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A pro-p-group is a CF group if all (except possibly the first)
of its lower central series factors have order p. We describe
a construction for a class of just-infinite CF pro-p-groups with
fixed coclass. Based on that, we observe that the class of infinite
CF pro-p-groups is comparatively large within the class of all
just-infinite pro-p-groups of fixed coclass.

1. INTRODUCTION

Blackburn [Blackburn 58] introduced two special types
of p-groups as generalizations of the p-groups of maximal
class: a p-group G is a CF group if it satisfies [γi(G) :
γi+1(G)] = p for 2 ≤ i ≤ c, where G = γ1(G) ≥ γ2(G) >

· · · > γc+1(G) = {1} denotes the lower central series
of G, and a CF p-group is an ECF group if additionally
G/γ2(G) is elementary abelian. The p-groups of maximal
class are the ECF p-groups with G/γ2(G) of order p2.

The p-groups of maximal class have been studied in
many places; see [Leedham-Green and McKay 02] for
references. As a result, it is known that the structure
of p-groups of maximal class can be quite complex, and
the p-groups of maximal class form an interesting class
of groups. The CF and ECF p-groups are less well inves-
tigated in the literature [McKay 87, McKay 90], perhaps
because of the fact that the p-groups of maximal class
have already proved to be a challenge.

In [Leedham-Green and Newman 80] it was suggested
that p-groups be studied using the coclass as primary
invariant. If G has order pn and class c, then its coclass
is cc(G) = n − c. This suggestion has led to a major
research project yielding many new deep insights into the
structure of p-groups; see [Leedham-Green and McKay
02] for details. Our general idea is to use the methods of
coclass theory to study CF and ECF groups.

A first and central step in understanding the p-groups
of a fixed coclass is a classification of the infinite pro-p-
groups of this coclass. It is known that for every prime p

and every coclass r there are only finitely many infinite
pro-p-groups of coclass r. Our central aim here is to
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investigate the infinite CF and ECF pro-p-groups of a
given coclass.

Recall that a pro-p-group is just infinite if it is infinite
and every normal subgroup has finite index. It is well
known that for every prime p there is exactly one infi-
nite pro-p-group of maximal class and that this group is
just infinite. The following theorem shows that the class
of infinite CF pro-p-groups is significantly larger. (See
Section 4 for a proof.)

Theorem 1.1. Let p be a prime and r ∈ N.

(a) Every infinite CF pro-p-group of coclass r is a sub-
direct product of a finite abelian group of order
pr+1 and a just-infinite CF pro-p-group of coclass at
most r.

(b) There are at least ppr−1−(r+2) isomorphism types of
just-infinite CF pro-p-groups of coclass r. (An ex-
plicit construction for these groups is outlined below.)

As shown in [Eick 05b], there exists a nonnegative ε =
ε(p, r) such that ε tends to 0 if p or r tends to infinity
and there are at most

rp(1+ε)r2pr−1

isomorphism types of just-infinite pro-p-groups of coclass
r. Theorem 1.1 says that there are at least

p(1−ε)pr−1

just-infinite CF pro-p-groups of coclass r.
The just-infinite CF pro-p-groups constructed for The-

orem 1.1 all satisfy G/γ2(G) ∼= Cpr × Cp. Hence these
groups are ECF if and only if r = 1. Infinite ECF pro-p-
groups of arbitrary coclass r can be obtained as subdirect
products of the finite elementary abelian group Cr+1

p and
the infinite pro-p-group of coclass 1.

The results of this paper are based on extensive ex-
periments using the computer algebra system gap. [The
GAP Group 08]. Based on our experiments, we state two
conjectures on the structure of the just-infinite CF pro-p-
groups in Section 5. These conjectures should lead to an
approach to classifying the just-infinite CF pro-p-groups
up to isomorphism.

2. COCLASS THEORY

In this section we recall briefly some background on the
classification of p-groups by coclass with a view toward

CF groups. See [Leedham-Green and McKay 02] for fur-
ther information on coclass theory.

The finite p-groups of coclass r can be sorted into a
graph G(p, r): the vertices of the graph correspond to the
isomorphism types of groups of coclass r, and two vertices
are joined by an edge if their corresponding groups G and
H satisfy G/γc(G) ∼= H , where c is the class of G.

