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In this paper we present two algorithms: the first tests the pro-
jectivity of a smooth complete toric variety and the second de-
termines the extremal classes of the Mori cone of a smooth pro-
jective toric variety. The crucial fact is that we are able to give a
complete description of N1(X), determining a basis B of N1(X)

and the coordinates with respect to B of any element of N1(X).
The computational condition testing the projectivity is obtained
by Kleiman’s criterion of ampleness, while the condition deter-
mining the extremality of a class comes directly from the defi-
nition of a nonextremal class. The algorithms are used to study
the Mori cone of Fano toric n-folds with dimension n ≤ 4 and
Picard number ρ ≥ 3, computing all extremal rays of the Mori
cone. Moreover, we describe a toric almost Fano variety of di-
mension 3 and Picard number 35 together with its Mori cone.

1. INTRODUCTION

A toric variety X of dimension n is a normal complex al-
gebraic variety containing an algebraic group T isomor-
phic to (C∗)n (a torus), as a dense open subset, with an
algebraic action T ×X → X of T on X that extends the
natural action of T on itself (multiplication in T ). More-
over, we will assume that X is smooth and complete.

In this article we present an algorithm testing the pro-
jectivity ofX and an algorithm to determine the extremal
classes of the Mori cone of X , when X is a projective va-
riety. After the description of algorithms we give two
applications. In the first we study the Mori cone of Fano
toric n-folds with n ≤ 4 and ρ ≥ 3, determining all its
extremal rays. In the second we give a description of a
toric almost Fano variety of dimension 3 and maximal
Picard number (ρ = 35).

The definition of toric variety given above is a theoret-
ical definition and does not allow us to obtain a computa-
tional description of X . We need an equivalent descrip-
tion for the variety X . We observe that the definition
of fan (see [Ewald 96, Fulton 93, Oda 98]) gives a com-
binatorial description of X and that every geometrical
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property ofX corresponds to a combinatorial property of
the fan. In addition, combinatorial properties are easy to
translate into computational properties. We will trans-
late these combinatorial properties in a computational
way to obtain our goal.

Given X , we deal with the characterization of the
group of 1-cycles in X modulo numerical equivalence,
denoted by N1(X), and the associated vector space
N1(X)Q = N1(X) ⊗Z Q. Its dimension is ρ, where ρ

denotes the Picard number of X . In N1(X)Q we con-
sider the Mori cone NE(X), the convex cone generated
by classes of effective curves. Let NE(X)Z be the inter-
section of NE(X) with N1(X).

Reid [Reid 88] proves that NE(X)Z is generated as a
semigroup by the set I of all classes of invariant curves.
Since dim NE(X) = ρ, it follows that I generates N1(X)
as a group and it contains a basis B of N1(X).

IfX is also projective, we observe that there is a subset
of I that generates NE(X)Z as a semigroup. It is the
set of all contractible classes of X and is denoted by C.
Again, we can conclude that the set C generates N1(X)
as a group and hence C contains a basis B of N1(X) (see
[Casagrande 03a]).

The sets I and C are sets of linear forms in the gen-
erators of the fan ΣX . If we suppose that the generators
of the fan ΣX are t in number, then we can associate
to every element in I (or in C) a polynomial in t vari-
ables. Then we observe that a relation among the classes
in I (or in C) determines a relation among the associ-
ated polynomials and conversely. Thus we consider the
set of all syzygies among the polynomials corresponding
to all classes in I (or in C). We observe that it is an
ideal and it can be completely described by a system of
generators. So we compute a system of generators for the
ideal. Starting from this system of generators, we write
an algorithm computing a basis B of N1(X) contained
in I (or in C). Then, using the syzygies, we determine
the vector wγ of the coordinates of every class γ in I (or
in C) with respect to B. Consequently, the Mori cone is
seen in Qρ as the cone generated by the vectors wγ , for
γ ∈ I (or in C).

Under this identification, we use the characterization
of projectivity given by Kleiman’s criterion of ampleness
[Kleiman 66] to obtain the computational condition to
test the projectivity of X ; see Proposition 4.1.

If X is projective, we define its extremal classes:
they are primitive elements of the intersection of 1-
dimensional faces of NE(X) with N1(X). By Reid’s re-
sults we know that the set E of all extremal classes is a

subset of C and that it is computationally determined by
the definition of nonextremal class (see Proposition 5.2).

We will see that in both cases, we solve the problem
by considering a linear Diophantine equation and prov-
ing that a nontrivial solution using nonnegative numbers
exists.

In this paper we present two applications. The com-
putations obtained in the first application tell us that for
every considered toric Fano n-fold X (with n ≤ 4 and
ρ ≥ 3), the sets C and E coincide. Hence every con-
tractible class γ is extremal, and its associated variety
Xγ is projective. Moreover, when X has ρ = 3, its Mori
cone is always simplicial: we find three extremal rays. Fi-
nally, we observe that the program gives its answers in a
short time: the longest CPU time spent by Mathematica
is 0.531 seconds. In the other application we introduce a
toric almost Fano varietyX . We obtain a positive answer
when we check its projectivity. Then we subsequently de-
termine the extremal rays of NE(X). It has dimension
35 and 54 edges. In this case, Mathematica spends quite
a long time, because in order to test the projectivity it
constructs a linear Diophantine equation with 102 un-
knowns, and to compute extremal classes it constructs
56 linear Diophantine equations with 55 unknowns.

This article is divided into six sections. In Section
2 we recall some definitions about toric varieties [Ewald
96, Fulton 93, Oda 98] and some known results about
toric Mori theory [Oda 98, Reid 88]. Then, in Section
3, we present an algorithm that computes a basis B

of N1(X) given by classes of invariant curves (or con-
tractible classes) and all vectors of coordinates of all
classes of invariant curves (or contractible classes) with
respect to B. In Section 4 we give the computational con-
dition of projectivity. In Section 5 we present the compu-
tational translation of the definition of nonextremal class
and we explain how one can determine the set of all ex-
tremal classes as a subset of C. In the last two sections
we present two examples that we studied using our al-
gorithms. In Section 6 we enumerate the results about
the study of the Mori cone of toric Fano varieties of di-
mension n ≤ 4 and Picard number ρ ≥ 3. Section 7 is
devoted to the study of a toric almost Fano variety of
dimension 3 and maximal Picard number (ρ = 35).

