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Herein we develop connections between zeta functions and
some recent “mysterious” constants of nonlinear physics. In an
important analysis of coupled Winfree oscillators, Quinn, Rand,
and Strogatz [Quinn et al. 07] developed a certain N -oscillator
scenario whose bifurcation phase offset small φ is implicitly de-
fined, with a conjectured asymptotic behavior sin φ ∼ 1−c1/N ,
with experimental estimate c1 = 0.605443657 . . . . We are able
to derive the exact theoretical value of this “QRS constant” c1

as a real zero of a particular Hurwitz zeta function. This dis-
covery enables, for example, the rapid resolution of c1 to ex-
treme precision. Results and conjectures are provided in regard
to higher-order terms of the sin φ asymptotic, and to yet more
physics constants emerging from the original QRS work.

1. THE QRS CONSTANT

In a recent treatment, D. Quinn, R. Rand, and S. Stro-
gatz, in describing a nonlinear Winfree-oscillator mean-
field system, cite a formula

0 =
N∑

i=1

(
2
√

1 − s2(1 − 2(i − 1)/(N − 1))2 (1–1)

− 1√
1 − s2(1 − 2(i − 1)/(N − 1))2

)
,

implicitly defining a phase offset angle φ := sin−1 s due
to bifurcation.1 The authors conjectured, on the basis
of numerical evidence, the asymptotic behavior of the
N -dependent solution s to be

s ∼ 1 − c1

N
,

where c1 is what we shall call the QRS constant,
having—said those original authors—the empirical value
0.60544365 . . . . Note the important fact that the very

1The QRS treatment [Quinn et al. 07] has s = sin φ0(1) in those
authors’ notation [Quinn et al. 07, p. 6].
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existence of c1 as a constant limit should be proven, and
that is one of our present aims.

The present treatment began when we attempted to
compute c1 to significantly higher precision, so that the
tools of experimental mathematics could be brought to
bear on the problem [Bailey et al. 07, Borwein and Bai-
ley 04, Borwein et al. 04]. Our experience shows that
extreme-precision evaluation of constants that arise in
mathematics or mathematical physics can be of enor-
mous help, even if the constants are not discovered from
the digits directly.2 Extreme precision brings confidence
during the sometimes arduous empirical verification of
analytical results.

Our computational approach was as follows. Hoping
to obtain a numeric value accurate to at least 40 decimal
digits, we employed a software package that facilitates
computations to 64-digit arithmetic (see the appendix,
Section 6). We first rewrote the right-hand side of (1–1)
by substituting x = N(1 − s), so that the roots of the
resulting function FN (x) directly correspond to approxi-
mations to c1. Given a particular value of N , we found
the root of FN (x) using iterative linear interpolation, in
the spirit of Newton–Raphson iterations, until two suc-
cessive values differed by no more than 10−52. In this
manner we found a sequence of roots xm for N = 4m,
where m ranged from 1 to 15. These successive roots
were then extrapolated to the limit as m → ∞ (or in
other words, as N → ∞) using Richardson extrapolation
[Sidi 02, pp. 21–41], in the following form:

For each m ≥ 1, set Am,1 = xm. Then for k = 2 to
k = m, successively set

Am,k =
2kAm,k−1 − Am−1,k−1

2k − 1
. (1–2)

This recursive scheme generates a triangular matrix A.
The best estimates for the limit of xm are the diagonal
values Am,m. Indeed, we found to our delight that for
each successive m, the value Am,m agreed with Am−1,m−1

to an additional three to four digits, which indicates that
this extrapolation scheme is very effective on this prob-
lem.

In general, Richardson extrapolation employs a multi-
plier r, where we have used two in the numerator and de-
nominator of (1–2), which multiplier r depends on the na-
ture of the sequence being extrapolated. We found that
two is the optimal value to use here quite by accident—
what we actually discovered is that

√
2 is the optimal

2By “extreme precision” is meant, in the spirit of previous pa-
pers such as [Bailey et al. 06], that “enough digits for detection”
are obtained. In modern times, this means hundreds or thousands
of digits, depending on the scope of search.

multiplier when N = 2m, which implies that two is op-
timal when N = 4m. The resulting final extrapolated
value A15,15 we obtained for m = 15 (corresponding to
N = 415 = 1073741824) is

c1 ≈ 0.6054436571967327494789228424472074752208996.
(1–3)

Since this and A14,14 differed by only 10−38, and suc-
cessive values of Am,m had been agreeing to roughly four
additional digits with each increase of m, we inferred that
this numerical value was most likely good to 10−42, or in
other words, to the precision shown, except possibly for
the final digit.

