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We show that the minimal dilatation of pseudo-Anosov home-
omorphisms of a closed oriented genus-two surface is equal to
the largest root of x4 − x3 − x2 − x + 1, which is approximately
1.72208.

1. INTRODUCTION

Let X be an oriented surface. An orientation-preserving
homeomorphism h of X is called pseudo-Anosov if there
is a pair of transversely measured foliations Fu and Fs

in X such that h stretches along Fu by a constant factor
λ > 1 and contracts along Fs by 1/λ. We call λ the di-
latation of h, and the logarithm of λ is called the topolog-
ical entropy. An orientation-preserving homeomorphism
h of X is pseudo-Anosov relative to a finite invariant set
P if it satisfies all of the properties of a pseudo-Anosov
homeomorphism except that it may have a one-prong
singularity at some points of P .

Let Σg be a closed oriented surface of genus g. The di-
latation of a pseudo-Anosov homeomorphism of Σg mea-
sures its dynamical complexity. Furthermore, the collec-
tion of topological entropies has a geometric interpreta-
tion as the collection of Teichmüller translation distances
for pseudo-Anosov homeomorphisms acting on the Teich-
müller space of Σg [Abikoff 80]. In particular, the loga-
rithm of the minimal dilatation of a genus-g surface gives
the length of the systole for the genus-g moduli space.

Several results are known about the bounds of the min-
imum dilatation for all pseudo-Anosov homeomorphisms
of Σg, simply called the minimal dilatation of Σg. Pen-
ner gave upper and lower bounds for the dilatations of
Σg and proved that as g tends to infinity, the logarithm
of the minimal dilatation tends to one on the order of 1/g

[Penner 91]. The upper bound was improved by Bauer
for closed surfaces of genus g ≥ 3 [Bauer 92] and by Hi-
ronaka and Kin [Hironaka and Kin 06].

Some explicit values of the minimal dilatations are
known in some braids. Matsuoka [Matsuoka 85] and Han-
del [Handel 97] showed that the minimal dilatation of
pseudo-Anosov 3-braids can be realized by σ2σ
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Ko, and Los [Song et al. 02] claimed that the minimal
dilatation of 4-braids can be realized by σ1σ2σ

−1
3 and

created a path toward a proof. Ham and Song [Ham and
Song 07] finished the proof for 4-braids and showed that
the minimal dilatation of 5-braids is the largest root of
x4 −x3 −x2 −x+1, which is approximately 1.72208 and
which can be realized by σ1σ2σ3σ4σ1σ2.

However, the exact value of the minimal dilatation of
Σg has not been found even when the genus g is two. As
a partial answer, Zhirov showed that if a pseudo-Anosov
homeomorphism of Σ2 has an orientable invariant folia-
tion, its dilatation is greater than or equal to the largest
root of x4 − x3 − x2 − x + 1, and he gave an example of
a pseudo-Anosov homeomorphism realizing the largest
root as its dilatation [Zhirov 95]. After that, Brinkmann
[Brinkmann 00], Leininger [Leininger 04], and Hironaka
and Kin [Hironaka and Kin 06] respectively realized ex-
amples of pseudo-Anosov diffeomorphisms of Σ2 with the
same dilatation as Zhirov’s example, and the three exam-
ples happen all to be conjugate.

The main purpose of this paper is to find the minimum
dilatation of a genus-two surface Σ2, and we will show
that Zhirov’s example gives the minimal dilatation of Σ2.

Theorem 1.1. The minimal dilatation of Σ2 is the largest
root of x4−x3−x2−x+1, which is approximately 1.72208.

We briefly explain how to prove the main theorem. In
Section 2 we will reduce the problem of the minimal di-
latation of Σ2 to the problem of the minimal dilatation of
pseudo-Anosov 6-braids having specific singularity types
(see Proposition 2.3).

A folding automaton is a connected directed graph
with diffeomorphism types of standardly embedded train
tracks as vertices and all possible elementary folding
maps as directed edges. Each edge of a folding automaton
has as its weight an incidence matrix of the form P + E,
where P is a permutation matrix and E an elementary
matrix.

It is well known that the train-track representative of
a pseudo-Anosov braid is described by a closed walk in
folding automata [Papadopoulos and Penner 87, Song et
al. 02]. Moreover, the product of all weights along the
closed walk is primitive, that is, a nonnegative matrix
of which some positive power has positive entries. An
interesting fact is that the spectral radius of the primitive
matrix is the same as the dilatation of the given pseudo-
Anosov braid.

In Section 3 we adopt the approach in [Ham and Song
07] to construct two folding automata according to the

singularity types in Proposition 2.3. The folding au-
tomaton for Type 1 has 110 vertices and 410 edges with
weights of 7×7 matrices, and the one for Type 2 has 138
vertices and 700 edges with weights of 6 × 6 matrices.

However, it is not possible to track all closed walks
in a folding automaton, since the number of all closed
walks is not finite. We need some bounds to make the
number finite, and the number must be small for practical
computation.