Remark 1.1. Our algorithms, implemented using the pro-
gramming language Mathematica 5.0, are collected in
“Toric Varieties.”1 The web site also contains the in-
structions for all programs of the package.

1Available at the author’s web page: http://annascaramuzza.
googlepages.com/studies.
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All computations in the two applications were carried
out on a Pentium(R) 4 HP Pavilion ze5400 with 2.66
GHz and 256 MB RAM under Microsoft Windows XP.

2. BASIC DEFINITIONS AND KNOWN RESULTS

In this section we recall some definitions from toric ge-
ometry. More detailed references can be found in [Ewald
96, Fulton 93, Oda 98]. For a definition of primitive
collections and relations we refer to [Batyrev 91] and
[Batyrev 99]. Toric Mori theory is introduced in [Oda
98, Reid 88, Wísniewski 02].

LetX be a smooth complete toric variety of dimension
n. We introduce X using the fan ΣX .

Let N = HomZ(C∗, T ) ∼= Zn be a lattice of rank n,
and let M = HomZ(N,Z) be its dual lattice. We also
define the vector space NQ = N ⊗Z Q, whose dual space
MQ is identified with M ⊗Z Q. We denote by ( , ) the
natural pairing on MQ ×NQ.

We define the following set as a rational convex poly-
hedral cone (or simply cone) generated by {x1, . . . , xk} ⊂
N :

〈x1, . . . , xk〉 =
{ k∑
i=1

λixi

∣∣∣∣ λi ≥ 0, λi ∈ Q

}
.

Given a cone σ ∈ NQ we define its dual cone as follows:

σ∨ = { y ∈MQ | (y, x) ≥ 0 for all x ∈ σ }.

If y �= 0 is in M we define

Hy = { x ∈ NQ | (y, x) = 0 },
H+
y = { x ∈ NQ | (y, x) ≥ 0 }.

Then the cone τ = Hy ∩ σ is a face of the cone σ if
y ∈M\{0} and σ ⊂ H+

y .
A fan is a finite collection of rational convex polyhe-

dral cones in the vector space NQ satisfying the following
conditions:

• Each face of a cone is a cone in the fan.

• The intersection of two cones belonging to the fan is
a face of each cone.

Since X is smooth and complete, every cone in the fan
is generated by a part of a basis of N , and the support of
the fan ΣX is the whole vector space NQ. We define the
dimension of the cone σ as the dimension of the small-
est linear subspace Span(σ) containing σ. Moreover, we

denote by RelInt(σ) the interior of σ in Span(σ). For ev-
ery 1-dimensional cone σ in ΣX we consider its primitive
generator xσ. Thus the set

{ xσ | σ is a 1-dimensional cone }
is the set of all generators of ΣX . It is denoted by G(ΣX).

We will introduce a smooth complete toric variety enu-
merating all generators of its fan and all maximal cones
belonging to the fan.

If X is projective, then we can describe the fan using
the language of primitive collections and primitive rela-
tions introduced by Batyrev [Batyrev 91, Batyrev 99].
It gives another combinatorial way to introduce the fan
ΣX , and we will see that it is very useful in studying the
Mori cone of X .

A subset P ⊆ G(ΣX) is a primitive collection if it does
not generate a cone in the fan ΣX while every proper
subset of P generates a cone in the fan. The symbol
PC(X) will denote the set of all primitive collections of
ΣX . By definition, it follows that for any subset S of
G(ΣX) either S generates a cone in ΣX or S contains
a primitive collection. Let P = {x1, . . . , xk} ⊆ G(ΣX)
be a primitive collection. Since X is complete, there
exists a unique cone σP = 〈y1, . . . , yr〉 in ΣX such that
x1 + · · · + xk ∈ RelInt(σP ). Hence, there exist unique
numbers a1, . . . , ar ∈ Z>0 such that

x1 + · · · + xk − (a1y1 + · · · + aryr) = 0.

This is called the primitive relation associated with the
primitive collection P . The cone σP is the cone associated
with the primitive collection P .

For every toric variety we can see that there is a
bijection between the cones of dimension k in the fan
and the set of orbits of the torus T in X of dimension
n−k. Throughout this article we will denote by V (σ) the
Zariski closure of the orbit corresponding to the cone σ
in X and we will refer to V (σ) as an invariant subvariety.
In the case of a 1-dimensional cone 〈x〉, we will use the
notation V (x) for the divisor.

Let us consider the group N1(X) of algebraic 1-cycles
onX modulo numerical equivalence and define the vector
space N1(X)Q = N1(X) ⊗Z Q. In N1(X)Q we define the
Mori cone; it is the convex cone generated by the classes
of effective curves modulo numerical equivalence:

NE(X)

=
{
γ ∈ N1(X)Q

∣∣∣ γ =
[∑

aiCi

]
, with ai ∈ Q≥0

}
.