We then attempted to recognize this numeric value
using the Inverse Symbolic Calculator tool.3 Sadly, this
tool was unable to determine any likely closed form.

After this recognition failure, we explored some an-
alytic lemmas in the hope of giving the QRS constant
a theoretical meaning. Indeed, in our case, the lack of
immediate numerical discovery led to eventual theoreti-
cal success. We should also mention that having a sus-
pected “moderate-precision” value such as the 42-digit
entity above is of considerable aid during numerical test-
ing of any theory. Moreover, another “mystery constant”
we call C in our last section was found in closed form be-
cause of lucky manual experiments on such a moderate-
precision value.

2. BOUNDING LEMMAS

We first simplify the nomenclature, noting that an equiv-
alent formulation to the original work, now for M :=
N − 1 a positive integer, involves a sum

PN (s) :=
M∑

k=0

(
2
√

1 − s2(1 − 2k/M)2 (2–1)

− 1√
1 − s2(1 − 2k/M)2

)
.

With this new nomenclature, consider a zero sN having
PN(sN ) = 0. We choose to state the QRS conjecture in
the following form: Such a zero sN exists, is unique on
the positive reals, and enjoys a natural expansion

M

sN
− M ∼ d1 +

d2

M
+

d3

M2
+ · · ·

3Available online at http://oldweb.cecm.sfu.ca/projects/ISC/
ISCmain.html. A new version of the ISC is available at http:
//ddrive.cs.dal.ca/∼isc/.
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with the coefficients dj being absolute constants.4 The
establishment of this form leads immediately to a QRS
expansion

1 − sN ∼ c1

N
+

c2

N2
+

c3

N3
+ · · · ,

with corresponding absolute constants cj , therefore with

c1 = d1

the QRS constant, and higher coefficients derivable with
series algebra. For example,

c2 = d1 − d2
1 + d2,

c3 = d1 − 2d2
1 + d3

1 − 2d2 − 2d1d2 + d3,

and so on.
We shall be able to prove existence and uniqueness

of sN , and also prove that the QRS constant d1 = c1

exists as a genuine limit of (M/sN−M), with conjectures
finally posited in regard to the higher-order dj , cj . The
next lemmas serve to establish bounds crucial to such
analysis.

Lemma 2.1. Let N > 1 be a fixed integer, and consider
real, positive arguments s. Then PN(s) is strictly mono-
tone decreasing in s, with PN (0) = N and PN (1) = −∞,
so that for every N > 1 a unique zero sN always exists;
in fact, sN ∈ (0, 1).

Proof: The monotonicity is obvious from the radicals in
the summand; in fact, each summand is itself strictly
monotonic decreasing in s, except for a possible harmless
constant summand when M is even and k = M/2. Also
immediate are the endpoint values of PN for s = 0, 1.

To further facilitate asymptotic analysis, we shall es-
tablish a reasonably tight bound on the unique zero sN

of Lemma 2.1. We shall use an elementary form of
the Euler–Maclaurin summation formula valid for any
continuously differentiable function f on the real inter-
val (a, b) [Atkinson 93, p. 285], [Titchmarsh 51, (2.1.2)];
namely, denoting by W (x) := x − 	x
 − 1

2 the antisym-
metric sawtooth function, we have

∑
a<k≤b

f(k) =
∫ b

a

f(x) dx +
∫ b

a

W (x)f ′(x) dx

+ W (a)f(a) − W (b)f(b). (2–2)

4We admit that our use of the term “natural” is based on hind-
sight; the given expansion with the dj occurs naturally in our sub-
sequent analysis.

The bounding scheme we have in mind runs as follows:

Lemma 2.2. For positive integer M := N − 1, the real
positive zero sN satisfies

1 > sN > 1 − 28
27

1
M

,

as well as

0 <
M

sN
− M <

20
19

.