The inverse limit of the groups on an infinite path in
G(p, r) is an infinite pro-p-group of coclass r. Conversely,
the lower central factors of an infinite pro-p-group of co-
class r yield an infinite path in G(p, r). These two con-
structions induce a one-to-one correspondence between
the maximal infinite paths in G(p, r) and the isomorphism
types of infinite pro-p-groups of coclass r. Hence a clas-
sification of infinite pro-p-groups of coclass r is central to
understanding the shape of G(p, r).

2.1 The Graph C(p, r)

We define C(p, r) as the full subgraph of G(p, r) consisting
of all vertices that are CF groups. The following lemma
shows that an infinite path of G(p, r) is either completely
contained in C(p, r) or intersects trivially with C(p, r).
Further, it observes that the infinite paths of C(p, r) cor-
respond one-to-one to the infinite pro-p-groups that are
CF groups and have coclass r.

Lemma 2.1. Let G0, G1, . . . denote the groups on an in-
finite path in G(p, r).

(a) If Gi is a CF group for some i, then all groups
G0, G1, . . . are CF groups.

(b) If all groups G0, G1, . . . are CF groups, then their
inverse limit G is a CF group.

Proof: (a) Suppose that Gi is CF. Then G0, . . . , Gi−1 are
CF groups, since factors of CF groups are CF. Further,
for every j ∈ N it follows that Gi+j is a CF group if
Gi+j−1 is a CF group, since Gi+j/γc(Gi+j) ∼= Gi+j−1

and γc(Gi+j) has order p, where c is the class of Gi+j .
Statement (b) follows directly from (a).

It is not difficult to observe that every graph
C(p, r) contains at least one infinite path: the cyclic
group Cpr has a faithful representation in dimension
d = pr−1(p − 1), and the corresponding split extension
Zd

p � Cpr is an infinite CF pro-p-group of coclass r.

2.2 Uniserial p-adic Space Groups

A group G is a uniserial p-adic space group if it is an
extension of a normal subgroup T ∼= Zd

p (its translation
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subgroup) by a finite p-group P (its point group) such
that P acts faithfully and uniserially on T ; that is, the
series defined by T0 = T and Ti+1 = [Ti, P ] satisfies [Ti :
Ti+1] = p for all i ∈ N0. It is not difficult to observe that
every uniserial p-adic space group G is a just-infinite pro-
p-group of finite coclass; see [Leedham-Green and McKay
02, Section 7.4].

The rank d of the translation subgroup is also called
the dimension of G. It is known that (see [Leedham-
Green and McKay 02, Theorem 7.4.12])

d =

{
ps−1(p − 1) for some 1 ≤ s ≤ cc(G) − 1, p odd,

1 ≤ s ≤ cc(G) + 1, otherwise.

Every infinite pro-p-group of finite coclass is an exten-
sion of a finite p-group by a uniserial p-adic space group;
see [Leedham-Green and McKay 02, Theorem 7.4.12].
Hence the uniserial p-adic space groups coincide with the
just-infinite pro-p-groups of finite coclass, and they play
a central role in the classification of all infinite pro-p-
groups by coclass.

In the following we recall a method to determine all
uniserial p-adic space groups of dimension d = ps−1(p−1)
and coclass r with a given point group P ≤ GL(d, Zp).
We assume that P acts uniserially on Zd

p. Then V =
T ⊗ Qp

∼= Qd
p is irreducible as a P -module and Z(P )

is a nontrivial cyclic group. Let C be the subgroup of
order p in Z(P ) and define F = FixC(V/T ), the fixed
points of C in V/T . It is well known that F is elementary
abelian of rank q = ps−1 by [Leedham-Green et al. 86,
Theorem 3.3] and P = P/C acts uniserially on F . Let
F = Fq > · · · > F0 = {0} be the unique maximal P -
invariant series through F .

The embedding Fi ≤ F induces a natural homomor-
phism H1(P , Fi) → H1(P , F ), and we define Ei(P, T ) as
the image of this homomorphism. This yields a filtration
of H1(P , F ) of the form

{0} = E0(P, T ) ≤ E1(P, T ) ≤ · · · ≤ Eq(P, T )

= H1(P , F ).