A bound was given in [Ham and Song 07, Lemma 3.1],
that is, if M is an n × n primitive matrix with spectral
radius λ > 1, then λn ≥ |M | − n + 1, where |M | denotes
the sum of entries of M . In [Ham and Song 07], a sim-
ple algorithm based on this bound was used to find the
minimal dilatation of pseudo-Anosov 5-braids.

Unfortunately, the same algorithm no longer works
for pseudo-Anosov 6-braids, because it requires too much
memory space and time. The crucial reason that the al-
gorithm does not work is the size of the folding automata,
which is more than ten times that of the pseudo-Anosov
5-braids.

The key idea in this paper is to give a bound on the
entries of a primitive matrix, not the sum of entries.

Lemma 1.2. Any primitive matrix associated with a
pseudo-Anosov 6-braid having specific singularity types
in Proposition 2.3 does not have entries greater than
3 if its spectral radius is less than the largest root of
x4 − x3 − x2 − x + 1. Moreover, if there is an entry
of 3, then it is unique and the number of entries of 2 is
less than four.

Since all incidence matrices are of the form P + E, it
follows that as the length of a walk in folding automata
increases by one, at least one of the entries in a product
of incidence matrices must increase. Therefore, we can
stop at any time that the entries go over the bound in
Lemma 1.2. This means that we do not need to track all
closed walks, and it is the reason that the bound is so
powerful in practical computation.

In Section 4 we will explain in four steps how to com-
pute the bound. Lemma 4.1 plays a key role in the first
step to find all possible dilatations less than the largest
root of x4 − x3 − x2 − x + 1 for pseudo-Anosov 6-braids
having specific singularity types in Proposition 2.3. A
list of all possible dilatations is given in Table 1.

Let M be a primitive matrix associated with a
pseudo-Anosov 6-braid having specific singularity types
in Proposition 2.3. Since the dilatation λ of the braid is
the same as the spectral radius of M , the characteristic
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polynomial of M has the unique largest root λ by the
Perron–Frobenius theorem. Moreover, λ must be one of
the dilatations found in the first step if λ is less than
the largest root of x4 − x3 − x2 − x + 1. We will find
in the second step all possible characteristic polynomials
satisfying these properties.

The third step is to find all possible primitive matri-
ces with nonnegative integer entries having characteristic
polynomial found in the previous step. Then the bound
in Lemma 1.2 can be verified immediately from the en-
tries of these matrices. The lists of characteristic poly-
nomials and maximal entries are given in Tables 2, 3, 4,
and 5. Computational work using symbolic calculation
software is devoted for the most part to this step.

In the final step we will give an algorithm that con-
firms Theorem 1.1. The algorithm does not require much
memory space and time even though the numbers of ver-
tices and edges in folding automata are greater than one
hundred.

The lemmas and a corollary in the appendix, Section
5, are used in the second and third steps of Section 4 to re-
duce the number of candidate polynomials and matrices
corresponding to the minimal dilatation of a genus-two
surface.

2. REDUCTION TO PSEUDO-ANOSOV 6-BRAIDS

Let Σ2 be a closed oriented surface of genus two. The
standard involution [Bigelow and Budney 01, Figure 1]
of Σ2 defines an action of Z2 as a group of branched cov-
ering transformations with quotient S2 and six branch
points. Let X be an oriented manifold and n a posi-
tive integer. Let Diff(X, n) denote Diff(X, {p1, . . . , pn}),
where p1, . . . , pn are distinct points in the interior of X .
This is the group of diffeomorphisms of X that restrict
to permutations of the set {p1, . . . , pn}. In particular,
Diff(S2, 6) is the group of diffeomorphisms of S2 that
restrict to permutations of the six branch points.

Since the mapping class group on a surface can be
considered as either the group of isotopy classes of home-
omorphisms of the surface or the group of isotopy classes
of diffeomorphisms of the surface, for a representative of
a class, we will use both a homeomorphism and a diffeo-
morphism.

Lemma 2.1. For any pseudo-Anosov diffeomorphism
of Σ2, there exists a pseudo-Anosov diffeomorphism in
Diff(S2, 6) with the same dilatation.

Proof: Let DiffZ2 Σ2 be the subgroup of diffeomorphisms
of Σ2 that commute with the standard involution of
Σ2. Then the inclusion DiffZ2 Σ2 → Diff Σ2 induces
an isomorphism on π0 [Birman and Hilden 71], [Bigelow
and Budney 01, Proposition 3.2], and the quotient map
DiffZ2 Σ2 → Diff(S2, 6) induces a short exact sequence
0 → Z2 → π0 DiffZ2 Σ2 → π0 Diff(S2, 6) → 0, where
the generator of Z2 is mapped to the standard involu-
tion of Σ2 [Birman and Hilden 73, Theorem 5], [Bigelow
and Budney 01, Proposition 3.3]. From the epimorphism
π0 Diff Σ2 � π0 DiffZ2 Σ2 → π0 Diff(S2, 6), we can asso-
ciate with each pseudo-Anosov diffeomorphism of Σ2 a
pseudo-Anosov diffeomorphism in Diff(S2, 6). The di-
latation is preserved because the dilatation can be de-
tected by the local behavior along the unstable foliation.

