to 4s. For example, an ex-
perimental calculation estimates that 40 days are needed
to apply Theorem 1.2 to � = 216 + 1. So we are led to a
logarithmic version of Lemmas 3.2 and 3.7 by adapting
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the idea of [Aoki 02, Corollary 11] or [Aoki 05, Theo-
rem 13].

For x ∈ F×
p , let νp(x) be the unique nonnegative inte-

ger less than p that satisfies

x = gνp(x)
p .

The calculation of νp(x) is considered hard for large p.
But νp(x) mod � is enough for our purpose. Let νp(x) =
i+ j�. Then we can determine i from

x
p−1

� =
(
gi+j�p

) p−1
�

=
(
g

p−1
�

p

)i
for small � (e.g., � < 107). Hence we can determine xi ∈ Z

that satisfy

xi ≡

⎧⎪⎪⎨
⎪⎪⎩
νp(2 − zb

i

1 − zb
i

2 ) mod � if � ≡ 1 mod 4,

νp

(
2 − zb

i

1 − zb
i

2

2 + zb
i

1 + zb
i

2

)
mod � if � ≡ 3 mod 4.

Then Lemmas 3.2 and 3.7 shift to the following form.

Lemma 3.8. If for each j ∈ X, there exists a prime num-
ber p congruent to 1 modulo 2n+2� that satisfies

2s−1∑
i=0

aijxi �≡ 0 mod �, (3–5)

then � does not divide hn/hn−1.

Lemma 3.8 has two advantages. One is, of course,
simple multiplication operations, and the other is that
all numbers in (3–5) are less than �. A careful implemen-
tation of the lemma enables us to verify in 10 hours that
� = 216 + 1 does not divide h79, which is necessary for
applying Theorem 1.2.

3.5 Fast Fourier Transform

Lemma 3.8 is faster than Lemmas 3.2 and 3.7 for large s,
but it is still an O(4s) algorithm. The calculating time
for � = 219−1 is estimated to be 640 hours. Fortunately,
Sumida [Sumida 04] showed that the fast Fourier trans-
form (FFT) provides an efficient method of calculation
for this kind of sum.

3.5.1 The case � ≡ 1 mod 4. Since aij = ηijs in this
case and j is odd, putting j = 2r + 1 and noting that
2ir = i2+r2−(r−i)2, the expression (3–5) is transformed
into
2s−1∑
i=0

aijxi =
2s−1∑
i=0

ηi(2r+1)
s xi = ηr

2

s

2s−1∑
i=0

η−(r−i)2
s ηi(i+1)

s xi.

The last sum is considered a cyclic convolution of ui =
η−i

2

s and vi = η
i(i+1)
s xi. Hence we can evaluate (3–5) in

O(log2(2
s)2s) = O(s2s) time using FFT.

3.5.2 The case � ≡ 3 mod 4. Putting j = 2r + 1, we
have

2s−1∑
i=0

aijxi =
2s−1∑
i=0

(ηijs+1 + ηij�s+1)xi

=
2s−1∑
i=0

(ηijs+1xi + ηij�s+1x
�
i)

=
2s−1∑
i=0

ηijs+1xi +
(2s−1∑
i=0

ηijs+1xi

)�

= Tr
(2s−1∑
i=0

ηijs+1xi

)

= Tr
(
ηr

2

s+1

2s−1∑
i=0

η
−(r−i)2
s+1 η

i(i+1)
s+1 xi

)
.

First we prepare the table of ηis+1 = ai + biηs+1, ai, bi ∈
F�, 0 ≤ i ≤ 2s+1 − 1, using the following formula:

Lemma 3.9. We have a0 = 1, b0 = 0 and ai+1 = bi,
bi+1 = ai + t1bi (i ≥ 0).

Proof: We have ai+1 + bi+1ηs+1 = (ai + biηs+1)ηs+1 =
aiηs+1 + bi(1 + t1ηs+1) = bi + (ai + t1bi)ηs+1.