This allows us to construct space groups by coclass, as
the following theorem shows; see [Leedham-Green et al.
86, Theorem 3.3, Proposition 3.8] for a proof.

Theorem 2.2. (Leedham-Green, McKay, Plesken.) Let
P ≤ GL(d, Zp) with |P | = pl, N = NGL(d,Zp)(P ),
T = Zd

p.

(a) There is a natural isomorphism H2(P, T ) ∼=
H1(P , F ) that is compatible with the natural action
of N .

(b) The isomorphism types of extensions of T by P of
coclass r correspond one-to-one to the N -orbits of
elements in El−r(P, T ) \ El−r−1(P, T ).

3. THE STRUCTURE OF CF PRO-p-GROUPS

The next theorem reduces a classification of all infinite
CF pro-p-groups to a classification of all uniserial p-adic
CF space groups, that is, the uniserial p-adic space groups
that are also CF groups. It also implies Theorem 1.1(a).

Theorem 3.1. Every infinite CF pro-p-group of coclass r

is a subdirect product of a finite abelian p-group of order
pr+1 and a uniserial p-adic CF space group of coclass at
most r.

Proof: Let G be an infinite CF pro-p-group of coclass
r. We define A := G/γ2(G) and H := G/Z∞(G), where
Z∞(G) is the hypercenter of G. Since G is a CF group
of coclass r, it follows that A is a finite p-group of order
pr+1. We refer to [Leedham-Green and McKay 02] for a
proof that H is a uniserial p-adic space group of coclass
r − logp |Z∞(G)|. Since quotients of CF groups are CF,
it follows that H is a CF group. It remains to show
that G is a subdirect product of A and H , that is, that
Z∞(G) ∩ γ2(G) = {1}. We observe that

[γi(G) : γi+1(G)] =

[γi(H) : γi+1(H)][γi(G) ∩ Z∞(G) : γi+1(G) ∩ Z∞(G)]

for all i ∈ N. Since G and H are both CF groups, it
follows that [γi(G) : γi+1(G)] = [γi(H) : γi+1(H)] = p

for all i ≥ 2. Thus γi(G)∩Z∞(G) = γi+1(G)∩Z∞(G) for
all i ≥ 2. Since Z∞(G) is finite, there exists j ∈ N with
γj(G) ∩ Z∞(G) = {1}. Hence γ2(G) ∩ Z∞(G) = {1}, as
desired.

It remains to investigate the structure of the uniserial
p-adic CF space groups. The following lemma provides
a first investigation of their point groups.

Lemma 3.2. If G is a uniserial p-adic CF space group,
then its point group P is a finite CF group with cc(P ) =
cc(G) or cc(P ) = cc(G) − 1.

Proof: Every factor of a CF group is CF, and thus also
the point group of G is CF. Further, we note that [G :
γ2(G)] = [P : γ2(P )][T : T ∩ γ2(G)]. By the uniseriality
of G, we find that T ∩ γ2(G) ≥ T1 and thus [T : T ∩
γ2(G)] ∈ {1, p}. Since G and P are both CF, we can
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read off the coclasses of G and P from their first lower
central factors, and hence we obtain that cc(G) = cc(P )
or cc(G) = cc(P ) + 1, as desired.

Next we discuss the extension structure of the unis-
erial p-adic CF space groups G as extensions of their
translation subgroups T by their point groups P . Since
the coclasses of P and G are very close to each other, it
follows that the extension of T by P defining G has to
be “highly nonsplit.”

Theorem 3.3. Let P ≤ GL(d, Zp) be a uniserial CF point
group of class c. Then an extension G of T by P via
δ ∈ H1(P , F ) is a CF group if and only if

(1) δ 	∈ Ec−1(P, T )

or

(2) δ ∈ Ec−1(P, T ) \Ec−2(P, T ) and γ2(G)∩ T = [T, P ].

Proof: By Theorem 2.2, the case cc(P ) = cc(G) of
Lemma 3.2 is equivalent to (1), and the case cc(P ) =
cc(G) − 1 of Lemma 3.2 is equivalent to (2).

As noted in [McKay 94], there is no known example of
a uniserial p-adic space group G with cc(G) = cc(P ) for
its point group P . It is conjectured that such uniserial p-
adic space groups do not exist. This induces the following
conjecture.