There is the following exact sequence:

0 −−−−→ N1(X)
φ−−−−→ Zt

ψ−−−−→ N −−−−→ 0,
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where t = card(G(ΣX)) and the maps φ, ψ are re-
spectively defined by γ �→ (γ · V (x))x∈G(ΣX ) and
(ax)x∈G(ΣX) �→

∑
x∈G(ΣX) axx. Then φ allows us to iden-

tify the group N1(X) with the group of integral relations
among the generators of the fan ΣX . Hence every class
γ ∈ N1(X) can be identified with the relation∑

x∈G(ΣX)

(γ · V (x))x = 0. (2–1)

Thus every class γ ∈ N1(X) is identified with an integral
relation among the generators of the fan. In this paper
we will consider the ring of polynomials Q[yx]x∈G(ΣX)

and we will associate to the class γ the linear polynomial∑
x∈G(ΣX)(γ · V (x))yx.
An invariant curve C corresponds to an (n − 1)-

dimensional cone σ in the fan. Suppose that σ =
〈x1, . . . , xn−1〉. There are two maximal cones σ′ and σ′′

such that σ′ ∩ σ′′ = σ:

σ′ = 〈x1, . . . , xn−1, xn〉,
σ′′ = 〈x1, . . . , xn−1, xn+1〉.

Since X is smooth,

x1, . . . , xn−1, xn

and
x1, . . . , xn−1, xn+1

are two bases ofN ; hence there exist uniquely determined
integers a1, . . . , an−1 such that

xn + xn+1 + a1x1 + · · · + an−1xn−1 = 0. (2–2)

Relation (2–2) is the relation corresponding to the nu-
merical class of the invariant curve C.

The numerical classes of invariant curves allow Reid
to characterize NE(X)Z:

Theorem 2.1. [Reid 88, Corollary 1.7] Let X be a smooth
complete toric variety of dimension n with fan ΣX . Let
I be the set of all numerical classes of invariant curves
of X. Then

NE(X)Z =
∑
γ∈I

Z≥0γ,

that is, I generates NE(X)Z as a semigroup.

Let us consider the group N 1(X) of divisors in
X modulo numerical equivalence and the vector space
N 1(X)Q = N 1(X) ⊗ Q obtained from N 1(X). Inside
N 1(X)Q, we define the cone of nef Q-divisors. It is de-
noted by Nef(X). We observe that N 1(X)Q is dual to

N1(X)Q and that Nef(X) is the dual cone of NE(X). By
Kleiman’s criterion of ampleness [Kleiman 66], we know
that a divisor D is ample if and only if its numerical class
lies in the interior of Nef(X). Then we have

X is projective ⇐⇒ there exists an ample divisorD

⇐⇒ Nef(X) has nonempty interior

⇐⇒ dim Nef(X) = dimN 1(X)Q = ρ.

By properties of dual cones (see [Fulton 93]), this is
equivalent to saying that

X is projective ⇐⇒ NE(X) is strongly convex

(that is, NE(X) ∩−NE(X) = {0}).

When X is projective we can characterize the Mori
cone using a special subset of numerical classes of curves
contained in the set of primitive relations: contractible
classes.

Definition 2.2. Let γ ∈ NE(X)Z be primitive in Z≥0γ and
such that there exists some irreducible curve in X having
numerical class in Z≥0γ. We say that γ is contractible if
there exist a toric variety Xγ and an equivariant mor-
phism ϕγ : X → Xγ , surjective and with connected
fibers, such that for every irreducible curve C ⊂ X ,

ϕγ(C) = {pt} ⇐⇒ [C] ∈ Q≥0γ.

Hence contractible classes correspond to “elementary”
toric morphisms with connected fibers with source X .

We observe that every primitive relation is a relation
among the generators of ΣX ; hence it can be interpreted
as an element of N1(X). Moreover, we have the following:

Proposition 2.3. [Kresch 00, Proposition 2.1] Let γ ∈
N1(X) be given by the relation

a1x1 + · · · + akxk − (b1y1 + · · · + bryr) = 0,

with ai, bj ∈ Z>0 for each i, j. If 〈y1, . . . , yr〉 ∈ ΣX ,
then γ ∈ NE(X).

Proposition 2.3 says that for every primitive collec-
tion P ∈ PC(X), the primitive relation r(P ) belongs to
NE(X)Z. Moreover, Theorem 2.2 in [Casagrande 03a]
says that every contractible class is also a primitive rela-
tion and is always the class of some invariant curve. The
primitive relation of a contractible class γ can be used to
describe the morphism ϕγ and the variety Xγ associated
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with it (see [Casagrande 03a]). Hence, we have the fol-
lowing important subsets of elements of NE(X)Z, which
are all finite:

I = {classes of invariant curves},
∪

C = {contractible classes},
∩

PR = {primitive relations}.

One can see that it is easy to determine the set of all
contractible classes ofX as a subset of the set of primitive
relations. In fact, there is the following combinatorial
criterion:

Proposition 2.4. [Sato 00, Theorem 4.10], [Casagrande
03a, Proposition 3.4] Let P = {x1, . . . , xh} be a primitive
collection in ΣX , with primitive relation

r(P ) : x1 + · · · + xh − a1y1 − · · · − akyk = 0.

Then r(P ) is contractible if and only if for every primi-
tive collection Q of ΣX such that Q∩P �= ∅ and Q �= P ,
the set (Q \P )∪{y1, . . . , yk} contains a primitive collec-
tion.

We call a 1-dimensional face R of NE(X) an extremal
ray, and the primitive element of R∩NE(X)Z an extremal
class. Let E be the set of all extremal classes of X . Thus
we can reformulate Reid’s results in toric Mori theory as
follows:

Theorem 2.5. [Reid 88, Theorem 1.5] Let X be a pro-
jective smooth toric variety. Any extremal class is con-
tractible.

The difference between contractible and extremal
classes is given by the following:

Proposition 2.6. [Bonavero 00, Lemma 1], [Casagrande
03a, Corollary 3.3] Let X be a projective smooth toric
variety. Let γ ∈ NE(X) be a contractible class and let
ϕγ : X → Xγ be the associated morphism. Then γ is not
extremal if and only if ϕγ is birational and the variety
Xγ is not projective.

Proposition 2.6 gives a theoretical distinction between
contractible and extremal classes, but we cannot use it
to build our algorithm.