Remark 2.3. These effective bounds are true, regardless
of any expansion for sN . The lemma does, however, prove
that if the QRS constant c1 exists, then said constant
must be in

(
0, 28

27

)
.

Proof: Define T := 	M/2
 and write

PN (s) = −δM, even

+ 2
T∑

k=0

(
2
√

1 − s2(1 − 2k/M)2 (2–3)

− 1√
1 − s2(1 − 2k/M)2

)
.

We now identify a := 0, b := M/2, and

f(x) := 2
√

1 − s2(1 − 2x/M)2 − 1√
1 − s2(1 − 2x/M)2

in the identity (2–2), where all right-hand terms are easy
except for the second integral, which we bound on the
knowledge that this f is monotone increasing over x ∈
[0, M/2]:∣∣∣∣∣

∫ M/2

0

W (x)f ′(x) dx

∣∣∣∣∣ ≤ 1
2
(f(M/2) − f(0)).

These machinations yield, whether M be even or odd,

PN (s) > −1 + 4
√

1 − s2 − 2√
1 − s2

+ M
√

1 − s2.

(2–4)

A zero of the right-hand side of (2–4) is

s′ =

√
1 −

(
1 +

√
8M + 33

2M + 8

)2

.

It is straightforward to check the derivative ds′/dM and
the value of s′ at the critical point to conclude that s′ >

1 − 28
27/M , so the first result of the lemma follows. The

second result follows from similar critical-point analysis
of M/s′ − M .
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3. POISSON TRANSFORMATION

It is tempting, on the basis of Lemma 2.2, to explore
tighter theoretical bounds, say via Euler–Maclaurin for-
mulas or the like. Unfortunately, such an approach has
various problems stemming from the manifestly asymp-
totic nature of Euler–Maclaurin error terms. Instead, we
have opted for a Poisson transformation of the P sum.

For a wide class of functions f one has the Poisson
identity

∑
k∈Z

f(k) =
∑
n∈Z

∫ ∞

−∞
f(x)e2πinx dx. (3–1)

This holds for any Lebesgue integrable function [Borwein
and Bailey 04, Theorem 2.12]. Generally speaking, if the
left-hand sum is, as in our case for Q, to be truncated at
finite limits, then we may use the relation

M∑
k=0

f(k) =
∑
n∈Z

∫ M+η

−η

f(x)e2πinx dx, (3–2)

provided that η ∈ (0, 1). This “truncated” Poisson ex-
pansion can be proved directly, for example via standard
techniques such as summation formulas. One may es-
tablish the Poisson transformation, for example, using
(2–2) and integrating by parts, employing at a key step a
Fourier series for the sawtooth function W [Titchmarsh
51, (2.1.7)]. Any integrable (f ∈ L1) function with finite-
interval support allows the transformation, or by apply-
ing (3–1) to f restricted to [−η, M + η].

Theorem 3.1. Let M := N − 1 be a positive integer, and
assume for a positive real s that 0 < M/s−M < 2. Then
we have the identity

PN (s) =
πM

s

∞∑
n=1

(−1)nMJ2

(
πnM

s

)
, (3–3)

where J2 is the standard Bessel function of order 2.

Proof: For the real s assumed, we can, according to
Lemma 2.2, take ε := M/s − M ∈ (0, 2) and infer

PN (s) =
∑
n∈Z

∫ M+ε/2

−ε/2

e2πinx
(
2
√

1 − s2(1 − 2x/M)2

− 1√
1 − s2(1 − 2x/M)2

)
dx.

Setting x �→ (M/2)(1 − (1/s) cos t), we have

PN (s) =
∑
n∈Z

M

s
eiπnM

∫ π

0

dt
(
1 − 2 sin2 t

)
e−πin M

s cos t

=
M

s

∑
n∈Z

eiπnM

∫ π

0

cos (2t) e−πin M
s cos t dt

=
πM

s

∞∑
n=1

(−1)nMJ2

(
πnM

s

)
, (3–4)

where the final equation (3–4) follows from the represen-
tation for J2 in [Ambramowitz and Stegun 65, equation
9.2.21], since J2 is an even function with J2(0) = 0.