Conjecture 3.4. If G is a uniserial p-adic CF space group,
then its point group P is a finite CF group with cc(P ) =
cc(G) − 1, and G is defined by an element

δ ∈ Ec−1(P, T ) \ Ec−2(P, T )

such that γ2(G) ∩ T = [T, P ].

4. A CONSTRUCTION FOR CF SPACE GROUPS

In this section we construct a class of uniserial p-adic
CF space groups. The constructed groups have coclass
r and dimension d = q(p − 1) for q = pr−1. We first
introduce the point groups of these space groups and then
we discuss their extensions.

4.1 A Special Class of Point Groups

Let W ∈ GL(p − 1, Zp) be the companion matrix of
xp−1+· · ·+x+1 and let I ∈ GL(p−1, Zp) be the identity
matrix. We define m ∈ GL(d, Zp) as the block permu-
tation matrix permuting blocks of dimension p − 1 via

the permutation (1, . . . , q), and for 1 ≤ i ≤ q we define
the element ai ∈ GL(d, Zp) as the block-diagonal ma-
trix diag(I, . . . , I, W, I, . . . , I), where W is the ith block.
Thus m and ai have the following form:

m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I
0 I

. . . . . .
. . . . . .

0 I
0 I

I 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
. . .

I
W

I
. . .

I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Definition 4.1. We define U = 〈ma1〉 and A =
〈a1, . . . , aq〉.

Then A is elementary abelian of rank q, and U is cyclic
of order pr. The group U acts uniserially on A by conju-
gation. Hence the series A = Aq > Aq−1 > · · · > A1 >

〈1〉 defined by Ai = [Ai+1, U ] satisfies [Ai+1 : Ai] = p for
1 ≤ i ≤ q − 1.

Definition 4.2. We define Ui = UAi for 1 ≤ i ≤ q.

This yields a series of subgroups U = U1 ≤ · · · ≤ Uq <

GL(d, Zp). The smallest group U acts uniserially on T by
construction and hence all of the groups U1, . . . , Uq are
uniserial point groups. The following lemma lists some
further properties of these groups.

Lemma 4.3. Let 1 ≤ i ≤ q.

(1) γj(Ui) = Ai−(j−1) for 2 ≤ j and cl(Ui) = i.

(2) |Ui| = pi+r−1 and cc(Ui) = r − 1.

(3) Ui is a CF group with Ui/γ2(Ui) ∼= Cpr−1 × Cp if
i > 1 and U1

∼= Cpr .
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Proof: (1) Let j > 2 and assume that the statement is
true for all k < j. Then

γj(Ui) = [γj−1(Ui), Ui] = [Ai−((j−1)−1), Ui]

= [Ai−((j−1)−1), AiU ] = [Ai−(j−2), U ]

= Ai−(j−1).

(2) |U | = pr and |Ai| = pi and |U ∩ Ai| = p. This
yields that |Ui| = |U ||Ai|/|U∩Ai| = pi+r−1 and cc(Ui) =
i + r − 1 − cl(Ui) = r − 1.

(3) This follows directly from (1). The proof is com-
plete.

Let T = T0 > T1 > · · · denote the maximal U -
invariant series through T . This series is invariant under
Ui for every i, and the action of Ui on Tj yields a unise-
rial subgroup of GL(d, Zp). The following lemma shows
that there is a bound on the possible indices j yielding
nonisomorphic actions.

Lemma 4.4. Tj
∼= Tj+q as ZpUi-lattices for all j and i.

Proof: The group A1 is a central subgroup of order p in
every Ui. Every generator c of A1 satisfies Tj(c − 1) =
Tj+q.

It follows from Lemma 4.4 that the GL(d, Qp)-class of
the point group Ui splits into at most q classes under the
action of GL(d, Zp).

4.2 Extensions

In this section we investigate the extensions of T ∗ :=
Tq−1 by Ui. First, we show that every such extension of
coclass r yields a CF group. Then we determine a lower
bound for the number of these extensions.