Finally, we notice that by definition of extremal
classes, we have

NE(X) =
∑
γ∈E

Q≥0γ,

but it is not known whether the same holds over Z, i.e.,
whether the set E generates NE(X)Z as a semigroup. If
we consider all contractible classes, we have the following
theorem:

Theorem 2.7. [Casagrande 03a] Let X be a projective
smooth toric variety. Let C be the set of all contractible
classes. Then

NE(X)Z =
∑
γ∈C

Z≥0γ,

that is, C generates NE(X)Z as a semigroup.

3. COMPUTING COORDINATES OF A CLASS
BELONGING TO NE(X)Z

In this section we will describe a technique to determine
a basis B of N1(X) and the coordinates of a class of
invariant curves with respect to the basis B using the
properties of the Mori cone NE(X).

To reach our goal we need to have some linear rela-
tions among the classes generating NE(X)Z. We observe
that every class of invariant curves generating NE(X)Z

can be related to a linear polynomial with integer coeffi-
cients. Then the sought relations among these classes will
be determined by syzygies among the associated polyno-
mials. In this way, the problem is reduced to giving a
complete description of the set of all syzygies among a
finite set of polynomials and can be solved using tech-
niques of computer algebra related to Gröbner bases and
elimination theory.

Using these relations, we were able to determine the
basis B and the coordinates of other classes with respect
to B.

Let X be a smooth complete toric variety with Picard
number ρ. We assume that its fan ΣX is generated by
the set G(ΣX) = {x1, . . . , xt}. Let S ⊂ NE(X)Z be a set
generating NE(X)Z. Then we can choose

(1) S = I: this is the general case (see Theorem 2.1);

(2) S = C: in this case X has to be projective (see
Theorem 2.7).

In every case, a class γ ∈ S is a class in N1(X) and can
be identified with the integral relation as (2–1). This fact
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induces us to identify the class γ with a linear polynomial
with integer coefficients. In the following we will explain
how one can do this.

Let y1, . . . , yt be a collection of t variables. Let
Z[y1, . . . , yt]1 be the ring of linear polynomials in the
variables y1, . . . , yt with integer coefficients. We define
the following assignment:

ϕ : N1(X) → Z[y1, . . . , yt]1,

γ �→ pγ =
t∑
i=1

(γ · V (xi))yi,

where pγ is a linear polynomial in y1, . . . , yt. By defini-
tion, pγ(x1, . . . , xt) = 0 is the relation associated with γ.

The assignment ϕ gives two injective homomorphisms
N1(X) ↪→ Z[y1, . . . , yt]1 and N1(X)Q ↪→ Q[y1, . . . , yt]1.
Assume that S = {γ1, . . . , γs}. Then the assignment
defines s polynomials denoted by p1, . . . , ps.

If we suppose that pj = b1p1 + · · · + bρpρ, with j ∈
{ρ+ 1, . . . , s}, we also have that

pj(x1, . . . , xt) = b1p1(x1, . . . , xt) + · · ·+ bρpρ(x1, . . . , xt).

Hence we have the following relation among the classes
γj , for j ∈ {ρ+ 1, . . . , s}:

γj − b1γ1 − · · · − bργρ = 0.

Conversely, a linear relation among the classes γ1, . . . , γs
determines a relation among the polynomials p1, . . . , ps.

Next we will explain how to determine an integral re-
lation among the classes in S. The technique involves
the theory of Gröbner bases and elimination theory.

We consider every polynomial pi ∈ Z[y1, . . . , yt]1 as
a polynomial in Q[y1, . . . , yt]1. Let Q[z1, . . . , zs] be the
ring of polynomials in the variables z1, . . . , zs. We define
the following ring homomorphism:

φ : Q[z1, . . . , zs] → Q[y1, . . . , yt]1,

zi �→ pi for i = 1, . . . , s.

The kernel Ker(φ) is an ideal in Q[z1, . . . , zs], and it is
equal to the set of all syzygies over Q among the poly-
nomials p1, . . . , ps, that is, f ∈ Ker(φ) if and only if
f(p1, . . . , ps) = 0. Hence to describe completely the set
of all syzygies among the polynomials p1, . . . , ps over Q it
is enough to determine a system of generators of Ker(φ).

We use the following result in elimination theory to
describe Ker(φ):

Theorem 3.1. [Adams and Loustaunau 94, Theorem
2.4.2] Let Q[y1, . . . , yt] be the ring of polynomials with

rational coefficients. Let {p1, . . . , ps} be a set of polyno-
mials in Q[y1, . . . , yt]. Let φ be a ring homomorphism
defined as above. Let F be the ideal generated by polyno-
mials z1 − p1, . . . , zs − ps in Q[z1, . . . , zs, y1, . . . , yt].

Then

F ∩ Q[z1, . . . , zs] = Ker(φ).

The proof of Theorem 3.1 gives an algorithm to de-
scribe Ker(φ). We have to compute a Gröbner basis G
for the ideal F with respect to an elimination order, i.e.,
a fixed term order in which variables y1, . . . , yt are larger
than z1, . . . , zs.

Hence we consider Q[z1, . . . , zs, y1, . . . , yt], we fix an
elimination order, and we compute the Gröbner basis G
with respect to this term order. By the definition of
Gröbner basis, G generates F . By [Adams and Lous-
taunau 94, Theorem 2.3.4], the polynomials in G with-
out any variable yi form a Gröbner basis for the ideal
F ∩Q[z1, . . . , zs]. Then the set G̃ = G ∩Q[z1, . . . , zs] is a
system of generators for Ker(φ) in Q[z1, . . . , zs].

We observe that in G̃ there are always exactly s − ρ

polynomials, because N1(X)Q has dimension ρ and S
contains a basis of N1(X). Moreover, we have that every
polynomial in G̃ has degree one with respect to every
variable zj , for j = 1, . . . , s.

The polynomials in G̃ may not have integer coeffi-
cients, in which case we consider the set

H = {h ∈ Z[z1, . . . , zs] | h = kg̃g̃, g̃ ∈ G̃},

where kg̃ is the least common multiple of all denomina-
tors of all coefficients in g̃.