4. ASYMPTOTIC ANALYSIS

Evidently, our sought-after zero sN for the QRS problem
solves

0 =
∞∑

n=1

J2

(
πnM

sN

)
(−1)nM , (4–1)

and has a proven constraint; namely, if we write

M

sN
= M + δN ,

then 0 < δN < 20
19 . Simple as the Bessel-sum relation

may appear, it contains clues as to the difficulty of our
desired asymptotic analysis. Indeed, the Bessel function
exhibits damped oscillation, and the arithmetic progres-
sion {πnM/sN : n = 1, 2, 3, . . .} samples said oscillations
in somewhat chaotic fashion, at least until the Bessel ar-
gument is large.

To address the issue of oscillations in such summands,
we state a classical truth in regard to the Bessel function:
For positive real z,

J2(z) =

√
2
πz

(
cos(z − 5π/4)− 15

8z
sin(z − 5π/4)

)

+ O
(
z−5/2

)
. (4–2)

This kind of asymptotic is presented in most references
that explain Bessel functions, say [Ambramowitz and
Stegun 65, p. 364]. However, if one desires effective
bounds, that is, explicit big-O constants, the reference
[Borwein et al. 07] provides a method for effective bounds
(and convergent—not asymptotic—series) for Jn(z), with
n any integer.
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Compelled by the appearance of the cos–sin terms in
the Bessel asymptotic (4–2), we define a set of offset-
periodic zeta functions:

Qs(z) :=
∞∑

n=1

cos(πnz − 5π/4)
ns

= − 1√
2

{ ∞∑
n=1

cos(πnz)
ns

+
∞∑

n=1

sin(πnz)
ns

}
,

Rs(z) :=
∞∑

n=1

sin(πnz − 5π/4)
ns

=
1√
2

{ ∞∑
n=1

cos(πnz)
ns

−
∞∑

n=1

sin(πnz)
ns

}
.

For positive real s and for z not an even integer, these
summations are all seen—by a standard uniform Abel
test—to converge to continuous functions. The functions
also enjoy polylogarithmic forms, at least for real s:

Qs(z) = − 1√
2

(
ReLis

(
eiπz

)
+ Im Lis

(
eiπz

))
, (4–3)

Rs(z) =
1√
2

(
Re Lis

(
eiπz

) − Im Lis
(
eiπz

))
. (4–4)

Here Lis(z) :=
∑∞

n=0 zn/ns for |z| < 1 and its ana-
lytic continuation for other z [Lewin 81]. For example,
Qs(z) = 0 can be solved with polylogarithm calculations,
using the first of these two relations. Of special interest
now is the Erdélyi expansion [Erdéyli 53, vol. 1, p. 29],
[Crandall and Buhler 95]:

Lis
(
eiπz

)
= Γ(1 − s)(−iπz)s−1 +

∑
m≥0

ζ(s − m)
m!

(iπz)m,

(4–5)

valid on z ∈ (0, 2), with s not a positive integer (in which
case, canceling divergences can be analyzed to recast the
right-hand side). We may employ the Riemann func-
tional equation, which stipulates that

π−s/2Γ(s/2)ζ(s)

is invariant under s �→ 1 − s, to convert all ζ arguments
into positive ones. Putting all of this together for the
case s = 1

2 , we obtain

Q1/2(z) = − 1√
z

+
∑
n≥0

qnzn, (4–6)

where the coefficients enjoy a closed form

qm := − 1√
2
ζ

(
m +

1
2

) m∏
k=1

(
1
4k

− 1
2

)
.

(An empty product is interpreted as 1.) It is fascinating
that starting with q1, the coefficients in (4–6) are alter-
nating in sign. Indeed, an alternative series for Q1/2 is
given by

Q1/2(z) = − 1√
z
− 1√

2

∞∑
n=0

ζ

(
n +

1
2

) (
2n

n

) (
−z

8

)n

.

(4–7)

There is another vantage point on the Q,R pair.
Namely, since the polylogarithmic Lis is a case of the
Lerch zeta function, and since there is a functional equa-
tion for the Lerch, one may work out, from (4–3), (4–4),
and a suitable reference [Laurincikas and Garunkstis 02,
Section 2.2] a functional relation

Lis
(
eiπz

)
= i(2π)s−1Γ(1 − s) (4–8)

×
{
e−iπs/2ζ

(
1 − s,

z

2

)
− eiπs/2ζ

(
1 − s, 1 − z

2

)}
,

where now ζ(s, a) :=
∑

n≥0 1/(n+a)s is the Hurwitz zeta
function. Formula (4–8) is valid for all z ∈ (0, 2) and for
any complex s for which the right-hand side exists as an
analytic continuation. In turn, ζ(s, a) can be analytically
continued except for a pole at s = 1, so (4–8) has a wide
scope of validity. For our present purposes, the functional
equation proves, for real s, via (4–3), (4–4), the following
lemma.