By Theorem 2.2, the extensions of T ∗ by Ui of coclass
r correspond one-to-one to the Ni-orbits of elements of
Ei−1(Ui, T

∗)\Ei−2(Ui, T
∗), where Ni is the normalizer of

Ui in GL(d, Zp). We explicitly determine this underlying
set in the following lemma. For this purpose take C = A1

as a central subgroup of order p in Ui and let F ∗ =
FixC(V/T ∗) for V = T ∗ ⊗ Qp with series F ∗ = F ∗

q >

· · · > F ∗
0 = {0}.

Lemma 4.5. Let P = Ui for some i ∈ {1, . . . , q} and
P = P/C.

(1) H1(P , F ∗) ∼= F ∗
i−1.

(2) Ej(P, T ∗) ∼= F ∗
j for j ∈ {0, . . . , i − 1}.

Proof: (2) follows directly from (1), and it remains to
prove (1).

Set u = ma1 so that U = 〈u〉 ≤ P . Choose xq ∈
Aq \ Aq−1 and define xi = [xi+1, u] for q − 1 ≥ i ≥ 1.
Then xi ∈ Ai \ Ai−1 and Ai = 〈x1, . . . , xi〉. Further, it
follows that P = Ui = AiU = 〈xi, u〉 and P = P/C is
the semidirect product of Ai with U .

The map α : Z1(P , F ∗) → F ∗ ×F ∗ : δ �→ (δ(xi), δ(u))
is a monomorphism. Let β : Z1(P , F ∗) → F ∗ : δ �→
δ(u) denote its corresponding projection on the second
component and let K denote the kernel of β.

We show that K is a complement to B1(P , F ∗) in
Z1(P , F ∗). For this purpose let δ ∈ Z1(P , F ∗). Then
δ|U ∈ Z1(U, F ∗) = B1(U, F ∗), since U is a cyclic group
acting uniserially on F ∗. Thus there exists f ∈ F ∗ with
δ(u) = δf (u), where δf : g �→ fg − f ∈ B1(P , F ∗). Hence
δ − δf ∈ K and δ ∈ K + B1(P , F ∗). Let δ ∈ K ∩
B1(P , F ∗). Then δ = δf for some f ∈ F ∗. Thus δ(u) =
fu − f = 0. Hence f ∈ F ∗

1 , since U acts uniserially on
F ∗. This implies that δ = 0 and K ∩ B1(P , F ∗) = {0}.

Thus H1(P , F ∗) ∼= K and it remains to determine K.
An element δ ∈ K is determined by its value δ(xi). A
short computation yields that δ(xi) = δ(xi+1)(u − 1).
This implies that δ(xi) ∈ F ∗

i−1. Conversely, for every
f ∈ F ∗

i−1 there exists a δ ∈ K with δ(xi) = f . This
follows from the fact that P is the split extension of Ai

with U .

It follows immediately from Theorem 2.2 and Lemma
4.5 that there are extensions of T ∗ by Ui of coclass r,
since the set Ei−1(Ui, T

∗) \ Ei−2(Ui, T
∗) is not empty.

Next we show that all these extensions are CF groups.

Theorem 4.6. Let G be an extension of T ∗ by Ui defined
by an element of the set difference

Ei−1(Ui, T
∗) \ Ei−2(Ui, T

∗).

Then G is a CF group of coclass r.

Proof: By Theorems 2.2 and 3.3, the group G has coclass
r, and it remains to show that γ2(G) ∩ T ∗ = [T ∗, Ui] =
Tq. For this purpose we explicitly construct G as an
affine matrix group following the well-known approach
for space groups; see, for example, [Zassenhaus 48].

Let δ ∈ Z1(P , F ∗) be an element defining G and define
u and x1, . . . , xi as in the proof of Lemma 4.5. As in the
proof of Lemma 4.5, we can assume that δ(u) = 0. We set
f = δ(xi). Then f ∈ F ∗

i−1 \ F ∗
i−2, since δ + B1(P , F ∗) ∈

Ei−1(Ui, T
∗) \ Ei−2(Ui, T

∗).
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Further, every element g ∈ Ui can be written as g =
uexei

i · · ·xe1
1 . This implies that δ(g) = eδ(u) + eiδ(xi) +

· · ·+ e1δ(x1) = eif + ei−1f(u− 1) + · · ·+ e2f(u− 1)i−2.
In particular, the cocycle δ is defined by f only.