By definition, H is a Gröbner basis for Ker(φ), and it is
a set of s−ρ polynomials with integer coefficients. Every
h ∈ H determines an integral relation among p1, . . . , ps:
h(p1, . . . , ps) = 0. Hence we have s− ρ integral relations
among the classes γ1, . . . , γs.

The fact that S contains a basis of N1(X) is crucial:
it means that a polynomial pj can be isolated in every
relation h(p1, . . . , ps) = 0. In other words, there is a co-
efficient of a term in the polynomial h(z1, . . . , zs) that is
equal to ±1. We assume that H = {h1, . . . , hs−ρ}. Then
we can determine ρ polynomials in {p1, . . . , ps} (respec-
tively ρ classes in S) that describe the remaining s − ρ

polynomials (respectively s − ρ classes in S) as a linear
combination of them.
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Up to reordering the variables in the polynomials
h1, . . . , hs−ρ, we can assume that

h1 : zρ+1 −
ρ∑
i=1

b1i zi,

...

hs−ρ : zs −
ρ∑
i=1

bs−ρi zi.

By definition of syzygy we have

h1(p1, . . . , ps) = 0 : pρ+1 =
ρ∑
i=1

b1i pi,

...

hs−ρ(p1, . . . , ps) = 0 : ps =
ρ∑
i=1

bs−ρi pi.

Then the following integral relations are determined:

γρ+1 =
ρ∑
i=1

b1i γi,

... (3–1)

γs =
ρ∑
i=1

bs−ρi γi.

This means that B = {γ1, . . . , γρ} is a basis of
N1(X). Moreover, equations (3–1) give the coordinates
of γρ+1, . . . , γs with respect to this basis. We identify
the class γj ∈ B with the vector ej of the canonical basis
of Qρ and replace γj with ej in (3–1). Thus we obtain
the vector wγ of the coordinates of the class γ ∈ S with
respect to B. In this way, the Mori cone is seen in Qρ as
the cone generated by the vectors wγ , for γ ∈ S.

Remark 3.2. The system of generators of Ker(φ) can
be computed using the Mathematica built-in function
Eliminate [Wolfram 03]. This command applies the
elimination theory for linear polynomials to the set of
polynomials z1 − p1, . . . , zs − ps.

Elimination theory for linear polynomials says that
the Gröbner basis of the ideal F can be computed by
considering the matrix A of coefficients of polynomials
z1 − p1, . . . , zs − ps. We fix an elimination order, and
then we order the polynomials z1 − p1, . . . , zs − ps with
respect to this term order. We then define the matrix
A: the first s entries of the jth row are the coefficients
of the polynomial zj − pj with respect to the variables

z1, . . . , zs, and the last t entries of the jth row are the
coefficients of the polynomial zj − pj with respect to the
variables y1, . . . , yt.

Applying Gauss elimination to the matrix A, we ob-
tain a triangular matrix B. The matrix B is the ma-
trix of the coefficients of the polynomials of a Gröbner
basis of F with respect to the fixed elimination order.
The rows that have zero in the last t entries determine
the coefficients of the polynomials of a Gröbner basis of
F ∩ Q[z1, . . . , zs] with respect to the elimination order.

The function Eliminate computes the set H as a
Gröbner basis of the ideal F ∩ Q[z1, . . . , zs] directly.

4. PROJECTIVITY

The problem of verifying the projectivity of a smooth
complete toric variety X is equivalent to showing that
NE(X) is strongly convex. By definition, NE(X) is
strongly convex if and only if NE(X) ∩ −NE(X) = {0}.
Theorem 2.1 says that NE(X)Z is generated by the set
of numerical classes of invariant curves I. Suppose that
I = {γ1, . . . , γs}.

Using the algorithm introduced in Section 3, we com-
pute a basis B of N1(X), contained in I, and then the
coordinates of all γi with respect to B. Hence, we have
the set

V = {wi | i = 1, . . . , s},
which contains the canonical basis of Qρ. We identify
every class with the vector of its coordinates, so that
NE(X)Z = 〈w1, . . . , ws〉 ⊂ Qρ.

Proposition 4.1. Let X be a smooth complete toric va-
riety. Let I = {γ1, . . . , γs} be the set of all numerical
classes of invariant curves. Let V = {w1, . . . , ws} be the
set of vectors of coordinates of all classes in I with re-
spect to a fixed basis of N1(X). Then X is projective if
and only if the equation

s∑
i=1

viwi = 0 (4–1)

has only the trivial solution in the set of integers and
nonnegative numbers Zs≥0.

Proof: Suppose that there exists w ∈ NE(X)∩−NE(X).
This means that

w =
s∑
i=1

aiwi =
s∑
i=1

bi(−wi),
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where ai, bi ∈ Z≥0. Hence

s∑
i=1

(ai + bi)wi = 0.

Then (a1 + b1, . . . , as + bs) is a nontrivial solution of the
equation, which is a contradiction.

Conversely, let w be an element in NE(X)∩−NE(X).
We are going to prove that w = 0. Since w ∈ NE(X) ∩
−NE(X), we have

w =
s∑
i=1

aiwi =
s∑
i=1

bi(−wi),

where ai, bi ∈ Z≥0. Then

s∑
i=1

(ai + bi)wi = 0. (4–2)

By hypothesis, equation (4–2) has only the trivial solu-
tion; hence (ai + bi) = 0 for all i = 1, . . . , s. This implies
that ai = bi = 0 for all i = 1, . . . , s and that w = 0.

Proposition 4.1 allows us to write the algorithm
ProjQ[X]. This command verifies the nonprojectivity of a
variety X . Proposition 4.1 tells us that this is equivalent
to showing that equation (4–1) has a nontrivial solution.