Lemma 2.2. Any pseudo-Anosov diffeomorphism in
Diff(S2, 6) corresponds to a pseudo-Anosov 5-braid or a
pseudo-Anosov 6-braid with the same dilatation.

Proof: Let h ∈ Diff(S2, 6) be a pseudo-Anosov diffeomor-
phism. Then h has a fixed point, say p, by the Lefschetz
fixed-point theorem. Suppose first that h does not fix any
of the branch points. Let D+ and D− be the northern
and southern hemispheres of S2 such that the six branch
points are in D+ and p is in D−.

Denote by Stab(p) the subgroup of π0 Diff(S2, 7) (six
branch points and p) consisting of diffeomorphisms that
fix the point p. Note that the class of h is in Stab(p).
Since any diffeomorphism in Diff(D+, 6) can be extended
to a diffeomorphism in Diff(S2, 7) by setting it to the
identity on D−, we have a homomorphism from the braid
group B6 = π0 Diff(D+, 6) to Stab(p).

Moreover, it is an epimorphism with the center of
B6 as the kernel by [Birman 74]. Suppose now that h

fixes one of the branch points. Then by sending that
branch point to D− and the rest of the branch points
to D+, we have an epimorphism from the braid group
B5 = π0 Diff(D+, 5) to Stab(p) with the center of B5 as
the kernel. For each case, the dilatation is preserved be-
cause the Markov matrix remains the same.

Let h ∈ Diff(S2, 6) be a pseudo-Anosov diffeomor-
phism of S2 that restricts to permutations of the six
branch points and let F be its invariant measured fo-
liation. The singularity type of F is the set of punctured
or unpunctured k-prong singularities of F for k ≥ 1. Ap-
plying the formula 2 = χ(S2) =

∑
k(1 − k/2)nk, where

nk denotes the number of k-prong singularities [Rykken
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99, pp. 283–284], we have exactly five singularity types
of F as follows:

1. F has six punctured 1-prong singularities and one
unpunctured 4-prong singularity.

2. F has six punctured 1-prong singularities and two
unpunctured 3-prong singularities.

3. F has five punctured 1-prong singularities and one
punctured 3-prong singularity.

4. F has five punctured 1-prong singularities, one punc-
tured 2-prong singularity, and one unpunctured 3-
prong singularity.

5. F has four punctured 1-prong singularities and two
punctured 2-prong singularities.

In case 4, since the number of 2-prong singularities
and the number of 3-prong singularities are both one,
these singularities are fixed points [Bestvina and Handel
95, Proposition 3.3.3], and hence they can be considered
as either punctured or unpunctured. Therefore this case
is the same as case 3.

In cases 1 and 3, h extends to a pseudo-Anosov dif-
feomorphism with an orientable invariant foliation on a
closed oriented surface of genus two by taking a double
branched covering branched over the odd prong singular-
ities. By [Zhirov 95], we already know that the dilatation
of h is not less than the largest zero of x4−x3−x2−x+1
in the main theorem.

In case 5, h extends to an Anosov diffeomorphism on a
torus by taking a double branched covering branched over
the odd prong singularities. Let h̃ be the lifted Anosov
diffeomorphism. Note that up to isotopy, h̃ fixes a point;
hence the isotopy class of h̃ can be identified with an
element of SL(2, Z) by identifying a torus with R2/Z⊕Z.
But then the eigendirections of h̃ will give the invariant
foliations, and the eigenvalue that is greater than one
will give the dilatation [Casson and Steven 88]. Note
that all characteristic polynomials of elements of SL(2, Z)
are of the form x2 − ax + 1 for some a ∈ Z. It is now
easy to check that the minimal dilatation on a torus is
the largest zero of x2 − 3x + 1 (approximately 2.61803).
Hence the dilatation of h is greater than the largest zero
of x4 − x3 − x2 − x + 1 in the main theorem.

Therefore, it suffices to check case 2 for the minimal
dilatation on Σ2. If we suppose case 2, there are three
possible singularity types in the unit disk D6 with six
punctures as follows.

Type 1: If none of the 1-prong singularities and the 3-
prong singularities is a fixed point, then in D6, up
to multiplication by central elements, case 2 corre-
sponds to six punctured 1-prong singularities, two
unpunctured 3-prong singularities, and a bigon on
the boundary.

Type 2: If one of the 3-prong singularities is a fixed
point, then in D6, up to multiplication by central el-
ements, case 2 corresponds to six punctured 1-prong
singularities, one unpunctured 3-prong singularity,
and a trigon on the boundary.

Type 3: If one of the 1-prong singularities is a fixed
point, then in D5, up to multiplication by central el-
ements, case 2 corresponds to five punctured 1-prong
singularities, two unpunctured 3-prong singularities,
and a monogon on the boundary. In this case, we al-
ready know that the minimal dilatation is the largest
zero of x6−x5−4x3−x+1, which is approximately
2.01536 [Ham and Song 07, Theorem 3.5].