Lemma 4.1. For real s, z with z ∈ (0, 2) we have the
following functional relations for the offset-periodic zeta
functions Q,R and the Hurwitz zeta function, all entities
being analytic continuations:

Qs(z) = −(2π)s−1Γ(1 − s)

×
{

ζ
(
1 − s,

z

2

)
cos

(
(2s − 1)π

4

)

+ζ
(
1 − s, 1 − z

2

)
sin

(
(2s − 1)π

4

)}
,

Rs(z) = (2π)s−1Γ(1 − s)

×
{

ζ
(
1 − s, 1 − z

2

)
cos

(
(2s − 1)π

4

)

+ζ
(
1 − s,

z

2

)
sin

(
(2s − 1)π

4

)}
.

Note that for half-odd s such as s = − 1
2 , 1

2 , 3
2 , there

is precisely one Hurwitz zeta function in play. Special
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instances of Lemma 4.1 are thus

Q−1/2(z) =
1

π
√

32
ζ

(
3
2
, 1 − z

2

)
,

Q1/2 (z) = − 1√
2

ζ

(
1
2
,
z

2

)
,

Q3/2 (z) = π
√

8 ζ

(
−1

2
, 1 − z

2

)
,

R−1/2 (z) = − 1
π
√

32
ζ

(
3
2
,
z

2

)
,

R1/2 (z) =
1√
2

ζ

(
1
2
, 1 − z

2

)
,

R3/2 (z) = −π
√

8 ζ

(
−1

2
,
z

2

)
.

There is one more foray we require before proving the
main asymptotic conjecture. We shall employ the fol-
lowing representation for the analytic continuation of the
Hurwitz zeta function:

Lemma 4.2. [Crandall 08] The complete analytic contin-
uation of ζ(s, a) for a ∈ (0, 1), s = 1 + 0i, is given by

ζ(s, a) =
1

Γ(s)

∑
n≥0

Γ(s, λ(n + a))
(n + a)s

+
1

Γ(s)

∑
m≥0

(−1)mBm(a)
m!

λm+s−1

m + s − 1
,

with the following interpretations: Γ(s, ·) is the stan-
dard incomplete gamma function, Bn is the standard
Bernoulli polynomial, λ is a free parameter with |λ| < 2π.
For any case of integer s = −n ≤ 0, the Γ(s) diver-
gence cancels a divergent m-summand, and so ζ(−n, a) =
−Bn+1(a)/(n + 1).

Though Lemma 4.2 was developed for computational
purposes, there is one useful side result:

Corollary 4.3. If s = 1 is positive real, the formal deriva-
tive relation

∂

∂a
ζ(s, a) = −sζ(s + 1, a)

holds, even if the left-hand side is the analytic continua-
tion (the right-hand side being always a convergent sum).

Proof: From the relation of Lemma 4.2, with say λ := 1,
both absolutely convergent sums can be differentiated
internally. One may use B′

m(x) = Bm−1(x) and the

FIGURE 1. Plots of the offset-periodic and Hurwitz zeta
functions Q1/2(z) and −ζ

(
1
2
, z

2

)
/
√

2, respectively (vertical)
vs. z (horizontal) on (0, 4). The Q1/2 function has a dis-
continuity at z = 2, to the left of which the two functions
precisely coincide, are strictly monotone, and exhibit a zero
z0 ≈ 0.6.

standard recurrence relation for Γ(s, .). One sees that—
remarkably enough—each sum has the derivative prop-
erty specified for ζ(s, a) itself.

We are now prepared to establish certain key proper-
ties of the Q1/2 function (the reader may wish to refer to
the graph in Figure 1):

Lemma 4.4. For z belonging to the open interval (0, 2),

(1) Q1/2(z) is infinitely differentiable,

(2) Q1/2(z) is strictly monotone increasing,

(3) Q1/2(z) has a unique zero, say z0, i.e., Q1/2(z0) = 0,
which belongs in the subinterval (0, 1).