Next we calculate

Ai = a−i2 ∈ F�,

Bi = ai+i2xi ∈ F�,

Ci = b−i2 ∈ F�,

Di = bi+i2xi ∈ F�,

0 ≤ i ≤ 2s − 1, considering subscripts −i2 and i + i2

modulo 2s+1.
Four convolutions

Xr =
2s−1∑
i=0

Ar−iBi ∈ F�,

Yr =
2s−1∑
i=0

Ar−iDi ∈ F�,

Zr =
2s−1∑
i=0

Cr−iBi ∈ F�,

Wr =
2s−1∑
i=0

Cr−iDi ∈ F�,
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0 ≤ r ≤ 2s− 1, are calculated in O(s2s) time using FFT,
and we have

2s−1∑
i=0

η
−(r−i)2
s+1 η

i(i+1)
s+1 xi

=
2s−1∑
i=0

(Ar−i + Cr−iηs+1)(Bi +Diηs+1)

=
2s−1∑
i=0

(
Ar−iBi + (Ar−iDi + Cr−iBi)ηs+1

+ Cr−iDi(1 + t1ηs+1

))
= Xr +Wr + (Yr + Zr + t1Wr)ηs+1.

In order to regard this expression as convolution, we have
to consider the subscript r− i not modulo 2s+1 but mod-
ulo 2s. We note that our calculation is consistent, be-
cause (2s+ i)2 = 22s+2s+1i+ i2 ≡ i2 mod 2s+1. There-
fore we obtain

ηr
2

s+1

2s−1∑
i=0

η
−(r−i)2
s+1 η

i(i+1)
s+1 xi = Er + Frηs+1,

Er, Fr ∈ F�, 0 ≤ r ≤ 2s − 1, in O(s2s) time and hence
obtain

wr =
2s−1∑
i=0

aijxi = Er + Frηs+1 + (Er + Frηs+1)�

= 2Er + t1Fr ,

0 ≤ r ≤ 2s − 1, also in O(s2s) time. It suffices to check
wr �= 0 for 0 ≤ r ≤ 2s−2 − 1 and 2s−1 ≤ r ≤ ss−1 +
2s−2 − 1.

In this manner, we verified 65537 � h79 in 4 minutes
and 524287 � h95 in 95 minutes. We needed two weeks
to derive Corollary 1.3 with three computers combining
Lemmas 3.2, 3.7, 3.8 and FFT techniques.

4. APPENDIX

The class number h6 of Ω6 is known to be 1 under GRH.
It is natural to ask whether Lemmas 3.2 and 3.7 con-
tribute to the derivation of some bound on h6 without
GRH. We have verified that h6 does not have prime di-
visors less than 1011. So the following holds:

Theorem 4.1. If h6 > 1, then h6 > 1011.

It is possible to reduce the bound m in Theorem 1.2
by investigating carefully the properties of the rational
function f1(T ). Namely, the following holds:

Theorem 4.2. Let �, c, δ� be the same as in Theorem 1.2
and put

m1 = 3c+ [log2(�− 1)] +
[
1
2

log2(�− 1)
]
− δ�.

If � does not divide hm1 , then � does not divide hn for all
n ≥ 1.

Though our proof is slightly complicated, we write it
down because this theorem may be useful if one tries to
extend the range of Corollary 1.3. We note that we used
Theorem 1.2 to derive Corollary 1.3.

Let Kn,� = Ωn(ζ�) with ζ� = cos(2π/�) +√−1 sin(2π/�) as in Section 2 and denote by v� the ad-
ditive �-adic valuation normalized by v�(�) = 1. For a
character χ′ of Gn = G(Kn,�/Q), the idempotent eχ′ is
defined by replacing Δn with Gn in (3–1). Then eχ′ acts
on the �-part A′

n of the ideal class group of Kn,�. If χ′ is
odd, the equality

v�(|eχ′A′
n|) = (Z�[χ′(Gn)] : Z�)v�(B1,χ′−1 )

holds. This is a direct consequence of Iwasawa’s main
conjecture proved by Mazur–Wiles [Mazur and Wiles 84,
p. 216, Theorem 2]. Let ψn be the character stated in
Section 2, and ω the Teichmüller character modulo � (i.e.,
the Teichmüller character of G0). By definition, eω is an
element of Z�[G0] and acts on A′

0. Further we let eω
act on A′

n using the isomorphism Go ∼= G(Kn,�/Ωn). By
decomposing eωA′

n using ψn, we have the following [Gras
77]:

Lemma 4.3. We have v�(B1,ω−1ψ−j
n

) ≥ 0 and for n ≥ 1

v�(|eωA′
n|) − v�(|eωA′

n−1|) =
2n−1∑
j=1
j odd

v�(B1,ω−1ψ−j
n

).