Hence, to determine the minimal dilatation on Σ2, we
need only calculate the minimal dilatations on pseudo-
Anosov 6-braids of Types 1 and 2.

Proposition 2.3. The minimal dilatation on Σ2 is the
minimum of the minimal dilatation of pseudo-Anosov 6-
braids of Types 1 and 2 and the largest zero of x4 − x3 −
x2 − x + 1.

3. CONSTRUCTION OF FOLDING AUTOMATA

For more details on the construction of folding automata,
see [Papadopoulos and Penner 87, Song et al. 02, Ham
and Song 07, Ham 06].

A train track τ is a branched 1-submanifold of Dn such
that no complementary component of the train track is
an annulus without cusps on its boundary or an unpunc-
tured 1- or 2-gon. An infinitesimal edge of an invari-
ant train track associated to a pseudo-Anosov diffeomor-
phism is an edge with transverse measure zero around
singularities, and an infinitesimal polygon is a polygon
whose edges consist of infinitesimal edges. A standardly
embedded train track is a train track such that Dn − τ

is a union of infinitesimal polygons and a noninfinitesi-
mal polygon, each singularity except the boundary one
is contained in an infinitesimal polygon, and cusps oc-
cur only at the corners of infinitesimal polygons and are
made by either only the edges of infinitesimal polygons
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FIGURE 1. A simplified folding automaton for pseudo-Anosov 6-braids with a 5-prong singularity.

or only the edges of noninfinitesimal polygons (see Figure
1: there are three standardly embedded train tracks).

On a foliation represented by a partial measured foli-
ation of Dn, there are three elementary moves called a
left split, a right split, and a shift. We call these moves
splitting moves (see Figure 2: train tracks are drawn on
the top of each part of a disk).

An elementary folding on Dn is an inverse of a splitting
move. An elementary folding on Dn induces an elemen-
tary folding map of a train track.

Given a pseudo-Anosov braid h on Dn, we can find
a standardly embedded invariant train track τ ([Pa-
padopoulos and Penner 87, Theorem 4.1] combined with
splittings and elementary foldings); i.e., h(τ) collapses to
τ if we collapse stable foliations to points. Hence we have
a map f : τ → τ , which is called a train-track representa-
tive of h. Recall that each train-track representative can
be decomposed into

f = ρ ◦ fL ◦ fL−1 ◦ · · · ◦ f1,

where fk : τk−1 → τk is an elementary folding map and
ρ : τ → τ is an isomorphism induced by a periodic braid
(Dn, τ) → (Dn, τ) [Papadopoulos and Penner 87, The-
orem 4.4], [Song et al. 02, Section 2.4]. Since a folding
automaton is a connected directed graph with diffeomor-
phism types of standardly embedded train tracks of a
given singularity type as vertices and all possible elemen-
tary folding maps as directed edges (see Figure 1), every
conjugacy class of pseudo-Anosov braids up to symme-
try and multiplication by central elements on Dn can be
represented by a closed walk in folding automata. Ob-
serve that the dilatation of a pseudo-Anosov braid is the
spectral radius of the product of all weights along the
corresponding closed walk [Ham and Song 07].

Now, by adopting the method in [Ham and Song 07],
we will show how to construct two folding automata cor-
responding to the singularity types in Proposition 2.3.

Theorem 3.1. The folding automaton for Type 1 has 110
vertices and 410 edges with weights of degree-7 matrices,
and the one for Type 2 has 138 vertices and 700 edges
with weights of degree-6 matrices.

Proof: We will prove the Type-1 case. The Type-2 case
can be proved similarly.

First we find all standardly embedded train tracks up
to diffeomorphisms. We first draw six monogons and two
trigons according to the singularity type. Now we find
all possible ways to connect the vertices of infinitesimal
polygons and a noninfinitesimal polygon by edges so that
we have standardly embedded train tracks: the number
of points where two real edges are tangent is determined
by the number of cusps on the boundary; hence it is 2.
Since the number of edges is

(number of vertices + number of boundary cusps)/2,

the number of edges of each standardly embedded train
track is 7. Using Mathematica and similar programs for
4-braids [Ham 06], we find that there are 110 standardly
embedded train tracks.

On each standardly embedded train track, there are
two places where elementary foldings are possible. For
each place, two elementary foldings are possible depend-
ing on which of the two edges forming the cusp is longer.
But since the longer edge obviously cannot pass through
cusps, we can get rid of some edges in the automaton.
So, there are at most four outgoing edges on each stan-
dardly embedded train track in the automaton. Using a
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right splitleft split shift

FIGURE 2. Splitting moves.