Proof: From the closed form for the qm coefficients, one
can see that |qm| < 1/2m for all m ≥ 0. Thus for any
|z| < 2, the given series converges, as does the series for
any order of derivative of Q1/2, thus settling part (1).
(One could also use the corollary to Lemma 4.2 to infer
arbitrary differentiability.)

For part (2), observe that Corollary 4.3 assures us that
the derivative of Q1/2(z) = −ζ

(
1
2 , z

2

)
/
√

2 is positively
proportional to ζ

(
3
2 , z

2

)
, which itself is a manifestly pos-

itive convergent sum. Thus Q1/2 has positive slope over
the interval.

For part (3), it is an easy check that for z → 0+,
the function Q1/2 diverges negatively as −z−1/2. On
the other hand, it is an easy (and effectively boundable)
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check that Q1/2(1) > 0. For example,

Q1/2(1) > −1 − ζ
(

1
2

)
√

2
+

5ζ
(

3
2

)
32

√
2

> 0.3.

(See text below for the closed form for Q1/2(1).) There-
fore a zero-crossing exists and is unique by part (2).

We are finally in a position to resolve the QRS con-
stant, as follows:

Theorem 4.5. The sequence {δN := M/sN − M : M ∈
Z+} approaches a definite limit, said limit being the zero
z0 of Lemma 4.4, and so the QRS constant c1 exists and
is the unique zero of the Hurwitz zeta function ζ

(
1
2 , z

2

)
on z ∈ (0, 2).

Proof: Write the Bessel asymptotic (4–2) as

J2(z) =

√
2
πz

cos
(

z − 5π

4

)
+ O

(
z−3/2

)
,

and then observe that
∑
n≥1

J2(πnM/sN )eiπnM

=
1
π

√
2sN

M

∑
n≥1

(−1)nM

√
n

cos
(

πn(M + δN) − 5π

4

)

+ O

⎛
⎝ 1

M3/2

∑
n≥1

1
n3/2

⎞
⎠

=
1
π

√
2sN

M

∑
n≥1

1√
n

cos
(

πnδN − 5π

4

)
+ O

(
1

M3/2

)
.

But the Bessel sum vanishes for every δN , so we must
have

Q1/2(δN ) = O

(
1
M

)
.

Now the point of our previous analytical results on
Q1/2 for the open interval (0, 2) is apparent: We know
from Lemmas 2.2 and 4.4 that Q1/2 has a legitimate in-
verse over the entire domain

(−∞,−ζ
(

1
2

)
/
√

2
]
, which

domain contains the full sequence {δN}. We can write

δN = Q1/2
−1

(
O

(
1
M

))
,

so that our limit in fact exists, namely, lim δN = z0 =
d1 = c1.

Using formula (4–3) for Q1/2, employing also a root-
finding algorithm, we produced the 1500-digit value of
the zero that appears in our appendix. We note that
Q1/2(2−) = −ζ

(
1
2

)
/
√

2 = 1.0326265761156085 . . . , as
can be calculated by methods relevant to Lemma 4.1 but
was also found using the Inverse Symbolic Calculator.
Likewise,

Q1/2(1) = −ζ

(
1
2

) (
1 − 1√

2

)
= 0.42772793269397822 . . . .

5. HIGHER-ORDER ASYMPTOTICS

On the matter of the coefficient d2, which immediately
yields a c2, again we took the experimental-mathematical
path. First, we established via similar extrapolation to
that for c1 the estimate

c2 ≈ −0.104685459433071176262158436589.