Remark 4.2. In order to determine the pro-
jectivity, we use the Mathematica command
FullSimplify[Exists[-,-]]. The unknowns of
the equation must be entered in the first argument of
the command, while the equation must be entered in the
second. This command allows us to obtain an answer in
a very short time [Wolfram 03].

5. EXTREMAL CLASSES

Let X be a smooth projective toric variety. We con-
sider the problem of determining all extremal classes in
NE(X)Z. By results presented in Section 2, we know that
E is contained in C and that C can be determined by the
criterion introduced in Proposition 2.4. Here, we explain
how one can determine E inside C.

Let us recall the definition of a nonextremal class:

Definition 5.1. A contractible class γ is nonextremal if
there exist Z1, Z2 ∈ NE(X) such that Z1 + Z2 ∈ Q≥0γ

and Z1 /∈ Q≥0γ.

Then we have the following result:

Proposition 5.2. Let X be a projective variety. Let γ be a
contractible class and let C = {γ1 = γ, . . . , γs} be the set
of all contractible classes in X. Then the following are
equivalent:

(i) γ is not extremal;

(ii) there exist m2, . . . ,ms ∈ Q≥0 such that

γ =
s∑
i=2

miγi.

Proof: (ii) =⇒ (i): Since γ �= 0, at least one mi is
nonzero; we may assume that m2 �= 0. We set

Z1 = m2γ2 and Z2 =
s∑
i=3

miγi.

Then Z1 + Z2 ∈ Q≥0γ.
Suppose that Z1 ∈ Q≥0γ. Then there exists λ ∈ Q≥0

such that m2γ2 = λγ. Since every contractible class is
primitive, this implies that γ = γ2, which is a contradic-
tion.

(i) =⇒ (ii): Let γ be a nonextremal contractible class.
Let Z1, Z2 ∈ NE(X) be such that Z1 + Z2 ∈ Q≥0γ and
Z1 /∈ Q>0γ. Then

Z1 + Z2 = λγ,

with λ ∈ Q>0.
Since

NE(X) =
∑
η∈E

Q≥0η

and γ is nonextremal, we have

Zi =
s∑
j=2

aijγj ,

where i = 1, 2, aij ∈ Q≥0. Then

Z1 + Z2 =
2∑
i=1

s∑
j=2

aijγj = λγ.

Since λ �= 0, it follows that

γ =
s∑
j=2

(
a1
j + a2

j

λ

)
γj ,

and we have the statement of the proposition.

We use Proposition 5.2 to build the algorithm
ExtremalClasses[X]. Also in this case, we solve the
problem by considering a linear Diophantine equa-
tion. Again we use the Mathematica command
FullSimplify[Exists[-, -]], to determine whether
the equation has a nontrivial solution [Wolfram 03].
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6. EXTREMAL RAYS OF TORIC FANO MANIFOLDS

In this section we compute the extremal rays (classes) of
the Mori cone of a smooth toric Fano variety of dimension
n ≤ 4 and Picard number ρ ≥ 3.

A smooth complete variety X of dimension n is Fano
if its anticanonical bundle −KX is ample. By definition,
X is a projective variety.

The Mori cone NE(X) of a smooth Fano variety X is a
closed polyhedral cone of dimension ρ. If NE(X) is sim-
plicial, we know that there are exactly ρ extremal rays.
However, when ρ ≥ 3, the cone NE(X) is not always
simplicial, and there are no estimates on the number of
its extremal rays either in the toric case or in general.
We recall that polyhedral cones of dimension 1 or 2 are
always simplicial.

In the toric case, there is a finite number of smooth
toric Fano varieties for each dimension n. They are clas-
sified up to dimension 7.

In dimension 2 there are five smooth toric Fano vari-
eties: P2, P1 × P1, and Si, the blowup of P2 in i general
points for i = 1, 2, 3. They are also called toric Del Pezzo
surfaces. In this case, the Mori cone is always simplicial
except for the surface S3. The Mori cone of S3 has di-
mension 4 and six extremal rays (they correspond to the
(−1)-curves of the surface).

There are 18 smooth toric Fano 3-folds, and among
these varieties, 13 have ρ ≥ 3. In this case Batyrev and
K. and M. Watanabe separately obtain the same clas-
sification (see [Batyrev 82, Batyrev 99, Watanabe and
Watanabe 82]).

Smooth toric Fano 4-folds are classified by Batyrev in
[Batyrev 99]. In [Sato 00], Sato describes a toric Fano
4-fold that does not appear in the list given by Batyrev.
Both authors use the language of primitive relations to
describe them. After these classifications, there are 124
toric Fano 4-folds, of which 114 have ρ ≥ 3.

Recently, Kreuzer and Nill [Kreuzer and Nill 07] clas-
sified toric Fano 5-folds. Øbro [Øbro 07] studied the cases
of dimensions 6 and 7. Kreuzer and Nill listed 866 toric
Fano 5-folds using a computer program and the database
of the 4-dimensional reflexive polytopes [Kreuzer 07].
Øbro presented an algorithm to classify all smooth Fano
polytopes and studied the problem combinatorially.

We have computed all contractible and extremal
classes of every toric Fano 3-fold and 4-fold using the
package command ExtremalClasses (see Section 5).
Here we present our results.

Let X be a smooth toric Fano variety of dimension at
most 4.

Variety ρ card(PR) card(E) CPU time

C1, . . . , C5 3 3 3 time = 0 s

D1,D2 3 5 3 time = 0 s

E1, . . . , E5 4 6 4 time = 0 s

F1,F2 5 10 7 (•) time = 0.04 s

TABLE 1. Smooth toric Fano 3-folds with ρ ≥ 3.

From our computations, we see that X has no con-
tractible nonextremal classes. Hence the variety Xγ as-
sociated with a contractible class γ of X is always pro-
jective. So far, there are no examples of contractible
nonextremal classes in a smooth toric Fano variety with
dimension n ≤ 4 (see [Casagrande 03b, Section 5] for
related details).