Largest Root Reciprocal Polynomial

λ ≈ 1.32472 (x3 − x − 1)(x3 + x2 − 1)
λ ≈ 1.40127 x6 − x4 − x3 − x2 + 1
λ ≈ 1.46557 (x3 − x2 − 1)(x3 + x − 1)
λ ≈ 1.50614 x6 − x5 − x3 − x + 1
λ ≈ 1.55603 x6 − x5 − x4 + x3 − x2 − x + 1
λ ≈ 1.56769 x6 − 2x5 + 3x4 − 5x3 + 3x2 − 2x + 1
λ ≈ 1.58235 x6 − x4 − 2x3 − x2 + 1
λ ≈ 1.63557 x6 − 2x5 + 2x4 − 3x3 + 2x2 − 2x + 1
λ ≈ 1.67114 x6 − x5 + x4 − 4x3 + x2 − x + 1

TABLE 1. Reciprocal polynomials of degree 6 with the
Perron root 1 < λ < λ∗ ≈ 1.72208 for Type-1 and
Type-2 singularities; x3 − x − 1 and x3 − x2 − 1 are
the irreducible factors having λ as a root.

similar program for 4-braids [Ham 06], we find that there
are 410 edges in the automaton.

Since each train track has seven edges, each edge in
the automaton has the weight of a 7 × 7 matrix.

4. PROOF OF LEMMA 1.2 AND THEOREM 1.1

We explain in four steps how to compute the bound in
Lemma 1.2, and then give an algorithm that confirms
Theorem 1.1. Note that the characteristic polynomial
of a primitive matrix has a Perron root by the Perron–
Frobenius theorem. In particular, the polynomial x4 −
x3−x2−x+1 in Theorem 1.1 has a Perron root, denoted
by λ∗.

Step 1: Find All Possible Dilatations Less Than λ∗
We first find all possible dilatations less than λ∗ and
greater than 1 for pseudo-Anosov 6-braids having spe-
cific singularity types in Proposition 2.3. The following
lemma derived from the proof of [Long 85, Theorem 3.3]

makes it possible. Recall that a reciprocal polynomial
is a complex polynomial p of degree n satisfying p(z) =
±znp(1/z). Note that if p(z) =

∑n
k=0 ckzk = znp(1/z),

then ck = cn−k.

Lemma 4.1. Any pseudo-Anosov 6-braid of Type 1 or 2
with dilatation λ corresponds to a pseudo-Anosov diffeo-
morphism θ ∈ Diff(S2, 6) with the same dilatation λ, by
Lemma 2.2. Denote by s the number of odd-degree sin-
gularities of the invariant foliation of θ. Then λ is the
Perron root of a reciprocal polynomial of degree s−2 with
integer coefficients.

Proof: Let S̃2 be the branched double cover of S2

branched over the odd-degree singularities of the invari-
ant foliation of θ, so that the lift θ̃ of θ and its folia-
tions become vector fields [Fathi et al. 79]. Note that
θ and its lift θ̃ have the same dilatation λ, which is
the Perron root of the characteristic polynomial ζ of
θ̃∗ : H1(S̃2; Q) → H1(S̃2; Q) by [Rykken 99, Theorem
3.3]. Moreover, all of the coefficients of ζ are integral,
and the degree of ζ is double the genus of S̃2, which is
2−χ(S̃2) = 2− [2χ(S2)− s] = s− 2, where χ(S̃2) is the
Euler characteristic of S̃2.

It remains to show that ζ is reciprocal. Since θ̃ pre-
serves the intersection form on S̃2, the inverse of θ̃∗ is
conjugate to its transpose. Hence, by taking characteris-
tic polynomials, we have ζ(1/x) = x−(s−2)ζ(x).

Let

p = c0x
n + c1x

n−1 + · · · + c1x + c0 = c0

n∏
j=1

(x − λj)

be a reciprocal polynomial of degree n with integer co-
efficients. Since our interest is in the Perron root of p,
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we may assume that c0 = 1. If the Perron root of p

is less than λ∗, then the binomial theorem implies the
inequality

|ck| = |cn−k| ≤
∑

i1<...<in−k

|λi1 | · · · |λin−k
|

<

(
n

k

)
λn−k
∗ = |c̃k|,

where c̃k is the coefficient of the polynomial (x − λ∗)n.
Thus |ck| is less than the minimum of |c̃k| and |c̃n−k|.

Symbolic calculation based on this observation pro-
vides, as shown in Table 1, a list of reciprocal polynomi-
als of degree 6 with Perron root less than λ∗ and greater
than 1. Note that the number of odd singularities is s = 8
for both types of singularity in Proposition 2.3.

Step 2: Find All Possible Characteristic Polynomials

Let M be a primitive matrix of degree n associated with
a pseudo-Anosov 6-braid of Type 1 or 2. Denote by ζM =
xn+cn−1x

n−1+· · ·+c1x+c0 the characteristic polynomial
of M . Then the spectral radius of M is nothing but
the Perron root of ζM , say λ, by the Perron–Frobenius
theorem. Lemma 4.1 implies that λ must be one of the
dilatations in Table 1 when 1 < λ < λ∗, so that both
ζM and the reciprocal polynomial in Table 1 associated
with λ have the same irreducible factor of which λ is the
Perron root.