Then, by analyzing the Bessel asymptotic (4–2) through
the sine term inclusive, we found (and hereby omit the
tedious derivation) that

d2 = − 15
16π2

R3/2(z0)
R−1/2(z0)

,

and thus, with z0 again being the zero of ζ
(

1
2 , z

2

)
, we

established a closed form for c2:

c2 = z0 − z2
0 − 30

ζ
(− 1

2 , z0
2

)
ζ

(
3
2 , z0

2

) . (5–1)

It is a delight that this value for c2—found in our ap-
pendix to extreme precision—agrees with the above ex-
trapolation value. But perhaps most interesting is this:
Whereas c1 was an “implicit solution,” i.e., a Hurwitz-
zeta zero, it turns out that c2 is just an “evaluation”
involving said zero. We do not yet know whether higher-
order cj will take the form of implicit zeros, or evalua-
tions. For such higher-order analysis, the complications
arise in the fact that the formal series for M/sN − M

appears in both the asymptotic powers and the cos/sin
terms of the general Hankel asymptotic for J2. It may
help to use absolutely convergent series for J2, as found
in [Borwein et al. 07]. These special series, sometimes
called Hadamard series (see the given reference for dis-
tinctions), are not the classical ascending series, which do
converge; they are series structured just like the asymp-
totic series but that nevertheless converge absolutely.
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We would like to conjecture that the dj coefficients
are bounded, and so are the cj. This happy circum-
stance would mean, of course, that the so-called asymp-
totic series is really a convergent series, and such a phe-
nomenon is at least consistent with the bounding lemma
Lemma 2.2.

Finally, we also identified another constant conjec-
tured in the Quinn–Rand–Strogatz paper [Quinn et al.
07, equation 55]. Therein the authors define a function
S by

S(N, a) :=
N∑

i=1

[
1 − a2

(
1 − 2i − 2

N − 1

)2
]−3/2

and then note that the limit

C = lim
N→∞

S(N, 1 − c1/N)
N3/2

= 2.038169 . . .

appears to hold, although they admit having neither an
exact value nor a proof of existence for the constant.

To resolve these matters, we first obtained 43-digit
accuracy, by means, again, of a high-precision Richardson
extrapolation scheme. Our result is

C ≈ 2.0381693797021506217106484597282955162787140.

Guided by this experimental number, we were able to
guess (literally, by hand) an exact form by noticing that
the 43-digit C value satisfies, to the implied accuracy,

C

ζ
(

3
2 , c1

2

) = 0.25000000000000000000000000000000000
00000000 . . . ,

where c1 is what we have been calling all along the QRS
constant.

Rather than developing here a full theorem in regard
to existence (of C) and closed-form value

C =
1
4
ζ

(
3
2
,
c1

2

)
= − ∂

∂a
ζ

(
1
2
,
a

2

)∣∣∣∣
a=c1

, (5–2)

we shall, for the sake of brevity, merely sketch the argu-
ment. First, rewrite the S definition as

S(N, a) = −δM even + 2
	M/2
∑
k=0

[
1 − a2

(
1 − 2k

M

)2
]−3/2

,

(5–3)

where M = N − 1 as before. Now, roughly speaking (for
this sketch we use “∼” rather loosely, heuristically, for
large M) we have

a2 ∼ 1 − 2
c1

M
,

and for small k/M ,

1 − a2

(
1 − 2k

M

)2

∼ 2c1 + 4k

M
,

so that we can rewrite (5–3) as

S ∼ 2M3/2

43/2

∑
k≥0

1
(k + c1/2)3/2

=
1
4
ζ

(
3
2
,
c1

2

)
M3/2,

thus establishing (5–2).
It should be possible—if tedious—to work out in the

above fashion arbitrary orders of the large-N expansion
of S(N, 1 − c1/N) ∼ CN3/2 + O(N2).

An extreme-precision value for C is exhibited in our
appendix. Incidentally, we also believe that a theory of
sums similar to S, but having, say, a denominator power
s instead of 3

2 , with Re(s) > 1, should be possible and
surely would involve Hurwitz-zeta evaluations ζ(s, ·).

6. APPENDIX

The 42-digit extrapolation value (1–3) for c1 was calcu-
lated using the “quad-double” (QD) package, which is
described in the paper [Hida et al. 01] and is available
at http://crd.lbl.gov/∼dhbailey/mpdist. This software
permits one to write conventional Fortran-90 or C++
programs, defining some or all variables to be of type
dd real (double-double precision, or roughly 32 deci-
mal digits) or qd real (quad-double precision, or roughly
63 decimal digits). Our code used the qd real data
type. While we developed this code on systems at the
Lawrence Berkeley Laboratory, the final computations
that produced this value, as well as those for c2 and
C, were performed on the Terascale Computing Facil-
ity, an Apple-based parallel computer at Virginia Tech
(whom we thank for their generous grant of computer
time). Each of these three runs used 64 CPUs and re-
quired a run of 25 minutes.