When ρ = 3 in the Mori cone there are exactly three
extremal rays.

In dimension 3 there are only two cases with a nonsim-
plicial Mori cone. These have maximal Picard number 5
and seven extremal rays. We summarize our results in
Table 1.

For every 3-fold we list

1. the name (we use the notation of [Batyrev 99, Sec-
tion 2]);

2. the Picard number ρ (which is ≥ 3);

3. the cardinality of the set of primitive relations PR;

4. the cardinality of the set of extremal classes E ;

5. the CPU time in seconds (s). This is the CPU time
spent by Mathematica to compute the set of ex-
tremal classes of the variety.

The symbol (•) denotes the varieties with a nonsim-
plicial Mori cone.

Let us consider the case of dimension 4. We summarize
the results in Table 2. In the table, d1 is the number of
toric Fano 4-folds with Picard number ρ, while d2 is the
number of the varieties with Picard number ρ whose Mori
cone is not simplicial. We use the symbol cardmax(E)

ρ d2/d1 cardmax(E)

4 3/47 6

5 9/27 10

6 9/10 20

7 1/1 9

8 1/1 12

TABLE 2. Extremal rays in toric Fano 4-folds with ρ ≥ 4.
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Variety ρ card(PR) card(E) CPU time

Di, i = 1, . . . , 19 3 3 3 0 s ≤ time ≤ 0.011 s

Ei, i = 1, 2, 3 3 5 3 time = 0.01 s

Gi, i = 1, . . . , 6 3 5 3 0 s ≤ time ≤ 0.01 s

Li, i = 1, . . . , 13 4 4 4 time = 0 s

Hi, i = 1, . . . , 10 4 6 4 0 s ≤ time ≤ 0.01 s

Ii, i = 1, . . . , 15 4 6 4 0 s ≤ time ≤ 0.01 s

Mi, i = 1, . . . , 5 4 7 4 time = 0 s

J1 4 9 5 (•) time = 0.03 s

J2 4 9 6 (•) time = 0.05 s

Z1 4 10 4 time = 0 s

Z2 4 10 5 (•) time = 0.03 s

Qi, i = 1, . . . , 17 5 7 5 0 s ≤ time ≤ 0.01 s

n. 108 5 10 5 time = 0.01 s

Ki, i = 1, . . . , 4 5 10 7 (•) 0.03 s ≤ time ≤ 0.19 s

Ri, i = 1, . . . , 3 5 11 (�) 7 (•) time = 0.05 s

n. 117 5 14 10 (•) time = 0.14 s

HS (�) 5 18 9 (•) time = 0.1 s

S2 × S2 6 10 6 time = 0 s

Ui, i = 1, . . . , 8 6 11 8 (•) time = 0.04 s

n. 118 6 25 20 (•) time = 0.531 s

S2 × S3 7 16 9 (•) time = 0.05 s

S3 × S3 8 18 12 (•) time = 0.12 s

TABLE 3. Smooth toric Fano 4-folds with ρ ≥ 3. (�) indicates that the varieties R1, R2, R3 have 11 primitive relations,
but in [Batyrev 99] we find only 10. The missing relation is v4 + v6 = v0 (see [Batyrev 99]). (�): HS is the variety
described by Sato in [Sato 00].

to denote the maximal number of extremal rays among
all Fano 4-folds with Picard number ρ. In Table 2 we
consider ρ ≥ 4 because NE(X) is always simplicial when
ρ = 3.

It is interesting to observe that the variety with the
maximal number of extremal rays, 20, has ρ = 6, which
is not the maximal Picard number. This variety is the
Del Pezzo 4-fold (see [Ewald 88] and [Voskresenskĭı and
Klyachko 85]), denoted in Table 3 by n. 118.

We enumerate in Table 3 all results obtained for the
114 smooth Fano 4-folds with ρ ≥ 3. For each we give the
same information considered for the smooth toric Fano
3-folds.

Remark 6.1. The maximal CPU time observed is 0.531 s.
It is necessary to compute the extremal rays of the Del
Pezzo toric 4-fold. This proves that the Mathematica
program is able to obtain results in a very short amount
of time. In dimension 3, the longest CPU time spent by
Mathematica is 0.04 s (see Table 1). In this time Mathe-
matica calculates the extremal rays of the varieties with

the maximal Picard number (ρ = 5). Observe that in
most cases, the CPU time is equal to 0 s. This means
that the command executes some elementary computa-
tions that do not involve the use of memory [Wolfram
03].

7. AN ALMOST FANO THREEFOLD WITH ρ = 35

Here we present a smooth projective and almost Fano
toric variety X of dimension 3 and ρ = 35.

A smooth projective variety X is almost Fano if its
anticanonical bundle −KX is nef and big. The almost
Fano varieties are a generalization of Fano varieties. We
know that smooth Fano 3-folds have been classified and
that they have Picard number ρ ≤ 10. On the other
hand, there is no classification of almost Fano 3-folds,
and we do not know which maximal Picard number they
can assume (see [Casagrande et al. 06] and [Nill 05]).

In the toric case, we know that for every dimension
n, toric almost Fano varieties are finite in number (see
[Batyrev 94]). In this case, it is convenient to use the
concept of polytope to introduce the variety. A polytope
is the convex hull of finitely many points.
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When we consider Gorenstein toric Fano varieties of
dimension n, we see that they correspond bijectively to
special polytopes: reflexive polytopes (the definition was
introduced in [Batyrev 94]). A property of reflexive poly-
topes is that their vertices are integral (i.e., in Zn), and
the origin is their unique interior integral point. An al-
most Fano variety of dimension n is obtained by a crepant
refinement of a reflexive polytope (see [Batyrev 94, Nill
05]).