We know at least that the trace of M is positive, since
any pseudo-Anosov 6-braid has a fixed point [Fathi et al.
79], and that the coefficient cn−2 of ζM is less than or
equal to

(
tr M

2

)
by Lemma 5.3. Using these facts, it is

routine to determine all possible characteristic polyno-
mials. Tables 2, 3, and 4 present lists of characteristic
polynomials of degree 7 for Type-1 singularities. On the
other hand, Table 5 gives a list of characteristic poly-
nomials of degree 6 for Type-2 singularities. However,
it does not guarantee that there always exists a primi-
tive matrix having the characteristic polynomials in the
tables. Instead, we know only that any primitive ma-
trix of our concern must have one of these characteristic
polynomials.

Step 3: Find All Possible Primitive Matrices

In this step we give an algorithm to find all possible
primitive matrices with integer entries, the character-
istic polynomials of which are given in Tables 2 to 5.
Among the primitive matrices having the same charac-
teristic polynomial, the maximal entries are also given in
the tables. For example, ∅ means that there is no prim-
itive matrix having the given characteristic polynomial,

and 0+1+2n3m means that there is a primitive matrix
in which the numbers of 2- and 3-entries are n and m,
respectively. Moreover, Lemma 1.2 follows immediately
from the tables.

Algorithm 4.2.

Input: A polynomial ζ = xn + cn−1x
n−1 + · · ·+ c1x+ c0

with cn−1 < 0 and c0 	= 0 having Perron root λ such
that 1 < λ < 2.

Output: The set of all primitive matrices M with inte-
ger entries and characteristic polynomial ζ.

1. Prepare a set of n×n matrices M = (aij) such that∑i
k=1 aik ≤ 1 for all 1 ≤ i ≤ n and the trace of M

is −cn−1 > 0 (see Lemma 5.1). For example, the
following is a 6 × 6 prepared matrix with trace 1:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 a[1, 2] a[1, 3] a[1, 4] a[1, 5] a[1, 6]
0 0 a[2, 3] a[2, 4] a[2, 5] a[2, 6]
1 0 0 a[3, 4] a[3, 5] a[3, 6]
0 1 0 0 a[4, 5] a[4, 6]
0 0 0 0 0 a[5, 6]
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

If λ(λ − 1) < 1, we can reduce the size of the set
of matrices using Lemma 5.4 and Corollary 5.5 to
speed up the computation of the algorithm. We will
give appropriate values for unknown entries aij with
i < j.

2. For each matrix in the previous step, make an equa-
tion of unknown entries such that cn−2 is the same as
the coefficient of xn−2 in the characteristic polyno-
mial of M . Lemma 5.3 gives the equation for degree
n − 2 as follows:∑

i<j

aji=1

aij =
(
tr M

2

)− cn−2 ≥ 0.

Now collect all nonnegative integer solutions for the
unknown entries aij , the number of which is finite. If
there is no solution, no primitive matrix with these
entries aij has characteristic polynomial ζ, so we try
the next matrix prepared in the previous step.

3. Repeat the previous step from degree n − 3 to de-
gree 0 until the characteristic polynomial of M is the
same as the given polynomial ζ. If we get a matrix
without unknown entries, check whether it is primi-
tive.
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Largest Root Characteristic Polynomial Trace Entries

λ ≈ 1.40127 (x6 − x4 − x3 − x2 + 1)(x − 1) 1 ∅

λ ≈ 1.50614 (x6 − x5 − x3 − x + 1)(x − 1) 2 ∅

λ ≈ 1.55603 (x6 − x5 − x4 + x3 − x2 − x + 1)(x − 1) 2 0+1+

λ ≈ 1.58235 (x6 − x4 − 2x3 − x2 + 1)(x − 1) 1 0+1+

λ ≈ 1.63557 (x6 − 2x5 + 2x4 − 3x3 + 2x2 − 2x + 1)(x + 1) 1 0+1+233

TABLE 2. Characteristic polynomials of degree 7 with Perron root λ for irreducible and reciprocal polynomials of degree
6 in Table 1.

Characteristic Polynomial Trace Entries Characteristic Polynomial Trace Entries

p3(x)(x − 1)4 4 ∅ p3(x)(x2 − x + 1)(x − 1)2 3 ∅

p3(x)(x3 − x2 + 1)(x − 1) 2 ∅ p3(x)(x + 1)(x − 1)3 2 ∅

p3(x)(x4 − 2x3 + 2x2 − x + 1) 2 ∅ p3(x)(x2 + 1)(x − 1)2 2 ∅

p3(x)(x3 + x + 1)(x − 1) 1 ∅ p3(x)(x4 − x3 + x2 + 1) 1 ∅

p3(x)(x3 + x − 1)(x − 1) 1 ∅ p3(x)(x4 − x3 + x2 − x − 1) 1 ∅

p3(x)(x4 − x3 + x2 − x + 1) 1 0+1+ p3(x)(x4 − x3 − x2 + x + 1) 1 ∅

p3(x)(x4 − x3 + 1) 1 ∅ p3(x)(x2 + x + 1)(x − 1)2 1 ∅

p3(x)(x2 − x + 1)(x + 1)(x − 1) 1 ∅ p3(x)(x4 − x3 + 2x − 1) 1 ∅

TABLE 3. Characteristic polynomials of degree 7 with Perron root λ ≈ 1.32472, where p3(x) = x3 − x − 1.