Once we found formula (4–3), we used the
FindRoot[ ] function in Mathematica to obtain a 1500-
decimal-digit value for the QRS constant c1, shown in
Table1:

We performed a similar extreme computation in
Maple. This value agrees with the value we originally
determined using Richardson extrapolation in equation
(1–3), up through the penultimate digit of the latter.
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0.60544365719673274947892284244720747522089949695632261787755287745182899835167635675704729213834270415236423385710966391691390

2624654330713276508225233193900846854324981696625174326916993899357902129115162779514480126580963173535306458459525605063356503

8813531984427083311019243469327700890687316931799630146321318600921674738308974101700798656707535895028571088566182353335405921

6528869748443460029266705177817416861768180174835433523787977028804835740674916521172167379905320597894233955944161387666787916

7164822424233609499796907423206087664539181972204995252338433945219605664893889298011885087974305203698314105101543221538575519

8160124952526634474107571519983167998486705047352545582392335289389938718220615968256932537430253906936580394740776461008835378

9271333848841314281336085227378237909113263429197608975128013983363802190210084258376654113113468592910653805429489316980056244

9996831858584054378774351165020656057805483417919830660673353704368986688535738658319864383794984806259993328561094431524127891

7320821690170042872987593908071106435901285774390509158979349598759759942199621885801931138655484389585347401292827178723552313

6864166794004967327243986452813180492053953599752281115669271528684480711090747252310993644628705857598135569029788725659041441

3167852093271467048591545795290363253904475328267587638890715560557794280218580769308203735202946410661176629539018165245466244

73016307134392121176815861030549031583672388498225780852970951886046624784559414954886

TABLE 1. A 1500-decimal-digit value for the QRS constant c1.

− 0.10468545943307117626215843658395036156630618842292865924089799032445161164604995667892401950871225474113178283711331838580764

503659384455260680747280480919364062912336723121576669247369684086851908155279149809902932153332042942337222251994392457714277470

417895645311497586529672299884948664410703210607989056878250005783690981299967383163468963529819148190754502985179083520734517381

9686123307000222448421419493798532254450206713840469715701195194420211009180095272144623726428767145060743241789968236338690043646

3562395763193896048908763164886592319493057017164117428222204517541912784665508774345454285890494689192786308524762504067226003147

4546660145201154033334065378285465159641426409367209485188151735563822848739783248962426968859268364539368746014938430208648300095

3259064265548812220671948499661345036887136145544268556752530593107400537900544405596764859072509235611912060376431002707985999037

3455808314059886517759977459880048926998965963617190013778759001072199829998352501701771942275516793045359128069095576791448908784

1271775751374437448571262758563786061951305752906258070832687978037761957068220599110915674847526875742964163957954146172683855621

35690393107891109925270253936280140246020248006045647348610411823943152286794318966804326394277897095153735969140797904084476

TABLE 2. An extreme-precision value for the second asymptotic coefficient c2.

2.038169379702150621710648459728295516278713961805208070047044564382879711524651476868574278314962588666944434112853514044764379850

34097825780731677755501504164397627235926291723469882602782245988895590852147288847337705475773081957945049352384792230520803926215

38058028555060292839643982947789392716783815030164235812447284567463200970560145427537696364303092747566093352954489921303660334802

84408141353820184281486472735045639232872490490890964203715825578031653931170039608311987937726842915671144884343047127324191067113

14911256951543653158392681672628984663440211693278242664696481673881320141852687867702511971602051597783574841721311342362315825613

05953793108360225742011895345717913713047009900340856947654673291245208429113901484302919893417270109446316786436540341480683665456

86178152295531902294848949352535807504276195064876177825163253754165977713659001464012145000748601144602918962094927431290960912626

464054820458378546775797563210175228731470501519422004568794868500041268732541282751

TABLE 3. An extreme-precision value for the ancillary constant C.

In a similar manner, we were able to compute an
extreme-precision value for the second asymptotic coef-
ficient c2, using (5–1) and the above value for c1 (which
equals z0). Our result is given in Table 2.

An extreme-precision value for the ancillary constant
C, shown in Table 3, is a straightforward Hurwitz-zeta
computation.
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