Now, putting χ = ω−1 in (2–1), we define

f1(T ) =

( ∑
b≡1 mod 2c

0<b<2c+1�

ω−1(b)T b
)(

T 2c+1� − 1
)−1

.

In Lemma 2.1, we considered a congruence relation mod-
ulo � to avoid vagueness. But it is reasonable to use �
instead of � because � is unramified in the field generated
by the 2n+2th roots of unity. We rewrite Lemma 2.1 in
the following form.

Lemma 4.4. We suppose that n ≥ 2c − 1. If f1(ζ) �≡
0 mod � for any primitive 2n+2th root of unity in Q�,
then B1,ω−1ψ−j

n
�≡ 0 mod � for any odd integer j.
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Next we put g(T ) = f1(T )(T 2c� − 1)T−1 and h(T ) =∑�−1
ν=0 ω

−1(1 + 2cν)T ν . Then (2–2) implies

(
T 2c+1� − 1

)
f1(T ) = T

(
T 2c� + 1

)
g(T ) (4–1)

= T
(
T 2c� + 1

)
h(T 2c

).

From now on, we assume n ≥ 2c − 1 and put u =
n− 2c+ 2. Let θ be a primitive 2cth root of unity in Q�.
Then x2u −θ mod � is irreducible over F� or the quadratic
extension of F� according as � ≡ 1 mod 4 or not. We
put e = [(�− 1)/2u], f = �− 1 − 2ue, and

aij =

{
ω−1(1 + 2c(2uj + i)) if 2uj + i < �,

0 if 2uj + i ≥ �.

Assuming e ≥ 1 for the time being, we put si(θ) =∑e
j=0 aijθ

j . Then there exist polynomials q(x), r(x) ∈
Z�[θ][x] such that h(x) = (x2u − θ)q(x) + r(x) with
r(x) = s0(θ) + s1(θ)x + · · · + s2u−1(θ)x2u−1 and such
that deg r(x) < 2u.

Lemma 4.5. Let α, β, γ be nonzero elements in F� and let
νi, μj be positive integers with ν1 < ν2 < · · · < νk < �

and μ1 < μ2 < · · · < μk < �. Let

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
α

1
α+βμ1

· · · 1
α+βμk

1
α+γν1

1
α+βμ1+γν1

· · · 1
α+βμk+γν1

...
... · · · ...

1
α+γνk

1
α+βμ1+γνk

· · · 1
α+βμk+γνk

⎞
⎟⎟⎟⎟⎟⎟⎠

be a matrix of degree k+ 1. We assume that none of the
denominators of entries of S are zero. Then the deter-
minant |S| of S is not zero.

Proof: The basic row and column operations yield

|S| =
(βγ)k

∏k
i=1(μiγi)

α
(∏k

i=1(α+ βμi)(α+ γνi)
)

×

∣∣∣∣∣∣∣∣∣

1
α+βμ1+γν1

· · · 1
α+βμk+γν1

... · · · ...
1

α+βμ1+γνk
· · · 1

α+βμk+γνk

∣∣∣∣∣∣∣∣∣
.

We put α′ = α+ βμ1 + γν1, β
′ = β, γ′ = γ, μ′

i = μi − μ1,
and ν′i = νi − ν1. Then we have∣∣∣∣∣∣∣

1
α+βμ1+γν1

· · · 1
α+βμk+γν1

... · · · ...
1

α+βμ1+γνk
· · · 1

α+βμk+γνk

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

1
α′

1
α′+β′μ′

2
· · · 1

α′+β′μ′
k

1
α′+γ′ν′

2

1
α′+β′μ′

2+γ
′ν′

2
· · · 1

α′+β′μ′
k+γ′ν′

2
...

... · · · ...
1

α′+γ′ν′
k

1
α′+β′μ′

2+γ′ν′
k

· · · 1
α′+β′μ′

k+γ′ν′
k

∣∣∣∣∣∣∣∣∣∣
.