Characteristic Polynomial Trace Entries Characteristic Polynomial Trace Entries

q3(x)(x − 1)4 5 ∅ q3(x)(x + 1)(x − 1)3 3 ∅

q3(x)(x4 − 2x3 + x2 + 1) 3 ∅ q3(x)(x3 − x2 + 1)(x − 1) 3 ∅

q3(x)(x3 − x − 1)(x − 1) 2 ∅ q3(x)(x4 − x3 − x2 + x + 1) 2 ∅

q3(x)(x3 − x + 1)(x − 1) 2 ∅ q3(x)(x4 − x3 − x2 + 3x − 1) 2 ∅

q3(x)(x4 − x3 − 2x2 + 2x + 1) 2 ∅ q3(x)(x2 − x + 1)(x + 1)(x − 1) 2 0+1+

q3(x)(x4 − x3 + x + 1) 2 ∅ q3(x)(x2 + x + 1)(x − 1)2 2 ∅

q3(x)(x4 − x3 − 1) 2 ∅ q3(x)(x4 − x3 + 1) 2 0+1+

q3(x)(x4 − x3 + 2x − 1) 2 ∅ q3(x)(x4 + x + 1) 1 0+1+23
q3(x)(x4 + x − 1) 1 0+1+22 q3(x)(x4 − 2x − 1) 1 ∅

q3(x)(x3 + x2 + x − 1) 1 ∅ q3(x)(x4 − x − 1) 1 ∅

q3(x)(x4 − x + 1) 1 0+1+2 q3(x)(x2 + 1)(x + 1)(x − 1) 1 0+1+

q3(x)(x4 + 1) 1 0+1+2 q3(x)(x4 + 2x − 1) 1 ∅

q3(x)(x3 − x2 + x + 1)(x + 1) 1 ∅ q3(x)(x + 1)2(x − 1)2 1 ∅

q3(x)(x4 − x2 − 1) 1 ∅ q3(x)(x4 − x2 + 1) 1 0+1+

q3(x)(x4 − x2 − 2x + 1) 1 ∅ q3(x)(x3 + x2 − 1)(x − 1) 1 ∅

q3(x)(x3 − x2 + 1)(x + 1) 1 0+1+2 q3(x)(x4 − x2 + 2x + 1) 1 ∅

TABLE 4. Characteristic polynomials of degree 7 with Perron root λ ≈ 1.46557, where q3(x) = x3 − x2 − 1.

In the case of degree n − 3, the equation in the third
step of the algorithm above is

∑
i<j<k

(aijajkaki + aikajiakj) = d − cn−3

for some constant d. Note that aki and ajiakj are either
0 or 1. For other degrees less than n−3, we get a similar
equation whose left-hand side is the sum of the products
of unknown entries. Since the sum does not contain a
minus entry, there are only finitely many solutions for
unknown entries.

Step 4: Give an Algorithm That Confirms Theorem 1.1

In the final step we give an algorithm and confirm The-
orem 1.1.

Input: A directed graph, each edge of which has an in-
cidence matrix of the form P + E as its weight.

Output: All closed walks such that the product of all
weights along the walk is a primitive matrix with
Perron eigenvalue greater than one and less than λ∗.

1. Let Walk1 be the set of walks of length one in the
input graph. Select closed walks in Walk1 and then
check whether any closed walk gives a primitive ma-
trix with Perron eigenvalue that we want to find.
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Largest Root Characteristic Polynomial Trace Entries

λ ≈ 1.50614 x6 − x5 − x3 − x + 1 1 0+1+2
λ ≈ 1.55603 x6 − x5 − x4 + x3 − x2 − x + 1 1 0+1+2

TABLE 5. Characteristic polynomials of degree 6 with Perron root λ for reciprocal polynomials of degree 6 in Table 1.

2. Form the set Walk2 of walks of length two by con-
catenating Walk1 with itself. Throw away any walk
in Walk2 such that the product of all weights along
the walk contains entries above the bound in Lemma
1.2. This process enables the algorithm to work ef-
fectively without requiring much memory space and
time. Now select closed walks in Walk2 and check
whether there is a closed walk that we want to find.

3. Repeat the previous step until Walkn is empty.

The folding automaton for Type-1 singularities has
110 vertices and 410 edges with weights of degree-7 ma-
trices. With the folding automaton as the input data, the
algorithm took around 500 seconds, and Walk20 = ∅.

On the other hand, the folding automaton for Type-2
singularities has 138 vertices and 700 edges with weights
of degree-6 matrices. With the folding automaton as the
input data, the algorithm took around 60 seconds, and
Walk14 = ∅.