Let t ∈ Tq−i \ Tq−i+1 such that t + T ∗ = f and define
the mapping σ : Ui → T−1 : g �→ eit + ei−1t(u − 1) +
· · · + e1t(u − 1)i−1 for g = uexei

i · · ·xe1
1 ∈ Ui. Then

σ(g) + T ∗ = δ(g) for every g ∈ Ui. Using σ we can write
G = {g̃, t̃ | g ∈ Ui, t ∈ T ∗} with

g̃ =

⎛⎜⎜⎜⎝
0

g
...
0

σ(g) 1

⎞⎟⎟⎟⎠
and

t̃ =

⎛⎜⎜⎜⎝
0

1
...
0

t 1

⎞⎟⎟⎟⎠ .

This construction implies that ũ−1 = ũ−1. Further,
since xj acts trivially on T/Tq and σ(xj) ∈ T , it follows
that

x̃−1
j ≡

⎛⎜⎜⎜⎝
0

x−1
j

...
0

−σ(xj) 1

⎞⎟⎟⎟⎠ mod Tq.

A direct computation now yields that [x̃j , x̃k] ∈ Tq and
[x̃j−1, ũ] ≡ x̃j mod Tq. Note that [T ∗, Ui] = Tq. This
implies that

γ2(G) = 〈x̃j , t̃ | 1 ≤ j ≤ i − 1, t ∈ Tq〉.

We obtain that γ2(G) ∩ T ∗ = Tq, which completes the
proof.

We determine a lower bound for the number of CF
extensions obtained in Theorem 4.6 in the following the-
orem. This also provides a proof for Theorem 1.1(b).

Theorem 4.7.

(a) If p > 2, then there are at least ppr−1−(r+2) isomor-
phism types of CF extensions with coclass r of T ∗ by
Uq.

(b) If p = 2, then there are at least 22r−1−r isomorphism
types of CF extensions with coclass r of T ∗ by Uq.

Proof: The proof follows from Lemma 4.5 and Theo-
rem 4.6 with arguments similar to [Eick 05b, Lemma 16
and Corollary 17]. It is proved there that the normalizer
N of Uq in GL(d, Zp) acts as a group of order dividing
(p − 1)3pr−2 on Eq−1(Uq, T

∗)\Eq−2(Uq, T
∗) if r > 1 and

p is odd or r > 2 and p = 2. Thus if p is odd and r > 1,
then the number of N -orbits on this set is at least

pq−1 − pq−2

(p − 1)3pr−2
=

pq−r

(p − 1)2
≥ pq−r−2.

Since there is exactly one extension of T ∗ by Uq if r = 1,
the result follows. A similar argument gives the result
for p = 2.

5. EXPERIMENTAL EVIDENCE AND CONJECTURES

In [Eick 05a] there is an algorithm described to construct
all uniserial p-adic space groups of a given coclass for
an odd prime p. We used its implementation in gap

[The GAP Group 08] to construct the uniserial p-adic CF
space groups for some small primes p and small coclasses
r. The results of these experiments have led us to the
construction outlined in Section 4.

There are further observations that arise from our ex-
periments that we have not been able to prove. We list
the most important ones as conjectures in the following.
The first conjecture observes that the point groups cho-
sen in Section 4 are the only ones possible.

Conjecture 5.1. Let p be an odd prime and let G be a
uniserial p-adic CF space group of coclass r and dimen-
sion d = ps−1(p−1) with point group P . Then r = s and
P is conjugate in GL(d, Qp) to Ui for some i.

If this conjecture is true, then all uniserial p-adic CF
space groups arise as extensions of a lattice Tj by a point
group Ui for certain i and j. The next conjecture gives
some further insight into the situation.

Conjecture 5.2. Let p be an odd prime, and let 0 ≤ j ≤
q−1 and 1 ≤ i ≤ q for q = pr−1. Then either all or none
of the extensions of coclass r of Tj by Ui are CF groups.

We note that there are lattices Tj with j 	= q − 1
that allow CF extensions of coclass r with certain point
groups Ui. However, our experimental evidence suggests
that T ∗ = Tq−1 is the only lattice for which all point
groups U1, . . . , Uq have CF extensions.
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