In dimension 3, Kreuzer and Skarke give a complete
classification of all reflexive polytopes (see [Kreuzer and
Skarke 98], [Kreuzer 98]). There are 4319 of them. After
this classification, we know that any toric almost Fano
threefold X has ρ ≤ 35. We are now going to describe
an explicit example of such an X with maximal Picard
number ρ = 35 and its Mori cone together with the ex-
tremal rays. In [Kreuzer 98] we see that there are only
two 3-dimensional reflexive polytopes containing 39 inte-
gral points, and they are both simplices. We consider one
of them, the simplex P ⊂ Z3 with vertices, as follows:

v1 = (1, 0, 0), v2 = (1, 2, 0),

v3 = (1, 2, 6), v4 = (−5,−4,−6).

In order to obtain our example X , we have to determine
all integral points (i.e., in Z3) and to triangulate each
facet of P . The vertices of each triangle must be a basis
of Z3. The fan of X is given by the cones over all these
triangles. This means that X is obtained by a crepant
resolution of a singular Fano variety Y with Picard num-
ber ρY = 1. All 38 integral points on the facets F1, . . . , F4

give the generators of the fan. They are as follows:

x[1] = (-5,-4,-6), x[2] = (-4,-3,-5),
x[3] = (-4,-3,-4), x[4] = (-3,-2,-4),
x[5] = (-3,-2,-3), x[6] = (-3,-2,-2),
x[7] = (-2,-2,-3), x[8] = (-2,-1,-3),
x[9] = (-2,-1,-2), x[10] = (-2,-1,-1),
x[11] = (-2,-1,0), x[12] = (-1,-1,-2),
x[13] = (-1,-1,-1), x[14] = (-1,0,-2),
x[15] = (-1,0,-1), x[16] = (-1,0,0),
x[17] = (-1,0,1), x[18] = (-1,0,2),
x[19] = (0,0,-1), x[20] = (0,0,1),
x[21] = (0,1,-1), x[22] = (0,1,0),
x[23] = (0,1,1), x[24] = (0,1,2),
x[25] = (0,1,3), x[26] = (0,1,4),
x[27] = (1,0,0), x[28] = (1,1,0),
x[29] = (1,1,1), x[30] = (1,1,2),
x[31] = (1,1,3), x[32] = (1,2,0),
x[33] = (1,2,1), x[34] = (1,2,2),
x[35] = (1,2,3), x[36] = (1,2,4),
x[37] = (1,2,5), x[38] = (1,2,6).

The triangulations described in Figures 1 and 2 have
been chosen to define the fan of X . Observe that ΣX has
38 generators; hence ρX = 35. Moreover, −KX is nef
and big, but a priori X does not need to be projective.

There are 102 classes of invariant curves, so to test
the projectivity, we have to determine 102 points in the
lattice N1(X) ∼= Z35. Then the equation corresponding
to the projectivity condition has 102 unknowns, and our
algorithm has to test the existence of a nontrivial solution
of the equation. The answer of the algorithm is True, and
it requires 42.922 s of CPU time. The variety X is thus
projective.

The fan having been defined, we compute all its prim-
itive collections. There are 596 of them, all of cardinality
2, except one of cardinality 3. Then we compute the cor-
responding 596 primitive relations. Among them there
are 56 contractible classes of curves. We can describe for
every contractible class the associated morphism and va-
riety, analyzing the corresponding primitive relation (see
[Casagrande 03a]). There are the following classes:

1. 51 classes of type

x[i] + x[j] - x[h] - x[k] = 0, (7–1)

with i, j, h, k ∈ {1, . . . , 38}. The morphisms associ-
ated with these classes are small contractions with
exceptional locus a curve C ∼= P1 with normal bun-
dle NC/X = OP1(−1)⊕2.

2. Two classes of type

x[i] + x[j] -2 x[h] = 0, (7–2)

with i, j, h ∈ {1, . . . , 38}. The morphisms associated
with these classes are birational and send a divisor
to a singular curve.

3. Two classes of type

x[i] + x[j] - x[h] = 0, (7–3)

with i, j, h ∈ {1, . . . , 38}. The associated morphisms
are two smooth blowups with exceptional divisor
given respectively by V (x[h]).

4. The contractible class of type

x[2] + x[3] + x[7] -2 x[1] = 0. (7–4)

This class is the primitive relation corresponding to
the primitive collection of cardinality 3. The associ-
ated morphism is birational and sends a divisor to a
singular point.
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FIGURE 1. Triangulation of F1 (on the left) and of F2 (on the right).

FIGURE 2. Triangulation of F3 (on the left) and of F4 (on the right).

Using the command ExtremalClasses we deter-
mine the extremal classes in NE(X). We see
that all contractible classes are extremal except
two: one of type (7–1) and one of type (7–3).
Hence NE(X) is a cone of dimension 35 with 54
edges.

Let HKX ⊂ N1(X)Q be the hyperplane of classes that
have intersection zero with KX . It cuts a facet of NE(X).
We can see that 52 extremal classes lie on HKX :

• 50 classes of type (7–1);

• 2 classes of type (7–2).
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The other two extremal classes have positive anticanon-
ical degree and do not lie on HKX : one is a class of type
(7–3), and the other is the class of type (7–4).

The two nonextremal classes have the following prop-
erties:

• the morphism associated with the first class sends a
divisor D ∼= P2 to a singular point;

• the morphism ϕ : X → Z associated with the second
class is a smooth blowup of a nonprojective variety
Z along a curve C ∼= P1 and NC/Z = OP1(−2) ⊕
OP1(−1), so that −KZ is not nef.

Observe that in this case, the toric almost Fano 3-
fold has two contractible nonextremal classes, while every
toric Fano 3-fold has no contractible nonextremal classes
(see Table 1).

Note that the CPU time used by Mathematica to com-
pute the extremal classes is 904.606 s. Here the algorithm
has to test the existence of a nontrivial solution for 56
linear Diophantine equations.
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ory and Fano Manifolds.” Geometry of Toric Varieties,
Seminaires et Congrès, Société Mathématique de France 6
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