5. APPENDIX: ENTRIES OF PRIMITIVE MATRICES
WITH INTEGER ENTRIES

A matrix M with nonnegative entries is called primi-
tive if all entries of Mk are positive for some k > 0.
One of the important results for primitive matrices is the
Perron–Frobenius theorem, which implies the existence
of a unique positive real eigenvalue, called the Perron
eigenvalue or Perron root, that exceeds the moduli of all
the other eigenvalues. Moreover, the Perron eigenvalue
corresponds to an eigenvector with positive entries.

In this section we are mainly concerned with the en-
tries of primitive matrices with integer entries. Let
M = (aij) be a primitive matrix of degree n with integer
entries. Denote by λM the Perron eigenvalue of M and
by vM = (v1, . . . , vn)t an eigenvector associated with λM .
In the following, we assume that v1 ≥ v2 ≥ · · · ≥ vn > 0
by changing the rows and columns of M .

We first show that the lower triangle and the diagonal
of M have entries either 0 or 1 when λM < 2.

Lemma 5.1. If λM < 2, then
∑i

k=1 aik ≤ 1 for all 1 ≤
i ≤ n. In particular, aij is either 0 or 1 if i ≥ j.

Proof: Since aij ≥ 0 are integers and vi > 0 for all 1 ≤
i, j ≤ n, the claim follows from the inequalities

i∑
k=1

aikvi ≤
i∑

k=1

aikvk ≤
n∑

k=1

aikvk = λMvi < 2vi.

Remark 5.2. If λM 	= 1, then M does not contain a row
with zero entries except for the diagonal entry 1. Thus
Lemma 5.1 implies that the last diagonal entry ann of M

must be zero when 1 < λM < 2.

Denote by

ζM (x) = xn + cn−1x
n−1 + · · · + c1x + c0 = det(xI − M)

the characteristic polynomial of M . Recall that

det(xI − M) =
∑

σ

sgn(σ)ā1σ(1) · · · ānσ(n),

where āij = −aij for i 	= j and āii = x − aii. The
determinant and the trace of M are given by (−1)nc0

and −cn−1, respectively. Moreover, the coefficient cn−2

is determined by the trace of M and the nonzero entries
in the lower triangle of M when λM < 2 as follows.

Lemma 5.3. If λM < 2, then cn−2 =
(
tr M

2

) − dn−2 ≤(
tr M

2

)
, where dn−2 is the sum of the entries aij such that

i < j and aji > 0.

Proof: The coefficient of xn−2 in

n∏
i=1

(x − aii) −
∑
i<j

[
aijaji

∏
k/∈{i,j}

(x − akk)
]

is nothing but cn−2. Since each diagonal entry of M

is either 0 or 1 by Lemma 5.1, the coefficient of xn−2

in
∏n

i=1(x − aii) = xn−tr M (x − 1)tr M is
(
tr M

2

)
by the

binomial theorem. Therefore cn−2 =
(
tr M

2

)−∑i<j aijaji.
Notice that aji is either 0 or 1 by Lemma 5.1.

For λM < 2, Lemma 5.1 gives a restriction to some
entries of primitive matrices. The restriction becomes
stricter for smaller values of λM . Note that all the entries
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of the last row of M are 0 except for only one entry of 1
when 1 < λM < 2 (see the remark after Lemma 5.1).

Lemma 5.4. Suppose that λM (λM − 1) < 1 and that the
i0th row of M consists of zero entries except for ai0j0 = 1
for i0 > j0. If aij = 1 for j0 ≤ i ≤ i0 and j ≤ i, then∑i0

k=1 aik = 1.

Proof: Let (ai01, . . . , ai0n) be the i0th row such that
ai0k = 0 for k �= j0 and ai0j0 = 1. Then

vj0 =
n∑

k=1

ai0kvk = λMvi0 .

Since
∑i

k=1 aik = 1 by Lemma 5.1, it suffices to show
that

∑i0
k=i+1 aik = 0. Note that

aijvj +
n∑

k=i+1

aikvk =
n∑

k=1

aikvk = λMvi,

and so we have

( i0∑
k=i+1

aik

)
vi0 ≤

i0∑
k=i+1

aikvk

≤
n∑

k=i+1

aikvk = λMvi − vj ≤ (λM − 1)vi

≤ (λM − 1)vj0 = λM (λM − 1)vi0 < vi0

from the inequalities vi ≤ vj and vi0 ≤ vi ≤ vj0 . There-
fore, the sum

∑i0
k=i+1 aik < 1 of nonnegative integers

must be zero.

Corollary 5.5. Suppose that λM (λM−1) < 1 and λM > 1.
Then the nth row of M consists of zero entries except for
anj0 = 1 for some trM < j0 < n. In particular, the trace
of M is less than or equal to n − 2.

Proof: By the remark after Lemma 5.1, the nth row of M

satisfies the assumption of Lemma 5.4. Let anj0 = 1 be
the nonzero entry in the last row. Then for each aij = 1
with i ≥ j0 and j ≤ i, we have aik = 0 for all k �= j. In
particular, if aii = 1 with i ≥ j0, then vi =

∑n
k=1 aikvk =

λMvi, which contradicts λM > 1, and so tr M < j0.
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