Our result follows from inductive arguments.

Corollary 4.6. Let u, e and aij be as above. We put

R =

⎛
⎜⎜⎜⎝

a00 · · · a0e

a10 · · · a1e

... · · · ...
a2u−1,0 · · · a2u−1,e

⎞
⎟⎟⎟⎠

with aij = aij + �Z�[θ] ∈ Z�[θ]/�Z�[θ]. If 2u > e, then the
rank of R is greater than or equal to e.

Proof: Note that aij ≡ 1/(1 + 2c(2uj + i)) mod � if aij �=
0. Remove the last column of R that possibly contains
zero entries. Further, remove one row that contains a zero
entry and construct the matrix R′ of size (2u − 1)× e or
2u × e. Then the rank of R′ is equal to e by Lemma 4.5.

Put d = 2c +
[
1
2 log2(�− 1)

] − 1. The following is a
precise version of Lemma 2.2.

Proposition 4.7. If n ≥ d, then � does not divide
|eωA′

n|/|eωA′
d|.

Proof: The argument in the proof of Lemma 2.2 imme-
diately shows that the conclusion holds if

n ≥ 2c− 1 + [log2(�− 1)] − δ�.

So we assume

d+ 1 ≤ n ≤ 2c− 2 + [log2(�− 1)] − δ�.

Hence
u = n− 2c+ 2 ≤ [log2(�− 1)]

and e ≥ 1.
Let ζ be an arbitrary primitive 2n+2th root of unity

in Q� and put θ = ζ2u+c

. We assume f1(ζ) ≡ 0 mod �.
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Then we have h(ζ2c

) ≡ 0 mod � by (4–1). Hence we have
r(ζ2c

) ≡ 0 mod �. Since x2u − θ mod � is irreducible in
Z�[θ]/�Z�[θ], we have

si(θ) ≡ 0 mod � (0 ≤ i ≤ 2u − 1). (4–2)

From the condition n ≥ d + 1, it follows that u >
1
2 log2(� − 1) + 1, which implies 22u > 4(� − 1). Hence
2u−1 > (� − 1)/2u ≥ e. Let R be the matrix in Corol-
lary 4.5.

First suppose f ≥ 2u−1, which implies f + 1 > e+ 1.
This shows that the rank of R is equal to e+1 by Lemma
4.5. Hence we have θ ≡ 0 mod � by (4–2), which is
a contradiction. Next suppose f < 2u−1, which implies
2u−(f+1) ≥ 2u−1 > e. This shows that θ ≡ 0 mod � by
applying Lemma 4.5 to the lowest 2u− (f+1) rows of R,
which is again a contradiction. Hence f1(ζ) �≡ 0 mod �

and Lemmas 4.3 and 4.4 yield the conclusion.

Proof of Theorem 4.2.: Since v�(| eωA′
n |) ≤ log�(h

−
n,�),

(2–4) implies

v�(| eωA′
n |) < log�(4�)

+ (�− 1)2n−1{1 + (n− 2) log�(2)}

for all n ≥ 1. This inequality remains valid if we replace
n on the right-hand side with d = 2c+ [12 log2(�− 1)]− 1
by Proposition 4.7. Namely, we have

v�(| eωA′
n |)

< log�(4�) + (�− 1)22c+[12 log2(�−1)]−2

×
{

1 +
(

2c+
[
1
2

log2(�− 1)
]
− 3

)
log�(2)

}
< 3 + (�− 1)22c+[ 12 log2(�−1)].

Now assume that � does not divide hm1 , where m1 is
the integer stated in the theorem. Moreover, we assume
that there exists n such that � divides hn and does not
divide hn−1. Then we have

2n−c+δ� ≤ �-rank An ≤ �-rank eωA′
n ≤ v�(| eωA′

n |)
< 3 + (�− 1)22c+[ 12 log2(�−1)].

The first inequality is what we used implicitly to deduce
Lemma 2.3, and the second is a consequence of the re-
flection theorem. This turns into

2n−c+δ� ≤ (�− 1)22c+[ 12 log2(�−1)],

from which we deduce n ≤ m1 and hence a contradiction.
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